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Discrete-Time Signatures and Randomness
in Reservoir Computing

Christa Cuchiero, Lukas Gonon , Lyudmila Grigoryeva, Juan-Pablo Ortega , and Josef Teichmann

Abstract— A new explanation of the geometric nature of
the reservoir computing (RC) phenomenon is presented. RC is
understood in the literature as the possibility of approximating
input–output systems with randomly chosen recurrent neural
systems and a trained linear readout layer. Light is shed on this
phenomenon by constructing what is called strongly universal
reservoir systems as random projections of a family of state-space
systems that generate Volterra series expansions. This procedure
yields a state-affine reservoir system with randomly generated
coefficients in a dimension that is logarithmically reduced with
respect to the original system. This reservoir system is able to
approximate any element in the fading memory filters class just
by training a different linear readout for each different filter.
Explicit expressions for the probability distributions needed in
the generation of the projected reservoir system are stated, and
bounds for the committed approximation error are provided.

Index Terms— Echo state network (ESN), Johnson–
Lindenstrauss (JL) lemma, machine learning, recurrent
neural network (RNN), reservoir computing (RC), signature
state-affine system (SigSAS), state-affine system (SAS), Volterra
series.

I. INTRODUCTION

MANY dynamical problems in engineering, signal
processing, forecasting, time-series analysis, recurrent

neural networks (RNNs), or control theory can be described
using input–output (IO) systems. These mathematical objects
establish a functional link that describes the relationship
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between the time evolution of one or several explanatory
variables (the input) and the second collection of depen-
dent or explained variables (the output).

A generic question in all those fields is to determine the
IO system underlying an observed phenomenon. This is the
so-called system identification problem. For this purpose, first,
principles coming from physics or chemistry can be invoked,
when either these are known or the setup is simple enough
to apply them. In complex situations, in which access to
all the variables that determine the behavior of the systems
is difficult or impossible, or when a precise mathematical
relationship between input and output is not known, it has
proved more efficient to carry out the system identification
using generic families of models with strong approximation
abilities that are estimated using observed data. This approach,
which we refer to as empirical system identification, has been
developed using different techniques coming simultaneously
from engineering, statistics, and computer science.

In this article, we focus on a particularly promising strategy
for empirical system identification known as reservoir com-
puting (RC). RC capitalizes on the revolutionary idea that
there are learning systems that attain universal approximation
properties without the need to estimate all their parameters
using, for instance, supervised learning. More specifically, RC
can be seen as a RNNs approach to model IO systems using
state-space representations in which the following holds.

1) The state equation is randomly generated, sometimes
with sparsity features.

2) Only the (usually very simple) functional form of the
observation equation is tailored to the specific problem
using observed data.

RC can be found in the literature under other denominations,
such as liquid state machines [1]–[5], and is represented
by various learning paradigms, with echo state networks
(ESNs) [6]–[8] being a particularly important example.

RC has shown superior performance in many forecasting
and classification engineering tasks (see [9]–[12], and ref-
erences therein) and has shown unprecedented abilities in
the learning of the attractors of complex nonlinear infinite
dimensional dynamical systems [8], [13]–[15]. In addition,
RC implementations with dedicated hardware have been
designed and built (see [16]–[24]) that exhibit information
processing speeds that largely outperform standard Turing-
type computers.

The most far-reaching and radical innovation in the RC
approach is the use of untrained, randomly generated, and,
sometimes, sparse state maps. This circumvents well-known
difficulties in the training of generic RNNs arising bifurcation
phenomena [25], which, despite recent progress in the regu-
larization and training of deep RNN structures (see [26]–[28],
and references therein), renders classical gradient descent
methods nonconvergent. Randomization has already been
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successfully applied in a static setup using neural net-
works with randomized weights, in particular, in seminal
works on random feature models [29] and extreme learning
machines [30]. This built-in randomness makes reservoir mod-
els different from other conventional approaches where state-
space systems appear. For instance, the Kalman filtering [31]
has been used for decades in signal processing, and in that
case, both linear and nonlinear [32], [33] Kalman techniques
hinge on the idea of designing the state map to result in a
posteriori residual errors of minimal variance. This requires
a significant computational effort in relation to recursive
parameter estimation, which is not needed for RC systems.
In the context of the dynamical systems, an important result
in [34] shows that randomly drawn ESNs can be trained
by exclusively optimizing a linear readout using generic 1-D
observations of a given invertible and differentiable dynamical
system to produce dynamics that are topologically conjugate to
that given system; in other words, randomly generated ESNs
are capable of learning the attractors of invertible dynamical
systems. More generally, the approximation capabilities of
randomly generated ESNs have been established in [35] in
the more general setup of IO systems. There, approximation
bounds have been provided in terms of their architecture
parameters.

In this article, we provide additional insight on the random-
ization question for another family of RC systems, namely,
for the nonhomogeneous state-affine systems (SAS). These
systems have been introduced and proved to be universal
approximants in [36] and [37]. We here show that they
also have this universality property when they are randomly
generated. The approach pursued in this work is considerably
different from the one in the above-cited references and is
based on the following steps. First, we consider causal and
time-invariant (TI) analytic filters with semi-infinite inputs.
The Taylor series expansion of these objects coincides with
what is known as their Volterra series representation. Second,
we show that the truncated Volterra series representation
(whose associated truncation error can be quantified) admits
a state-space representation with linear readouts in a (poten-
tially) high-dimensional adequately constructed tensor space.
We refer to this system as the signature SAS (SigSAS): on the
one hand, it belongs to the SAS family, and on the other hand,
it shares fundamental properties with the so-called signature
process from the (continuous-time) theory of rough paths,
which inspired the title of the article.

The rough path theory, as introduced by Lyons [38] in
the seminal work, has initially been developed to deal with
controlled differential equations driven by rough signals in a
pathwise way. These equations can be seen as a continuous-
time analog of time-series models, where the rough signals
play the role of the model innovations. The key object
in this theory is the signature, which was first studied by
Chen [39], [40] and consists in enhancing the rough input
with additional curves (satisfying certain algebraic properties)
mimicking what, in the smooth case, corresponds to iterated
integrals of the curve with itself.

It is a deep mathematical fact that unique solutions of the
rough differential equation exist and are a continuous map
of the signature (in appropriately chosen topologies). Surpris-
ingly, this nonlinear continuous map can be arbitrarily well
approximated by linear maps of the signature. More generally,
on compact sets of so-called “nontree-like” paths (see [41]
for a precise definition), every continuous path functional
(with respect to a certain p-variation norm) can be uniformly

approximated by a linear function of the signature. Indeed,
linear functionals of the signature form a point separating
algebra on sets of “nontree-like” paths, which, by the Stone–
Weierstrass theorem, then yields a universal approximation
theorem for general path functionals (see [42]). The rough
path theory has been substantially extended by Hairer [43]
toward the theory of regularity structures and is, nowadays,
the tool to analyze deep analytic properties of continuous-time
IO systems.

From a machine learning perspective, the signature can be
thought of as a feature map capturing all specific character-
istics of a given path. More precisely, it serves as a linear
regression basis and can, thus, be interpreted as an abstract
reservoir (for the moment without random specifications) for
solutions of rough differential equations. These appealing
properties made signature methods highly popular for machine
learning applications both for streamed data (in particular,
in finance) and complex classification tasks. For inspiring
examples of the rapidly growing literature on machine learning
using signature methods, we refer to [44]–[51], and references
therein.

Returning to the SAS family, we will show that the solutions
of the SigSAS introduced in this article share exactly the two
crucial properties, which makes signature central in rough path
theory: first, the SigSAS solutions fully characterize the input
sequences; second, any (sufficiently regular) IO system can be
written as a linear map of the SigSAS system. These properties
have been exploited in the continuous-time setup in [52].

Finally, we use the Johnson–Lindenstrauss (JL) Lemma [53]
to prove that a random projection of the SigSAS system yields
a smaller dimensional SAS system with random matrix coef-
ficients (that can be chosen to be sparse) that approximate the
original system. Moreover, this constructive procedure gives
us full knowledge of the law that needs to be used to draw
the entries of the low-dimensional SAS approximating system,
without ever having to use the original large dimensional
SigSAS, which amounts to a form of information compression
with efficient reconstruction in this setup [54]. An important
feature of the dimension-reduced randomly drawn SAS system
is that it serves as a universal approximator for any reasonably
behaved IO system and that only the linear output layer that
is applied to it depends on the individual system that needs to
be learned. We refer to this feature as the strong universality
property.

This approach to the approximation problem in RNNs
using randomized systems provides a new explanation of the
geometric nature of the RC phenomenon. The results in the
following show that randomly generated SAS reservoir systems
approximate well any sufficiently regular IO system just by
tuning a linear readout because they coincide with an error-
controlled random projection of a higher dimensional Volterra
series expansion of that system.

II. TRUNCATED VOLTERRA REPRESENTATIONS

OF ANALYTIC FILTERS

We start by describing the setup that we shall be working
on, together with the main approximation tool that we will be
using later on in the article, namely, Volterra series expansions.
Details on the concepts introduced in the following can be
found in, for instance, [55]–[57], and references therein.

All along this article, the symbol Z denotes the set of all
integers, and Z− stands for the set of negative integers with the
zero element included. Let Dd ⊂ R

d and Dm ⊂ R
m . We refer
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to the maps of the type U : (Dd)
Z −→ (Dm)Z between

infinite sequences with values in Dd and Dm , respectively,
as filters, operators, or discrete-time IO systems, and to those
like H : (Dd)

Z −→ Dm (or H : (Dd)
Z− −→ Dm) as

Rm-valued functionals. These definitions will be, sometimes,
extended to accommodate situations where the domains and
the targets of the filters are not necessarily product spaces
but just arbitrary subsets of (Rd)Z and (Rm)Z, such as, for
instance, �∞(Rd) and �∞(Rm).

A filter U : (Dd)
Z −→ (Dm)Z is called causal when, for

any two elements z, w ∈ (Dd)
Z that satisfy that zτ = wτ for

any τ ≤ t ; for a given t ∈ Z, we have that U(z)t = U(w)t .
Let Tτ : (Dd)

Z −→ (Dd)
Z be the time delay operator defined

by Tτ (z)t := zt−τ . The filter U is called TI when it commutes
with the time delay operator, that is, Tτ ◦ U = U ◦ Tτ ,
for any τ ∈ Z (in this expression, the two operators Tτ

have to be understood as defined in the appropriate sequence
spaces). There is a bijection between causal and TI filters
and functionals. We denote by UH : (Dd)

Z −→ (Dm)Z

(respectively, HU : (Dd)
Z− −→ Dm) the filter (respectively,

the functional) associated with the functional H : (Dd)
Z− −→

Dm (respectively, the filter U : (Dd)
Z −→ (Dm)Z). Causal

and TI filters are fully determined by their restriction to semi-
infinite sequences, that is, U : (Dd)

Z− −→ (Dm)Z− , which
will be denoted using the same symbol.

In most cases, we work in the situation in which Dd and Dm

are compact and the sequence spaces (Dd)
Z− and (Dm)Z− are

endowed with the product topology. It can be shown (see [55])
that this topology is equivalent to the norm topology induced
by any weighted norm defined by ‖z‖w := supt∈Z−{ztw−t },
z ∈ (Dd)

Z− , where w : N −→ (0, 1] is an arbitrary strictly
decreasing sequence (we call it weighting sequence) with zero
limit and such that w0 = 1. Filters and functionals that are
continuous with respect to this topology are said to have
the fading memory property (FMP).

