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This article proposes a general latent variable approach to discrete-time survival

analysis of nonrepeatable events such as onset of drug use. It is showvn how the

survival analysis can beformulated as a generalized latent class analysis of event

history indicators. The latent class analysis can use covariates and can be com-

bined wvith the joint modeling of other outcomes such as repeated measures for a

related process. It is shown that conventional discrete-time survival analysis cor-

responds to a single-class latent class analysis. Multiple-class extensions are pro-

posed, including the special cases of a class of long-term survivors and classes

defined by outcomes related to survivaL The estimation uses a general latent vari-

able framework, including both categorical and continuous latent variables and

incorporated in the Mplus program. Estimation is carried out using maximum

likelihood via the EM algorithm. Two examples serve as illustrations. The first

example concerns recidivism after incarceration in a randomized field experi-

ment. The second example concerns school removal related to the development

of aggressive behavior in the classroom.
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1. Introduction

This article considers discrete-time survival analysis to study the probability, or
hazard, of experiencing a nonrepeatable event, such as onset of drug use. Unlike
logistic regression, which examines the overall probability of an event without
regard to the timing of that event, discrete-time survival analysis allows for exam-
ination of the longitudinal progression of the probability that an event occurs.
Alternative names for this type of analysis are event history analysis and time-to-
event analysis. For overviews, see, for example, Allison (1984), Singer and Willett
(1993), and Vermunt (1997).
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Although continuous-time survival analysis (see, e.g., Hougaard, 2000) is fre-
quently used in many settings, discrete-time survival analysis is often more natural
in social and behavioral science applications where time is likely to be measured
discretely, for example, in school years. Discrete-time models have the strength
that they can easily accommodate time-varying covariates. They also do not require
a hazard-related proportionality assumption that is commonly used in continuous-
time survival analysis, for example, the Cox proportional hazards model. In addition,
these models easily allow for unstructured as well as structured estimation of the
hazard function at each discrete time point.

The aim of this article is to show that it is useful to view the discrete-time sur-
vival analysis as a latent class model that can be incorporated into a general latent
variable modeling framework. This general framework enables interesting model
extensions. First, unobserved heterogeneity among the subjects in the study can be
captured using multiple latent classes of individuals with different survival func-
tions. Second, the survival analysis can be combined with analysis of other related
outcomes, such as a growth mixture model for repeated measures.

The article is organized as follows. In section 2, two data sets are introduced and
used to illustrate the general analysis goals of discrete-time survival analysis. Sec-
tion 3 presents key statistical concepts. Section 4 places the modeling in a general
latent variable framework. Using the general framework, section 5 develops mod-
eling extensions for situations with mixtures of unobserved subgroups of individ-
uals differing in their survival functions. Section 6 shows illustrations of the
methods returning to the two data sets introduced in section 2. Section 7 concludes.

2. Discrete-Time Survival Analysis Goals

Two data sets are used to illustrate the analysis goals: data on recidivism after
incarceration and data on school removal among grade school children. Here, sur-
vival concerns time to re-arrest and time to first school removal, respectively. Sur-
vival analyses of these data are presented in section 6.

2.1. Recidivism Data

This dataset is from a randomized field experiment originally reported by Rossi,
Berk, and Lenihan (1980) and has been used extensively by Allison (1984, 1995)
as a pedagogical example in a continuous-time survival analysis framework. In this
study, 432 inmates released from Maryland state prisons were randomly assigned
to either an intervention or control condition. The intervention consisted of finan-
cial assistance provided to the released inmates for the duration of the study period.
Those in the control condition received no aid. The inmates were followed for
1 year after their release. The event of interest was re-arrest with an emphasis on
the influence of a set of explanatory variables (including intervention status) on the
likelihood of recidivism. The data available on each inmate are detailed to the week
level, that is, 52 observation intervals. However, for the illustrative purposes of this
article, the data are recoded into 13 4-week intervals, referred to as "months." