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SUMMARY

This paper is concerned with the solution bounds for discrete-time networked control systems via
delay-dependent Lyapunov–Krasovskii methods. Solution bounds are widely used for systems with input
saturation caused by actuator saturation or by the quantizers with saturation. The time-delay approach has
been developed recently for the stabilization of continuous-time networked control systems under the round-
robin protocol and under a weighted try-once-discard protocol, respectively. Actuator saturation has not
been taken into account. In the present paper, for the first time, the time-delay approach is extended to the
stability analysis of the discrete-time networked control systems under both scheduling protocols and actu-
ators saturation. The communication delays are allowed to be larger than the sampling intervals. A novel
Lyapunov-based method is presented for finding the domain of attraction. Polytopic uncertainties in the sys-
tem model can be easily included in our analysis. The efficiency of the time-delay approach is illustrated on
the example of a cart–pendulum system. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Network control systems (NCSs) are spatially distributed systems in which the communication
between sensors, actuators, and controllers occurs through a communication network [1]. In many
such systems, only one node is allowed to use the communication channel at once. In the present
paper, we focus on the stability analysis of discrete-time NCSs with communication constraints
and actuator constraints. The scheduling of sensor information toward the controller is ruled by the
round-robin (RR) protocol and by a weighted try-once-discard (TOD) protocol, respectively. A lin-
ear (probably, uncertain) system with distributed sensors is considered. Three recent approaches for
NCSs are based on discrete-time systems [2, 3], impulsive/hybrid systems [4, 5], and time-delay
systems [6–8].

The time-delay approach has been developed for the stabilization of continuous-time NCSs under
the RR protocol in [9] and under a weighted TOD protocol in [10], respectively. The closed-loop
system is modeled as a switched system with multiple and ordered time-varying delays under RR
protocol or as a hybrid system with time-varying delays in the dynamics and in the reset equations
under TOD protocol. Differently from the existing hybrid and discrete-time approaches on the
stabilization of NCS with scheduling protocols, the time-delay approach allows treating the case
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of large communication delays. Actuator saturation was not taken into account in [10] and [9].
Recently, the stabilization of sampled-data systems under variable samplings and actuator saturation
was studied in [11], where scheduling protocols and delays were not included.

As shown in [12], when one deals with the solution bounds of time-delay systems via Lyapunov–
Krasovskii method, the first time-interval of the delay length needs a special analysis. Solution
bounds are widely used for systems with input saturation caused by actuator saturation or by the
quantizers with saturation. This first time-interval does not influence on the stability and the expo-
nential decay rate analysis. The analysis of the first time-interval of the delay length is important for
nonlinear systems, for example, for finding the domain of attraction.

In the present paper, the time-delay approach is extended to the stability analysis of discrete-
time NCSs with actuator constraints under the RR [9] or under a weighted TOD [10] scheduling.
Following [12], we present a direct Lyapunov approach for finding the domain of attraction under
both scheduling protocols. The conditions are given in terms of LMIs. Polytopic uncertainties in
the system model can be easily included in the analysis. The efficiency of the presented approach is
illustrated by a cart–pendulum system.

Notation: Throughout the paper, the superscript ‘T ’ stands for matrix transposition, Rn denotes
the n-dimensional Euclidean space with vector norm j � j; Rn�m is the set of all n � m real matrices,
and the notation P > 0, for P 2 Rn�n means that P is symmetric and positive definite. The sym-
metric elements of the symmetric matrix will be denoted by �. For any matrix A 2 Rn�n and vector
x 2 Rn, the notations Aj and xj denote, respectively, the j th line of matrix A and the j th com-
ponent of vector x. ZC; N, and RC denote the set of non-negative integers, positive integers, and
non-negative real numbers, respectively. Given Nu D Œ Nu1; : : : ; Nunu

�T ; 0 < Nui ; i D 1; : : : ; nu, for
any u D Œu1; : : : ; unu

�T , we denote by sat.u/ the vector with coordinates sign.ui /min .jui j; Nui /.
MATI denotes the maximum allowable transmission interval.

2. STABILIZATION OF DISCRETE-TIME NCSS WITH ACTUATOR SATURATION
UNDER RR SCHEDULING

2.1. Problem formulation and a switched system model

Consider the system architecture in Figure 1 with plant

x.t C 1/ D Ax.t/ C Bu.t/; t 2 ZC; (1)

where x.t/ 2 Rn is the state vector, u.t/ 2 Rnu is the control input, and A and B are (probably,
uncertain) system matrices with appropriate dimensions. The initial condition is given by x.0/ D
x0. We suppose that the control input is subject to the following amplitude constraints

jui .t/j 6 Nui ; 0 < Nui ; i D 1; : : : ; nu; t 2 ZC: (2)
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Figure 1. NCSs with actuator saturation under RR scheduling.
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The NCS has several nodes (distributed sensors, a controller node, and an actuator node),
which are connected via networks. For the sake of simplicity, we consider two sensor nodes

yi .t/ D C ix.t/; i D 1; 2 and we denote C D
h

C 1

C 2

i
; y.t/ D

h
y1.t/

y2.t/

i
2 Rny . The results can be

easily extended to any finite number of sensors. We let sk denote the unbounded and monotonously
increasing sequence of sampling instants, that is,

