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Abstract

We introduce an ACP-style discrete-time process algebra with relative timing, that
features the empty process. Extensions to this algebra are described, and ample at-
tention is paid to the considerations and problems that arise when introducing the
empty process. We prove time determinacy, soundness, completeness, and the ax-
ioms of standard concurrency.
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1 Introduction

1.1 Motivation

One of the main features of ACP-style algebraic process theory [12, 13, 14] is its modu-
larity: it is relatively easy to add features for specific purposes, and, given two of such
extensions, it is often straightforward to combine them into one theory.

In the past, the feature of the empty process, the process that does nothing, and ter-
minates successfully (in contrast with the deadlocked process, which does nothing, and
terminates unsuccessfully), has been studied extensively [9, 19, 30, 31]. Recently, there
has been described an elegant and coherent way to incorporate discrete-time extensions
into the ACP-framework [5, 7, 8, 11, 26], and a case study has been made [15].

Given the fact that both extensions, empty process and discrete time, have been re-
searched very well, it seemed reasonable to study how these two extensions go together.
This is especially important, as the empty process does have great advantages in the spec-
ification of protocols. For example, a stack over a infinite data type can only be specified
in finitely many equations (three, to be exact), when we have the empty process at our
disposal [19]. Furthermore, the empty process is needed to give a process-algebra based
semantics to the specification languages SDL and MSC, and hence a timed empty process
is needed to give such a semantics to timed variants of these languages.

But, as introduction of the empty process has historically often been viewed as trou-
blesome, the modular combination of it with other features has hardly been studied. In
this paper, we remedy this situation for discrete-time process algebra with relative tim-
ing.

As far as related work is concerned: most other discrete-time process algebras, such
as TCCS [17, 20], ATP [21], have only action prefixing, not general sequential compo-
sition, and only one mode of termination. Thus, successful and unsuccessful termina-
tion cannot be distinguished. Timed CSP does have general sequential composition and
two modes of termination: it has the process SKIP for successful termination (cf. our de-
layable process ε) and STOP for unsuccessful termination (cf. our delayable process δ).
For an operational semantics of timed CSP, see [27]. Differences with this paper are that
only failures semantics is considered, not bisimulation semantics, and, as a consequence,
successful termination can be modeled as an internal step, avoiding all the difficulties
that we encounter. Given the timed empty process described here, it becomes easier to
compare timed CSP with timed ACP, and furthermore, it allows for a bisimulation seman-
tics to be given to timed CSP.

1.2 Discrete-time Process Algebra with Relative Timing

For readers not familiar with ACP-style process algebra, we will first give the intuitive
meaning behind the principles of discrete-time process algebra with relative timing.

First, we assume time to be divided into slices, one for every natural number. A pro-
cess that is started in a certain time-slice, can do zero or more actions in that time-slice,
move on to the following time-slice, repeat these steps, and eventually terminate. This
is why we use the term discrete time; the observation of time (as far as our theory is con-
cerned) is not continuous, but discrete. The opposite notion, where actions are indexed
by real numbers, is called real time [3].
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There is a finite alphabet A whose symbols will stand for actions. For example, we
could choose A = {insert-money,push-button,pour-coffee} if we wanted to de-
scribe a coffee-machine. For every symbol a ∈ A, we have the undelayable action a (also
denoted cts(a), see [26]). The process a intuitively means: “execute a in the current time-
slice”. So, if the process a is started in time-slice 3, it does an a in time-slice 3, if it is
started in slice 4, the a executes in slice 4. This is why we use the term relative timing;
a process executes its actions relative to the time at which the process is started. The
opposite notion, where we explicitly indicate at what moment an action should execute,
irrespective of the time it is started, is called absolute timing [7, 8].

As elementary operators, we have the alternative composition, also called choice, no-
tation x+ y, and the sequential composition, notation x · y. The process x+ y can either
perform the process x, or the process y. The choice is deterministic in the sense that it
may be influenced by the outside world, but if both arguments start with the same ac-
tion, the choice becomes non-deterministic. The process x ·y first performs the process
x, and if and when x terminates successfully, continues by performing process y.

We have a special constant undelayable deadlock, notation δ, that stands for the pro-
cess that cannot do anything. In particular, it cannot even terminate successfully, so δ·x
is equal to δ.

Then, we have the time-unit delay operator, notation σ(x) (also notated σrel(x), see
Remark 2.1.3 on page 8), that allows a process to move on to the next time-slice. So,
the process σ(a), when initialized in time-slice 5, will execute an a in time-slice 6. An
important concept we use is the concept of time factorization [21], which enforces that
moving into the next time-slice does not determine a choice (unless it has to). So, when
we initialize the process σ(a)+σ(b) in the first time-slice, the choice between a and b is
still open after the process has moved into the second time-slice, as both σ(a) and σ(b)
can move there. However, when we initialize the process a+σ(b) in the first time-slice,
the a will be lost when move into the second time-slice, leaving only b, as a cannot move
beyond the first time-slice, while σ(b) can.

Finally, we have the “now” operator, notation ν(x) (also notated νrel(x), see Re-
mark 2.1.3 on page 8), that restricts a process to the parts of it that can start in the current
time-slice. In other words, ν(x) is just like x, except that it must first do an action before
it may move on to the next time-slice. So, ν(a + σ(b)) must execute its a; it can never
do a b. The process ν(a · σ(b)), however, is not prohibited from executing its b (in the
second time-slice), since it has already done an a in the first time-slice.

1.3 Design goals for the empty process in discrete-time process algebra

Often, when extending an already existing process algebra with some additional constant
or operator, one has a lot of “maneuvering room” to make choices regarding the exact
implementation and the fine details of its behavior. For example, a very broad class of
“deadlock-like” processes has been described in the literature. To name a few variants
(in order of increasing degree of catastrophe): “classic” (δ, see [13]), “immediate” (δ̇, see
[7, 8]), “should not be here” (⊥, see [6]), and “true zero” (0, see [2]). A similar observation
holds for the implementation of the concept “choice”: half a dozen versions, ranging
from completely deterministic to completely non-deterministic have been described.

It appears that the concept “empty process” is different; it leaves little room for dif-
fering implementations.
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When we started thinking about the process that “does nothing” and terminates suc-
cessfully (in the context of discrete-time ACP), we had a three design goals in mind for
the empty process:

(i). it should be a unit element with respect to the · and ‖ operators,

(ii). it ought not to destroy the commutativity and associativity of the ‖ and | operators,

(iii). it ought not to destroy the time-factorization property.

These properties we deemed essential; violating one of them would render our empty
process useless. And, as it turned out, these goals very much restricted our freedom in
choosing our definitions. In this article, we will motivate our choices on the grounds of
the above design goals.

Finally, we had a few other design goals of lesser importance; we wanted that the ex-
isting “smaller” process algebras (without empty process, without time, or without either)
could be embedded in the new process algebras in a simple way (i.e., in the terminology
of [4] the old theories should be Subalgebras of a Reduced Model (SRMs) of the new the-
ories).

1.4 Disclaimer

This paper should be read in conjunction with [26], as the proofs of some of the theorems
given here strongly lean on results and techniques described there.
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2 Theories with Undelayable Actions

In this section, we will define the process algebra BPA−drt–ID, and step-by-step extend it
with the empty process, the free merge, and the merge. For each extension we will give
an axiomatization, an operational semantics, and a description of all concepts that are
introduced. Furthermore, we give the considerations that have led us to construct these
algebras in the way we have done. We will restrict ourselves to undelayable actions, as
opposed to delayable actions, which will be introduced in Section 3.

2.1 The Basis

In this section, we will define the process algebra BPA−drt–ID, which will serve as the basis
for all the process algebras we will construct.

A short note on nomenclature: the name BPA−drt–ID should be interpreted as follows.
BPA indicates we only have the elementary operators + and ·, and no operators to deal
with parallelism. The subscript “drt” stands for “discrete, relative timing”. The super-
script “−” indicates we have no delayable actions (to be treated in Section 3). The suffix
“–ID”, finally, indicates we have no “immediate deadlock” (see Section 2.5 on page 36).
For a full account of ACP nomenclature in general, see [13], for ACP nomenclature with
respect to discrete time, see [7, 8, 26].

Remark 2.1.1 (Alphabet)
For this section, and all sections to come, we presume the existence of a fixed, finite al-
phabet A, that can be considered a parameter of the respective theories. Furthermore,
we define Aδ as A∪{δ} and Aσ as A∪{σ}, where δ and σ are still to be treated symbols
that are not contained in A.

Definition 2.1.2 (Signature of BPA−drt–ID)
The signature of BPA−drt–ID consists of the undelayable atomic actions {a|a ∈ A}, the un-
delayable deadlock constant δ, the alternative composition operator +, the sequential
composition operator ·, the time-unit delay operator σ , and the “now” operator ν.

Remark 2.1.3 (Signature of BPA−drt–ID)
In [7, 8, 26] the σ and ν operators were denoted as σrel and νrel, in order to distinguish
them from their absolute-time counterpartsσabs and νabs. As absolute time does not play
a role here, we leave out the “rel” subscript, since it clutters up the formulae.

Remark 2.1.4 (Notation of Atoms)
When we write “a” (or “b”, or “c”) in the context of an axiom, we mean this a to range over
Aδ, and when we write it in the context of a deduction rule, we mean it to range over A.
In all other cases, we explicitly state whether it ranges over A or Aδ.

Definition 2.1.5 (Operator precedence)
Throughout this paper we adhere to the following operator precedence scheme, which
consist of four categories of operators. The four categories, from strongly binding to
weakly binding, are:

(i). all unary operators,
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(ii). the sequential composition operator “·”,

(iii). all binary operators, except the “+” and the “·”,

(iv). the alternative composition operator “+”.

Within one category, all operators bind equally strong.

Definition 2.1.6 (Axioms of BPA−drt–ID)
The process algebra BPA−drt–ID is axiomatized by Axioms A1–A7 shown in Table 1 and
Axioms DRT1–DRT2 and DCS1–DCS4 show in Table 2: BPA−drt–ID = A1–A7 + DRT1–DRT2
+ DCS1–DCS4.

x+ y = y + x A1

(x+ y) + z = x+ (y+ z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

Table 1: Axioms of BPAδ.

σ(x) + σ(y) = σ(x+ y) DRT1

σ(x) · y = σ(x · y) DRT2

ν(a) = a DCS1

ν(x+ y) = ν(x) + ν(y) DCS2

ν(x · y) = ν(x) · y DCS3

ν(σ(x)) = δ DCS4

Table 2: Additional axioms for BPA−drt–ID

Remark 2.1.7 (Axioms of BPA−drt–ID)
The axioms of BPA−drt–ID serve the following purposes. Axioms A1–A3 express the com-
mutative, associative, and idempotent character of the choice. Axiom A4 expresses the
right distributivity of the · over the +; note that we do not have left distributivity, as that
would lead to so called trace semantics, while we are interested in bisimulation seman-
tics. Axiom A5 expresses the associativity of the sequential composition. Axioms A6–A7
express the fact that given the choice between something and deadlock, the + always
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avoids the deadlock, and the fact that once you are stuck in a deadlock, you cannot go
on to the second part of a sequential composition.

DRT1 expresses the time-factorization property mentioned before: moving on to the
next time-slice, when no actions are enabled, does not determine a choice. DRT2 ex-
presses the relative-time character of BPA−drt–ID: once a process has moved to a following
time-slice, the complete remaining part of the process has also moved on, irrespective of
the scope of the σ operator.

DCS1 expresses that an undelayable action always starts in the current time-slice.
DCS2 expresses that the part of x + y that starts in the current time-slice consists of
the parts of x and y that start in the current time-slice. DCS3 expresses that the part of
x·y that starts in the current time-slice consists of the part of x that starts in the current
time-slice, followed by y (which need not start in the current time-slice). DCS4, finally,
expresses that σ(x) cannot start in the current time-slice.

Definition 2.1.8 (Notation regarding Semantics)
In order to define a semantics, we will use term deduction system semantics in the style
of Section 2.2.3 of [12] (also called “Structured Operational Semantics” or “Plotkin-style
semantics”). We use the notation x a→ x′ to denote that x can do an a-step to x′, x a→√ to
denote that x can do an a-step and then terminate, x a

3 to denote that x cannot do an a-
step, x σ3 to denote that x cannot do a time step, and x3 to denote that x cannot do any
step at all. Finally, x↓ denotes that x can successfully terminate in the current time-slice,
and x↓ô that it cannot.

For each process algebra we define, we will give a term deduction system. By using
the concept of bisimulation (to be defined in Definition 2.1.13 on the next page), we then
turn the term deduction system into a model of the given axioms.

Definition 2.1.9 (Semantics of BPA−drt–ID)
The semantics of BPA−drt–ID are given by the term deduction system T(BPA−drt–ID), in-
duced by the deduction rules for BPA−drt–ID shown in Table 3 on the following page.

Theorem 2.1.10 (Time Determinacy for BPA−drt–ID)
Let x, y, and y′ be closed BPA−drt–ID terms. Then we have:

T(BPA−drt–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Suppose that T(BPA−drt–ID) î x σ→ y, x σ→ y′. We proceed by case distinction on
the form of x. For every case we will either derive, by inspection of the deduction rules,
that y ≡ y′, or arrive at a contradiction, indicating that the case under consideration does
not occur.

(i). x ≡ a for some a ∈ Aδ. In contradiction with T(BPA−drt–ID) î x σ→ y.

(ii). x ≡ s · t for closed BPA−drt–ID terms s and t. We proceed by case distinction on the
transitions of s.

(a) T(BPA−drt–ID) î s σ→ s′. Then y ≡ y′ ≡ s′ · t.
(b) T(BPA−drt–ID) î s σ3 . In contradiction with T(BPA−drt–ID) î x σ→ y.
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a a→√ σ(x) σ→ x

x a→ x′
x+ y a→ x′

y a→ y′
x+ y a→ y′

x a→√

x+ y a→√
y a→√

x+ y a→√

x a→ x′
x · y a→ x′ · y

x a→√

x · y a→ y

x σ→ x′, y σ→ y′
x+ y σ→ x′ + y′

x σ→ x′, y σ
3

x+ y σ→ x′
x σ3 , y σ→ y′
x+ y σ→ y′

x σ→ x′
x · y σ→ x′ · y

x a→ x′
ν(x) a→ x′

x a→√

ν(x) a→√

Table 3: Deduction rules for BPA−drt–ID.

(iii). x ≡ s + t for closed BPA−drt–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(BPA−drt–ID) î s σ→ s′, t σ→ t′. Then y ≡ y′ ≡ s′ + t′.
(b) T(BPA−drt–ID) î s σ→ s′, t σ3 . Then y ≡ y′ ≡ s′.
(c) T(BPA−drt–ID) î s σ3 , t σ→ t′. Then y ≡ y′ ≡ t′.
(d) T(BPA−drt–ID) î s σ3 , t σ3 . In contradiction with T(BPA−drt–ID) î x σ→ y.

(iv). x ≡ σ(t) for a closed BPA−drt–ID term t. Then y ≡ y′ ≡ t.
Having inspected all possible cases, we may now conclude that y ≡ y′. �

Remark 2.1.11 (Time Determinacy for BPA−drt–ID)
Theorem 2.1.10 on the page before embodies the time-factorization property we dis-
cussed earlier: when a process moves on to the next time-slice, the outcome is uniquely
determined. Note that this is not always the case for doing an action. For example, we
have T(BPA−drt–ID) î a · b+ a · c a→ b, but also T(BPA−drt–ID) î a · b+ a · c a→ c.
Definition 2.1.12 (Symmetric Closure)
For a binary relation R, we denote its symmetric closure by RS:

RS = R ∪ {(y, x)|(x, y) ∈ R}

Definition 2.1.13 (Bisimulation for BPA−drt–ID)
Bisimulation for BPA−drt–ID is defined as follows; a binary relation R on process terms is
a bisimulation iff the following transfer conditions hold for all process terms p and q:
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(i). If RS(p, q) and p u→ p′, where u ∈ Aσ , then there exists a process term q′ such that
q u→ q′ and RS(p′, q′),

(ii). If RS(p, q) and p a→√, where a ∈ A, then q a→√.

Two BPA−drt–ID terms p and q are bisimilar, notation p ∼BPA−drt–ID q, if there exists a bisimu-
lation relation R such that R(p,q). Where there can be no confusion, we abbreviate this
by p ∼ q.

Definition 2.1.14 (Bisimulation Model for BPA−drt–ID)
Using bisimulation, we can now construct a model of the axioms of BPA−drt–ID. In order
to do this, we first need to know that bisimulation is a congruence with respect to all
operators. In [28] it is proven that a sufficient condition for this is that:

(i). The deduction rules satisfy the so-called panth format,

(ii). the deduction rules are well-founded,

(iii). a stratification can be given for the deduction rules.

It is easy to check that these three conditions are indeed satisfied.
We now construct the bisimulation model for BPA−drt–ID by taking the equivalence

classes of the set of all closed BPA−drt–ID terms with respect to bisimulation equivalence.
As bisimulation is a congruence, the operators can be trivially defined on the equivalence
classes. For example for the + operator:

[x]∼ + [y]∼ = [x+ y]∼

Here [x]∼ denotes the equivalence class of x with respect to the equivalence relation ∼.
The other operators are defined in the same way.

Definition 2.1.15 (Basic Terms of BPA−drt–ID)
We define (σ,δ)-basic terms inductively as follows:

(i). For every a ∈ Aδ, a is a (σ,δ)-basic term,

(ii). if a ∈ Aδ and t is a (σ,δ)-basic term, then a · t is a (σ,δ)-basic term,

(iii). if s and t are (σ,δ)-basic terms, then s + t is a (σ,δ)-basic term,

(iv). if t is a (σ,δ)-basic term, then σ(t) is a (σ,δ)-basic term.

From now on, when we speak of basic terms in the context of BPA−drt–ID, we mean (σ,δ)-
basic terms.

Theorem 2.1.16 (Elimination for BPA−drt–ID)
Let t be a closed BPA−drt–ID term. Then there is a basic term s such that BPA−drt–ID ` s = t.
Proof This is Theorem 2.5.12 on page 26 of [26]; see the proof given there. �

Theorem 2.1.17 (Soundness of BPA−drt–ID)
The set of closed BPA−drt–ID terms modulo bisimulation equivalence is a model of the axioms
of BPA−drt–ID.
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Proof This is Theorem 2.5.14 on page 27 of [26]; see the proof given there. �

Theorem 2.1.18 (Completeness of BPA−drt–ID)
The axiom system BPA−drt–ID is a complete axiomatization of the set of closed BPA−drt–ID
terms modulo bisimulation equivalence.

Proof This is Theorem 2.5.17 on page 31 of [26]; see the proof given there. �

2.2 The Empty-Process Extension

In this section, we will define BPA−drt,ε–ID, which is basically BPA−drt–ID extended with the
empty process (indicated by the subscript “ε”).

Definition 2.2.1 (Signature of BPA−drt,ε–ID)
The signature of BPA−drt,ε–ID consists of the undelayable atomic actions {a|a ∈ A}, the
undelayable deadlock constant δ, the time-unit delay constant σ, the undelayable empty
process constant ε, the alternative composition operator +, the sequential composition op-
erator ·, and the “now” operator ν.

Definition 2.2.2 (Axioms of BPA−drt,ε–ID)
The process algebra BPA−drt,ε–ID is axiomatized by Axioms A1–A7 shown in Table 1 on
page 9, and Axioms A8–A9, TF, and DCSE1–DCSE4 shown in Table 4: BPA−drt,ε–ID = A1–
A9 + TF + DCSE1–DCSE4.

x · ε = x A8

ε · x = x A9

σ · x+ σ · y = σ · (x+ y) TF

ν(ε) = ε DCSE1

ν(x+ y) = ν(x) + ν(y) DCSE2

ν(a · x) = a · x DCSE3

ν(σ · x) = δ DCSE4

Table 4: Additional axioms for BPA−drt,ε–ID.

Remark 2.2.3 (The processes ε and σ)
The undelayable empty process ε we have just defined has the intuitive meaning of doing
nothing, and then terminating successfully. As such, it is a proper 1-element for the se-
quential composition: ε·x= x·ε = x. Note that now we have a 1-element, we do not need
the σ operator anymore. This is because we can replace it by the constant σ (intuitively:
σ = σ(ε)), the process that can move on to the following time-slice, and terminate there.
The process formerly expressed as σ(x) can now be represented by σ · x, as, intuitively,
σ(x) = σ(ε · x) = σ(ε) · x = σ · x.
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Remark 2.2.4 (Axioms of BPA−drt,ε–ID)
Axioms A8–A9 express the 1-element property of ε. As we do not have the σ operator
anymore, we can drop Axioms DRT1–DRT2.

To express the time-factorization property associated with σ, formerly done by Ax-
iom DRT1, we now use Axiom TF. The purpose of DRT2 disappears, as it becomes a spe-
cial case of Axiom A5, the associativity of sequential composition: (σ ·x) ·y = σ ·(x·y).

Finally, Axioms DCSE1–DCSE4 express the properties of the ν operator in the context
of ε. Note that we do not anymore have that ν(x · y) = ν(x) · y, as that would lead to
ν(σ) = ν(ε · σ) = ν(ε) · σ = ε ·σ = σ , which is of course undesirable.

Definition 2.2.5 (Semantics of BPA−drt,ε–ID)
The semantics of BPA−drt,ε–ID are given by the term deduction system T(BPA−drt,ε–ID), in-
duced by the deduction rules for BPA−drt,ε–ID shown in Table 5.

a a→ ε σ σ→ ε ε↓

x a→ x′
x+ y a→ x′

y a→ y′
x+ y a→ y′

x↓
(x+ y)↓

y↓
(x+ y)↓

x a→ x′
x · y a→ x′ · y

x↓, y a→ y′
x · y a→ y′

x↓, y↓
(x · y)↓

x σ→ x′, y σ→ y′
x+ y σ→ x′ + y′

x σ→ x′, y σ
3

x+ y σ→ x′
x σ3 , y σ→ y′
x+ y σ→ y′

x σ→ x′, x↓ô
x · y σ→ x′ · y

x σ→ x′, y σ
3

x · y σ→ x′ · y
x σ3 , x↓, y σ→ y′
x · y σ→ y′

x σ→ x′, x↓, y σ→ y′
x · y σ→ x′ · y + y′

x a→ x′
ν(x) a→ x′

x↓
ν(x)↓

Table 5: Deduction rules for BPA−drt,ε–ID.

Remark 2.2.6 (Deduction rules for BPA−drt,ε–ID)
The deduction rules for the sequential composition with respect to σ-transitions, shown
in Table 5, are very subtle. Consider for example the expression (σ · a + ε) · (σ · b).
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Algebraically, we have:

(σ · a+ ε) · (σ · b) = σ · a ·σ · b + ε · σ · b
= σ · a ·σ · b +σ · b
= σ · (a · σ · b + b)

therefore, in our model we should have (σ ·a+ε) ·(σ ·b) σ→ a·σ ·b+b and in particular
we should not have (σ · a + ε) · (σ · b) σ→ a · σ · b, as such a transition would lose the
option to do just a b, while the principle of time factorization mentioned before explicitly
forbids that a σ-transition determines a choice here.

Theorem 2.2.7 (Time Determinacy for BPA−drt,ε–ID)
Let x, y, and y′ be closed BPA−drt,ε–ID terms. Then we have:

T(BPA−drt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Suppose that T(BPA−drt,ε–ID) î x σ→ y, x σ→ y′. We proceed by case distinction on
the form of x. For every case we will either derive, by inspection of the deduction rules,
that y ≡ y′, or arrive at a contradiction, indicating that the case under consideration does
not occur.

(i). x ≡ ε. In contradiction with T(BPA−drt,ε–ID) î x σ→ y.

(ii). x ≡ a for some a ∈ Aδ. In contradiction with T(BPA−drt,ε–ID) î x σ→ y.

(iii). x ≡ σ . Then y ≡ y′ ≡ ε.

(iv). x ≡ s · t for closed BPA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(BPA−drt,ε–ID) î s σ→ s′, s↓, t σ→ t′. Then y ≡ y′ ≡ s′ · t + t′.
(b) T(BPA−drt,ε–ID) î s σ→ s′ otherwise. Then y ≡ y′ ≡ s′ · t.
(c) T(BPA−drt,ε–ID) î s σ3 , s↓, t σ→ t′. Then y ≡ y′ ≡ t′.
(d) T(BPA−drt,ε–ID) î s σ3 otherwise. In contradiction with x σ→ y.

(v). x ≡ s+ t for closed BPA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(BPA−drt,ε–ID) î s σ→ s′, t σ→ t′. Then y ≡ y′ ≡ s′ + t′.
(b) T(BPA−drt,ε–ID) î s σ→ s′, t σ3 . Then y ≡ y′ ≡ s′.
(c) T(BPA−drt,ε–ID) î s σ3 , t σ→ t′. Then y ≡ y′ ≡ t′.
(d) T(BPA−drt,ε–ID) î s σ3 , t σ3 . In contradiction with x σ→ y.

Having inspected all possible cases, we may now conclude that y ≡ y′. �

Definition 2.2.8 (Bisimulation for BPA−drt,ε–ID)
Bisimulation for BPA−drt,ε–ID is defined as follows; a binary relation R on process terms is
a bisimulation iff the following transfer conditions hold for all process terms p and q:
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(i). If RS(p, q) and p u→ p′, where u ∈ Aσ , then there exists a process term q′ such that
q u→ q′ and RS(p′, q′),

(ii). If RS(p, q) and p↓, then q↓.

Definition 2.2.9 (Bisimulation Model for BPA−drt,ε–ID)
The bisimulation model for BPA−drt,ε–ID is defined in the same way as for BPA−drt–ID. Re-
place “BPA−drt–ID” by “BPA−drt,ε–ID” in Definition 2.1.14 on page 12.

Definition 2.2.10 (Basic Terms of BPA−drt,ε–ID)
We define (σ,δ, ε)-basic terms inductively as follows:

(i). The constant ε is a (σ,δ, ε)-basic term,

(ii). if a ∈ Aδ and t is a (σ, δ, ε)-basic term, then a · t is a (σ, δ, ε)-basic term,

(iii). if s and t are (σ, δ, ε)-basic terms, then s + t is a (σ, δ, ε)-basic term,

(iv). if t is a (σ, δ, ε)-basic term, then σ · t is a (σ,δ, ε)-basic term.

From now on, when we speak of basic terms in the context of BPA−drt,ε–ID, we mean (σ,δ,
ε)-basic terms.

Example 2.2.11 (Basic Terms of BPA−drt,ε–ID)
The following are basic terms of BPA−drt,ε–ID: δ·ε, a·ε, a ·(b ·c ·ε+d ·ε). Note, however,
that the following are not basic terms: δ,a, a · (b+ c).

Definition 2.2.12 (Number of Symbols of a BPA−drt,ε–ID Term)
We define n(x), the number of symbols of x, inductively as follows:

(i). We define n(ε) = n(σ) = 1,

(ii). for a ∈ Aδ, we define n(a) = 1,

(iii). for closed BPA−drt,ε–ID terms x and y, we define n(x+y) = n(x·y) = n(x)+n(y)+1.

Definition 2.2.13 (Summation Convention)
We will use the meta-notation

∑
i∈I to denote the summation over some finite index set

I. The summation over the empty set yields the undelayable deadlock:∑
i∈∅
ti ≡ δ

Note however, that we use the convention that an empty summation disappears in the
presence of other summands. So:

s +
∑
i∈∅
ti ≡ s

Here s and ti denote arbitrary closed terms.
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Theorem 2.2.14 (General Form of Basic Terms of BPA−drt,ε–ID)
Modulo the commutativity and associativity of the +, all basic terms t of BPA−drt,ε–ID are of
the form:

t ≡
∑
i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε

for m,n,p ∈ N, m+ n + p ≥ 1, ai ∈ Aδ, and basic terms si and uj.

Proof Trivial, by inspection of the definition of basic terms, Definition 2.2.10. Observe
that the general form of basic terms is closed under the formation rules given in Defini-
tion 2.2.10. Note that by our summation convention, Definition 2.2.13 on the page before,
the above general form never contains a summand δ. �

Lemma 2.2.15 (Representation of BPA−drt,ε–ID Terms)
Let t be a basic term. Then either BPA−drt,ε–ID ` t = ν(t), or there exists a basic term s
such that BPA−drt,ε–ID ` t = ν(t) + σ · s and n(s) < n(t).

Proof Let t be a basic term. By Theorem 2.2.14, we may now proceed by case analysis
on the general form of basic terms:

(i). Either we have no σ · uj summands (n = 0 in Definition 2.2.14):

t ≡
∑
i<m
ai · si +

∑
k<p
ε

for m,p ∈ N, m + p ≥ 1, ai ∈ Aδ, and basic terms si. Then we have the following
computation:

BPA−drt,ε–ID ` t =
∑
i<m
ai · si +

∑
k<p
ε =

∑
i<m
ν(ai · si) +

∑
k<p
ν(ε) =

ν

∑
i<m
ai · si +

∑
k<p
ε

 = ν(t)
(ii). Or we have at least one σ · uj summand (n ≥ 1 in Definition 2.2.14):

t ≡
∑
i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε

form,n,p ∈ N, m+n+p ≥ 1, ai ∈ Aδ, and basic terms si and uj. Then we have the
following computation:

BPA−drt,ε–ID ` t =
∑
i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε =

∑
i<m
ai · si + δ+

∑
k<p
ε+

∑
j<n
σ · uj =

∑
i<m
ν(ai · si) +

∑
j<n
ν(σ · uj) +

∑
k<p
ν(ε) + σ ·

∑
j<n
uj

 =
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ν

∑
i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε

+ σ ·
∑
j<n
uj

 =
ν(t) + σ · s

Where we define:

s ≡
∑
j<n
uj

Note that n(s) < n(t) is now trivially satisfied, as for every summand uj of s, there
is a corresponding summand σ · uj of t, and at least one such summand exists as
n ≥ 1.

�

Remark 2.2.16 (Representation of BPA−drt–ID Terms)
The main use of Lemma 2.2.15 will be in induction proofs regarding the (not yet treated)
theories PA−drt,ε–ID and ACP−drt,ε–ID (see Sections 2.3 and 2.4).

Definition 2.2.17 (Alternative Normal Form for BPA−drt,ε–ID)
We define the alternative normal form (ANF) terms of BPA−drt,ε–ID inductively as follows:

(i). The constant δ is an ANF term,

(ii). the constant ε is an ANF term,

(iii). if a ∈ Aδ and s and t are ANF terms, then a · s + t is an ANF term,

(iv). if t is an ANF term, then σ · t is an ANF term,

(v). if t is an ANF term, then σ · t + ε is an ANF term.

Remark 2.2.18 (Alternative Normal Form for BPA−drt,ε–ID)
We will need ANF terms in order to axiomize the left merge operator to be treated in
Section 2.3. As we will show in Theorem 2.2.19, basic terms and ANF terms are equivalent
in the sense that any basic term can be rewritten into a ANF term, and vice versa.

Theorem 2.2.19 (Equivalence of Basic and ANF Terms)
For every ANF term x of BPA−drt,ε–ID, there exists a basic term x′ such that BPA−drt,ε–ID `
x = x′, and, vice versa, for every basic term x of BPA−drt,ε–ID, there exists an ANF term x′
such that BPA−drt,ε–ID ` x = x′.
Proof The first part is simple. Suppose that x is an ANF-term. We use induction on
the structure of ANF terms, given in Definition 2.2.17. Suppose that x ≡ δ, then we take
x′ ≡ δ·ε. Now the property trivially holds for x ≡ ε, x ≡ a·s+t, x ≡ σ ·t, and x ≡ σ ·t+ε,
as by the induction hypothesis the property already holds for the ANF terms s and t.

The second part is harder. Suppose that x is a basic term. Then, by Theorem 2.2.14
on the page before, we may assume that x is of the following form:

x ≡
∑
i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε
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form,n,p ∈ N, m+n+p ≥ 1, ai ∈ Aδ, and basic terms si and uj. We now distinguish six
mutually exclusive cases:

(i). There are only ε summands: m = n = 0 and p ≥ 1.

(ii). There are only σ · uj summands: m = 0, n ≥ 1, and p = 0.

(iii). There are both σ ·uj and ε summands, but no other summands: m = 0, n ≥ 1, and
p ≥ 1.

(iv). There is exactly one ai·si summand, and no other summands: m = 1 and n = p = 0.

(v). There is exactly one ai · si summand, and at least one other summand: m = 1 and
n + p ≥ 1.

(vi). There are at least two ai · si summands: m ≥ 2.

As can be easily seen, this covers all cases. We now prove the property for all six cases,
using induction on the number of symbols in x:

(i). We have m = n = 0 and p ≥ 1. Then:

BPA−drt,ε–ID ` x =
∑
k<p
ε = ε

and ε is an ANF term. Note that the sum over k cannot be empty, as p ≥ 1.

(ii). We have m = 0, n ≥ 1, and p = 0. Then:

BPA−drt,ε–ID ` x =
∑
j<n
σ · uj = σ ·

∑
j<n
uj


and this last term is an ANF term, since by the induction hypothesis the property
already holds for

∑
j<n uj. Note that the sum over j cannot be empty, as n ≥ 1.

(iii). We have m = 0, n ≥ 1, and p ≥ 1. Then:

BPA−drt,ε–ID ` x =
∑
j<n
σ · uj+

∑
k<p
ε = σ ·

∑
j<n
uj

+ ε
and this last term is an ANF term, since by the induction hypothesis the property
already holds for

∑
j<n uj. Note that neither the sum over j nor the one over k can

be empty, as n ≥ 1 and p ≥ 1.

(iv). We have m = 1 and n = p = 0. Then:

BPA−drt,ε–ID ` x = a1 · s1 = a1 · s1 + δ

and a1·s1+δ is an ANF term since by the induction hypothesis the property already
holds for s1.
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(v). We have m = 1 and n + p ≥ 1. Then:

BPA−drt,ε–ID ` x = a1 · s1 +
∑
j<n
σ · uj+

∑
k<p
ε


and this last term is an ANF term, since by the induction hypothesis the property
already holds for s1 and the second summand. Note that the second summand can
not be empty, as n + p ≥ 1.

(vi). We have m ≥ 2. Then:

BPA−drt,ε–ID ` x =
∑
i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε =

a1 · s1 +
 ∑

2≤i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε


and this last term is an ANF term, since by the induction hypothesis the property
already holds for s1 and the second summand. Note that the second summand can
not be empty, as m ≥ 2.

�

Corollary 2.2.20 (Structural Induction over ANF)
Any proposition of the form “For all basic terms . . . ”, that we would normally prove by
structural induction over the definition of basic terms, may now also be proven by induc-
tion over the definition of ANF terms.

Proof This follows directly from Theorem 2.2.19 on page 18. �

Theorem 2.2.21 (Elimination for BPA−drt,ε–ID)
Let t be a closed BPA−drt,ε–ID term. Then there is a basic term s such that BPA−drt,ε–ID ` s = t.
Proof Turn the axioms into a term rewriting system, and then apply the lexicographical
path ordering technique. We give no details here, see [26] for more information. �

Theorem 2.2.22 (Soundness of BPA−drt,ε–ID)
The set of closed BPA−drt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of BPA−drt,ε–ID.

Proof For every axiom, derive a concrete bisimulation relation that relates both sides
of the axiom for all closed instantiations of the free variables. We give no details here,
see [26] for more information. �

Lemma 2.2.23 (Towards Completeness of BPA−drt,ε–ID)
Let x be a closed BPA−drt,ε–ID term and let a ∈ A. Then we have:

(i). T(BPA−drt,ε–ID) î x a→ y =⇒ BPA−drt,ε–ID ` x = a · y + x,

(ii). T(BPA−drt,ε–ID) î x↓ =⇒ BPA−drt,ε–ID ` x = ε+ x,
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(iii). T(BPA−drt,ε–ID) î x σ3 =⇒ BPA−drt,ε–ID ` x = ν(x),

(iv). T(BPA−drt,ε–ID) î x σ→ y =⇒ BPA−drt,ε–ID ` x = σ · y + ν(x),

(v). T(BPA−drt,ε–ID) î x a→ y =⇒ n(x) > n(y),

(vi). T(BPA−drt,ε–ID) î x σ→ y =⇒ n(x) > n(y).

Proof By induction on the structure of x. We give no details here, see [26] for more
information. �

Theorem 2.2.24 (Completeness of BPA−drt,ε–ID)
The axiom system BPA−drt,ε–ID is a complete axiomatization of the set of closed BPA−drt,ε–ID
terms modulo bisimulation equivalence.

Proof We use, without further explanation, the methods outlined in [26]. Suppose
x + y ∼BPA−drt,ε–ID y. We will prove, with induction on the structure of basic term x, that
BPA−drt,ε–ID ` x+ y = y.

(i). x ≡ ε. From the deduction rules we have T(BPA−drt,ε–ID) î x↓, and T(BPA−drt,ε–ID) î
(x+y)↓. Since x+ y ∼BPA−drt,ε–ID y, we then also have T(BPA−drt,ε–ID) î y↓. Then, using
Lemma 2.2.23(ii), we have BPA−drt,ε–ID ` x+ y = ε+ y = y.

(ii). x ≡ δ · t, where t is a basic term. Then we have BPA−drt,ε–ID ` x+ y = δ · t + y =
δ+ y = y.

(iii). x ≡ a · t, where a ∈ A and t is a basic term. From the deduction rules we obtain
T(BPA−drt,ε–ID) î x a→ t and T(BPA−drt,ε–ID) î x+y a→ t. Since x+y ∼BPA−drt,ε–ID y, we then
also have T(BPA−drt,ε–ID) î y a→ s for some s such that t ∼BPA−drt,ε–ID s. By the induction
hypothesis we have BPA−drt,ε–ID ` s = t. From Lemma 2.2.23(i) we have BPA−drt,ε–ID `
y = a · s + y. So, BPA−drt,ε–ID ` x+ y = a · t + y = a · s + y = y.

(iv). x ≡ s + t, where s and t are basic terms. Since x + y ∼BPA−drt,ε–ID y, we also have
s + y ∼BPA−drt,ε–ID y and t + y ∼BPA−drt,ε–ID y. By the induction hypothesis we then have
BPA−drt,ε–ID ` s + y = y, t + y = y. So, BPA−drt,ε–ID ` x+ y = s + t + y = s + y = y.

(v). x ≡ σ · t, where t is a basic term. From the deduction rules we now have that
T(BPA−drt,ε–ID) î x σ→ t and since x + y ∼BPA−drt,ε–ID y we also have T(BPA−drt,ε–ID) î
y σ→ s, x + y σ→ t + s for some s such that t + s ∼BPA−drt–ID s. By Lemma 2.2.23(iv) we
have BPA−drt–ID ` y = σ ·s+ν(y). By the induction hypothesis we have BPA−drt–ID `
t+ s = s. So, BPA−drt–ID ` x+y = σ · t+y = σ · t+σ · s+ν(y) = σ · (t+ s)+ν(y) =
σ · s + ν(y) = y.

�

2.3 The Free-Merge Extension

In this section, we will define PA−drt,ε–ID, which is basically BPA−drt,ε–ID extended with the
free merge (indicated by the letters “PA” instead of “BPA”). The free merge allows us to
write down the parallel composition of two processes.
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Definition 2.3.1 (Signature of PA−drt,ε–ID)
The signature of PA−drt,ε–ID consists of the undelayable atomic actions {a|a ∈ A}, the un-
delayable deadlock constant δ, the time-unit delay constant σ , the undelayable empty pro-
cess constant ε, the alternative composition operator +, the sequential composition oper-
ator ·, the “now” operator ν, the free merge operator ‖, and the left merge operator ‖ .

Definition 2.3.2 (Axioms of PA−drt,ε–ID)
The process algebra PA−drt,ε–ID is axiomatized by the axioms of BPA−drt,ε–ID given in Defi-
nition 2.2.2 on page 13, and the Axioms DRTEM1–DRTEM12 shown in Table 6: PA−drt,ε–ID
= A1–A9 + TF + DCSE1–DCSE4 + DRTEM1–DRTEM12. Note that the merge operators bind
weaker than the ·, but stronger than the +.

x ‖ y = x ‖ y + y ‖ x DRTEM1

a · x ‖ y = a · (x ‖ y) DRTEM2

(x+ y) ‖ z = x ‖ z + y ‖ z DRTEM3

ε ‖ ε = ε DRTEM4

ε ‖ a · x = δ DRTEM5

ε ‖ σ · x = δ DRTEM6

ε ‖ (x+ y) = ε ‖ x+ ε ‖ y DRTEM7

σ · x ‖ (a · y + z) = σ · x ‖ z DRTEM8

σ · x ‖ δ = δ DRTEM9

σ · x ‖ ε = σ · x DRTEM10

σ · x ‖ σ · y = σ · (x ‖ y) DRTEM11

σ · x ‖ (σ · y + ε) = σ · (x ‖ y) DRTEM12

Table 6: Additional axioms for PA−drt,ε–ID.

Remark 2.3.3 (Axioms of PA−drt,ε–ID, Part I)
The free merge of two processes x and y, notation x ‖ y, should be interpreted as the
simultaneous, interleaving execution of x and y. The two processes x and y do in no way
communicate or synchronize with each other (hence the merge is called free). The left
merge, notation x ‖ y, is an auxiliary operator that is introduced for the purpose of the
axiomatization only; it is not intended to be used in actual specifications. The process
x ‖ y is like x ‖ y, but always executes at least one action from x before it executes an
action from y.

Regarding the inner workings of the axioms: DRTEM4–DRTEM7 ensure that x ‖ y has
a summand ε iff x and y both have a summand ε. Furthermore, DRTEM8–DRTEM12 work
by first eliminating all summands a·y on the right-hand side of the left merge (DRTEM8),
and then distinguishing between terms that only have a σ · y summand left (DRTEM11),
only a ε summand left (DRTEM10), or both (DRTEM12), or none (DRTEM9). Notice that
this is exactly the structure of ANF terms given in Definition 2.2.17 on page 18.
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For more details concerning axioms for merge operators, see [9, 14].

Remark 2.3.4 (Axioms of PA−drt,ε–ID, Part II)
Note that, unlike in a setting without empty process, we do not need an axiom a ‖ x =
a · x, as that equality is derivable for all closed terms x (we will prove this in Proposi-
tion 2.3.16 on page 27). For example:

a ‖ b = a · ε ‖ b = a · (ε ‖ b) = a · (ε ‖ b + b ‖ ε) = a · (δ+ b · ε ‖ ε)
= a · b · (ε ‖ ε) = a · b · (ε ‖ ε+ ε ‖ ε) = a · b · (ε ‖ ε) = a · b · ε
= a · b

Remark 2.3.5 (Axioms of PA−drt,ε–ID, Part III)
The axiomatization as given in Definition 2.3.2 on the page before has some conse-
quences that may not be obvious at first sight. For example, consider what we get if we
eliminate the merge operator from the expression (a+ ε) ‖ b using the axioms:

(a+ ε) ‖ b = (a+ ε) ‖ b+ b ‖ (a+ ε)
= a ‖ b + ε ‖ b + b · (a+ ε)
= a · b + δ+ b · (a+ ε)
= a · b + b · (a+ ε)

So, if we execute a b first, then an a can always still follow. This may seem counter-
intuitive; apparently it is not possible for the ε to the left of the merge to execute before
the b does, in which case a would not be enabled after the execution of the b.

The rationale behind this, is that the ε is not something that “executes”; it merely rep-
resents an option to terminate. Hence, the option remains open until the process actually
does terminate or performs an action. It does not “just get lost”. So for example the pro-
cess a+ ε can not drop the ε to turn itself into the process a. If it wants to lose the ε, it
has to execute an a.

In the context of a (multiple) merge, this means that an ε summand in one of the
merge components does not manifest itself as long as the other components of the merge
still have to execute one or more actions before they can terminate or move on to the
following time-slice.

One could be tempted to “repair” this behavior, for example by dropping DRTEM4–
DRTEM7, and adding the axiom ε ‖ x = x (i.e., treating ε like it was an ordinary action).
Although this does give us the “desired” equality (a + ε) ‖ b = (a+ ε) · b + b · (a+ ε),
it backfires immediately, as it destroys the associativity of the merge. This can be easily
checked by expanding ((a + ε) ‖ b) ‖ c and (a + ε) ‖ (b ‖ c); it turns out that the
second process has a summand c · b, while the first process does not. This is of course
unacceptable, as we already stated in our design goals. Any attempt at such “repairs”
appears to have this consequence, unless one is willing to sacrifice the right-distributivity
of the · over the + (Axiom A4), which, again, would violate our design goals.

For other discussions of the above dilemma, see [9, 31].

Remark 2.3.6 (Axioms of PA−drt,ε–ID, Part IV)
The behavior of ε with respect to the merge manifests itself even more unexpectedly
when time comes into play. For example, consider the expression (σ · a + ε) ‖ σ · b.
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Applying the axioms we get:

(σ · a+ ε) ‖ σ · b = (σ · a+ ε) ‖ σ · b + σ · b ‖ (σ · a+ ε)
= σ · a ‖ σ · b + ε ‖ σ · b + σ · b ‖ (σ · a+ ε)
= σ · a ‖ σ · b + δ+ σ · b ‖ σ · a
= σ · a ‖ σ · b

So, the ε-summand on the left side of the merge is immaterial! How should we interpret
this?

Again, by viewing ε as the option to terminate (in the first time-slice, in this case), we
can see that this option can never be exercised. That is to say, because the right compo-
nent of the merge cannot terminate in the first time-slice, the option to terminate of the
left component remains open till we enter the second time-slice. But as we leave the first
time-slice, the ε disappears, as it only presents an option to terminate in that time-slice.
Hence, it vanishes into thin air.

As we have argued before, attempting to “repair” this behavior by treating ε as an
action, means we lose the associativity of the merge. Alternatively, we could replace
DRTEM12 with the following:

σ · x ‖ (σ · y + ε) = σ · x ‖ σ · y + σ · x ‖ ε

Then the ε does not vanish, but leads to an extra summand σ · b in the above example.
This alternative, however, violates the time-determinacy principle: σ ·a ‖ (σ ·b+ε) can
do a time step to a ‖ b, while σ · a ‖ σ · b + σ · b can do a time step to a ‖ b + b. As
stated in our design goals, this is not acceptable. Again, we are stuck.

Now look at the following example. Applying our axioms, we have:

(a+ ε) ‖ σ · b = (a+ ε) ‖ σ · b+ σ · b ‖ (a+ ε)
= a ‖ σ · b + ε ‖ σ · b + σ · b ‖ (a+ ε)
= a ·σ · b + δ+ σ · b ‖ ε
= a ·σ · b +σ · b
= (a+ ε) · σ · b

Here, the ε-summand on the left side of the merge does materialize. This is due to the
fact that a+ε cannot move on to the second time-slice, while σ ·b can. So, a+ε is forced
to terminate before σ · b can move on, and the ε does not vanish.

If, for the sake of orthogonality, we would want the ε-summand to disappear in this
case also, we could for example replace DRTEM10 by σ ·x ‖ ε = δ. That however, would
lead to σ ‖ ε = δ, destroying the unit property of ε with respect to the ‖. Furthermore,
this leads to σ ‖ a = a · δ, in itself enough reason to dismiss this alternative. If we
attempt to save what can be saved, for example by putting ε ‖ x = x, we again lose the
associativity of the merge.

Concluding: when x can terminate, and y can do a time step, then the termination
option of x materializes in x ‖ y if and only if x cannot do a time step. This may seem,
and probably is, counter intuitive. However, a simpler way is not conceivable. If the ter-
mination option would always materialize, we either lose the associativity of the merge
or time determinacy. If it would never materialize, we lose the unit property with respect
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to the merge and the associativity of the merge. So, both simple ways are too simple, and
lead to violations of our design goals.

Remark 2.3.7 (Axioms of PA−drt,ε–ID, Part V)
In the case where one of the n components in a multiple merge has only the option to
terminate (so the component has no enabled actions or time steps), while the other com-
ponents do not all have that option, the ε again vanishes, collapsing the merge to n − 1
components. So for example, ε ‖ σ · a ‖ σ · b = σ · a ‖ σ · b. Or, more generally,
ε ‖ x = x ‖ ε = x for any closed process term x: with respect to closed terms, ε is also a
proper 1-element for the merge. We will prove this in Proposition 2.3.16 on page 27.

Definition 2.3.8 (Semantics of PA−drt,ε–ID)
The semantics of PA−drt,ε–ID are given by the term deduction system T(PA−drt,ε–ID), in-
duced by the deduction rules for BPA−drt,ε–ID given in Definition 2.2.5 on page 14, and
the additional deduction rules for PA−drt,ε–ID shown in Table 7.

x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′
x ‖ y a→ x ‖ y′

x a→ x′
x ‖ y a→ x′ ‖ y

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ→ x′, y σ→ y′
x ‖ y σ→ x′ ‖ y′

x σ3 , x↓, y σ→ y′
x ‖ y σ→ y′

x σ→ x′, y σ
3 , y↓

x ‖ y σ→ x′
x σ→ x′, y σ

3 , y↓
x ‖ y σ→ x′

x↓, y↓
(x ‖ y)↓

x↓, y↓
(x ‖ y)↓

Table 7: Additional deduction rules for PA−drt,ε–ID.

Remark 2.3.9 (Deduction rules for PA−drt,ε–ID)
The deduction rules for the parallel composition with respect to σ-transitions, shown in
Table 7, may need some clarification. Consider the following examples.

As we have ε ‖ σ · a = σ · a, we should have ε ‖ σ · a σ→ a. Likewise, as (σ · a+ ε) ‖
σ ·b = σ ·(a ‖ b), we should have (σ ·a+ε) ‖ σ ·b σ→ a ‖ b, and not (σ ·a+ε) ‖ σ ·b σ→ b.

Theorem 2.3.10 (Time Determinacy for PA−drt,ε–ID)
Let x, y, and y′ be closed PA−drt,ε–ID terms. Then we have:

T(PA−drt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′
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Proof We proceed in the manner outlined in Theorem 2.2.7 on page 15. As the only
new deduction rules are for the ‖ and the ‖ , we do not repeat the cases (i)–(v) already
listed in Theorem 2.2.7.

(vi). x ≡ s ‖ t for closed PA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(PA−drt,ε–ID) î s σ→ s′, t σ→ t′. Then y ≡ y′ ≡ s′ ‖ t′.
(b) T(PA−drt,ε–ID) î s σ3 , s↓, t σ→ t′. Then y ≡ y′ ≡ t′.
(c) T(PA−drt,ε–ID) î s σ→ s′, t σ3 , t↓. Then y ≡ y′ ≡ s′.
(d) Otherwise. In contradiction with T(PA−drt,ε–ID) î x σ→ y.

(vii). x ≡ s ‖ t for closed PA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(PA−drt,ε–ID) î s σ→ s′, t σ→ t′. Then y ≡ y′ ≡ s′ ‖ t′.
(b) T(PA−drt,ε–ID) î s σ→ s′, t σ3 , t↓. Then y ≡ y′ ≡ s′.
(c) Otherwise. In contradiction with T(PA−drt,ε–ID) î x σ→ y.

Having inspected all possible cases, we may now conclude that y ≡ y′. �

Definition 2.3.11 (Bisimulation and Bisimulation Model for PA−drt,ε–ID)
Bisimulation for PA−drt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “PA−drt,ε–ID” in Definition 2.2.8 on
page 15 and Definition 2.2.9 on page 16.

Definition 2.3.12 (Basic Terms of PA−drt,ε–ID)
When we speak of basic terms in the context of PA−drt,ε–ID, we mean (σ,δ, ε)-basic terms
as defined in Definition 2.2.10 on page 16.

Theorem 2.3.13 (Elimination for PA−drt,ε–ID)
Let t be a closed PA−drt,ε–ID term. Then there is a basic term s such that PA−drt,ε–ID ` s = t.
Proof By structural induction on t prove that every closed PA−drt,ε–ID term can be rewrit-
ten into a BPA−drt,ε–ID term, and then apply Theorem 2.2.21 on page 20. We give no details.

�

Theorem 2.3.14 (Soundness of PA−drt,ε–ID)
The set of closed PA−drt,ε–ID terms modulo bisimulation equivalence is a model of the axioms
of PA−drt,ε–ID.

Proof Extending the proof of Theorem 2.2.22 on page 20, derive, for every new axiom,
a concrete bisimulation relation that relates both sides of the axiom for all closed instan-
tiations of the free variables. We give no details. �

Theorem 2.3.15 (Completeness of PA−drt,ε–ID)
The axiom system PA−drt,ε–ID is a complete axiomatization of the set of closed PA−drt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s General Completeness Theorem [29]. We give no details. �
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Proposition 2.3.16 (Properties of PA−drt,ε–ID, Part I)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). PA−drt,ε–ID ` x ‖ ε = x

(ii). PA−drt,ε–ID ` ε ‖ x = x

(iii). PA−drt,ε–ID ` a ‖ x = a · x

(iv). PA−drt,ε–ID ` δ ‖ x = δ

(v). PA−drt,ε–ID ` x ‖ ε = x

Proof

(i). We prove this by induction on the structure of basic terms (Definition 2.3.12 on the
preceding page).

(a) x ≡ ε. Then PA−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε ‖ ε + ε ‖ ε = ε+ ε = ε = x.
(b) x ≡ a · t for some a ∈ Aδ and basic term t. Then PA−drt,ε–ID ` x ‖ ε = a · t ‖ ε =
a · t ‖ ε + ε ‖ a · t = a · (t ‖ ε) + δ = a · t + δ = a · t = x.

(c) x ≡ s + t for some basic terms s and t. Then PA−drt,ε–ID ` x ‖ ε = (s + t) ‖ ε =
(s+ t) ‖ ε+ ε ‖ (s+ t) = s ‖ ε+ t ‖ ε+ ε ‖ s+ ε ‖ t = s ‖ ε+ ε ‖ s+ t ‖ ε+
ε ‖ t = s ‖ ε+ t ‖ ε = s + t = x.

(d) x ≡ σ · t for some basic term t. Then PA−drt,ε–ID ` x ‖ ε = σ · t ‖ ε = σ · t ‖ ε+
ε ‖ σ · t = σ · t + δ = σ · t = x.

(ii). Using (i), we have PA−drt,ε–ID ` ε ‖ x = ε ‖ x+ x ‖ ε = x ‖ ε+ ε ‖ x = x ‖ ε = x.