A particularly important class of IO systems is those gen-
erated by state-space sytems in which the output y ∈ (Dm)Z−

is obtained out of the input z ∈ (Dd)
Z− as the solution of the

equations {
xt = F(xt−1, zt ) (1)

yt = h(xt) (2)

where F : DN × Dd −→ DN is the so-called state map, for
some DN ⊂ RN , N ∈ N, and h : DN −→ Dm is the readout
or observation map. When, for any input z ∈ (Dd)

Z− , there is
only one output y ∈ (Dm)Z− that satisfies (1) and (2), we say
that this state-space system has the echo state property (ESP);
in that case, it determines a unique filter U F

h : (Dd)
Z− −→

(Dm)Z− . When the ESP holds at the level of the state (1), then
it determines another filter U F : (Dd)

Z− −→ (DN )Z− , and
then, U F

h = h(U F ). The filters U F
h and U F , when they exist,

are automatically causal and TI (see [55]). The continuity
and the differentiability properties of the state and observation
maps F and h imply continuity and differentiability for U F

h
and U F under very general hypotheses; see [56] for an in-
depth study of this question.

We denote by ‖·‖ the Euclidean norm if not stated oth-
erwise and use the symbol |||·||| for the operator norm with
respect to the two-norms in the target and the domain spaces.
In addition, for any z ∈ (Rd)Z− , we define p-norms as
‖z‖p := (

∑
t∈Z− ‖zt‖p)1/p, for 1 ≤ p < ∞, and ‖z‖∞ :=

supt∈Z−{‖zt‖}, for p = ∞. Given M > 0, we denote by
KM := {z ∈ (Rd)Z− | ‖zt‖ ≤ M for all t ∈ Z−}. It is easy

to see that KM = BM ⊂ �∞− (Rd), with BM := B‖·‖∞(0, M)
and �∞− (Rd) := {z ∈ (Rd)Z− | ‖z‖∞ < ∞}. We define B̃M :=
BM ∩ �1−(Rd) with �1−(Rd) := {z ∈ (Rd)Z− | ‖z‖1 < ∞} and
use the same symbol B̃M whenever d = 1. In addition, we will
write L(V , W ) to refer to the space of linear maps between
the real vector spaces V and W . The following statement is
the main approximation result that will be used in the article.

Theorem 1: Let M, L > 0 and U : KM ⊂ �∞− (Rd) −→
KL ⊂ �∞− (Rm) be a causal and TI fading memory filter
whose restriction U |BM is analytic as a map between open
sets in the Banach spaces �∞− (Rd) and �∞− (Rm) and satisfies
U(0) = 0. Then, for any z ∈ B̃M , there exists a Volterra series
representation of U given by

U(z)t =
∞∑
j=1

0∑
m1=−∞

. . .

0∑
m j =−∞

g j(m1, . . . , m j)

× (zm1+t ⊗ · · · ⊗ zm j +t) (3)

with t ∈ Z− and where the map g j : (Z−) j −→ L(Rd ⊗· · ·⊗
Rd, Rm) is given by

g j(m1, . . . , m j )(ei1 ⊗ · · · ⊗ ei j ) = 1

j ! D j HU (0)
(
ei1

m1
, . . . , e

i j
m j

)
(4)

where, for any z0 in some open subset of �∞− (Rd), D j HU (z0)
with j ≥ 1 denotes the j -order Fréchet differential at z0 of
the functional HU associated with the filter U , {e1, . . . , ed} is
the canonical basis of R

d , and the sequences eil
mk

∈ �∞− (Rd)
are defined by(

eil
mk

)
t
:=

{
eil ∈ Rd , if t = mk

0, otherwise.

Moreover, there exists a monotonically decreasing sequence
wU with zero limit such that, for any p, l ∈ N∥∥∥∥∥∥U(z)t −

p∑
j=1

0∑
m1=−l

. . .

0∑
m j =−l

g j(m1, . . . , m j )

× (zm1+t ⊗ · · · ⊗ zm j +t )

∥∥∥∥∥∥
≤ wU

l + L

(
1 − ‖z‖∞

M

)−1(‖z‖∞
M

)p+1

. (5)

A. Signature State-Affine System

We now show that the filter obtained out of the truncated
Volterra series expansion in the expression (5) can be written
down as the unique solution of a nonhomogeneous SAS with
linear readouts that, as we shall show in Section II-B, have
particularly strong universal approximation properties. We first
briefly recall how the SAS family is constructed.

Let α = (α1, . . . , αd)
� ∈ Nd and z = (z1, . . . , zd)

� ∈ Rd ,
and define the monomials zα := zα1

1 . . . zαd
d . We denote by

MN1,N2 the space of real N1 × N2 matrices with N1, N2 ∈ N

and use MN1,N2 [z] to refer to the space of polynomials in
z ∈ Rd with matrix coefficients in MN1,N2 , that is, the set of
elements p of the form

p(z) =
∑
α∈Vp

zα Aα
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with Vp ⊂ Nd being a finite subset and Aα ∈ MN1,N2 the
matrix coefficients. An SAS is given by{

xt = p(zt)xt−1 + q(zt)

yt = Wxt .
(6)

p ∈ MN,N [z] and q ∈ MN,1[z] are polynomials with matrix
and vector coefficients, respectively, and W ∈ Mm,N . If we
consider inputs in the set KM and p and q in the state-space
system (6) such that

Mp := sup
z∈B‖·‖(0,M)

{|||p(z)|||} < 1

Mq := sup
z∈B‖·‖(0,M)

{|||q(z)|||} < ∞

where B‖·‖(0, M) denotes the closed ball in Rd of radius M
and center 0 with respect to the Euclidean norm, then a unique
state-filter U p,q : KM −→ KL can be associated with it, with
L := Mq/(1 − Mp). It has been shown in [36] and [37] that
SAS systems are universal approximants in the fading memory
and in the L p-integrable categories in the sense that, given a
filter in any of those two categories, there exists an SAS system
of type (6) that uniformly, or in the L p-sense, approximates it.

The SigSAS that we construct in this section exhibits what
we call the strong universality property. This means that the
state equation for this state-space representation is the same
for any fading memory filter that is being approximated, and
it is only the linear readout that changes. In other words,
we provide a result that yields the approximation (as accurate
as desired) of any fading memory IO system, as the linear
readout of the solution of a fixed nonhomogeneous SAS
system that does not depend on the filter being approximated.

Since the important property that we just described is
reminiscent of an analogous feature of the signature process in
the context of the representation of the solutions of controlled
stochastic differential equations [52], we shall refer to this
state system as the SigSAS system.