0 D s0 < s1 < � � � < sk < � � � ; k 2 ZC; lim
k!1

sk D 1; skC1 � sk 6 MATI; (3)

where ¹s0; s1; s2; : : : º is a subsequence of ¹0; 1; 2; : : : º. At each sampling instant sk , one of the
outputs yi .t/ 2 Rni .n1 C n2 D ny/ is sampled and transmitted via the network. First, we consider
the RR scheduling protocol for the choice of the active output node: the outputs are transmitted
one after another, that is, yi .t/ D C ix.t/; t 2 ZC is transmitted only at the sampling instant
t D s2pCi�1; p 2 ZC; i D 1; 2. After each transmission and reception, the values in yi .t/ are
updated with the newly received values, whereas the values of yj .t/ for j ¤ i remain the same, as
no additional information is received. This leads to the constrained data exchange expressed as

yi
k D

´
yi .sk/ D C ix.sk/; k D 2p C i � 1;

yi
k�1

; k ¤ 2p C i � 1;
p 2 ZC:

It is assumed that no packet dropouts and no packet disorders will happen during the data trans-
mission over the network. The transmission of the information over the two networks (between the
sensor and the actuator) is subject to a variable delay �k D �sc

k
C �ca

k
2 ZC, where �sc

k
and �ca

k
are

the network-induced delays from the sensor to the controller and from the controller to the actuator,
respectively. Then tk D sk C �k is the updating time instant of the zero-order hold device.

As in [9] and [13], we allow the delays to be non-small (larger than the sampling intervals)
provided that the old sample cannot get to the destination (to the controller or to the actuator) after
the current one. Assume that the network-induced delay �k and the time span between the updating
and the current sampling instants are bounded

tkC1 � 1 � tk C �k 6 �M ; 0 6 �m 6 �k 6 �M ; k 2 ZC; (4)

where �M ; �m, and �M are known non-negative integers. Then,

.tkC1 � 1/ � sk D skC1 � sk C �kC1 � 1 6 MATI C �M � 1 D �M ;

.tkC1 � 1/ � sk�1 D skC1 � sk�1 C �kC1 � 1 6 2MATI C �M � 1 D 2�M � �M C 1 , N�M ;

tkC1 � tk 6 �M � �m C 1:
(5)

In [9], a time-delay approach was developed for the stability and L2-gain analysis of continuous-
time NCSs with RR scheduling. Actuator saturation was not taken into account. In this section, we
consider the stability analysis of discrete-time NCSs with actuator saturation under RR scheduling
protocol. Because of the control bounds defined in (2), the effective control signal to be applied to
the system (1) is given by

u.t/ D sat
�
K1y1

k C K2y2
k

�
; t 2 Œtk; tkC1 � 1�; t 2 N; k 2 N;

where K D ŒK1 K2�; K1 2 Rnu�n1 ; K2 2 Rnu�n2 such that A C BKC is Schur.
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We define the polyhedron

L �
Kj ; Nu� D

²
x 2 Rn W ˇ̌

.Kj C j /ix
ˇ̌

6 1

2
Nui ; i D 1; : : : ; nu

³
; j D 1; 2:

If the control is such that x.t/ 2 L �
K1; Nu� \ L �

K2; Nu�
, then

ˇ̌
.K1C 1/ix C .K2C 2/i x

ˇ̌
6 Nui .

Following [9], the closed-loop system with RR scheduling is modeled as a switched system

x.t C 1/ D Ax.t/ C A1x.tk�1 � �k�1/ C A2x.tk � �k/; t 2 Œtk; tkC1 � 1�;

x.t C 1/ D Ax.t/ C A1x.tkC1 � �kC1/ C A2x.tk � �k/; t 2 ŒtkC1; tkC2 � 1�;
(6)

where k D 2p � 1; p 2 N; Ai D BKi C i ; i D 1; 2.
For t 2 Œtk; tkC1 � 1�, we can represent tk � �k D t � �1.t/; tk�1 � �k�1 D t � �2.t/, where

�1.t/ D t � tk C �k < �2.t/ D t � tk�1 C �k�1;

�1.t/ 2 Œ�m; �M �; �2.t/ 2 Œ�m; N�M �; t 2 Œtk; tkC1 � 1�:

Therefore, (6) for t 2 Œtk; tkC1 � 1� can be considered as a system with two time-varying interval
delays, where �1.t/ < �2.t/. Similarly, for t 2 ŒtkC1; tkC2�1�, (6) is a system with two time-varying
delays, one of which is less than another.