(iii). Using (ii), we have PA−drt,ε–ID ` a ‖ x = a · ε ‖ x = a · (ε ‖ x) = a · x.

(iv). Using (iii), we have PA−drt,ε–ID ` δ ‖ x = δ · x = δ.

(v). We again prove this by induction on the structure of basic terms.

(a) x ≡ ε. Then PA−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε = x.
(b) x ≡ a·t for some a ∈ Aδ and basic term t. Then PA−drt,ε–ID ` x ‖ ε = a·t ‖ ε =
a · (t ‖ ε) = a · t = x.

(c) x ≡ s + t for some basic terms s and t. Then PA−drt,ε–ID ` (s + t) ‖ ε = s ‖ ε+
t ‖ ε = s + t = x.

(d) x ≡ σ · t for some basic term t. Then PA−drt,ε–ID ` x = σ · t ‖ ε = σ · t = x.

�

Proposition 2.3.17 (Properties of PA−drt,ε–ID, Part II)
Let x, y, z be basic terms. Then the following properties hold:

(i). PA−drt,ε–ID ` ε ‖ x =
{
ε if x↓
δ if x↓ô
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(ii). PA−drt,ε–ID ` σ · x ‖ ν(y) =
{
σ · x if y↓
δ if y↓ô

(iii). PA−drt,ε–ID ` σ · x ‖ (ν(y) + σ · z) = σ(x ‖ z)

(iv). PA−drt,ε–ID ` ν(x) ‖ y = ν(ν(x) ‖ y).

(v). PA−drt,ε–ID ` ν(x) ‖ ν(y) = ν(ν(x) ‖ ν(y)).

Proof

(i). We use induction on the structure of x.

(a) x ≡ ε. Then x↓, and we have PA−drt,ε–ID ` ε ‖ x = ε ‖ ε = ε.
(b) x ≡ a · t for some a ∈ Aδ and basic term t. Then x↓ô, and we have PA−drt,ε–ID `
ε ‖ x = ε ‖ a · t = δ.

(c) x ≡ s+t for some basic terms s and t. First, suppose that x↓ô. Then, s↓ô and t↓ô. So,
by the induction hypothesis, PA−drt,ε–ID ` ε ‖ x = ε ‖ (s+ t) = ε ‖ s + ε ‖ t =
δ+ δ = δ. Secondly, suppose that x↓. Then, s↓, or t↓, or both. Assume that s↓
and t↓ô. Then, by the induction hypothesis PA−drt,ε–ID ` ε ‖ x = ε ‖ (s + t) =
ε ‖ s + ε ‖ t = ε + δ = ε. The cases s↓ô, t↓ and s↓, t↓ are handled in the same
way.

(d) x ≡ σ · t for some basic term t. Then x↓ô, and we have PA−drt,ε–ID ` ε ‖ x =
ε ·σ · t = δ.

(ii). As y is a basic term, by Corollary 2.2.20, we may use induction on the structure of
ANF terms

(a) y ≡ δ. Then y↓ô, and we have PA−drt,ε–ID ` σ · x ‖ ν(y) = σ · x ‖ ν(δ) =
σ · x ‖ ν(δ · ε) = σ · x ‖ δ · ε = σ · x ‖ δ = δ.

(b) y ≡ ε. Then y↓, and we have PA−drt,ε–ID ` σ · x ‖ ν(y) = σ · x ‖ ν(ε) = σ ·
x ‖ ε = σ · x.

(c) y ≡ a · s + t for some a ∈ Aδ and basic terms s and t. Then PA−drt,ε–ID `
σ · x ‖ ν(y) = σ · x ‖ ν(a · s + t) = σ · x ‖ (ν(a · s) + ν(t)) = σ · x ‖ (a ·
s + ν(t)) = σ · ν(t). Now, using the induction hypothesis, we get PA−drt,ε–ID `
σ · x ‖ n(t) = σ · x when t↓, hence y↓, and PA−drt,ε–ID ` σ · x ‖ n(t) = δ when
t↓ô, hence y↓ô.

(d) y ≡ σ·t for some basic term t. Then y↓ô, and we have PA−drt,ε–ID ` σ·x ‖ ν(y) =
σ · x ‖ ν(σ · t) = σ · x ‖ δ = δ.

(e) y ≡ σ · t + ε for some basic term t. Then y↓, and we have PA−drt,ε–ID ` σ ·
x ‖ ν(y) = σ · x ‖ ν(σ · t + ε) = σ · x ‖ (ν(σ · t)+ν(ε)) = σ · x ‖ (δ+ ε) =
σ · x ‖ ε = σ · x.

(iii). As y is a basic term, by Corollary 2.2.20, we may use induction on the structure of
ANF terms.

(a) y ≡ δ. Then PA−drt,ε–ID ` σ · x ‖ (ν(y) + σ · z) = σ · x ‖ (ν(δ) + σ · z) =
σ · x ‖ (δ+σ · z) = σ · x ‖ σ · z = σ · (x ‖ z).
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(b) y ≡ ε. Then PA−drt,ε–ID ` σ · x ‖ (ν(y) + σ · z) = σ · x ‖ (ν(ε) + σ · z) =
σ · x ‖ (ε+ σ · z) = σ · (x ‖ z).

(c) y ≡ a · s + t for some a ∈ Aδ and basic terms s and t. Then PA−drt,ε–ID ` σ ·
x ‖ (ν(y)+σ·z) = σ·x ‖ (ν(a·s+t)+σ·z) = σ·x ‖ (ν(a·s)+ν(t)+σ·z) =
σ · x ‖ (a · s+ν(t)+σ · z) = σ · x ‖ (ν(t)+σ · z). Now, using the induction
hypothesis, PA−drt,ε–ID ` σ · x ‖ (ν(t) + σ · z) = σ · (x ‖ z).

(d) y ≡ σ · t for some basic term t. Then PA−drt,ε–ID ` σ · x ‖ (ν(y) + σ · z) =
σ · x ‖ (ν(σ · t) + σ · z) = σ · x ‖ (δ+ σ · z) = σ · x ‖ σ · z = σ · (x ‖ z).

(e) y ≡ σ · t + ε for some basic term t. Then PA−drt,ε–ID ` σ · x ‖ (ν(y) + σ · z) =
σ · x ‖ (ν(σ · t + ε) +σ · z) = σ · x ‖ (ν(σ · t) + ν(ε) +σ · z) = σ · x ‖ (δ+
ε + σ · z) = σ · x ‖ (ε +σ · z) = σ · (x ‖ z).

(iv). We use induction on the structure of x.

(a) x ≡ ε. Suppose that y↓. Using (i), we then have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(ε) ‖ y = ε ‖ y = ε = ν(ε) = ν(ε ‖ y) =
ν(ν(ε) ‖ y) = ν(ν(x) ‖ y)

The case where y↓ô is handled in the same way.

(b) x ≡ a · t for some a ∈ Aδ and basic term t. Using Proposition 2.3.16(iii), we
then have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(a · t) ‖ y = a · t ‖ y = a · (t ‖ y) =
ν(a · (t ‖ y)) = ν(a · t ‖ y) = ν(ν(a · t) ‖ y) =
ν(ν(x) ‖ y)

(c) x ≡ s+ t for some basic terms s and t. Using the induction hypothesis, we then
have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(s + t) ‖ y = (ν(s) + ν(t)) ‖ y =
ν(s) ‖ y + ν(t) ‖ y = ν(ν(s) ‖ y) + ν(ν(t) ‖ y) =
ν(ν(s) ‖ y + ν(t) ‖ y) = ν((ν(s) + ν(t)) ‖ y) =
ν(ν(s+ t) ‖ y) = ν(ν(x) ‖ y)

(d) x ≡ σ · t for some basic term t. Using Proposition 2.3.16(iv), we then have:

PA−drt,ε–ID ` ν(x) ‖ y = ν(σ · t) ‖ y = δ ‖ y = δ = δ · ε = ν(δ · ε) =
ν(δ) = ν(δ ‖ y) = ν(ν(σ · t) ‖ y) = ν(ν(x) ‖ y)

(v). Using (iv), we have:

PA−drt,ε–ID ` ν(x) ‖ ν(y) = ν(x) ‖ ν(y) + ν(y) ‖ ν(x) =
ν(ν(x) ‖ ν(y)) + ν(ν(y) ‖ ν(x)) =
ν(ν(x) ‖ ν(y) + ν(y) ‖ ν(x)) = ν(ν(x) ‖ ν(y))

29



�

Theorem 2.3.18 (Axioms of Standard Concurrency for PA−drt,ε–ID)
Let x, y, z be closed PA−drt,ε–ID terms. Then the following properties hold:

(i). PA−drt,ε–ID ` x ‖ y = y ‖ x
(ii). PA−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
(iii). PA−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof By Theorem 2.3.13 on page 26, we may assume that x, y and z are basic terms.

(i). This follows directly from the axioms: PA−drt,ε–ID ` x ‖ y = x ‖ y + y ‖ x = y ‖ x+
x ‖ y = y ‖ x (note that this holds for open terms also).

(ii). We use induction on the structure of basic term x, combined with simultaneous
induction with (iii):

(a) x ≡ ε. Using Proposition 2.3.17(i), we then have:

PA−drt,ε–ID ` (x ‖ y) ‖ z = (ε ‖ y) ‖ z =
{
ε ‖ z if y↓
δ ‖ z if y↓ô =

{
ε if y↓, z↓
δ otherwise

={
ε if (y ‖ z)↓
δ if (y ‖ z)↓ô = ε ‖ (y ‖ z) = x ‖ (y ‖ z)

(b) x ≡ a · t for some a ∈ Aδ and basic term t. Using simultaneous induction with
(iii), and using Proposition 2.3.16(iii) we then have:

PA−drt,ε–ID ` (x ‖ y) ‖ z = (a · t ‖ y) ‖ z = a · (t ‖ y) ‖ z =
a · ((t ‖ y) ‖ z) = a · (t ‖ (y ‖ z)) = a · t ‖ (y ‖ z) = x ‖ (y ‖ z)

(c) x ≡ s+ t for some basic terms s and t. Using the induction hypothesis, we then
have:

PA−drt,ε–ID ` (x ‖ y) ‖ z = ((s + t) ‖ y) ‖ z = (s ‖ y + t ‖ y) ‖ z =
(s ‖ y) ‖ z+ (t ‖ y) ‖ z = s ‖ (y ‖ z) + t ‖ (y ‖ z) =
(s + t) ‖ (y ‖ z) = x ‖ (y ‖ z)

(d) x ≡ σ · t for some basic term t. We assume, by Lemma 2.2.15 on page 17,
that either BPA−drt,ε–ID ` y = ν(y), or that there exists a basic term y′, such
that BPA−drt,ε–ID ` y = ν(y) + σ · y′ and n(y′) < n(y), and assume mutatis
mutandis the same for z. We now distinguish four cases:

1. BPA−drt,ε–ID ` y = ν(y) and BPA−drt,ε–ID ` z = ν(z). Then we have, using
Proposition 2.3.17:

PA−drt,ε–ID ` (x ‖ y) ‖ z = (σ · t ‖ ν(y)) ‖ ν(z) ={
(σ · t) ‖ ν(z) if y↓
δ ‖ ν(z) if y↓ô =

{
(σ · t) ‖ ν(z) if y↓
δ if y↓ô =
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{
σ · t if y↓, z↓
δ otherwise

=
{
σ · t if (y ‖ z)↓
δ otherwise

=

σ · t ‖ ν(y ‖ z) = σ · t ‖ ν(ν(y) ‖ ν(z)) =
σ · t ‖ (ν(y) ‖ ν(z)) = x ‖ (y ‖ z)

2. BPA−drt,ε–ID ` y = ν(y) and BPA−drt,ε–ID ` z = ν(z) + σ · z′. Then we have,
using Proposition 2.3.17:

PA−drt,ε–ID `
(x ‖ y) ‖ z = (σ · t ‖ ν(y)) ‖ (ν(z) + σ · z′) ={
(σ · t) ‖ (ν(z) + σ · z′) if y↓
δ ‖ (ν(z) + σ · z′) if y↓ô =

{
σ · (t ‖ z′) if y↓
δ if y↓ô ={

σ · t ‖ (ν(s) + σ · z′) if y↓
σ · t ‖ ν(s) if y↓ô =

{
σ · t ‖ (ν(s) + σ · z′) if y↓
σ · t ‖ (ν(s) + δ) if y↓ô =

σ · t ‖ (ν(s) + σ · z′ ‖ ν(y)) =
σ · t ‖ (ν(ν(y) ‖ z + ν(z) ‖ y) +σ · z′ ‖ ν(y)) =
σ · t ‖ (ν(ν(y) ‖ z) + ν(ν(z) ‖ y) + σ · z′ ‖ ν(y)) =
σ · t ‖ (ν(y) ‖ z+ ν(z) ‖ y +σ · z′ ‖ ν(y)) =
σ · t ‖ (ν(y) ‖ (ν(z) + σ · z′) + (ν(z) +σ · z′) ‖ ν(y)) =
σ · t ‖ (ν(y) ‖ (ν(z) + σ · z′)) =
x ‖ (y ‖ z)

where we define:

s ≡ ν(y) ‖ z+ ν(z) ‖ y

and use that if y↓ô, then s↓ô.
3. BPA−drt,ε–ID ` y = ν(y) + σ · y′ and BPA−drt,ε–ID ` z = ν(z) + σ · z′. This

case is handled in the same way as the previous case.
4. BPA−drt,ε–ID ` y = ν(y) + σ · y′ and BPA−drt,ε–ID ` z = ν(z) + σ · z′. Then

we have, using Proposition 2.3.17, and simultaneous induction with (iii):

