
Discrete-time rewards model-checked

Suzana Andovaa, Holger Hermannsa,b, and Joost-Pieter Katoena

aFormal Methods and Tools Group, Department of Computer Science

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

bDepartment of Computer Science

Saarland University, D-66123 Saarbrücken, Germany

Abstract. This paper presents a model-checking approach for analy-
zing discrete-time Markov reward models. For this purpose, the temporal
logic probabilistic CTL is extended with reward constraints. This allows
to formulate complex measures – involving expected as well as accumu-
lated rewards – in a precise and succinct way. Algorithms to efficiently
analyze such formulae are introduced. The approach is illustrated by
model-checking a probabilistic cost model of the IPv4 zeroconf protocol
for distributed address assignment in ad-hoc networks.

1 Introduction

Modelling techniques such as queueing networks and probabilistic variants of
Petri nets, automata networks and process algebra are convenient means to de-
scribe performance and dependability models. Based on a high-level specification
of the system under investigation, the underlying model – albeit a continuous
time or a discrete time Markov chain (CTMC or DTMC) – is automatically
obtained and can be analyzed with well-studied means to obtain transient and
stationary measures. Most of these techniques have been extended to CTMCs
(or DTMCs) augmented with costs, or dually bonuses (rewards); approaches
using stochastic reward nets [7], reward-based variants of process algebra [4]
extensions of automata [15], logic-based approaches [8] and so on, have been
proposed. These formalisms provide adequate means to specify performance and
dependability models.

It is fair to say that the specification of performance or dependability mea-
sures in a high-level manner has received far less attention. In recent works, we
have proposed to use appropriate extensions of temporal logic – as typically used
to reason about the functional correctness of systems – for specifying constraints
over such measures [2, 3]. This technique allows to specify standard (e.g., tran-
sient and stationary) and complex measures in a precise, unambiguous and lucid
manner. Even more importantly, this specification technique is complemented
by powerful means to automatically check constraints on measures over finite
Markovian models using a light-weight extension of model checking [9]. This
hides specialized algorithms from the performance engineer, supports automated
measure-driven model adaptation, and allows for the checking of quantitative as

well as functional properties (such as absence of deadlocks) in a single integrated
framework.

The model-checking algorithms for CTMCs rely on well-developed standard
numerical algorithms. Therefore even the more intricated measures – beyond
standard stationary and transient measures – can be checked rather efficiently.
Further work in this area has focussed on CTMCs decorated with rewards. We
have introduced a logic to specify measures over such so-called continuous-time
Markov reward models (CMRMs) [2, 12]. The logic allows one to express a rich
spectrum of measures. For instance, when rewards are interpreted as costs, this
logic can express a constraint on the probability that, given a start state, a cer-
tain goal can be reached within t time units while deliberately avoiding to visit
certain intermediate states, and with a total cost (i.e., accumulated reward) be-
low a given threshold. Such path-based measures are, however, computationally
expensive as they are based on determining transient reward distributions, a
measure that has not been widely addressed in the literature and for which the
rarely available algorithms are highly time- and/or space-consuming [12].

In this paper, we aim to avoid this inefficiency by considering discrete-time
Markov chains instead, decorated with (possibly multiple) state rewards. This
paper introduces a logic and model-checking algorithms for discrete time Markov
reward models (DMRMs). In particular, we extend probabilistic CTL [11] with
operators to reason about long-run average, and more importantly, by operators
that allow to specify constraints on (i) the expected reward rate at a time in-
stant, (ii) the long-run expected reward rate per time unit, (iii) the cumulated
reward rate at a time instant – all for a specified set of states – and (iv) the
cumulated reward over a time interval. The proposed logic allows to specify non-
trivial, though interesting, constraints such as “the probability to reach one of
the goal states (via indicated allowed states) within n steps while having earned
an accumulated reward that does not exceed r is larger than 0.92”. We present
model-checking algorithms that verify such properties in an efficient manner, and
show how these can be extended to multiple rewards in a straightforward way.
The approach is illustrated by checking some properties of the IPv4 zeroconf
protocol for distributed address assignment in ad-hoc networks.

2 Discrete-time Markov reward models

This section presents the basic concepts of discrete-time Markov reward models
that are needed for the rest of the paper. For more details we refer to [14].

DMRMs. In order to enable the logical specification of measures-of-interest over
performability models we consider a slight extension of traditional Markov mod-
els where states are equipped with elementary properties, the so-called atomic
propositions. Let AP be a fixed, finite set of atomic propositions.

Definition 1. A (labelled) DTMC D is a tuple (S,P, L) where S is a finite set
of states, P : S × S → [0, 1] is a probability matrix such that

∑

s′∈S P(s, s′) ∈
{ 0, 1 } for all s ∈ S, and L : S → 2AP is a labelling function that assigns to
each state s ∈ S the set L(s) of atomic propositions that are valid in s.

2

Definition 2. A discrete-time reward model (DMRM) M is a pair (D, ρ) with
DTMC D = (S,P, L) and ρ : S → IR>0 a reward assignment function that
associates a real reward (or: cost) to any state in S. Real number ρ(s) denotes
the reward earned on leaving state s. 1

Paths. Let M be a DMRM with underlying DTMC D = (S,P, L) and reward
function ρ. An infinite path σ is a sequence s0 → s1 → s2 → . . . where si ∈ S
and P(si, si+1) > 0 for i > 0. For i ∈ IN let σ[i] = si, the state occupied after
i transitions. A finite path σ with length n is a sequence s0 → . . . → sn with
si ∈ S and P(si, si+1) > 0 for 0 6 i < n. Path(s) denotes the set of (finite and
infinite) paths starting in s. Let Prs denote the unique probability measure on
sets of paths that start in state s [3]. The cumulative reward along finite path σ

with length n is defined as ρ(σ) =
∑n−1

i>0 ρ(si). Note that rewards are considered
on leaving a state, i.e., ρ(sn) is not considered in the cumulative reward of σ.