Before we proceed, we need to introduce some notation.
First, for any l, d ∈ N, we denote by T l(Rd) the space of
tensors of order l on Rd , that is

T l(Rd) :=
⎧⎨
⎩

d∑
i1,...,i l =1

ai1,...,i l ei1 ⊗ · · · ⊗ eil | ai1,...,i l ∈ R

⎫⎬
⎭.

The tensor space T l(Rd) will be understood as a normed
space with a crossnorm [58] that we shall leave unspecified
for the time being. We shall be using an order lowering
map πl : T l+1(Rd) −→ T l(Rd) that, for any vector v :=∑d

i1,...,i l+1=1 ai1,...,i l+1 ei1 ⊗· · ·⊗eil+1 ∈ T l+1(Rd), is defined as

πl(v) :=
d∑

i2,...,i l+1=1

a1,i2,...,i l+1 ei2 ⊗ · · · ⊗ eil+1 ∈ T l(Rd).

The order lowering map is linear, and its operator norm
satisfies that |||πl ||| = 1.

We shall restrict the presentation to 1-D inputs, that is,
we consider input sequences z ∈ KM ⊂ �∞− (R). Now, for
fixed l, p ∈ N, we define for any z ∈ KM and t ∈ Z−

z̃t :=
p+1∑
i=1

zi−1
t ei ∈ R

p+1 and ẑt := z̃t−l ⊗ · · · ⊗ z̃t . (7)

Note that z̃t is the Vandermonde vector [59] associated with
zt and that ẑt is a tensor in T l+1(Rp+1) whose components
in the canonical basis are all the monomials on the variables
zt , . . . , zt−l that contain powers up to order p in each of those
variables, namely

ẑt =
p+1∑

i1,...,i l+1=1

zi1−1
t−l . . . zil+1−1

t ei1 ⊗ · · · ⊗ eil+1 .

Finally, given I0 ⊂ {1, . . . , p + 1} an arbitrarily chosen but
fixed subset of cardinality higher than 1 that contains the
element 1, we define

ẑ 0
t =

∑
i∈I0

zi−1
t e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸

l-times

⊗ei ∈ T l+1(Rp+1). (8)

The next proposition introduces the SigSAS state system
for fixed l, p ∈ N, whose solution is used later on in
Theorem 4 to represent the truncated Volterra series expan-
sions in Theorem 1 of polynomial degree p and lag −l [see
expression (5)].

Proposition 2 (SigSAS System): Let M > 0 and l, p ∈ N.
Let 0 < λ < min{1, 1/

∑p
j=0 M j }. Consider the state system

with uniformly bounded scalar inputs in KM = [−M, M]Z−

and states in T l+1(Rp+1) given by the recursion

xt = λπl(xt−1) ⊗ z̃t + ẑ 0
t . (9)

This state equation is induced by the state map FSigSAS
λ,l,p :

T l+1(Rp+1) × R −→ T l+1(Rp+1) defined by

FSigSAS
λ,l,p (x, z) := λπl(x) ⊗ z̃ + ẑ 0 (10)

which is a contraction in the state variable with contraction
constant

λM̃ < 1, where M̃ :=
p∑

j=0

M j (11)

and, hence, restricts to a map FSigSAS
λ,l,p : B‖·‖(0, L) ×

[−M, M] −→ B‖·‖(0, L), with

L := M̃/(1 − λM̃). (12)

This state system has the echo state and the fading memory
properties and its continuous, and TI, and a causal associated
filter U SigSAS

λ,l,p : KM −→ KL ⊂ T l+1(Rp+1) is given by

U SigSAS
λ,l,p (z)t = λl+1

1 − λ
ẑt + λ l πl

(
πl

( · · · (πl
(︸ ︷︷ ︸

l-times

ẑ 0
t−l

) ⊗ z̃t−(l−1)

)
⊗ · · · ) ⊗ z̃t−1

) ⊗ z̃t

+ · · · + λπl
(̂
z 0

t−1

) ⊗ z̃t + ẑ 0
t . (13)

Remark 3: The state (9) is, indeed, an SAS with states
defined in T l+1(Rp+1) as it has the same form as the first
equality in (6). Indeed, this equation can be written as xt =
p(zt)xt−1 + q(zt) with p(zt) and q(zt) being the polynomials
in zt with coefficients in L(T l+1(Rp+1), T l+1(Rp+1)) and
T l+1(Rp+1), respectively, given by

p(zt )xt−1 := λπl(xt−1) ⊗ z̃t =
p+1∑
i=1

zi−1
t (λπl(xt−1) ⊗ ei)

q(zt) := ẑ 0
t =

∑
i∈I0

zi−1
t e1 ⊗ · · · ⊗ e1 ⊗ ei .
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B. SigSAS Approximation Theorem

As we already pointed out, ẑt is a vector in T l+1(Rp+1)
whose components in the canonical basis are all the monomials
on the variables zt , . . . , zt−l that contain powers up to order
p in each of those variables. Moreover, it is easy to see
that all the other summands in the expression (13) of the
filter U SigSAS

λ,l,p are proportional (with a positive constant) to
monomials already contained in ẑt . This implies the existence
of a linear map Aλ,l,p ∈ L(T l+1(Rp+1), T l+1(Rp+1)) with
an invertible matrix representation with nonnegative entries
such that

U SigSAS
λ,l,p (z)t = Aλ,l, p̂zt . (14)

In the sequel, we will denote the matrix representation of
Aλ,l,p using the same symbol Aλ,l,p ∈ MN,N , N := (p+1)l+1.
This observation, together with Theorem 1, can be used to
prove the following result.