PA−drt,ε–ID ` (x ‖ y) ‖ z =
(σ · t ‖ (ν(y) + σ · y′)) ‖ (ν(z) + σ · z′) =
(σ · (t ‖ y′)) ‖ (ν(z) +σ · z′) =
σ · ((t ‖ y′) ‖ z′) =
σ · (t ‖ (y′ ‖ z′)) =
σ · t ‖ (ν(ν(y) ‖ z+ ν(z) ‖ y) + σ · (y′ ‖ z′)) =
σ · t ‖ (ν(ν(y) ‖ z+ ν(z) ‖ y) + σ · (y′ ‖ z′ + z′ ‖ y′)) =

σ · t ‖
(
ν(ν(y) ‖ z) + σ · (y′ ‖ z′) +
ν(ν(z) ‖ y) + σ · (z′ ‖ y′)

)
=

σ · t ‖
(
ν(y) ‖ z + σ · y′ ‖ (ν(z) + σ · z′) +
ν(z) ‖ y +σ · z′ ‖ (ν(y) + σ · y′)

)
=
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σ · t ‖
(
(ν(y) + σ · y′) ‖ (ν(z) + σ · z′′) +
(ν(z) + σ · z′) ‖ (ν(y) + σ · y′′)

)
=

σ · t ‖ ((ν(y) + σ · y′) ‖ (ν(z) + σ · z′′)) =
x ‖ (y ‖ z)

(iii). We use simultaneous induction with (ii). Using (i), we then have:

PA−drt,ε–ID ` (x ‖ y) ‖ z =
(x ‖ y) ‖ z + z ‖ (x ‖ y) =
(x ‖ y + y ‖ x) ‖ z+ z ‖ (x ‖ y) =
(x ‖ y) ‖ z + (y ‖ x) ‖ z + z ‖ (y ‖ x) =
x ‖ (y ‖ z) + y ‖ (x ‖ z) + (z ‖ y) ‖ x =
x ‖ (y ‖ z) + y ‖ (z ‖ x) + (z ‖ y) ‖ x =
x ‖ (y ‖ z) + (y ‖ z) ‖ x+ (z ‖ y) ‖ x =
x ‖ (y ‖ z) + (y ‖ z + z ‖ y) ‖ x =
x ‖ (y ‖ z) + (y ‖ z) ‖ x =
x ‖ (y ‖ z)

�

Remark 2.3.19 (Axioms of Standard Concurrency)
The properties of Theorem 2.3.18 on page 30, together with the additional properties of
Theorem 2.4.14 on page 36, are historically known as the axioms of standard concurrency
(see for example page 97 of [13]). However, as their status is not that of axioms, but that
of from the axioms derivable properties, the name is quite misplaced and misleading.

Corollary 2.3.20 (Commutativity and Associativity of the Merge)
For closed terms, the free merge operator of PA−drt,ε–ID is commutative and associative.

Proof This follows directly from Theorem 2.3.18 on page 30. �

2.4 The Merge Extension

In this section, we will define ACP−drt,ε–ID which is basically PA−drt,ε–ID with a (full) merge
instead of a free merge (indicated by the letters “ACP” instead of “PA”). The (full) merge is
similar to the free merge, but is also allows the processes to communicate or synchronize.

Definition 2.4.1 (Communication Function)
For this section, and all sections to come, we presume the existence of a fixed, commuta-
tive, associative, complete function γ : Aδ×Aδ → Aδ, that can be considered a parameter
of the respective theories. The function γ has to be strict in the sense that it should al-
ways evaluate to δ when one or both of its parameters is δ.

Definition 2.4.2 (Signature of ACP−drt,ε–ID)
The signature of ACP−drt,ε–ID consists of the undelayable atomic actions {a|a ∈ A}, the
undelayable deadlock constant δ, the time-unit delay constant σ, the undelayable empty
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process constant ε, the alternative composition operator +, the sequential composition op-
erator ·, the the “now” operator ν, merge operator ‖, the left merge operator ‖ , and the
communication merge operator | .

Definition 2.4.3 (Axioms of ACP−drt,ε–ID)
The process algebra ACP−drt,ε–ID is axiomatized by the axioms of PA−drt,ε–ID given in Def-
inition 2.3.2 on page 22, minus Axiom DRTEM1, plus Axioms DRTECM1–DRTECM9 and
DRTCF shown in Table 8: ACP−drt,ε–ID = A1–A9 + TF + DCSE1–DCSE4 + DRTEM2–DRTEM12
+ DRTECM1–DRTECM9 + DRTCF.

x ‖ y = x ‖ y + y ‖ x+ x | y DRTECM1

a · x | b · y = (a | b) · (x ‖ y) DRTECM2

σ · x |σ · y = σ · (x | y) DRTECM3

σ · x | a · y = δ DRTECM4

a · x |σ · y = δ DRTECM5

x | ε = δ DRTECM6

ε | x = δ DRTECM7

(x+ y) | z = x | z+ y | z DRTECM8

x | (y+ z) = x | y + x | z DRTECM9

a | b = c if γ(a, b) = c DRTCF

Table 8: Additional axioms for ACP−drt,ε–ID.

Remark 2.4.4 (Axioms of ACP−drt,ε–ID)
The merge of two processes x and y, notation x ‖ y, introduced in ACP−drt,ε–ID is very
much like the free merge of PA−drt,ε–ID, but it also allows x and y to communicate. The
nature of this communication is determined by a function γ of the form defined in Defi-
nition 2.4.1 on the preceding page. When we have γ(a,b) = c, this should be interpreted
as “the execution of c results if a and b are simultaneously executed”. Then, for example
a ‖ b = a · b + b · a + c: either the a executes first, followed by the b, or the other way
around, or both a and b execute at the same time, leading to the execution of c.

The communication merge, notation x | y, is an auxiliary operator that is introduced
for the purpose of the axiomatization only; it is not intended to be used in actual spec-
ifications. The process x | y is like x ‖ y, but always executes two actions from x and y
simultaneously before continuing as a (full) merge.

Definition 2.4.5 (Semantics of ACP−drt,ε–ID)
The semantics of ACP−drt,ε–ID are given by the term deduction system T(ACP−drt,ε–ID), in-
duced by the deduction rules for PA−drt,ε–ID given in Definition 2.3.8 on page 25, and the
additional deduction rules for ACP−drt,ε–ID shown in Table 9 on the following page.
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x a→ x′, y b→ y′, γ(a,b) = c
x ‖ y c→ x′ ‖ y′

x a→ x′, y b→ y′, γ(a,b) = c
x | y c→ x′ ‖ y′

x σ→ x′, y σ→ y′
x | y σ→ x′ | y′

Table 9: Additional deduction rules for ACP−drt,ε–ID.

Remark 2.4.6 (Deduction rules for ACP−drt,ε–ID)
Note that there is no deduction rule of the form:

x↓, y↓
(x | y)↓

because the process ε |ε cannot successfully terminate: we have that ACP−drt,ε–ID ` ε |ε =
δ, and T(ACP−drt,ε–ID) î δ↓ô, hence T(ACP−drt,ε–ID) î (ε | ε)↓ô.

Theorem 2.4.7 (Time Determinacy for ACP−drt,ε–ID)
Let x, y, and y′ be closed ACP−drt,ε–ID terms. Then we have:

T(ACP−drt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof We proceed in the manner outlined in Theorem 2.2.7 on page 15. As the only
new deduction rule regarding σ-transitions is for the | , we do not repeat the cases (i)–
(vii) already listed in Theorem 2.2.7 and Theorem 2.3.10.

(viii). x ≡ s | t for closed PA−drt,ε–ID terms s and t. We proceed by case distinction on the
transitions of s and t.

(a) T(ACP−drt,ε–ID) î s σ→ s′, t σ→ t′. Then y ≡ y′ ≡ s′ | t′.
(b) Otherwise. In contradiction with T(ACP−drt,ε–ID) î x σ→ y.

Having inspected all possible cases, we may now conclude that y ≡ y′. �

Definition 2.4.8 (Bisimulation and Bisimulation Model for ACP−drt,ε–ID)
Bisimulation for ACP−drt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “ACP−drt,ε–ID” in Definition 2.2.8 on
page 15 and Definition 2.2.9 on page 16.

Definition 2.4.9 (Basic Terms of ACP−drt,ε–ID)
When we speak of basic terms in the context of ACP−drt,ε–ID, we mean (σ, δ, ε)-basic terms
as defined in Definition 2.2.10 on page 16.

Theorem 2.4.10 (Elimination for ACP−drt,ε–ID)
Let t be a closed ACP−drt,ε–ID term. Then there is a basic term s such that BPA−drt,ε–ID ` s = t.
Proof By structural induction on t prove that every closed ACP−drt,ε–ID term can be
rewritten into a BPA−drt,ε–ID term, and then apply Theorem 2.2.21 on page 20. We give
no details. �
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Theorem 2.4.11 (Soundness of ACP−drt,ε–ID)
The set of closed ACP−drt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of ACP−drt,ε–ID.

Proof Extending the proof of Theorem 2.3.14 on page 26, derive, for every new axiom,
a concrete bisimulation relation that relates both sides of the axiom for all closed instan-
tiations of the free variables. We give no details. �

Theorem 2.4.12 (Completeness of ACP−drt,ε–ID)
The axiom system ACP−drt,ε–ID is a complete axiomatization of the set of closed ACP−drt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s General Completeness Theorem [29]. We give no details. �

Proposition 2.4.13 (Properties of ACP−drt,ε–ID)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). ACP−drt,ε–ID ` x ‖ ε = x
(ii). ACP−drt,ε–ID ` ε ‖ x = x
(iii). ACP−drt,ε–ID ` a ‖ x = a · x
(iv). ACP−drt,ε–ID ` δ ‖ x = δ
(v). ACP−drt,ε–ID ` x ‖ ε = x

Proof

(i). We prove this by induction on the structure of basic terms.

(a) x ≡ ε. Then ACP−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε ‖ ε+ε ‖ ε+ε |ε = ε+ε+δ = ε = x.
(b) x ≡ a · t for a ∈ Aδ and a basic term t. Then ACP−drt,ε–ID ` x ‖ ε = a · t ‖ ε =
a · t ‖ ε + ε ‖ a · t + a · t | ε = a · (t ‖ ε) + δ+ δ = a · t + δ+ δ = a · t = x.

(c) x ≡ s + t for basic terms s and t. Then ACP−drt,ε–ID ` x ‖ ε = (s + t) ‖ ε =
(s+ t) ‖ ε+ε ‖ (s+ t)+ (s+ t) |ε = s ‖ ε+ t ‖ ε+ε ‖ s+ε ‖ t+ s |ε+ t |ε =
s ‖ ε + ε ‖ s + s | ε+ t ‖ ε+ ε ‖ t + t | ε = s ‖ ε+ t ‖ ε = s + t = x.

(d) x ≡ σ · t for a basic term t. Then ACP−drt,ε–ID ` x ‖ ε = σ · t ‖ ε = σ · t ‖ ε +
ε ‖ σ · t +σ · t | ε = σ · t + δ+ δ = σ · t = x.

(ii). Using (i), we have ACP−drt,ε–ID ` ε ‖ x = ε ‖ x+ x ‖ ε + ε | x = ε ‖ x+ x ‖ ε + δ =
x ‖ ε + ε ‖ x+ x | ε = x ‖ ε = x.

(iii). Using (ii), we have ACP−drt,ε–ID ` a ‖ x = a · ε ‖ x = a · (ε ‖ x) = a · x.
(iv). Using (iii), we have ACP−drt,ε–ID ` δ ‖ x = δ · x = δ.

(v). We again prove this by induction on the structure of basic terms.

(a) x ≡ ε. Then ACP−drt,ε–ID ` x ‖ ε = ε ‖ ε = ε = x.
(b) x ≡ a · t for a ∈ Aδ and a basic term t. Then ACP−drt,ε–ID ` x ‖ ε = a · t ‖ ε =
a · (t ‖ ε) = a · t = x.
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(c) x ≡ s+t for basic terms s and t. Then ACP−drt,ε–ID ` (s+t) ‖ ε = s ‖ ε+t ‖ ε =
s + t = x.

(d) x ≡ σ · t for a basic term t. Then ACP−drt,ε–ID ` x = σ · t ‖ ε = σ · t = x.

�

Theorem 2.4.14 (Axioms of Standard Concurrency for ACP−drt,ε–ID)
Let x, y, z be closed ACP−drt,ε–ID terms. Then the following properties hold:

(i). ACP−drt,ε–ID ` x | y = y | x

(ii). ACP−drt,ε–ID ` x ‖ y = y ‖ x

(iii). ACP−drt,ε–ID ` (x | y) | z = x | (y | z)

(iv). ACP−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

(v). ACP−drt,ε–ID ` x | (y ‖ z) = (x ‖ y) ‖ z

(vi). ACP−drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof By 2.4.10 assume that x, y, and z are basic terms. Prove (i) by structural induction
on both x and y. Then, using (i), we have that ACP−drt,ε–ID ` x ‖ y = x ‖ y + y ‖ x +
x | y = y ‖ x+ x ‖ y + y | x = y ‖ x, which proves (ii). Items (iii)–(vi) are finally proven
together, using simultaneous induction in the manner of the proof of item (ii) and (iii) of
Theorem 2.3.18 on page 30. We give no details. �

Corollary 2.4.15 (Commutativity and Associativity of the Merge)
For closed terms, the merge and communication merge operators of ACP−drt,ε–ID are com-
mutative and associative.

Proof This follows directly from Theorem 2.4.14. �

2.5 Immediate deadlock

In this section, we make a small detour into (the absence of) the theory BPA−drt,ε. This
theory is like BPA−drt,ε–ID, with a special constant δ̇ added. As we will argue, the addition
of this so called immediate deadlock constant to BPA−drt,ε–ID is not very well conceivable,
i.e., appears to lead inescapably to inconsistencies.

The immediate deadlock can be described as being similar to the undelayable dead-
lock, with the added property that it prohibits the passage of time. Hence, we get the
axioms shown in Table 10 on the next page (taken from Section 2.7 of [26]).