Example 1. Consider the DMRM M depicted below with S = { s1, s2, s3, s4 },
L(s1) = L(s2) = { a }, L(s3) = { b } and L(s4) = { a, c }, reward structure ρ
defined by ρ(s1) = 2, ρ(s2) = 3, ρ(s3) = 0, ρ(s4) = 2, and the probability matrix
defined by:

P =

0.2 0.5 0.3 0
0 0 0.1 0.9

0.4 0.3 0.3 0
0 0.6 0 0.4

s1 s2

s3

s4

a a

b

a, c

2 2

0

3

0.5
0.2

0.3

0.4

0.3

0.1 0.3

0.9

0.4

0.6

An example finite path is σ = s1 s2 s3 s2 s4; we have σ[0] = s1 and σ[3] = s2, and
the cumulative reward ρ(σ) equals 8. The probability of σ, Prs1

(σ) = 1
2 ·

1
10 ·

3
10 ·

9
10 .

Transient and limiting behavior. Transient analysis studies the system at a cer-
tain time instant n. Let π(s, s′, n) denote the probability that the system is in
state s′ after n steps given that the system started in state s. These transition
probabilities can be calculated using the Chapman-Kolmogorov equations:

π(s, s′, n) =
∑

t∈S
π(s, t, i) · π(t, s′, n−i) for 0 6 i 6 n, (1)

where π(s, s′, 0) = 0 if s′ 6= s and π(s, s, 0) = 1. When n tends to infinity, one con-
siders the limiting (i.e., long-run) behaviour of DTMCs. The limiting behaviour
of a DTMC strongly depends on the structure of the considered chain, more
specifically, on the capacity of states reaching each other within finitely many
steps. It is well known that in case of an irreducible finite aperiodic DTMC
the limit limn;∞ π(s, s′, n) exists and precisely characterises the limiting prob-
abilities π(s, s′), also called steady-state probabilities, of the DTMC [13]. If the
considered DTMC is irreducible and periodic then this limit does not exist. In
that case, one considers the long-run fraction of time that the system spends in
state s′ when starting in state s:

1 Here we consider rewards to be constant, but there do exist variants in which rewards
are random variables.

3

π(s, s′) = lim
n;∞

1

n + 1

∑n

i=0
π(s, s′, i) (2)

The probabilities π(s, s′) can (in both cases) be characterised as the unique
solution of the following system of linear equations:

π(s) =
∑

s′∈S
π(s′) · P(s, s′) such that

∑

s∈S
π(s) = 1. (3)

For irreducible aperiodic DTMCs, π(s, s′) coincides with limn;∞ π(s, s′, n), see
e.g., [14]. Although the initial state does not have any influence on the value of
π(s, s′), we keep this notation because in the case of reducible DTMCs the initial
state has influence on the limiting behaviour. Let π(s, S′) denote

∑

s′∈S′ π(s, s′)
for S′ ⊆ S.

Reward measures. For DMRMs the following reward measures are considered,
see also [18]. Assume that the system starts in state s.

– The expected reward rate per time-unit up to time instant n, denoted g(s, n),
and its limiting counterpart, the long-run expected reward rate per time-unit,
denoted g(s). They are defined as follows:

g(s, n) =
1

n + 1

∑n

i=1
E(ρ(σs[i])) and g(s) = lim

n;∞
g(s, n)

where (the random variable) σs ranges over Path(s).
– The instantaneous reward at time instant n: ρ(s, s′, n) = π(s, s′, n)·ρ(s′). For

S′ ⊆ S let ρ(s, S′, n) =
∑

s′∈S′ ρ(s, s′, n), i.e., ρ(s, S′, n) is the instantaneous
reward at time instant n in the set S′.

– The expected accumulated reward until the n-th transition is defined as
follows: y(s, n) =

∑n−1
i=0 ρ(s, S, i). According to the definition of path reward,

the sum goes up to n−1, i.e., the reward of the last state of the path is
ignored. An alternative characterisation of this reward measure is: y(s, n) =
∑

σ∈Path(s,s′,n) ρ(σ) · Prs(σ), where Path(s, s′, n) denotes the set of finite

paths of length n that start in s and end in s′.

Multiple rewards. If various measures-of-interest are to be determined for a
Markov model, typically several different reward structures are imposed, see
e.g., [18, Section II]. For k > 0 reward structures, a DMRM is a (k+1)-tuple
(D, ρ1, . . . , ρk) with D a DTMC and ρj a reward assignment function, for 0 <
j 6 k. The reward measures defined above can now be all considered for each of
the different reward assignments ρj in a fairly straightforward manner. Let ρj(σ)
be the accumulated j-th reward along finite path σ, i.e., for σ = s0 → . . . → sn

we have ρj(σ) =
∑n−1

i>0 ρj(si). The instantaneous j-th reward at time instant
n is defined by: ρj(s, s

′, n) = π(s, s′, n) · ρj(s
′). The other reward measures are

generalised in a similar manner.

3 Probabilistic reward CTL

This section introduces the logic Probabilistic Reward CTL (PRCTL) that is
aimed at the specification of performability measures over discrete-time Markov
reward models. To simplify the presentation we first recall Probabilistic CTL
(PCTL) by Hansson and Jonsson [11], and extend it by a long-run average
operator.