2.2. Solution bounds

Applying the following discrete-time Lyapunov–Krasovskii functional (LKF) to system (6) with
time-varying delay from the maximum delay interval Œ�m; N�M �

VRR.t/ D xT .t/P x.t/ C
Xt�1

sDt��m

�t�s�1xT .s/S0x.s/

C �m

X�1

j D��m

Xt�1

sDtCj
�t�s�1�T .s/R0�.s/ C

Xt��m�1

sDt�N�M

�t�s�1xT .s/S1x.s/

C . N�M � �m/
X��m�1

j D�N�M

Xt�1

sDtCj
�t�s�1�T .s/R1�.s/; �.t/ D x.t C 1/ � x.t/;

P > 0; Si > 0; Ri > 0; i D 0; 1; 0 < � < 1; t > 0;

(7)

where following [12], we define (for simplicity)

x.t/ D x0; t 6 0: (8)

We find then conditions that guarantee

VRR.t C 1/ � �VRR.t/ 6 0; t D t1; t1 C 1; : : : ; (9)

which will imply

VRR.t/ 6 �t�t1VRR.t1/; t D t1; t1 C 1; : : : :

In order to derive a bound on VRR.t1/ in terms of x0 in a simple way, on the controller side,
we need to wait for all (both) latest transmitted measurements y1.s0/, y2.s1/ and then send them
together to the actuator side. Therefore, the first updating time t0 D t1 corresponds to the updating
time instant when the first data are received by the actuator, which means that u.t/ D 0; t 2 Œ0; t1 �
1�. Then for t 2 Œ0; t1 � 1�, (1) is given by

x.t C 1/ D Ax.t/; t D 0; 1; : : : ; t1 � 1; t 2 ZC: (10)
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Denote by x.t; x0/, the state trajectory of (6), (10) with the initial condition x0 2 Rn. The domain
of attraction of the closed-loop system (6), (10) is the set

A D
°
x0 2 Rn W lim

t!1 x.t; x0/ D 0
±

:

Given K1; K2 and positive integers 0 6 �m 6 �M < �M , our objective is to get an estimate
Xˇ � A (as large as we can get) on the domain of attraction, for which exponential stability of the
closed-loop system is ensured, where

Xˇ D ®
x0 2 Rn W xT

0 P x0 6 ˇ�1
¯

; (11)

and where ˇ > 0 is a scalar, P > 0 is an n � n matrix.
By extending the direct Lyapunov approach suggested in [12] for time-delay system to the

switched system given by (6), (10), we obtain

Lemma 1
Consider LKF VRR.t/ given by (7) and denote V0.t/ D xT .t/P x.t/. Under (8), let there exist
0 < � < 1 and � > 1 such that the following inequalities

V0.t C 1/ � �V0.t/ 6 0; t D 0; 1; : : : ; t1 � 1; (12a)

VRR.t C 1/ � �VRR.t/ � .� � 1/V0.t/ 6 0; t D 0; 1; : : : ; t1 � 1: (12b)

hold along (10). Then the solutions of (6), (10) at time t1 satisfy

VRR.t1/ 6 xT
0

�
��m„RR C .��M C1 � 1/P

�
x0; (13)

where

„RR D P C �mS0 C ��m . N�M � �m/ S1: (14)

Proof
From (12a), V0.t/ 6 �tV0.0/ for t D 0; 1; : : : ; t1. Under the constant initial condition (8) and
VRR.t/ of (7), we have for t D 0

VRR.0/ D xT
0 P x0 C

X�1

sD��m

��s�1xT .s/S0x.s/ C
X��m�1

sD�N�M

��s�1xT
0 S1x0:

Hence, VRR.0/ 6 xT
0 „RRx0. Noting that �m < t1 6 �M C 1, (12b) yields (13) because

VRR.t1/ 6 �t1VRR.0/ C .�t1 � 1/xT
0 P x0 6 xT

0

�
�t1„RR C .�t1 � 1/P

�
x0:

�
Lemma 1 implies the following result:

Theorem 1
Given scalars 0 < � 6 1; ˇ > 0; � > 1; � > 0, positive integers 0 6 �m 6 �M < �M , and K1; K2,
let there exist scalars n � n matrices P > 0, S# > 0, R# > 0.# D 0; 1/, Gi

1; Gi
2; Gi

3 .i D 1; 2/

such that �mS0 C ��m. N�M � �m/S1 6 �P and the following matrix inequalities are feasible:

�i D

2
64

R1 Gi
1 Gi

2

� R1 Gi
3

� � R1

3
75 > 0; (15)
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"
��P AT P

� �P

#
< 0; (16)

"
P	�1

RR .KiC i /T
j

� 1
4
ˇ Nu2

j

#
> 0; j D 1; : : : ; nu; (17)

F T
0 PF0 C † C F T

01HF01 � ��mF T
12R0F12 � � N�M F T �iF < 0; (18)

NF T
0 P NF0 C N† C NF T

01H NF01 � ��mF T
12R0F12 � � N�M F T �1F < 0; i D 1; 2; (19)

where

F0 D ŒA 0 A3�i Ai 0�; F01 D ŒA � I 0 A3�i Ai 0�; i D 1; 2;