Theorem 4: Let M, L > 0 and U : KM ⊂ �∞− (R) −→
KL ⊂ �∞− (Rm) be a causal and TI fading memory filter
whose restriction U |BM is analytic as a map between open
sets in the Banach spaces �∞− (R) and �∞− (Rm) and satisfies
U(0) = 0. Then, there exists a monotonically decreasing
sequence wU with zero limit such that, for any p, l ∈ N and
any 0 < λ < min{1, 1/

∑p
j=0 M j }, there exists a linear map

W ∈ L(T l+1(Rp+1), Rm) such that, for any z ∈ B̃M∥∥U(z)t − WU SigSAS
λ,l,p (z)t

∥∥
≤ wU

l + L

(
1 − ‖z‖∞

M

)−1(‖z‖∞
M

)p+1

. (15)

Remark 5: Theorem 4 establishes the strong universality
of the SigSAS system in the sense that the state equation
of this system is the same for any fading memory filter U
that is being approximated, and it is only the linear readout
that changes. Nevertheless, we emphasize that the quality of
the approximation is not filter independent, as the decreasing
sequence wU in the bound (15) depends on how fast the filter
U “forgets” past inputs.

Remark 6: The analyticity hypothesis in the statement of
Theorem 4 can be dropped by using the fact that finite order
and finite memory Volterra series are universal approximators
in the fading memory category (see [60] and [56, Th. 31]).
In that situation, the bound for the truncation error in (15)
does not necessarily apply anymore, in particular, its second
summand, which is intrinsically linked to analyticity. A gener-
alized bound can be formulated in that case using arguments
along the lines of those found in [35].

III. JL REDUCTION OF THE SIGSAS REPRESENTATION

The price to pay for the strong universality property exhib-
ited by the SigSAS that we constructed in Section II-B is
the potentially large dimension of the tensor space in which
this state-space representation is defined. In this section,
we concentrate on this problem by proposing a dimension
reduction strategy, which consists of using the random pro-
jections in the JL Lemma [53] in order to construct a smaller
dimensional SAS system with random matrix coefficients
(that can be chosen to be sparse). The results contained
in Sections III-B and III-C quantify the increase in approx-
imation error committed when applying this dimensionality
reduction strategy.

We start by introducing the JL Lemma [53] and some
properties that are needed later on in the presentation.
Following this, we spell out how to use it in the dimension
reduction of state-space systems, in general, and the SigSAS
representation, in particular.

A. JL Lemma and Approximate Projections

Given an N-dimensional Hilbert space (V , 〈·, ·〉) and Q a
n-point subset of V , the JL Lemma [53], [61] guarantees, for
any 0 < ε < 1, the existence of a linear map f : V −→ Rk ,
with k ∈ N satisfying

k ≥ 24 log n

3ε2 − 2ε3
(16)

which respects ε-approximately the distances between the
points in the set Q. More specifically

(1 − ε)‖v1 − v2‖2 ≤ ‖ f (v1) − f (v2)‖2

≤ (1 + ε)‖v1 − v2‖2 (17)

for any v1, v2 ∈ Q. The norm ‖·‖ in Rk comes from an
inner product that makes it into a Hilbert space, or in other
words, it satisfies the parallelogram identity. This remarkable
result is even more so in connection with further develop-
ments that guarantee that the linear map f can be randomly
chosen [61]–[63] and, moreover, within a family of sparse
transformations [64], [65] (see also [66]).

In the developments in this article, we use the original
version of this result, in which the JL map f is realized by a
matrix A ∈ Mk,N whose entries are such that

Ai j ∼ N(0, 1/k). (18)

It can be shown that, with this choice, the probability of the
relation (17) to hold for any pair of points in Q is bounded
below by 1/n.

Lemma 7: Let (V , ‖·‖) be a normed space, and let Q be
a (finite or infinite countable) subset of V . Define ‖·‖Q :
span{Q} −→ R+ by

‖v‖Q := inf

⎧⎨
⎩

Card Q∑
j=1

|λ j |
∣∣∣ Card Q∑

j=1

λ j v j = v, v j ∈ Q

⎫⎬
⎭.

1) ‖·‖Q defines a seminorm in span{Q}. If

MQ := sup{‖vi‖ | vi ∈ Q} (19)

is finite, then ‖·‖Q is a norm.
2) ‖v‖ ≤ ‖v‖Q MQ , for any v ∈ span{Q}.
3) Let Q1, Q2 be subsets of V such that Q1 ⊂ Q2. Then,

‖v‖Q2 ≤ ‖v‖Q1 for any v ∈ span{Q1}.
Remark 8: If the hypothesis MQ < ∞ is dropped in part 1)

of Lemma 7, then ‖·‖Q is, in general, not a norm as the
following example shows. Take V = R and vi = i , i ∈ N.
It is easy to see that, in this setup

‖1‖Q = inf

{
1

i
| i ∈ N

}
= 0.

Proposition 9: Let Q be a set of points in the Hilbert space
(V , 〈·, ·〉) with MQ := sup{‖vi‖ | vi ∈ Q} < ∞ such that
−Q := {−v | v ∈ Q} = Q. Let ε > 0; let f : V −→ Rk be a
linear map that satisfies the JL property (17) with respect to
ε; and let f ∗ : Rk −→ V the adjoint map with respect to a
fixed inner product 〈·, ·〉 in Rk . Then

|〈w1, (IV − f ∗ ◦ f )(w2)〉| ≤ εM2
Q‖w1‖Q‖w2‖Q (20)

for any w1, w2 ∈ span {Q}.
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Corollary 10: In the hypotheses of the previous proposi-
tion, let

CQ := inf
c∈R+

{‖v‖Q ≤ c‖v‖, for all v ∈ span{Q}}. (21)

Then, for any v ∈ span{Q} such that ( f ∗ ◦ f )(v) ∈ span{Q},
we have

‖(IV − f ∗ ◦ f )(v)‖ ≤ εM2
QC2

Q‖v‖. (22)

This corollary is just a consequence of the inequality (20)
that guarantees that

‖(IV − f ∗ ◦ f )(v)‖2 ≤ εM2
Q‖(IV − f ∗ ◦ f )(v)‖Q‖v‖Q

≤ εM2
Q C2

Q‖(IV − f ∗ ◦ f )(v)‖‖v‖
(23)

which yields (22).

B. JL Projection of State-Space Dynamics

The next result shows how, when the dimension k of the
target of the JL map f determined by (16) is chosen so that this
map is generically surjective, then any contractive state-space
system with states in the domain of f can be projected onto
another one with states in its smaller dimensional image. This
result also shows that, if the original system has the ESP and
the FMP, then so does the projected one. In addition, it gives
bounds that quantify the dynamical differences between the
two systems.