4

PCTL with long-run average. Let a ∈ AP, p ∈ [0, 1], n be a natural (or ∞) and
binary comparison operator £ ∈ {6, <,>, > }. The syntax of PCTL is:

Φ ::= tt
∣

∣

∣
a

∣

∣

∣
Φ ∧ Φ

∣

∣

∣
¬Φ

∣

∣

∣
L£p(Φ)

∣

∣

∣
P£p(ΦU6n Φ)

The other boolean connectives are derived in the usual way. For the sake of
simplicity, we do not consider the next state operator in this paper. The standard
(i.e. unbounded) until formula is obtained by taking n equal to ∞, i.e., ΦU Ψ =
ΦU6∞ Ψ . Temporal operators like 3, 2 and their timed variants 36n or 26n can
be derived, e.g., P£p(3

6n Φ) = P£p(ttU
6n Φ) and P>p(2Φ) = P61−p(3¬Φ).

Let Sat(Φ) = { s | s |= Φ } be the set of states that satisfy Φ. The semantics of
PCTL is defined by [11]:

s |= tt for all s ∈ S
s |= a iff a ∈ L(s)
s |= ¬Φ iff s 6|= Φ

s |= Φ ∧ Ψ iff s |= Φ ∧ s |= Ψ
s |= L£p(Φ) iff π(s,Sat(Φ)) £ p
s |= P£p(ΦU6k Ψ) iff Prob(s, ΦU6k Ψ) £ p

P£p(ΦU6k Ψ) asserts that the probability measure of the paths that start in
s and that satisfy ΦU6k Ψ meets the bound £p. The state formula L£p(Φ)
asserts that the long-run average fraction of time for the set of Φ-states meets
the bound £p. Here, Prob(s, ΦU6k Ψ) = Prs{σ ∈ Path(s) | σ |= ΦU6k Ψ }.
Formula ΦU6n Ψ asserts that Ψ will be satisfied within n steps and that all
preceding states satisfy Φ, i.e.:

σ |= ΦU6n Ψ iff ∃j 6 n. (σ[j] |= Ψ ∧ ∀i < j. σ[i] |= Φ)

Some example properties that can be expressed in PCTL for our running ex-
ample are P>0.3(3b) (a b-state can be reached with probability at least 0.3),
P>0.3(a U63 b) (a b-state can be reached with probability at least 0.3 by at most
3 hops along a-states), and L60.5(a) (the long-run average fraction of time spent
in a-states is at most 0.5).

Syntax of PRCTL. We now extend the logic PCTL with ample means to specify
properties that do not only address probabilistic aspects but in addition allow to
specify constraints over reward measures. Some of the new operators are inspired
by Baier et al. [3] who introduced a performability logic for continuous-time
Markov reward models (with state rewards).

Let J ⊆ IR>0 be an interval on the real line, n a natural number, p ∈ [0, 1]
and N ⊆ IN ∪ {∞} an interval of natural numbers (or infinity). The syntax of
PRCTL is defined by the following syntax clauses:

Φ ::= tt
∣

∣

∣
a

∣

∣

∣
Φ ∧ Φ

∣

∣

∣
¬Φ

∣

∣

∣
L£p(Φ)

∣

∣

∣
P£p(Φ UN

J Φ)
∣

∣

∣

En
J (Φ)

∣

∣

∣
EJ (Φ)

∣

∣

∣
Cn

J (Φ)
∣

∣

∣
Yn

J (Φ)

The intuitive interpretation of these operators is as follows. Formula En
J (Φ) as-

serts that the expected reward rate in Φ-states up to n transitions – reached at
the n-th epoch – lies within the interval J . Formula EJ(Φ) expresses that the
long-run expected reward rate per time-unit for Φ-states meets the bounds of
J . The formula Cn

J (Φ) asserts that the instantaneous reward in Φ-states at the
n-th epoch meets the bounds of J . Formula Yn

J (Φ) asserts that the expected
accumulated reward in Φ-states until the n-th transition meets the bounds of J .

5

Semantics of PRCTL. The semantics of the state-formulas of PRCTL that are
common with PCTL is identical to the semantics for PCTL as presented above.
The semantics of the new operators is defined by:

s |= En
J (Φ) iff g(s,Sat(Φ), n) ∈ J

s |= EJ (Φ) iff g(s,Sat(Φ)) ∈ J
s |= Cn

J (Φ) iff ρ(s,Sat(Φ), n) ∈ J
s |= Yn

J (Φ) iff y(s,Sat(Φ), n) ∈ J
where we have that for S′ ⊆ S:

g(s, S′, n) =
1

n + 1

∑n

i=0,σs[i]∈S′

E(ρ(σs[i])) and g(s, S′) = lim
n;∞

g(s, S′, n).

Note that g(s, n) as defined earlier coincides with g(s, S, n). Stated in words,
g(s, S′, n) denotes the expected reward rate up to the n-th epoch given that
we are only interested in states belonging to the set S′. The expected accumu-
lated reward for states in S′ until the n-th transition is defined by: y(s, S′, n) =
∑n−1

i=0 ρ(s, S′, i). Note that y(s, n) as defined earlier coincides with y(s, S, n).
Formula Φ UN

J Ψ asserts that Ψ will be satisfied within j ∈ N steps, that all
preceding states satisfy Φ, and that the accumulated reward until reaching the
Ψ -state lies in the interval J . Formally:

σ |= Φ UN
J Ψ iff ∃j ∈ N.

(

σ[j] |= Ψ ∧ ∀i < j. σ[i] |= Φ ∧
∑j−1

i=0 ρ(σ[i]) ∈ J
)

Example 2. Some example properties that can be expressed in PRCTL for our
running example are, P>0.3(aU

63
(23,∞)b) (a b-state can be reached with probability

at least 0.3 by at most 3 hops along a-states accumulating costs of more than
23), and Y3

[3,5](a) (the accumulated costs expected within 3 hops is at least 3

and at most 5).

Multiple rewards. The logic PRCTL can easily be enhanced such that properties
over models equipped with multiple reward structures can be treated. Suppose
M = (D, ρ1, . . . , ρk) is a DMRM with k > 0 reward structures, and let 0 <
j 6 k. The reward operators of PRCTL can be generalised in a straightforward
manner such that constraints on all k reward structures can be expressed in a
single formula. For instance, the formula EJ1,...,Jk

(Φ) expresses that the long-
run expected reward rate per time-unit for Φ-states meets the bounds of J1 for
reward structure ρ1, . . ., the bounds of Jk for reward structure ρk. Its semantics
is defined by: s |= EJ1,...,Jk

(Φ) if and only if gj(s,Sat(Φ)) ∈ Jj for all 0 < j 6 k.
The other operators can be generalised in a similar manner.

If extending to multiple rewards, it is actually possible to encode the time
constraint N (in UN

J) into a reward constraint over a simple auxiliary reward
structure.

4 Model-checking algorithms

Given a state s of DMRM M and a PRCTL-formula Φ, the question to be ad-
dressed is how to check whether or not Φ holds for state s, i.e., whether s |= Φ or
s 6|= Φ. The basic procedure is the same as for model-checking CTL [9]: the set
Sat(Φ) of all states satisfying Φ is computed recursively and we have that s |= Φ
if and only if s ∈ Sat(Φ). The recursive computation basically boils down to a

6

1. V0 := { 0 }; // only nodes with cumulative reward zero
2. S0 := { (s0, 1) }; // state s0 can be reached with probability one
3. for (i := 0; i < n; i++) // i is current level number
4. foreach m ∈ Vi // check all rewards at level i

5. foreach (s, p) ∈ Sm

6. m′ := m + ρ(s); // new cumulative reward
7. foreach s′ withP(s, s′) > 0 // all direct successors of s

8. if m′ 6∈ Vi+1 // encountering fresh reward m′

9. then Vi+1 := Vi+1 ∪ {m′ }; // add new vertex
10. Sm′ := { (s′, p·P(s, s′) };
11. elseif (s′, p′) ∈ Sm′ // shared node encountered?
12. then p′ := p′ + p·P(s, s′);
13. else Sm′ := Sm′ ∪ { (s′, p·P(s, s′) };
14. endif;
15. endforeach;
16. endforeach;
17. endforeach;
18. endfor;

Fig. 1. Path graph generation algorithm

bottom-up traversal of the parse tree of the formula Φ. For the propositional frag-
ment of PRCTL this goes along the lines of CTL. For determining Sat(L£p(Φ))
we use the method of [3]. Model-checking time-bounded until-formulae is based
on the path graph generation.

Path graph generation. The basic concept of the algorithm is to compute the
“unfolding” of the DMRM under consideration while keeping track of the ac-
cumulated reward so far. Nodes in the tree that have the same accumulated
rewards are grouped together in a single vertex. The resulting directed acyclic
graph (V,E, v0) with finite (non-empty) set of vertices V , set of edges E and a
distinguished initial vertex v0, is called path graph. We have V ⊆ IN×P(S×(0, 1]).
The initial vertex v0 equals (0, { (s0, 1) }) where s0 is the state of the DMRM
to be investigated, 0 is the accumulated reward so far, and 1 denotes that the
probability to be in state s0 equals one (when starting in s0). In general, vertex
v = (k, Sk) with Sk = { (s1, p1), . . . , (sm, pm) } denotes that starting from state
s0 each state si (0 < i 6 m) can be reached with probability pi > 0 (possibly
via more than one path) while having earned a cumulative reward k. A path
graph is basically an unfolding of the DMRM – while keeping track of the ac-
cumulated reward – and thus may be infinite. Since we are interested in paths
of a certain length, viz. n, we “cut off” the unfolding at depth n. Formally,
we consider the sets V0, . . . , Vn, where Vi ⊆ V is the set of all vertices (of the
above form) that can be reached in exactly i steps. Thus, for v = (k, Sk) ∈ Vn

with Sk = { (s1, p1), . . . , (sm, pm) } we have that
∑

i pi equals the probability to
gain k reward in n transitions when starting in state s0. Figure 1 presents the
pseudo-code of a variation of the path graph generation algorithm [16]. For the
sake of simplicity, we let Vi be a set of naturals such that if m ∈ Vi then there
is a vertex v = (m,Sm) ∈ Vi.