F12 D ŒI � I 0 0 0�; NF0 D ŒA 0 0 0 0�; NF01 D ŒA � I 0 0 0 0�;

F D

2
64

0 I �I 0 0

0 0 I �I 0

0 0 0 I �I

3
75 ;

† D diag
®
S0 � �P; ���m.S0 � S1/; 0; 0; �� N�M S1

¯
;

N† D diag
®
S0 � �P C .1 � �/P; ���m.S0 � S1/; 0; 0; �� N�M S1

¯
;

	RR D ��m.1 C �/ C ��M C1 � 1;

H D �2
mR0 C . N�M � �m/2R1:

(20)

Then, for all initial conditions x0 belonging to Xˇ , the closed-loop system (6), (10) is exponentially
stable.

Proof
Suppose that x.t/ 2 L �

K1; Nu� \L �
K2; Nu�

. Following [9], we take advantage of the ordered delays
and use convex analysis of [14]. We show that (16) and (15), (19) guarantee, respectively, (12a) and
(12b) for t D 0; : : : ; t1 � 1; (15) and (18) guarantee (9) for t D t1; t1 C 1; : : :.

Noting that (9), (13), and �mS0 C ��m . N�M � �m/ S1 6 �P , we arrive at

xT .t/P x.t/ 6 VRR.t/ 6 �t�t1VRR.t1/

6 xT
0 Œ��m„RR C .��M C1 � 1/P �x0

6 xT
0 Œ��m.P C �P / C .��M C1 � 1/P �x0

D 	RRxT
0 P x0; t D t1; t1 C 1; : : : :

So for all x.t/ W xT .t/P x.t/ 6 	RRˇ�1 ) xT .t/.Ki C i /T
j .Ki C i /j x.t/ 6 1

4
Nu2

j , if

xT .t/.Ki C i /T
j .KiC i /j x.t/ 6 1

4
ˇ	�1

RR xT .t/P x.t/ Nu2
j ; j D 1; : : : ; nu; i D 1; 2:

The latter inequality is guaranteed if 1
4
ˇ	�1

RR P Nu2
j � .KiC i /T

j .Ki C i /j > 0, and, thus, by Schur
complements if (17) is feasible. Hence, the trajectories of system (6), (10) converge to the origin
exponentially, provided that x0 2 Xˇ . �
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3. DISCRETE-TIME NCSS WITH ACTUATOR SATURATION UNDER A
WEIGHTED TOD PROTOCOL

3.1. Problem formulation and a hybrid time-delay model

In [10], a weighted TOD protocol was analyzed for the stabilization of continuous-time NCSs in the
framework of time-delay approach. Actuator saturation was not taken into account. In this section,
we consider discrete-time NCSs with actuator saturation under the weighted TOD protocol.

Consider (1) with two sensor nodes yi .t/ D C ix.t/; i D 1; 2 under the saturated control input
(2). Consider a sequence of sampling instants (3). At each sampling instant sk , one of the outputs
yi .t/ 2 Rni .n1 Cn2 D ny/ is sampled and transmitted via network. Denote by Oy.sk/ D

h
Oy1.sk /

Oy2.sk /

i
2

Rny the output information submitted to the scheduling protocol. At each sampling instant sk , one
of Oyi .sk/ values is updated with the recent output yi .sk/.

It is assumed that no packet dropouts and no packet disorders will happen during the data trans-
mission over the network. The transmission of the information over the two networks (between the
sensor and the actuator) is subject to a variable delay �k . Then tk D sk C �k is the updating time
instant. As in the previous section, we allow the delays to be non-small (larger than the sampling
intervals) provided that the old sample cannot get to the destination (to the controller or to the actu-
ator) after the current one. Assume that the network-induced delay �k and the time span between
the updating and the current sampling instants satisfy (4).

The choice of the active output node is ruled by a weighted TOD protocol. Following [10],
consider the error between the system output y.sk/ and the last available information Oy.sk�1/

e.t/ D col¹e1.t/; e2.t/º � Oy.sk�1/ � y.sk/; t 2 Œtk; tkC1 � 1�;

t 2 ZC; k 2 ZC; Oy.s�1/ , 0; e.t/ 2 Rny :

Let Qi > 0; i D 1; 2 be some weighting matrices (they will be found from matrix inequali-
ties in Lemma 2). The node that has the largest error,

ˇ̌p
Qiei .t/

ˇ̌2
; i D 1; 2 is granted access to

the network.
Let

i�
k D min

²
arg max

i2¹1;2º

ˇ̌̌p
Qi

� Oyi .sk�1/ � yi .sk/
�ˇ̌̌2

³
(21)

be the index of the active output node at the sampling instant sk . This can be rewritten as

ˇ̌̌p
Qi�

k
ei�

k
.t/

ˇ̌̌2

>
ˇ̌̌p

Qiei .t/ji¤i�
k

ˇ̌̌2

; t 2 Œtk; tkC1 � 1�; t 2 ZC: (22)

Because of the control bounds defined in (2), the effective control signal to be applied to system (1)
is given by

u.t/ D sat
h
Ki�

k yi�
k .tk � �k/ C Ki Oyi .tk�1 � �k�1/ji¤i�

k

i
; t 2 Œtk; tkC1 � 1�; t 2 ZC:

If the control is such that x.t/ 2 L �
K1; Nu� \L.K2; Nu/, then

ˇ̌
.K1C 1/ix C .K2C 2/ix.t/

ˇ̌
6 Nui .