Theorem 11: Let Fρ : RN × Dd −→ RN be a one-
parameter family of continuous state maps, where Dd ⊂ Rd

is a compact subset, 0 < ρ < 1, and Fρ is a ρ-contraction on
the first component. Let Q be a n-point spanning subset of
RN satisfying −Q = Q. Let f : RN −→ Rk be a JL map that
satisfies (17) with 0 < ε < 1 where the dimension k has been
chosen so that f is generically surjective. Then, the following
holds.

1) Let F f
ρ : Rk × Dd −→ Rk be the state map defined by

F f
ρ (x, z) := f (Fρ( f ∗(x), z))

for any x ∈ Rk and z ∈ Dd . If the parameter ρ is chosen
so that

ρ < 1/||| f |||2 (24)

then F f
ρ is a contraction on the first entry. The symbol

|||·||| in (24) denotes the operator norm with respect to
the two-norms in RN and Rk .

2) Let Vk := f ∗(Rk) ⊂ RN , and let F f
ρ : Vk × Dd −→ Vk

be the state map with states on the vector space Vk ,
defined by

F f
ρ (x, z) := f ∗(F f

ρ (( f ∗)−1(x), z)
) = f ∗ ◦ f (Fρ(x, z))

(25)

for any x ∈ Vk and z ∈ Dd . If the contraction parameter
satisfies (24), then F f

ρ is also a contraction on the
first entry. Moreover, the restricted linear map f ∗ :
Rk −→ Vk is a state-map equivariant linear isomorphism
between F f

ρ and F f
ρ .

3) Suppose, in addition, that there exist two constants
C, C f > 0 such that the state spaces of the state maps
Fρ and F f

ρ can be restricted as Fρ : B‖·‖(0, C)×Dd −→
B‖·‖(0, C) and F f

ρ : B‖·‖(0, C f ) × Dd −→ B‖·‖(0, C f ).

Then, both Fρ and F f
ρ have the ESP and have unique

FMP associated filters Uρ : (Dd)
Z− −→ KC and

U f
ρ : (Dd)

Z− −→ KC f , respectively. The state map
F f

ρ : f ∗(B‖·‖(0, C f )) × Dd −→ f ∗(B‖·‖(0, C f )) is
isomorphic to the restricted version of F f

ρ and also has
the ESP and an FMP associated filter U f

ρ : (Dd)
Z− −→

( f ∗(B‖·‖(0, C f )))
Z− . The state map F f

ρ and the filter
U f

ρ are called the JL projected versions of Fρ and Uρ ,
respectively.

4) In the hypotheses of the previous point, for any
z ∈ (Dd)

Z− and t ∈ Z−∥∥Uρ(z)t − U f
ρ (z)t

∥∥ ≤ ε1/2C MQ CQ
(1 + ||| f |||2)1/2

1 − ρ
(26)

where MQ and CQ are given by (19) and (21),
respectively. Alternatively, it can also be shown that∥∥Uρ(z)t − U f

ρ (z)t

∥∥ ≤ ε
C M2

Q C2
Q

1 − ρ
. (27)

5) Let R > max{1/||| f |||2, 1}, and set ρ = 1/(R||| f |||2).
Then, the elements in the set Q can be chosen so that
the bounds in (26) and (27) reduce to

ε1/2 N3/4C(1 + ||| f |||2)1/2 R||| f |||2
R||| f |||2 − 1

(28)

and

εNC
R||| f |||2

R||| f |||2 − 1
(29)

respectively.

C. JL-Reduced SigSAS System
We now use the previous theorem to spell out the JL

projected version of SigSAS approximations and establish
error bounds analogous to those introduced in (28) and (29).
Given that Theorem 11 is formulated using the one and the
two-norms in Euclidean spaces and Proposition 2 define the
SigSAS system on a tensor space endowed with an unspecified
cross-norm, we notice that those two frameworks can be
matched by using the norms ‖·‖ and ‖·‖1 in T l+1(Rp+1) given
by

‖v‖2 :=
p+1∑

i1,...,il+1=1

λ2
i1,...,il+1

, ‖v‖2
1 :=

p+1∑
i1,...,il+1=1

|λi1,...,il+1 |

with v = ∑p+1
i1,...,il+1=1 λi1,...,il+1 ei1 ⊗ · · · ⊗ eil+1 and {ei1 ⊗ · · · ⊗

eil+1 }i1,...,il+1∈{1,...,p+1} being the canonical basis in T l+1(Rp+1).
It is easy to check that these two norms are crossnorms and
that ‖·‖ is the norm associated with the inner product defined
by the extension by bilinearity of the assigment

〈ei1 ⊗ · · · ⊗ eil+1 , e j1 ⊗ · · · ⊗ e jl+1〉 := δi1 j1 · · · δil+1 jl+1

which makes (T l+1(Rp+1), 〈·, ·〉) into a Hilbert space, a feature
that is needed to use the JL Lemma.

Corollary 12: Let M > 0, and let (FSigSAS
λ,l,p , W ) be the

SigSAS system that approximates a causal and TI filter
U : KM −→ �∞− (Rm), as introduced in Theorem 4. Let
N := (p + 1)l+1, M̃ as in (11), and let 0 < ε < 1.
Let f : R

N −→ R
k be a JL map that satisfies (17), where

the dimension k has been chosen to make f generically
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surjective. Then, for any R > max{1/||| f |||2, 1/(M̃ ||| f |||2), 1},
λ := 1/(RM̃ ||| f |||2), and L as in (12), there exists a

JL-reduced version FSigSAS
λ,l,p, f : f ∗(B‖·‖(0, L f ))×[−M, M] −→

f ∗(B‖·‖(0, L f )) of FSigSAS
λ,l,p : B‖·‖(0, L) × [−M, M] −→

B‖·‖(0, L), with L f := M̃ ||| f |||/(1 − λM̃ ||| f |||2), which has
the ESP and a unique FMP associated filter USigSAS

λ,l,p, f : KM −→
( f ∗(B‖·‖(0, L f )))

Z− . Moreover, we have that∥∥WU SigSAS
λ,l,p (z)t − WUSigSAS

λ,l,p, f (z)t

∥∥
≤ |||W |||ε 1

2 N
3
4 (1 + ||| f |||2) 1

2
M̃ R2||| f |||4

(R||| f |||2 − 1)2
(30)∥∥WU SigSAS

λ,l,p (z)t − WUSigSAS
λ,l,p, f (z)t

∥∥
≤ |||W |||εN

M̃ R2||| f |||4
(R||| f |||2 − 1)2

(31)

for any z ∈ KM and t ∈ Z−, where W := W ◦ ik ∈ Mm,k , with
ik : f ∗ ◦ f (T l+1(Rp+1)) ↪→ T l+1(Rp+1) being the inclusion.