7

Example 3. The path graph for our running example DMRM for three steps
(n = 3), starting from state s1 is:

V2 V3

2

2

5

4

6

7

4

5

v2

v3

v4

v6

v5

v7

v8

v9

2

v1

0

v0

V1V0

V0 S0 (s1, 1)

V1 S2 (s1, 0.2), (s2, 0.5), (s3, 0.3)

V2 S4 (s1, 0.04), (s2, 0.1), (s3, 0.06)
S5 (s4, 0.45), (s3, 0.05)
S2 (s1, 0.12), (s2, 0.09), (s3, 0.09)

V3 S6 (s1, 0.008), (s2, 0.02), (s3, 0.012)
S7 (s4, 0.27), (s3, 0.01), (s2, 0.27)
S4 (s3, 0.054), (s2, 0.078), (s1, 0.048)
S5 (s3, 0.024), (s2, 0.015), (s1, 0.02),

(s4, 0.081)
S2 (s1, 0.036), (s2, 0.027), (s3, 0.027)

Time-bounded transient rewards: fix-point characterization. Verification algo-
rithms for until-formulae (in CTL and PCTL) are inspired by a fix-point char-
acterization [9, 11]. Checking the bounded until-operator in PRCTL amounts to
computing the least solution of the following set of equations: Prob(s, Φ UN

J Ψ)
equals 1 if s ∈ Sat(Ψ) and 0 ∈ N and 0 ∈ J ,

Prob(s, Φ UN
J Ψ) =

∑

s′∈S
P(s, s′)·Prob(s′, Φ UN⊖1

J⊖ρ(s) Ψ) (4)

if s ∈ Sat(Φ), supN > 0, and ρ(s) > supJ > 0, and equals 0 otherwise. Here,
N ⊖ n = {m−n | m ∈ N,m > n } and J ⊖ r = { j−r | j ∈ J, j > r } for some
r ∈ IR. Stated in words, the probability to reach a Ψ -state from s in n ∈ N steps
by earning a reward r ∈ J equals the probability to move to a direct successor s′

of s multiplied by the probability to reach a Ψ -state from s′ in N ⊖ 1 transitions
by earning J ⊖ ρ(s) reward. Model-checking the until-operator in PRCTL thus
amounts to determining the least solution of this set of linear equations.

Time-bounded transient rewards: algorithm. The algorithm to check time- and
(possibly) reward-bounded until-formulas is based on the path graph generation
algorithm presented above. We discuss our algorithm for the case that N is
a singleton set, say N = {n }, and later discuss how this can be adapted to
arbitrary sets. Suppose we have to check whether s0 |= P£q(ΦUn

J Ψ) assuming
s0 |= Φ. In order to do so, the following adaptations are made to the algorithm
of Figure 1:

– in selecting the successor states of s (line 8 in Figure 1) we only consider
Φ-states if i < n−1 and only Ψ -states if i = n−1 (i.e., in the last step); this
guarantees that all paths considered satisfy ΦUn Ψ and all other paths are
ignored;

– it is checked whether the reward bound supJ is exceeded (line 6);
– in order to decide whether s0 |= P£q(ΦUn

J Ψ) we check (after finishing the
outermost iteration) whether the total probability to end up in states with
an accumulated reward in J meets the bound £q, i.e., whether

∑

(s,p)∈Sm∧m∈(Vn∩J) p £ q,

This requires an iteration over all vertices in Vn ∩ J .

8

1. V0 := { 0 }; // only nodes with cumulative reward zero
2. S0 := { (s0, 1) }; // state s0 can be reached with probability one
3. for (i := 0; i < n; i++)
4. foreach m ∈ Vi // check all rewards at level i

5. foreach (s, p) ∈ Sm

6. if (m + ρ(s) 6 sup J) // reward bound not exceeded?
7. then m′ := m + ρ(s); // new cumulative reward
8. foreach s′ withP(s, s′) > 0 // all direct successors of s

9. if (i < n−1 ∧ s′ ∈ Sat(Φ)) ∨ (i = n−1 ∧ s′ ∈ Sat(Ψ))
10. if m′ 6∈ Vi+1 // encountering fresh reward m′

11. then Vi+1 := Vi+1 ∪ {m′ }; // add new vertex
12. Sm′ := { (s′, p·P(s, s′) };
13. elseif (s′, p′) ∈ Sm′ // shared node encountered?
14. then p′ := p′ + p·P(s, s′);
15. else Sm′ := Sm′ ∪ { (s′, p·P(s, s′) };
16. endif;
17. endif;
18. endforeach;
19. endif;
20. endforeach;
21. endforeach;
22. endfor;
23. pr := 0;
24. foreach m ∈ (Vn ∩ J)
25. foreach (s, p) ∈ Sm pr := pr + p; endforeach;
26. endforeach;
27. return pr £ q.

Fig. 2. Checking whether s0 |= P£q(ΦUn
J Ψ)

The resulting algorithm is presented in Figure 2. Note that the original path
graph generation algorithm by Qureshi and Sanders [16] is obtained by checking
the PRCTL formula ttUn

k tt. The following optimization can be made. For check-
ing properties with lowerbounds on the required probabilities (i.e., £ ∈ {>> }),
the computation can be terminated as soon as the total probability of all vertices
at level i (with i < n) is less than q (or at most q, respectively). In that case, it
is certain that the PRCTL-formula is refuted – as the total probability will not
further increase by going from level i to i+1.

Example 4. Consider the formula P>0.3(aU
4
[6,10] c) for state s1. Stated in words,

we want to check whether the probability to reach a c-state via an a-path (a path
only consisting of a-states) in exactly 4 steps while earning a reward between 6
and 10 exceeds 0.3. Note that the path graph for n = 4 is the extension of the
path graph of the previous example with the level V4. The pruned path graph
that is obtained after running our adapted path graph generation algorithm is:

9

V0 V1 V2 V3

20 5

4

6

7

V4

10

9

V0 S0 (s1, 1)

V1 S2 (s1, 0.2), (s2, 0.5)

V2 S4 (s1, 0.04), (s2, 0.1)
S5 (s4, 0.45)

V3 S6 (s1, 0.008), (s2, 0.02)
S7 (s4, 0.36), (s2, 0.18)

V4 S9 (s4, 0.234)
S10 (s4, 0.162)

As the sum of the probabilities in the vertices of Vn (0.234+0.162) exceeds 0.3
we conclude that s1 |= P>0.3(aU

4
[6,10] c).