The closed-loop system can be presented as

x.t C 1/ D Ax.t/ C A1x.tk � �k/ C Biei .t/ji¤i�
k

;

e.t C 1/ D e.t/; t 2 Œtk; tkC1 � 2�; t 2 ZC;
(23)
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with the delayed reset system for t D tkC1 � 1

x.tkC1/ D Ax.tkC1 � 1/ C A1x.tk � �k/ C Bi ei .tk/ji¤i�
k

;

ei .tkC1/ D C i Œx.tk � �k/ � x.tkC1 � �kC1/�; i D i�
k ;

ei .tkC1/ D ei .tk/ C C i Œx.tk � �k/ � x.tkC1 � �kC1/�; i ¤ i�
k ;

(24)

where A1 D BKC; Bi D BKi ; K D ŒK1 K2�; i D 1; 2. The initial condition for (22)–(24) has
the form of e.t0/ D �Cx.t0 � �0/ D �Cx0 and

x.t C 1/ D Ax.t/; t D 0; 1; : : : ; t0 � 1; t 2 ZC: (25)

Definition 1
Hybrid systems (22)–(24) are said to be partially exponentially stable with respect to x if there exist
constants b > 0; 0 < 
 < 1 such that the following holds

jx.t/j2 6 b
t�t0
�jx0j2 C je.t0/j2�

; t > t0

for the solutions of the hybrid system initialized with (25) and e.t0/ 2 Rny .

Given K1; K2 and positive integers 0 6 �m 6 �M < �M , our objective is to obtain an estimate
Xˇ � A (as large as we can get) on the domain of attraction, for which exponential stability of the
closed-loop systems (22)–(24) with respect to variable of interest x is ensured, where Xˇ is given
by (11). In [15], the notion of partial stability was also used.

3.2. Partial exponential stability of the hybrid delayed system without actuator saturation

Consider the LKF of the form

Ve.t/ D VTOD.t/ C tkC1 � t

�M � �m C 1
eT

i .tk/Qiei .tk/ji¤i�
k

;

VTOD.t/ D QV .t/ C VQ.t/;

VQ.t/ D .�M � �m/

t�1X
sDtk��k

�t�s�1�T .s/Q�.s/;

QV .t/ D xT .t/P x.t/ C
t�1X

sDt��m

�t�s�1xT .s/S0x.s/ C
t��m�1X
sDt��M

�t�s�1xT .s/S1x.s/

C �m

�1X
j D��m

t�1X
sDtCj

�t�s�1�T .s/R0�.s/

C .�M � �m/

��m�1X
j D��M

t�1X
sDtCj

�t�s�1�T .s/R1�.s/;

P > 0; Si > 0; Ri > 0; Q > 0; Qj > 0; 0 < � < 1; i D 0; 1; j D 1; 2;

t 2 Œtk; tkC1 � 1�; t 2 ZC; k 2 ZC;

(26)

where we define x.t/ D x0; t 6 0.
Our objective is to guarantee that

Ve.t C 1/ � �Ve.t/ 6 0; t 2 Œtk; tkC1 � 1�; t 2 ZC (27)
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holds along (22)–(24). The inequality (27) implies the following bound

VTOD.t/ 6 Ve.t/ 6 �t�t0Ve.t0/; t > t0; t 2 ZC;

Ve.t0/ 6 VTOD.t0/ C min
iD1;2

²ˇ̌̌p
Qiei .t0/

ˇ̌̌2
³

(28)

for the solution of (22)–(24) with the initial condition (25) and e.t0/ 2 Rny . Here, we took into
account that for the case of two sensor nodes

ˇ̌̌p
Qiei .t0/

ˇ̌̌2

ji¤i�
k

D min
iD1;2

²ˇ̌̌p
Qiei .t0/

ˇ̌̌2
³

:

From (28), it follows that systems (22)–(24) is exponentially stable with respect to x.
The novel term VQ.t/ of LKF is inserted to cope with the delays in the reset conditions

VQ.tkC1/ � �VQ.tkC1 � 1/

D .�M � �m/

2
4 tkC1�1X

sDtkC1��kC1

�tkC1�s�1�T .s/Q�.s/ �
tkC1�2X

sDtk��k

�tkC1�s�1�T .s/Q�.s/

3
5

6 .�M � �m/�T .tkC1 � 1/Q�.tkC1 � 1/ � .�M � �m/��M

tkC1��kC1�1X
sDtk��k

�T .s/Q�.s/

6 .�M � �m/�T .tkC1 � 1/Q�.tkC1 � 1/ � ��M

ˇ̌̌p
QŒx.tkC1 � �kC1/ � x.tk � �k/�

ˇ̌̌2

;