This result shows that causal and TI filters can be approx-
imated by JL-reduced SigSAS systems. The goal in the
following paragraphs consists of showing that such systems
are just SAS systems with randomly drawn matrix coefficients
and, in addition, in precisely spelling out the law of their
entries. These facts show precisely that a large class of
filters can be learned just by randomly generating an SAS
and by tuning a linear readout layer for each individual
filter that needs to be approximated. We emphasize that the
JL-reduced randomly generated SigSAS system is the same
for the entire class of FMP filters that are being approximated
and that only the linear readout depends on the individual
filter that needs to be learned, which amounts to the strong
universality property that we discussed in Sections I and II-A.
As in Remark 5, we recall that the quality of the approx-
imation using a JL-reduced random SigSAS system may
change from filter to filter because of the dependence on the
sequence wU in the bound (15) and the presence of the linear
readout W in (30) and (31).

The next statement needs the following fact that is known
in the literature as Gordon’s Theorem (see [67, Th. 5.32]
and references therein): given a random matrix A ∈ Mn,m
with standard Gaussian independent and identically distributed
(IID) entries, we have that

E[|||A|||] ≤ √
n + √

m. (32)

In addition, the element ẑ0 ∈ T l+1(Rp+1) introduced in (8)
for the construction of the SigSAS system will be chosen in a
specific randomized way in this case. Indeed, this time around,
we replace (8) by

ẑ0 = r
∑
i∈I0

zi−1e1 ⊗ · · · ⊗ e1 ⊗ ei (33)

where r is a Rademacher random variable that is chosen
independent of all the other random variables that will appear
in the different constructions. If we take in T l+1(Rp+1) the
canonical basis in lexicographic order, the element ẑ0 can be
written as the image of a linear map as

ẑ0 = rC I0 (1, z, . . . , z p)� (34)

with

C I0 :=
(

Sc

O(p+1)((p+1)l−1),p+1

)
∈ M(p+1)l+1,p+1

and Sc ∈ Mp+1 a diagonal selection matrix with the elements
given by Sc

ii = 1 if i ∈ I0, and Sc
ii = 0 otherwise.

Theorem 13: Let M > 0, let M̃ as in (11), l, p, k ∈ N, and
define N := (p + 1)l+1, N0 := (p + 1)l . Consider an SigSAS
state map FSigSAS

λ,l,p : T l+1(Rp+1) × [−M, M] −→ T l+1(Rp+1)
of the type introduced in (10) and defined by choosing the
nonhomogeneous term ẑ 0 as in (33). Let, now, f : RN −→ Rk

be a JL projection randomly drawn according to (18). Let
δ > 0 be small enough so that

λ0 := δ

2M̃

√
k

N0
< min

{
1

M̃
,

1

M̃ ||| f |||2 , 1

}
. (35)

Then, the JL-reduced version FSigSAS
λ0,l,p, f of FSigSAS

λ0,l,p has the ESP
and the FMP with probability at least 1 − δ, and in the limit
N0 → ∞, it is isomorphic to the family of randomly generated
SAS systems FSigSAS

λ0,l,p, f with states in Rk and given by

FSigSAS
λ0,l,p, f (x, z) :=

p+1∑
i=1

zi−1 Ai x + B(1, z, . . . , z p)� (36)

where A1, . . . , A p+1 ∈ Mk and B ∈ Mk,p+1 are random
matrices whose entries are drawn according to

(A1) j,m, . . . , (A p+1) j,m ∼ N

(
0,

δ2

4kM̃2

)
(37)

B j,m ∼
⎧⎨
⎩N

(
0,

1

k

)
, if m ∈ I0

0, otherwise.
(38)

All the entries in the matrices A1, . . . , A p+1 are independent
random variables. The entries in the matrix B are independent
of each other, and they are decorrelated and asymptotically
independent (in the limit as N0 → ∞) from those in
A1, . . . , A p+1.

We conclude with a result that uses, in a combined man-
ner, the SigSAS approximation (see Theorem 4) with its JL
reduction in Corollary 12, as well as its SAS characterization
with random coefficients in Theorem 13. This statement shows
that, in order to approximate a large class of sufficiently
regular FMP filters with uniformly bounded inputs, it suffices
to randomly generate a common SAS system for all of them
and tune a linear readout for each different filter in that class
that needs to be approximated.

Theorem 14: Let M, L > 0, and let U : KM ⊂ �∞− (R) −→
KL ⊂ �∞− (Rm) be a causal and TI fading memory filter that
satisfies the hypotheses in Theorem 4. Now, fix l, p, k ∈ N

and δ > 0 small enough so that (35) holds. Now, construct
the SAS system with states in Rk given by

FSigSAS
λ0,l,p, f (x, z) =

p+1∑
i=1

zi−1 Ai x + B(1, z, . . . , z p)� (39)

with matrix coefficients randomly generated according to the
laws spelled out in (37) and (38).