Time intervals. The next question is how we can adapt the algorithm if the
number of transitions is not fixed (like n above) but an interval, i.e., N = [n, n′]
with 0 6 n 6 n′. Obviously, in the worst case we have to generate all levels
of the path graph from 0 to n′. Since the above algorithm does not keep track
of probabilities achieved in earlier levels (but only in the last two levels), a
new variable is introduced to accumulate these probabilities from level n to
n′. Furthermore, we cut-off all transitions emanating from a node for which
the formula under consideration becomes true. Thus, if during model-checking
P£p(ΦUN

J Ψ) we encounter that ΦUn
J Ψ is valid for a generated path from s0 to

s, no further investigation of the sub-tree starting in s is done as all such paths
have the path s0, . . . , s as prefix.

Unbounded time case. For model checking an until-formula with an unbounded
time (or reward) interval, the algorithm in Fig. 2 is not always terminating. To
solve this problem we do the following. If the DMRM contains a strongly con-
nected component (SCC) B with only Φ-states having reward 0, we transform (as
a preprocessing step) the DMRM into an equivalent DMRM that does not have
such SCCs. This basically amounts to compute Prob(s,3¬B) for each possible
entrance state s of B. This amounts to solving a system of linear equations [14].

Multiple rewards. The previous algorithm can easily be extended in order to
deal with DMRMs with more than one reward structure. Suppose we have k re-
ward structures and we are about to check whether s0 |= P£p(ΦUN

J1,...,Jk
Ψ).

In this case, vertices in the path graph are tuples (l1, . . . , lk, Sl) with Sl =
{ (s1, p1), . . . (sm, pm) } as before that are to be interpreted as follows: start-
ing from state s0 each state si (0 < i 6 m) can be reached with probability pi

while having earned reward lj according to reward structure ρj (0 < j 6 k). The
algorithm is now obtained by interpreting m and m′ as k-dimensional vectors
and interpreting the statement in which these variables occur accordingly. For in-
stance, m+ρ(s) 6 supJ should now be read as ∀0 < j 6 k.mj +ρj(s) 6 supJj .
Note that the time complexity of the algorithm is increased by a factor k.

Reward measures. The reward-operators C, E , and Y are verified as follows. In
order to decide whether s ∈ Sat(Cn

J (Φ)) we first determine the set Sat(Φ), i.e.,
the states that fulfill Φ, and then sum the instantaneous rewards in these states
at epoch n (when starting in s) – which boils down to a transient analysis of
the underlying DTMC – and check whether this sum lies in J . To check whether

10

s ∈ Sat(EJ (Φ)), recursively Sat(Φ) is computed. A slight generalisation of [14,
Theorem 3.23] now yields that

s ∈ Sat(EJ (Φ)) if and only if
∑

s′∈Sat(Φ)
π(s, s′)·ρ(s′) ∈ J

This thus boils down to solving a system of linear equations. For En
J (Φ)) we have:

s ∈ Sat(En
J (Φ)) if and only if

∑

s′∈Sat(Φ)
π∗(s, s′, n)·ρ(s′) ∈ J

where π∗(s, s′, n) = 1
n+1

∑n
i=0 π(s, s′, i). Finally, checking the Y-operator amounts

to solving a system of linear equations (again). The quantity y(s,Sat(Φ), n) is
characterized as the smallest solution of the following system of linear equations:

E(s, n) =

0 if n = 0
ρ(s) +

∑

s′∈S P(s, s′)·E(s′, n−1) if s ∈ Sat(Φ) ∧ n > 0
∑

s′∈S P(s, s′)·E(s′, n−1) if s /∈ Sat(Φ) ∧ n > 0

Complexity analysis. If real numbers are permitted as rewards, the time complex-
ity of the algorithm (cf. Fig. 2) is exponential in |S | due to the fact that all paths
(of some length) may have distinct accumulated rewards. If, however, we restrict
to naturals or rationals – which mostly suffices – as rewards, checking a time-
and reward-bounded until-formula has a time complexity in O(n · supJ · |S|3).

5 Case study: the IPv4 zeroconf protocol

As a case study, we consider the IPv4 zeroconf protocol, a simple protocol pro-
posed by the IETF [6], aimed at the self-configuration of IP network interfaces
in ad-hoc networks. The probababilistic behaviour of this protocol modeled as
an DMRM is adopted from [5].

The IPv4 zeroconf protocol. The IPv4 zeroconf protocol is designed for a home
local network of appliances (microwave oven, laptop, VCR, DVD-player etc.)
each of which supplied with a network interface to enable mutual communication.
Such ad-hoc networks must be hot-pluggable and self-configuring. Among others,
this means that when a new appliance (interface) is connected to the network,
it must be configured with a unique IP address automatically. The zeroconf
protocol solves this task in the following way. A host that needs to be configured
randomly selects an IP address, U say, out of the 65024 available addresses and
broadcasts a message (called probe) saying “Who is using the address U?”. If the
probe is received by a host that is already using the address U , it replies by a
message indicating that U is in use. After receiving this message the host to be
configured will re-start: it randomly selects a new address, broadcasts a probe,
etc.