(29)
where we applied Cauchy–Schwartz inequality (see e.g., [16]). The term tkC1�t

�M ��mC1
eT

i .tk/Qiei .tk/

is inspired by the similar construction of LKF for the sampled-data systems [6].
We have

Ve.tkC1/ � �Ve.tkC1 � 1/ D QV .tkC1/ � � QV .tkC1 � 1/

C tkC2�tkC1

�M ��mC1
eT

i .tkC1/Qiei .tkC1/ˇ̌̌
i¤i�

kC1

� �
�M ��mC1

eT
i .tk/Qiei .tk/ji¤i�

k

C.�M � �m/�T .tkC1 � 1/Q�.tkC1 � 1/ � ��M
ˇ̌p

QŒx.tkC1 � �kC1/ � x.tk � �k/�
ˇ̌2

:
(30)

Note that under TOD protocol for i�
kC1

D i�
k

,

eT
i .tkC1/Qiei .tkC1/ˇ̌̌

i¤i�
kC1

6 eT
i�
k

.tkC1/Qi�
k

ei�
k

.tkC1/;

whereas for i�
kC1

¤ i�
k

, the latter relation holds with the equality. Hence,

tkC2 � tkC1

�M � �m C 1
eT

i .tkC1/Qiei .tkC1/ji¤i�
kC1

6 eT
i�
k

.tkC1/Qiei�
k

.tkC1/

D j
q

Qi�
k

Ci�
k

Œx.tkC1 � �kC1/ � x.tk � �k/�j2:

Assume that

��M Q > C iT QiC
i ; i D 1; 2: (31)

Then for t D tkC1 � 1, we obtain

Ve.t C 1/ � �Ve.t/ 6 QV .t C 1/ � � QV .t/ C .�M � �m/�T .t/Q�.t/

� �
�M ��mC1

eT
i .tk/Qiei .tk/ji¤i�

k
:

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2014)
DOI: 10.1002/rnc



K. LIU AND E. FRIDMAN

Furthermore, because of

� �

�M � �m C 1
D � 1

�M � �m C 1
C 1 � �

�M � �m C 1
6 � 1

�M � �m C 1
C 1 � �;

for t D tkC1 � 1, we arrive at

Ve.t C 1/ � �Ve.t/ 6 QV .t C 1/ � � QV .t/ C .�M � �m/�T .t/Q�.t/

�
h

1
�M ��mC1

� .1 � �/
i

eT
i .tk/Qiei .tk/ji¤i�

k
, ‰.t/:

(32)

For t 2 Œtk; tkC1 � 2�, we have

Ve.t C 1/ � �Ve.t/ 6 QV .t C 1/ � � QV .t/ C .�M � �m/�T .t/Q�.t/

C
h

tkC1�t�1

�M ��mC1
� �

tkC1�t

�M ��mC1

i
eT

i .tk/Qiei .tk/ji¤i�
k

:

Because

tkC1�t�1

�M ��mC1
� �

tkC1�t

�M ��mC1
D � 1

�M ��mC1
C .1 � �/

tkC1�t

�M ��mC1
6 � 1

�M ��mC1
C 1 � �;

we conclude that (32) is valid also for t 2 Œtk; tkC1 � 2�. Therefore, (27) holds if

‰.t/ 6 0; t 2 Œtk; tkC1 � 1�: (33)

Note that i ¤ i�
k

for i D 1; 2 is the same as i D 3 � i�
k

. By using the standard arguments for the
delay-dependent analysis [14], we derive the following conditions for (33) (and, thus for (28)):

Lemma 2
Given scalar 0 < � < 1, positive integers 0 6 �m 6 �M < �M , and K1; K2, if there exist n � n

matrices P > 0; Q > 0; Sj > 0; Rj > 0.j D 0; 1/; S12; ni � ni matrices Qi > 0.i D 1; 2/ such
that (31) and

O� D
"

R1 S12

� R1

#
> 0; (34)

OF T
0 P OF0 C O† C OF T

01W OF01 � ��mF T
12R0F12 � ��M OF T O� OF < 0; (35)

are feasible, where

OF0 D ŒA 0 A1 0 B3�i �; OF01 D ŒA � I 0 A1 0 B3�i �;

OF D
"

0 I �I 0 0

0 0 I �I 0

#
;

O† D diag ¹S0 � �P; ���m.S0 � S1/; 0; ���M S1; 'º ;

' D �
�

1

�M � �m C 1
� .1 � �/

�
Q3�i ;

W D �2
mR0 C .�M � �m/2R1 C .�M � �m/Q; i D 1; 2:

(36)

Then solutions of the hybrid systems (22)–(24) satisfy the bound (28) and are exponentially stable
with respect to x. Moreover, if the aforementioned inequalities are feasible with � D 1, then the
bound (28) holds with � D 1 � ", where " > 0 is small enough.
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Remark 1
The inequality Ve.t/ 6 �t�t0Ve.t0/; t > t0; t 2 ZC in (28) guarantees that

tkC1 � tk

�M � �m C 1
eT

i .tk/Qiei .tk/ji¤i�
k

is bounded, and it does not guarantee that e.tk/ is bounded. That is why (28) implies only partial
stability with respect to x.