Here A6ID and A7ID express the deadlock property of δ̇, and DRTESID expresses the
fact that δ̇ prohibits the further passage of time: stopping time at the beginning of the
following time-slice (the process σ · δ̇) is the same as stopping time at the end of this
time-slice (the process δ).

The introduction of A6ID makes it necessary to drop Axiom A6: as δ̇ now plays the
role of the 0-element for the choice, the equality x+δ = x does not hold anymore for x =
δ̇, as we have δ+δ̇ = δ by Axiom A6ID. To compensate for this, we will have to introduce
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σ · δ̇ = δ DRTESID

x+ δ̇ = x A6ID

δ̇ · x = δ̇ A7ID

Table 10: Axioms for δ̇.

a+ δ = a DUD1

σ + δ = σ DUD2

ε + δ = ε DUD3

Table 11: Axioms for δ.

axioms to the effect that x + δ = x for x ≠ δ̇. So, for example, we could introduce the
axioms shown in Table 11.

Unfortunately, this leads already to an inconsistency, as we now have:

δ̇ = ε · δ̇ = (ε+ δ) · δ̇ = ε · δ̇+ δ · δ̇ = δ̇+ δ = δ

Hence, δ̇ = δ, and the whole exercise is in vain.
What to do? We have several options. We could for example weaken Axiom A8 and

A9 so that x is not allowed to be δ̇ anymore. This could be achieved by replacing Axiom
A8 and A9 by Axiom A8ID and A9ID from Table 12.

(x+ δ) · ε = x+ δ A8ID

ε · (x+ δ) = x+ δ A9ID

Table 12: Axiom A8ID and A9ID.

However, this does not get us far, as we now have the decide what the process ε · δ̇
should be. As shown above, we cannot let it be δ̇, as that leads to δ = δ̇. Then, the next
logical candidate is δ. However, putting ε · δ̇ = δ leads to another inconsistency, as we
then have:

a · δ̇ = (a · ε) · δ̇ = a · (ε · δ̇) = a · δ

So, a · δ̇ = a · δ, and that is not what we want either.
Our last resort now is to introduce, next to δ̇, a brand new constant ε̇, that denotes

“the immediate successful termination option”. The idea is that ε̇ can terminate (like ε),
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but cannot idle (like δ̇). This ε̇ would then be a true 1-element for the sequential compo-
sition. However, the role of the undelayable actions would be seriously changed, as we
now need to consider the idling behavior within a time-slice. So, for example, the process
a now differs from the process a · ε, as the second can still idle after it has executed an
a, while the first can not. If we fail to make this distinction, we run into the same prob-
lems as before. As a result, we have to construct quite different SOS-rules, leading to a
different model. Since one of our design goals was to build on existing discrete-time ACP
theories, and not invent totally different ones, we will not further explore the ε̇ option
sketched here.

Taking into account the above, we conclude that in the current framework ε and δ̇ do
not combine in a any useful way, and we will not consider δ̇ any further in this paper.

This is very unfortunate, as δ̇ could potentially be quite useful. Consider for example
Lemma 2.2.15 on page 17. If we would have a consistent way to define a theory BPA−drt,ε,
for all terms t there would be a term s such that t+δ = ν(t)+σ · s (in those cases where
t = ν(t), we would take s ≡ δ̇, as then ν(t)+σ · δ̇ = ν(t)+δ = t +δ). So, Lemma 2.2.15
would only have one case instead of two, and as a result the proof on page 30 would only
need to examine one case under item (i)(d), instead of four as it does now.

In this way, the presence of δ̇ would enable us to collapse quite a few of the case
distinctions with which our proofs are ridden. Strangely enough, in the conclusions of
[26] it is argued (on equally valid grounds), that indeed the presence of ε would collapse
a lot of the case distinctions made there. It seems very ironical you cannot have them
both.

2.6 Embeddings

The process algebras BPA−drt,ε–ID, PA−drt,ε–ID ACP−drt,ε–ID described in Section 2 can re-
duced to simpler ones already know from the literature. Or, in other words, some already
known algebras can be injectively embedded our process algebras. We name a few, and
give the embeddings.

The process algebras BPA, BPAδ, and BPAδε of [13] can be embedded in BPA−drt,ε–ID
by projecting every action a onto the undelayable action a, δ onto δ, ε onto ε, and +
and · onto themselves. The process algebras PA, PAδ, and ACP of [13] can be embedded
in PA−drt,ε–ID, PA−drt,ε–ID, and ACP−drt,ε–ID respectively in the same way. Using this embed-
ding, we project every untimed process onto the first time slice of BPA−drt,ε–ID, PA−drt,ε–ID,
or ACP−drt,ε–ID. Finally, note that PAε and ACPε of [13] cannot easily be embedded in
PA−drt,ε–ID and ACP−drt,ε–ID in their entirety, due to their use of the

√
operator for handling

the interaction between the empty step and the merge operator. We can, however, con-
struct an embedding if we do not consider the auxiliary operators ‖ , | , and

√
; project

every action a onto the undelayable action a, δ onto δ, ε onto ε, and +, ·, and ‖ onto
themselves.

The process algebras BPA−drt–δ and BPA−drt–ID of [26] can be embedded in BPA−drt,ε–ID
by projecting σrel(x) onto σ · x, and everything else onto itself. The process algebras
PA−drt–ID and ACP−drt–ID from [26] can be projected onto PA−drt,ε–ID and ACP−drt,ε–ID in the
same way.
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3 Theories with Delayable Actions

In this section, we will introduce the concept of delayable actions. We will define the pro-
cess algebra BPAdrt,ε–ID, and step-by-step extend it with the the free merge and the (full)
merge. For each extension we will give an axiomatization, an operational semantics, and
a description of all concepts that are introduced. Furthermore, we give the considera-
tions that have led us to construct these algebras in the way we have done.

3.1 The Delayable-Actions Extension

In this section, we will define BPAdrt,ε–ID, which is basically BPA−drt,ε–ID extended with
delayable actions (note the absence of the superscript “−”). A delayable action can be
interpreted as an action that may delay its execution for a arbitrary number of time-slices.

Definition 3.1.1 (Signature of BPAdrt,ε–ID)
The signature of BPAdrt,ε–ID consists of the undelayable atomic actions {a|a ∈ A}, the
delayable atomic actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable
deadlock constant δ, the time-unit delay constant σ , the undelayable empty process con-
stant ε, the delayable empty process constant ε, the alternative composition operator +,
the sequential composition operator ·, and the “now” operator ν.

Remark 3.1.2 (Symbol versus Action)
Note that in Definition 3.1.1, in the expression {a|a ∈ A}, the second a refers to the sym-
bol a, while the first one refers to the action a. This distinction should be clearly made,
and it can be considered a tragic historical incident that these different notions have re-
ceived the same notation. (Note, however, that in [7, 8] the notation ats(a) is used for the
delayable action a. This has the advantage of avoiding the confusion described above,
but the disadvantage of cluttering up the formulae.)

Definition 3.1.3 (Axioms of BPAdrt,ε–ID)
The process algebra BPAdrt,ε–ID is axiomatized by the axioms of BPA−drt,ε–ID given in Defi-
nition 2.2.2 on page 13, and Axioms DEP and DA shown in Table 13: BPAdrt,ε–ID = A1–A9
+ TF + DCSE1–DCSE4 + DEP + DA.

ε = ε+ σ · ε DEP a = ε · a DA

Table 13: Additional axioms for BPAdrt,ε–ID.

Remark 3.1.4 (Axioms of BPAdrt,ε–ID)
The process ε introduced in this section is the delayable counterpart of ε: it can terminate
successfully in the current time-slice, but it can also move on to a following time-slice,
and terminate there. The delayable action a introduced for every symbol a ∈ A, is the
counterpart of the undelayable action a introduced in Section 2 in the same sense: it can
either perform a, or move on and perform a in some future time-slice.
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Axiom DEP defines the ε: the choice between terminating now, or moving on to the
next time-slice. Axiom DA then uses ε to define the delayable actions: a delayable action
corresponds to moving to some time-slice, followed by the execution of an a.

Definition 3.1.5 (Recursion Principle for ε)
Next to the axioms mentioned in Definition 3.1.3, the system BPA+drt,ε–ID also contains
the recursion principle RSP(DEP) shown in Table 14. For more information on recursion
principles and their status with respect to axioms, see [13, 26].

y = x+σ · y =⇒ y = ε · x RSP(DEP)

Table 14: Recursive Specification Principle for the Delayable Empty Process.

Remark 3.1.6 (The Recursion Principle RSP(DEP))
The recursion principle RSP(DEP) will be used to derive equalities between terms that con-
tain delayable actions. As it turns out, RSP(DEP) is very powerful: for every new operator
we add to BPA+drt,ε–ID, we only have to add axioms to eliminate this operator from terms
that contain only undelayable actions. The elimination of the new operator from terms
that also contain delayable actions is then possible using RSP(DEP).

The price to be paid for this power, is the fact that RSP(DEP) is formulated as a con-
ditional axiom. Hence, we lose the strict equationality of our theory. If so desired, it is
possible to maintain strict equationality, but that requires the addition of new axioms to
deal with delayable actions for every new operator added. For a description and exam-
ples on how to do this in a structured manner, see [26].

In Example 3.1.7 we show how to apply RSP(DEP) to derive simple equalities in
BPA+drt,ε–ID. In Example 3.2.10 on page 43 we show how to apply it to derive equalities
involving a newly introduced operator, namely the free merge.

Example 3.1.7 (Use of RSP(DEP))
First, we show how to derive the equality a = ε·a in BPA+drt,ε–ID. To begin with, we derive
a = ε · a = (ε + σ · ε) · a = ε · a+ σ · ε · a = a + σ · a. Using this equality, we can then
derive a = a + σ · a = a + σ · a + σ · a = a + σ · a. Applying RSP(DEP), we now get the
desired result a = ε · a. Note that the converse, namely a = a · ε, does not hold, as a · ε
can still idle after it has done an a, while a cannot.

Secondly, we show how to derive the equality ε · x+ ε · y = ε · (x+ y). Applying the
axioms, we get ε · x+ ε · y = (ε + σ · ε) · x+ (ε + σ · ε) · y = ε · x+ σ · ε · x+ ε · y +
σ · ε · y = x+ y + σ · (ε · x+ ε · y). Applying RSP(DEP), we now get the desired result
ε · x+ ε · y = ε · (x+ y).

Thirdly, we show how to derive the equality σ · ε = ε · σ. Applying the axioms, we
get σ · ε = σ · (ε + σ · ε) = σ · ε + σ · σ · ε = σ + σ · σ · ε. Applying RSP(DEP), we now
get the desired result σ · ε = ε · σ.
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Definition 3.1.8 (Semantics of BPAdrt,ε–ID)
The semantics of BPAdrt,ε–ID are given by the term deduction system T(BPAdrt,ε–ID), in-
duced by the deduction rules for BPA−drt,ε–ID given in Definition 2.2.5 on page 14, and the
additional deduction rules for BPAdrt,ε–ID shown in Table 15.

a a→ ε a σ→ a δ σ→ δ ε σ→ ε ε↓

Table 15: Additional deduction rules for BPAdrt,ε–ID.

Theorem 3.1.9 (Time Determinacy for BPAdrt,ε–ID)
Let x, y, and y′ be closed BPAdrt,ε–ID terms. Then we have:

T(BPAdrt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Next to the cases treated in Theorem 2.2.7 on page 15, we only have to examine
the cases x ≡ a for a ∈ Aδ and x ≡ ε. For all these cases we have that T(BPAdrt,ε–ID) î
x σ→ y, x σ→ y′ implies that y ≡ y′ ≡ x, and we are done. �

Definition 3.1.10 (Bisimulation and Bisimulation Model for BPAdrt,ε–ID)
Bisimulation for BPAdrt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “BPAdrt,ε–ID” in Definition 2.2.8 on
page 15 and Definition 2.2.9 on page 16.

Definition 3.1.11 (Basic Terms of BPAdrt,ε–ID)
We define (σ,δ, ε, δ, ε)-basic terms inductively as follows:

(i). The constant ε is a (σ,δ, ε, δ, ε)-basic term,

(ii). if a ∈ Aδ and t is a (σ, δ, ε, δ, ε)-basic term, then a · t is a (σ,δ, ε, δ, ε)-basic term,

(iii). if t and s are (σ, δ, ε, δ, ε)-basic terms, then t + s is a (σ,δ, ε, δ, ε)-basic term,

(iv). if t is a (σ, δ, ε, δ, ε)-basic term, then σ · t and ε · t are (σ, δ, ε, δ, ε)-basic terms.

From now on, when we speak of basic terms in the context of BPAdrt,ε–ID, we mean
(σ, δ, ε, δ, ε)-basic terms.

Theorem 3.1.12 (General Form of Basic Terms of BPAdrt,ε–ID)
Modulo the commutativity and associativity of the +, all basic terms t of BPA−drt,ε–ID are of
the form:

t ≡
∑
i<m
ai · si +

∑
j<n
σ · uj+

∑
k<p
ε · vk +

∑
l<q
ε

for m,n,p, q ∈ N, m+ n + p+ q ≥ 1, ai ∈ Aδ, and basic terms si, uj, and vk.
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Proof Trivial, by inspection of the definition of basic terms, Definition 3.1.11 on the
preceding page. Observe that the general form of basic terms is closed under the forma-
tion rules given in Definition 3.1.11 on the page before. �

Theorem 3.1.13 (Elimination for BPA+drt,ε–ID)
Let t be a closed BPAdrt,ε–ID term. Then there is a basic term s such that BPA+drt,ε–ID ` s = t.
Proof Extending the proof of Theorem 2.2.21 on page 20, turn the new axioms into
new term rewriting rules, and then apply the lexicographical path ordering technique.
We give no details. �

Theorem 3.1.14 (Soundness of BPA+drt,ε–ID)
The set of closed BPAdrt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of BPA+drt,ε–ID.