Due to message loss or a busy host, a probe or a reply message may not
arrive at some (or all) other hosts. In order to increase the reliability of the
protocol, a host is required to send n probes, each followed by a listening period
of r time units. Therefore, the host can start using the selected IP address only
after n probes have been sent and no reply has been received during n·r time

11

units. Note that after running the protocol a host may still end up using an IP
address already in use by another host, e.g., because all probes were lost. This
situation, called address collision, is highly undesirable since it may force a host
to kill active TCP/IP connections.

Modeling the protocol. The protocol behaviour of a single host is modeled by a
DTMC that is adapted from [5]. The DTMC consists of n+5 states (cf. Figure 3
for n = 4) where n is the maximal number of probes needed (as above). The
initial state is s0 (labeled start). In state sn+4 (labeled ok) the host finally ends
up with an unused IP address; in state sn+2 (labeled error) it ends up with an
address that is already in use, i.e., an address collision. State si (0 < i 6 n) is
reached after issuing the i-th probe. In state s0 the host randomly chooses an
IP address. With probability q = m/65024, where m is the number of hosts in
the network when connecting the host to the network, this address is already in
use. With probability 1−q the host chooses an unused address and ends up in
state sn+3. Then it issues n−1 probes and waits n·r time units before using this
address. If the chosen IP address is already in use, state s1 is reached. Now two
situations are possible. With probability p, no reply is received during r time
units (as either the probe or its reply has been lost), and a next probe is sent,
resulting in state s2. If, however, a reply has arrived in time, the host returns to
the initial state and re-starts the protocol. The behaviour in state si (2 6 i < n)
is similar. If in state n, however, no reply has received within r time units after
sending the n-th probe, an address collision occurs.

1−p
s8 ok

s7 s5

error

1

s6

q

p

1

1−q

s1

1−p

1−p
1−p

ppp
start s4s3s2s0

Fig. 3. DMRM model of the IPv4 zeroconf protocol (for n=4 probes).

We consider three reward structures for this model:

– The first reward assignment (denoted ρ1) represents waiting times and is
defined by: ρ1(si) = r for 0 < i 6 n, ρ1(s0) = 0 assuming that the host ran-
domly selects an address promptly, ρ1(sn+3) = n·r, ρ1(sn+2) = ρ1(sn+4) =
0, and ρ1(sn+1) = E, where E denotes some large number that represents
the highly undesirable situation of an address collision.

– The second reward assignment (denoted ρ2) is used to keep track of the
number of probes that are sent in total. It is defined by: ρ2(si) = 1 for
0 < i 6 n, ρ2(sn+3) = n and 0 otherwise.

– Finally, the third reward assignment (denoted ρ3) is used to keep track of
the number of failed attempts to acquire an unused address. It is defined by:
ρ3(s0) = 1 and 0 otherwise.

Properties of interest. The reward-based operators are subscripted with three
reward intervals that refer to the three reward structures defined above. Intervals

12

equal to [0,∞) are represented by a small line; if all reward intervals equal
[0,∞) then the subscript is omitted. For instance, 3−[4,10]−error asserts that
the protocol eventually ends up with an address collision (state error) where
between 4 and 10 probes have been sent; no constraints are given on the number
of collisions and the required time. We consider the following properties that are
of interest for the IPv4 zeroconf protocol and provide their formal specification
in PRCTL.

(i) “The probability to end up with an unused address is at least p′”: P>p′(3ok).
As state ok is one of the BSCCs of the DTMC an alternative formulation
would be L>p′(ok). (Note that, in general, the formulae P(3Φ) and L(Φ)
are not equivalent.)

(ii) “The probability to end up with an unused address within time t exceeds
p′”:

P>p′(3[0,t]−− ok)
(iii) “The probability to end up with an unused address after at most k probes

exceeds p′”:
P>p′(3−[0,k]− ok)

(iv) “The probability to end up with an unused address within time t while
having sent at most k probes exceeds p′”:

P>p′(3[0,t][0,k]− ok)

(v) “The probability to select more than k times a used address during the
execution of the protocol is at most p′”:

P6p′(3−−[k+1,∞) start)

Here we use the fact that on selecting a used address the host returns to the
start state. As the host also starts the protocol in that state, the lowerbound
of the reward bound equals k+1 (rather than k).

Note that the first property does not refer to any reward and is in fact PCTL-
formula that can be verified using any model checker for this logic.

Verification results. We use the following settings for the parameters: n = 7,
m = 104, p = 10−3, and only present results concerning the two formulas (ii)
and (iv), both requiring the application of the main algorithm (Figure 2). On
the top of Figure 4 different plots are shown for varying values of the bound t in
formula (ii), P>p′(3[0,t]−− ok). We display the border probability p′ where the
truth value of the formula turns from false to true. These boundary probabilities
are very close to 1. Therefore we use a semi-logarithmic scale, and plot 1 − p′

instead of p′. The value 1 − p′ corresponds to the probability of not obtaining
an unused address in time. As expected, increasing the waiting time r decreases
the likelihood to obtain an unused address in time; but small changes to r may
not induce a change of the likelihood. This phenomenon has to do with the
fact that the state prior to the ok-state (s7 in Figure 3) has a reward n·r.
For a fixed upper bound on the reward (here time t), a small increase of r
does not necessarily induce less opportunities (i.e. paths) to reach the ok-state,
explaining the displayed discontinuities. We further note that increasing the time
bound t also decreases the probability for a successful address assignment. On

13

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1
−

p
′

waiting time r

t = 5 t = 10 t = 15

t = 20

t = 30

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1
−

p
′

waiting time r

t = 5 t = 10 t = 15 t = 20

t = 30

Fig. 4. Boundary probabilities for formula (ii) (left) and (iv) (right)

the bottom of Figure 4 we depict the corresponding border probabilities for
formula (iv), P>p′(3[0,t][0,k]− ok), with the same variations on t, while k = 15
remains constant. We observe that the shape of the displayed plots is similar to
the corresponding ones for formula (ii), but the computed probabilities p′ are
lower by several orders of magnitude. This is a result of the constraining effect of
the second reward interval [0, k], which induces that far less paths to the ok-state
satisfy all constraints.