3.3. Partial exponential stability of the hybrid delayed system with actuator saturation

Our objective is to derive the bound on VTOD.t0/ in terms of x0. By using arguments similar to
Lemma 1, we arrive at the following.

Lemma 3
Consider LKF VTOD.t/ given by (26) and denote V0.t/ D xT .t/P x.t/. Under (8), let there exist
0 < � < 1 and � > 1 such that

V0.t C 1/ � �V0.t/ 6 0; t D 0; 1; : : : ; t0 � 1; (37a)

VTOD.t C 1/ � �VTOD.t/ � .� � 1/V0.t/ 6 0; t D 0; 1; : : : ; t0 � 1; (37b)

hold along (25). Then we have

VTOD.t0/ 6 xT
0 Œ��m„TOD C .��M � 1/P � x0; (38)

where

„TOD D P C �mS0 C ��m.�M � �m/S1: (39)

Proof
From (37a), V0.t/ 6 �tV0.0/ for t D 0; 1; : : : ; t0. Under the constant initial condition (8) and
VTOD.t/ of (26), we have for t D 0

VTOD.0/ D xT
0 P x0 C

X�1

sD��m

��s�1xT
0 S0x0 C

X��m�1

sD��M

��s�1xT
0 S1x0:

Thus, VTOD.0/ 6 xT
0 „TODx0. Noting that �m 6 t0 D �0 6 �M , the inequality (37b) implies

VTOD.t0/ 6 �t0VTOD.0/ C .�t0 � 1/xT
0 P x0 6 xT

0

�
�t0„TOD C .�t0 � 1/P

�
x0

6 xT
0 Œ��m„TOD C .��M � 1/P � x0:

(40)

�
Lemmas 2 and 3 imply the following result:

Theorem 2
Given scalars 0 < � < 1; ˇ > 0; � > 1; � > 0; N� > 0, positive integers 0 6 �m 6 �M < �M ,
and K1; K2, if there exist n � n matrices P > 0; Q > 0; Sl > 0; Rl > 0.l D 0; 1/; S12; ni � ni

matrices Qi > 0.i D 1; 2/ such that (16), (31), (34), (35), and

�mS0 C ��m.�M � �m/S1 6 �P; (41)

��M Q 6 N�P; (42)
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�
P	�1

TOD .KiC i /T
j

� 1
4
ˇ Nu2

j

�
> 0; j D 1; : : : ; nu; (43)

QF T
0 P QF0 C Q† C QF T

01W QF01 � ��m QF T
12R0

QF12 � ��M QF T O� QF < 0; (44)

are feasible, where notations W and O� are given by (36) and (34), respectively, and where

QF0 D ŒA 0 0 0�; QF01 D ŒA � I 0 0 0�; QF12 D ŒI � I 0 0�;

QF D
"

0 I �I 0

0 0 I �I

#
;

Q† D diag¹S0 � �P C .1 � �/P; ���m.S0 � S1/; 0; ���M S1º;
	TOD D ��m.1 C �/ C .��M � 1/ C N�; i D 1; 2:

(45)

Then, for all initial conditions x0 belonging to Xˇ , the closed-loop systems (22)–(24) are exponen-
tially stable with respect to x. Moreover, if the aforementioned inequalities hold with � D 1, then
they are feasible for � D 1 � ", where " > 0 is small enough.

Proof
Suppose that x.t/ 2 L �

K1; Nu� \L �
K2; Nu�

. As shown in Lemma 2, (31), (34), and (35) lead to (28)
for t D t0; t0 C 1; : : :. Following the proof of Theorem 1, for t D 0; 1; : : : ; t0 � 1, (16) and (44) with
(34) guarantee (37a) and (37b), respectively.

Next, noting that (31) and (42), we have

xT
0 C iT QiC

i x0 < ��M xT
0 Qx0 6 N�xT

0 P x0; (46)

which implies that
ˇ̌p

Qiei .t0/
ˇ̌2 D ˇ̌�p

QiC
ix0

ˇ̌2
< N�xT

0 P x0; i D 1; 2:

Therefore, taking into (28), (38), (41), and (46), we obtain

xT .t/P x.t/ 6 VTOD.t/ 6 �t�t0Ve.t0/

6 �t�t0
®
VTOD.t0/ C miniD1;2

®
eT

i .t0/Qiei .t0/
¯¯

6 xT
0 Œ��m„TOD C .��M � 1/P C N�P � x0

6 xT
0 Œ��m.1 C �/ C .��M � 1/ C N�� P x0

D 	TODxT
0 P x0; t D t0; t0 C 1; : : : :