If p and l are large enough, then the SAS system FSigSAS
λ0,l,p, f

has the ESP and the FMP with probability at least 1−δ. In that

case, FSigSAS
λ0,l,p, f has a filter U SigSAS

λ0,l,p, f associated, and there exists
a monotonically decreasing sequence wU with zero limit and a
linear map W ∈ L(Rk, R

m) such that, for any z ∈ B̃M , it holds
that∥∥U(z)t − WU SigSAS

λ0,l,p, f (z)t

∥∥
≤ wU

l + L

(
1 − ‖z‖∞

M

)−1(‖z‖∞
M

)p+1

+ Il,p (40)
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Fig. 1. Box plots for the training mean squared errors (all MSE values
are multiplied by 1e + 4 for convenience) committed by SigSAS systems
in the modeling of GARCH realizations for increasing N , where each N =
(p + 1)l+1 is computed using pairs (p, l), p = {1, . . . , 8}, l = {1, 2, 3},
in lexicographical order. The distribution of errors is constructed using 200
GARCH paths of length 10 000 and I0 = {1, 2} in the SigSAS prescription.
The seemingly slow decay of the MSE values with N is due to linear
regression problems that are ill-conditioned for large N and would require
adequate regularization.

where Il,p is either

Il,p := |||W |||ε 1
2 N

3
4 M̃

(1 + ||| f |||2) 1
2(

1 − δ
2

√
k

N0

)2 or

Il,p := |||W |||εN M̃
1(

1 − δ
2

√
k

N0

)2 . (41)

In these expressions, W ∈ L(T l+1(Rp+1), R
m) is a linear map

such that W = W ◦ f ∗, N = (p + 1)l+1, M̃ is defined in (11),
and 0 < ε < 1 satisfies (16) with n replaced by N .

IV. NUMERICAL ILLUSTRATION

In order to illustrate the main contributions of the article,
we consider an IO system given by the so-called gener-
alized autoregressive conditional heteroskedastic (GARCH)
model [68], [69]. GARCH is a popular discrete-time process
in time-series analysis, which is used in the econometrics
literature and by practitioners to model and forecast the
dynamics of conditional volatilities in financial time series.
More specifically, the GARCH(1, 1) model is given by{

yt = σt zt , zt ∼ N(0, 1)

σ 2
t = ω + αy2

t−1 + βσ 2
t−1, t ∈ Z

(42)

where ω > 0, α, β ≥ 0, and α + β < 1 (see [70] for a
careful discussion of the properties of GARCH processes). The
IO system is driven by the input innovations {zt }t∈Z, and the
observations {yt}t∈Z represent its output. In the experiment,
we use ω = 0.0001, α = 0.1, and β = 0.87, and in order
to learn the corresponding IO system, we construct: 1) an
SigSAS system as in Proposition 2; 2) a JL-reduced SigSAS
system as in Corollary 12; and 3) a randomly generated SAS
as in Theorem 13. For all the systems, the corresponding
readout maps are obtained by a linear regression. Fig. 1
illustrates the result in Theorem 4 and shows that the SigSAS
approximation error decreases with N . Fig. 2 shows that
the approximation errors committed by both the JL-reduced
SigSAS and its randomly generated analog decrease as the JL
dimension k increases. We emphasize that the mean errors are
computed using 160 randomly drawn instances of these two
reduced SigSAS systems, and note that the errors reported in
this figure for the two systems are visually indistinguishable.
We remind that, even though the result of Theorem 13 is

Fig. 2. Box plots for the distributions of training mean squared errors
(all MSE values are multiplied by 1e + 4 for convenience) committed
by 160 instances of randomly JL-reduced SigSAS systems and randomly
generated SAS systems according to Theorem 13. The MSEs are computed
with respect to one given GARCH path of length 7000 for different values
of k. For each k, the box plots corresponding to the two systems are plotted
next to each other to ease comparison (JL SigSAS in blue and random SAS
in magenta). The subplot in the upper right corner shows a comparison of a
part of this GARCH path for t = 1, . . . , 100 and its approximations using a
JL SigSAS and a randomly generated SAS system with k = 10.

proved to hold in the limit as N0 = (p + 1)l → ∞, it is clear
from this particular example that, even for moderately small
N0 (p = 8 and l = 3), randomly generated small-dimensional
SigSAS can excel in learning a given IO system.

The implications of the strong universality features of the
randomly generated SAS systems are far-reaching in terms of
their empirical performance since, as we already emphasized
several times, it is only the linear readout that is tuned for
each individual IO system of interest. In particular, this opens
door to multitask learning (when different components of the
readout are trained for different tasks in parallel) and to new
hardware implementations of these randomized SAS systems.

V. CONCLUSION

RC capitalizes on the remarkable fact that there are learning
systems that attain universal approximation properties with-
out requiring that all their parameters are estimated using
a supervised learning procedure. These untrained parameters
are most of the time randomly generated, and it is only an
output layer that needs to be estimated using a simple func-
tional prescription. This phenomenon has been explained for
static (extreme learning machines [30]) and dynamic (ESNs
[34], [35]) neural paradigms, and its performance has been
quantified using mostly probabilistic methods.

In this article, we have concentrated on a different class of
RC systems, namely, the state-affine (SAS) family. The SAS
class was introduced and proved universal in [36], and we have
shown here that the possibility of randomly constructing these
systems and, at the same time, preserving their approximation
properties is of geometric nature. The rationale behind our
description relies on the following points.

1) Any analytic filter can be represented as a Volterra
series expansion. When this filter is additionally of
fading memory type, the truncation error can be easily
quantified.

2) Truncated Volterra series admit a natural state-space
representation with linear observation equation in a
conveniently chosen tensor space. The state equation
of this representation has a strong universality property
whose unique solution can be used to approximate any
analytic fading memory filter just by modifying the
linear observation equation. We refer to this strongly
universal filter as the SigSAS system.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CUCHIERO et al.: DISCRETE-TIME SIGNATURES AND RANDOMNESS IN RC 9

3) The random projections of the SigSAS system yield
SAS systems with randomly generated coefficients in
a potentially much smaller dimension, which approx-
imately preserves the good properties of the original
SigSAS system. The loss in performance that one incurs
because of the projection mechanism can be quantified
using the JL Lemma.

These observations, together with the numerical experiment,
collectively show that SAS reservoir systems with randomly
chosen coefficients exhibit excellent empirical performances
in the learning of fading memory IO systems because they
approximately correspond to very high-degree Volterra series
expansions of those systems.
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