6 Related work

A temporal logic with accompanying efficient model-checking algorithms for
CTMCs has been introduced by Baier et al. [3] and was later extended to reward
models [2, 12]. Another notable approach to continuous time reward analysis is
based on path automata [15]. Basic analysis algorithms for continuous reward
models are discussed in [16] which served also as a basis for our discrete time
model checking algorithms.

In the discrete time context, we are aware of the work of Voeten [20], who
describes a rich assembly language for discrete reward measures. Instead of
state-space based analysis algorithms, discrete event simulation is proposed to
compute these measures. De Alfaro [10] also describes analysis algoritms for
DMRM-like models, focussing on long-run average behaviours rather than on
finite-horizon properties such as bounded until while allowing for nondetermin-
ism. DMRM models have recently become somewhat en vogue as models for
power-aware systems. Sokolsky et al. [19] have proposed a process algebra to
specify power-aware systems as discrete time Markov models with nondetermin-
ism, and have proposed model checking a µ-calculus-like logic for their analysis.

7 Conclusion

This paper developed logics and algorithms for model checking discrete time
Markov reward models, providing means to formulate and efficiently check com-
plex measures constraints – involving expected as well as accumulated rewards.
We illustrated the approach by model-checking a probabilistic cost model of the
IPv4 zeroconf protocol developed for ad-hoc network address assignement.

14

Based on the work presented here, we are further investigating efficient algo-
rithms for continuous time reward model checking.

Acknowledgements. This work has taken place in the context of the SPACE project

(SPecification-bAsed Performability ChEcking) that is supported by the Netherlands

Organization for Scientific Research (NWO). We thank William H. Sanders for fruitful

discussions at an early stage of this work. Henrik Bohnenkamp is thanked for discus-

sions concerning the zeroconf protocol. Part of this work has been achieved during the

Dagstuhl Seminar 03201 “Probabilistic Methods in Verification and Planning”.

References

1. A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Verifying continuous time Markov
chains. In Computer-Aided Verification, LNCS 1102, pp. 269–276, 1996.

2. C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. On the logical character-
isation of performability properties. In Automata, Languages, and Programming,
LNCS 1853, pp. 780–792, 2000.

3. C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. Model-checking algo-
rithms for continuous-time Markov chains. IEEE Transactions on Software Engi-
neering, 29(6):524–545, 2003.

4. M. Bernardo. An algebra-based method to associate rewards with EMPA terms.
In Automata, Languages and Programming (ICALP), LNCS 1256, pp. 358–368,
1997.

5. H. Bohnenkamp, P. van der Stok, H. Hermanns, and F.W. Vaandrager. Cost
optimisation of the IPv4 zeroconf protocol. In Intl. Conf. on Dependable Systems
and Networks. IEEE CS Press. 2003. (to appear).

6. S. Cheshire, B. Adoba and E. Guttman. Dynamic configuration of IPv4 link-local
addresses. 2002 (draft). (available at www.ietf.org/internet-drafts).

7. G. Ciardo, J. Muppala and K.S. Trivedi. SPNP: Stochastic Petri Net Package. In
Proc. 3rd Int’l Workshop on Petri Nets and Performance Models: 142–151, 1989.

8. G. Clark, S. Gilmore, and J. Hillston. Specifying performance measures for PEPA.
In Formal Methods for Real-Time and Probabilistic Systems, LNCS 1601, pp. 211–
227, 1999.

9. E. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, 1999.
10. L. de Alfaro. How to specify and verify the long-run average behavior of proba-

bilistic systems. In IEEE Symp. on Logic in Computer Science, pp. 454-465, 1998.
11. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Form.

Asp. of Comp. 6: 512–535, 1994.
12. B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen and C. Baier. Model checking

performability properties. In Intl. Conf. on Dependable Systems and Networks, pp.
103–113, 2002.

13. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrand, 1960.
14. V.G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall,

1995.
15. W.D. Obal and W.H. Sanders. State-space support for path-based reward variables.

Performance Evaluation, 35(3-4): 233–251, 1999.
16. M.A. Qureshi and W.H. Sanders. Reward model solution method with impulse

and rate rewards: An algorithm and numerical results. Performance Evaluation,
20: 413–436, 1994.

17. A. Reibman and K. Trivedi. Transient analysis of cumulative measures of Markov
model behavior. Commun. Statist.Stochastic Models, 5(4):683–710, 1989.

18. R.M. Smith, K.S. Trivedi and A.V. Ramesh. Performability analysis: measures, an
algorithm and a case study. IEEE Tr. on Computers, 37(4):406–417, 1988.

19. O. Sokolsky, A. Philippou I. Lee, and K. Christou. Modeling and analysis of
power-aware systems. In Tools and Algorithms for the Construction and Analysis
of Systems, LNCS 2619, pp. 409–425, 2003.

20. J.P.M. Voeten. Performance evaluation with temporal rewards. Performance Eval-
uation, 50:189–218, 2002.

15