So for all x.t/ W xT .t/P x.t/ 6 	TODˇ�1 ) xT .t/.Ki C i /T
j .KiC i /j x.t/ 6 1

4
Nu2

j , if

xT .t/.Ki C i /T
j .Ki C i /j x.t/ 6 1

4
ˇ	�1

TODxT .t/P x.t/ Nu2
j ; j D 1; : : : ; nu; i D 1; 2:

The latter inequality is guaranteed if 1
4
ˇ	�1

TODP Nu2
j � .KiC i /T

j .Ki C i /j > 0, and, thus, by Schur
complements if (43) is feasible. Hence, solutions of the hybrid systems (22)–(24) initialized
with (25) and e.t0/ 2 Rny converge to the origin exponentially with respect to x, provided
that x0 2 Xˇ . �
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Remark 2
Note that for the stability analysis of discrete-time systems with time-varying delay in the state, a
switched system transformation approach can be used in addition to Lyapunov–Krasovskii method.
See more details in [17].

Remark 3
Note that

xT
0 P x0 6 �max.P /jx0j2 < ˇ�1; (47)

where �max.P / denotes the largest eigenvalue of P . Hence, the following initial region
jx0j2 < ˇ�1=�max.P / is inside of Xˇ . In order to maximize the initial ball, we can add
the condition

P � �I < 0; (48)

to Theorems 1 and 2, where � > 0 is minimized.

4. EXAMPLE: DISCRETE-TIME CART–PENDULUM

Consider the following linearized model of the inverted pendulum on a cart [9]:

2
6664

Px.t/

Rx.t/

P�.t/

R�.t/

3
7775 D

2
6664

0 1 0 0

0 0 �mg
M

0

0 0 0 1

0 0 .M Cm/g
M l

0

3
7775

2
6664

x.t/

Px.t/

�.t/

P�.t/

3
7775 C

2
6664

0
a

M

0
�a
M l

3
7775 u.t/; t 2 RC (49)

with M D 3:9249 Kg, m D 0:2047 Kg, l D 0:2302 m, g D 9:81 N/Kg, a D 25:3 N/V, and
Nu D 50. In the model, x and � represent cart position coordinate and pendulum angle from vertical,
respectively. Such a model is discretized with a sampling time Ts D 0:001s

2
6664

x.t C 1/


x.t C 1/

�.t C 1/


�.t C 1/

3
7775 D

2
6664

1 0:001 0 0

0 1 �0:0005 0

0 0 1:00 0:001

0 0 0:0448 1

3
7775

2
6664

x.t/


x.t/

�.t/


�.t/

3
7775 C

2
6664

0

0:0064

0

�0:0280

3
7775 u.t/; t 2 ZC (50)

with Nu D 50. The pendulum can be stabilized by a state feedback u.t/ D K
�

x 
x � 
�
�T

with
the gain K D �

K1 K2
�
K1 D �

5:825 5:883
�

; K2 D �
24:941 5:140

�
; (51)

which leads to the closed-loop system eigenvalues ¹0:8997; 0:9980 C 0:0020i; 0:9980 �
0:0020i; 0:9980º. Suppose the variables �; 
� and x; 
x are not accessible simultaneously. We
consider measurements yi .t/ D C ix.t/; t 2 ZC, where

C 1 D
�

1 0 0 0

0 1 0 0

�
; C 2 D

�
0 0 1 0

0 0 0 1

�
: (52)
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Table I. Largest ball of admissible initial conditions for different �.

� 1.02 1.2 1.5 2 3

jx0j(Theorem 1, RR) 0.4964 0.3557 0.2304 0.1297 0.1339
jx0j(Theorem 2,TOD) 0.3342 0.3069 0.2674 0.2168 0.1541

RR, round-robin; TOD, try-once-discard.

Choose � D 1; ˇ D 1; � D 1:0 � 10�2 and �m D 1; �M D 2; �M D 3. Applying Theorem 2 with
� D 1:02; N� D 1:1 and Remark 3, the closed-loop systems (22)–(24) are exponentially stable with
respect to x starting from the initial ball jx0j < 0:3342 by the presented TOD protocol. Applying
Theorem 1 with � D 1:02 and Remark 3, the closed-loop systems (6), (10) are asymptotically
stable and the largest ball of admissible initial conditions is jx0j < 0:4964.

Then for different �, by Theorems 1, 2 with � D 1 and Remark 3, we give the corresponding
largest ball of admissible initial conditions (see Table I).

5. CONCLUSIONS

In this paper, a time-delay approach was developed for the stability analysis of discrete-time NCSs in
the presence of actuator saturation under the RR or under a weighted TOD scheduling. A Lyapunov-
based method was presented for finding the domain of attraction under both scheduling protocols.
The conditions are given in terms of LMIs. Polytopic uncertainties in the system model can be easily
included in the analysis. Numerical example illustrates the efficiency of our method.
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