Proof Extending the proof of Theorem 2.2.22 on page 20, for every new axiom, derive a
concrete bisimulation relation that relates both sides of the axiom for all closed instanti-
ations of the free variables. Furthermore, prove the soundness of the recursion principle
RSP(DEP) separately. We give no details. �

Theorem 3.1.15 (Completeness of BPA+drt,ε–ID)
The axiom system BPA+drt,ε–ID is a complete axiomatization of the set of closed BPAdrt,ε–ID
terms modulo bisimulation equivalence.

Proof Use the same technique as in Lemma 2.2.23 and Theorem 2.2.24 on page 21. We
give no details. �

3.2 The Free-Merge Extension

In this section, we will define PAdrt,ε–ID, which is basically BPAdrt,ε–ID extended with the
free merge. Adding the free merge to BPAdrt,ε–ID to get PAdrt,ε–ID is entirely similar
to adding the free merge in the case without delayable actions (treated Section 2.3 on
page 21), so we suffice by only giving one example to illustrate the new theory.

Definition 3.2.1 (Signature of PAdrt,ε–ID)
The signature of PAdrt,ε–ID consists of the undelayable atomic actions {a|a ∈ A}, the de-
layable atomic actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable
deadlock constant δ, the time-unit delay constant σ , the undelayable empty process con-
stant ε, the delayable empty process constant ε, the alternative composition operator +,
the sequential composition operator ·, the “now” operator ν, the free merge operator ‖,
and the left merge operator ‖ .

Definition 3.2.2 (Axioms of PAdrt,ε–ID)
The process algebra PAdrt,ε–ID is axiomatized by the axioms of PA−drt,ε–ID given in Defini-
tion 2.3.2 on page 22, and Axioms DEP and DA shown in Table 13 on page 39: PAdrt,ε–ID
= A1–A9 + TF + DCSE1–DCSE4 + DEP + DA + DRTEM1–DRTEM12.

Definition 3.2.3 (Semantics of PAdrt,ε–ID)
The semantics of PAdrt,ε–ID are given by the term deduction system T(PAdrt,ε–ID), in-
duced by the deduction rules for PA−drt,ε–ID given in Definition 2.3.8 on page 25, and the
additional deduction rules for BPAdrt,ε–ID shown in Table 15 on the page before.
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Theorem 3.2.4 (Time Determinacy for PAdrt,ε–ID)
Let x, y, and y′ be closed PAdrt,ε–ID terms. Then we have:

T(PAdrt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′

Proof Proven in the same way as Theorem 3.1.9 on page 41, extending it with the extra
cases given in the proof of Theorem 2.3.10 on page 25. We give no details. �

Definition 3.2.5 (Bisimulation and Bisimulation Model for PAdrt,ε–ID)
Bisimulation for PAdrt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “PAdrt,ε–ID” in Definition 2.2.8 on
page 15 and Definition 2.2.9 on page 16.

Definition 3.2.6 (Basic Terms of PAdrt,ε–ID)
When we speak of basic terms in the context of PAdrt,ε–ID, we mean (σ, δ, ε, δ, ε)-basic
terms as defined in Definition 3.1.11 on page 41.

Theorem 3.2.7 (Elimination for PA+drt,ε–ID)
Let t be a closed PAdrt,ε–ID term. Then there is a basic term s such that PA+drt,ε–ID ` s = t.
Proof By structural induction on t prove that every closed PAdrt,ε–ID term can be rewrit-
ten into a BPAdrt,ε–ID term, and then apply Theorem 3.1.13 on the page before. We give
no details. �

Theorem 3.2.8 (Soundness of PA+drt,ε–ID)
The set of closed PAdrt,ε–ID terms modulo bisimulation equivalence is a model of the axioms
of PA+drt,ε–ID.

Proof Extending the proof of Theorem 3.1.14 on the preceding page, for every new ax-
iom, derive a concrete bisimulation relation that relates both sides of the axiom for all
closed instantiations of the free variables. We give no details. �

Theorem 3.2.9 (Completeness of PA+drt,ε–ID)
The axiom system PA+drt,ε–ID is a complete axiomatization of the set of closed PAdrt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s General Completeness Theorem [29]. We give no details. �

Example 3.2.10 (Use of RSP(DEP) with PAdrt,ε–ID)
We show how to derive the equality a ‖ b = a · b + b · a. Applying the axioms, we get
a ‖ b = a ‖ b+b ‖ a = (a+σ ·a) ‖ b+ (b+σ · b) ‖ a = a ‖ b+σ ·a ‖ (b+σ · b)+
b ‖ a+σ ·b ‖ (a+σ ·a) = a·b+σ ·(a ‖ b)+b·a+σ ·(b ‖ a) = a·b+b·a+σ ·(a ‖ b).
Applying RSP(DEP), and using ε · (x+y) = ε ·x+ ε ·y (see Example 3.1.7 on page 40), we
now get a ‖ b = ε · (a · b + b · a) = ε · a · b + ε · b · a = a · b+ b · a.

Proposition 3.2.11 (Properties of PAdrt,ε–ID)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). PAdrt,ε–ID ` x ‖ ε = x

(ii). PAdrt,ε–ID ` ε ‖ x = x
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(iii). PAdrt,ε–ID ` a ‖ x = a · x
(iv). PAdrt,ε–ID ` δ ‖ x = δ
(v). PAdrt,ε–ID ` x ‖ ε = x

Proof In the same manner as Proposition 2.3.16 on page 27. We give no details. �

Theorem 3.2.12 (Axioms of Standard Concurrency for PA+drt,ε–ID)
Let x, y, z be closed PAdrt,ε–ID terms. Then the following properties hold:

(i). PA+drt,ε–ID ` x ‖ y = y ‖ x
(ii). PA+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)
(iii). PA+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof In the same manner as Theorem 2.3.18 on page 30. We give no details. �

Corollary 3.2.13 (Commutativity and Associativity of the Merge)
For closed terms, the free merge operator of PA+drt,ε–ID is commutative and associative.

Proof This follows directly from Theorem 3.2.12. �

3.3 The Merge Extension

In this section, we will define ACPdrt,ε–ID, which is basically PAdrt,ε–ID extended with the
merge. Again, adding the merge is entirely similar to adding the merge in the case with-
out delayable actions (treated in Section 2.4 on page 32).

Definition 3.3.1 (Signature of ACPdrt,ε–ID)
The signature of ACPdrt,ε–ID consists of the undelayable atomic actions {a|a ∈ A}, the
delayable atomic actions {a|a ∈ A}, the undelayable deadlock constant δ, the delayable
deadlock constant δ, the time-unit delay constant σ , the undelayable empty process con-
stant ε, the delayable empty process constant ε, the alternative composition operator +,
the sequential composition operator ·, the “now” operator ν, the merge operator ‖, the
left merge operator ‖ , and the communication merge operator | .
Definition 3.3.2 (Axioms of ACPdrt,ε–ID)
The process algebra ACPdrt,ε–ID is axiomatized by the axioms of ACP−drt,ε–ID given in Def-
inition 2.4.3 on page 33, and the Axioms DEP and DA shown in Table 13 on page 39:
ACPdrt,ε–ID = A1–A9 + TF + DCSE1–DCSE4 + DEP + DA + DRTEM2–DRTEM12 + DRTECM1–
DRTECM9 + DRTCF.

Definition 3.3.3 (Semantics of ACPdrt,ε–ID)
The semantics of ACPdrt,ε–ID are given by the term deduction system T(ACPdrt,ε–ID), in-
duced by the deduction rules for ACP−drt,ε–ID given in Definition 2.4.5 on page 33, and the
additional deduction rules for BPAdrt,ε–ID shown in Table 15 on page 41.

Theorem 3.3.4 (Time Determinacy for ACPdrt,ε–ID)
Let x, y, and y′ be closed ACPdrt,ε–ID terms. Then we have:

T(ACPdrt,ε–ID) î x σ→ y, x σ→ y′ =⇒ y ≡ y′
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Proof Proven in the same way as Theorem 3.1.9 on page 41, extending it with the extra
cases given in the proofs of Theorem 2.3.10 on page 25 and Theorem 2.4.7 on page 34.
We give no details. �

Definition 3.3.5 (Bisimulation and Bisimulation Model for ACPdrt,ε–ID)
Bisimulation for ACPdrt,ε–ID and the corresponding bisimulation model are defined in the
same way as for BPA−drt,ε–ID. Replace “BPA−drt,ε–ID” by “ACPdrt,ε–ID” in Definition 2.2.8 on
page 15 and Definition 2.2.9 on page 16.

Definition 3.3.6 (Basic Terms of ACPdrt,ε–ID)
When we speak of basic terms in the context of ACPdrt,ε–ID, we mean (σ, δ, ε, δ, ε)-basic
terms as defined in Definition 3.1.11 on page 41.

Theorem 3.3.7 (Elimination for ACP+drt,ε–ID)
Let t be a closed ACPdrt,ε–ID term. Then there is a basic term s such that ACP+drt,ε–ID ` s = t.
Proof By structural induction on t prove that every closed ACPdrt,ε–ID term can be
rewritten into a BPAdrt,ε–ID term, and then apply Theorem 3.1.13 on page 42. We give
no details. �

Theorem 3.3.8 (Soundness of ACP+drt,ε–ID)
The set of closed ACPdrt,ε–ID terms modulo bisimulation equivalence is a model of the ax-
ioms of ACP+drt,ε–ID.

Proof Extending the proof of Theorem 3.2.8 on page 43, for every new axiom, derive a
concrete bisimulation relation that relates both sides of the axiom for all closed instan-
tiations of the free variables. We give no details. �

Theorem 3.3.9 (Completeness of ACP+drt,ε–ID)
The axiom system ACP+drt,ε–ID is a complete axiomatization of the set of closed ACPdrt,ε–ID
terms modulo bisimulation equivalence.

Proof Use Verhoef’s General Completeness Theorem [29]. We give no details. �

Proposition 3.3.10 (Properties of ACPdrt,ε–ID)
Let x be a basic term and a ∈ Aδ. Then the following properties hold:

(i). ACPdrt,ε–ID ` x ‖ ε = x
(ii). ACPdrt,ε–ID ` ε ‖ x = x
(iii). ACPdrt,ε–ID ` a ‖ x = a · x
(iv). ACPdrt,ε–ID ` δ ‖ x = δ
(v). ACPdrt,ε–ID ` x ‖ ε = x

Proof In the same manner as Proposition 2.4.13 on page 35. We give no details. �

Theorem 3.3.11 (Axioms of Standard Concurrency for ACP+drt,ε–ID)
Let x, y, z be closed ACPdrt,ε–ID terms. Then the following properties hold:

(i). ACP+drt,ε–ID ` x | y = y | x
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(ii). ACP+drt,ε–ID ` x ‖ y = y ‖ x

(iii). ACP+drt,ε–ID ` (x | y) | z = x | (y | z)

(iv). ACP+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

(v). ACP+drt,ε–ID ` x | (y ‖ z) = (x ‖ y) ‖ z

(vi). ACP+drt,ε–ID ` (x ‖ y) ‖ z = x ‖ (y ‖ z)

Proof In the same manner as Theorem 2.4.14 on page 36. We give no details. �

Corollary 3.3.12 (Commutativity and Associativity of the Merge)
For closed terms, the merge and communication merge operators of ACP+drt,ε–ID are com-
mutative and associative.

Proof This follows directly from Theorem 3.3.11 on the preceding page. �

3.4 Embeddings

The embeddings into BPA−drt,ε–ID, PA−drt,ε–ID, and ACP−drt–ID given in Section 2.6 also can be
used as embeddings into BPAdrt,ε–ID, PAdrt,ε–ID, and ACPdrt–ID respectively. Furthermore,
the presence of delayable actions makes new embeddings possible.

The process algebras BPA, BPAδ, and BPAδε of [13] can be embedded in BPAdrt,ε–ID by
projecting every action a onto the delayable process a · ε, and δ, ε, +, and · onto them-
selves. The process algebras PA, PAδ, and ACP of [13] can be embedded in BPAdrt,ε–ID,
PAdrt,ε–ID, and ACPdrt,ε–ID respectively in the same way. Using this embedding, we project
every untimed process onto a BPAdrt,ε–ID, PAdrt,ε–ID, or ACPdrt,ε–ID process that is com-
pletely delayable, i.e., can do a time step to itself.

Finally, the process algebra BPAdrt–ID of [26] can be embedded in BPAdrt,ε–ID by pro-
jecting σrel(x) onto σ · x, and everything else onto itself.
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4 Conclusions

We have successfully introduced the empty process in the context of discrete-time pro-
cess algebra with relative timing. In doing so, we found that there is not much room for
choice: the constraints of the unit-element property with respect to sequential composi-
tion and merge, associativity of the merge, time determinacy, and taking BPA−drt–ID as a
basis almost completely determine which course to take. We also found that the empty
process cannot straightforwardly be combined with the immediate deadlock process of
Baeten and Bergstra [7, 8].

The axioms we have given lead to a sound and complete axiomatization of our bisim-
ulation model. For closed terms, the axioms of standard concurrency are derivable.

As the behavior of the empty process is not always into accordance with one’s first
intuition (see Remark 2.3.5 and 2.3.6), one should be very careful when verifying proto-
cols, to make sure that the protocol that is coded in process algebra, is indeed the same
as the one that is supposed to be under study.

The discrete-time empty process makes for a worthwhile addition to the theory of
process algebra. It can potentially be very useful in giving a formal semantics to specifi-
cation languages such as SDL and MSC. It also extends the class of processes that can be
finitely specified.

The usefulness of the empty process with respect to real-life protocol verification re-
mains to be determined.
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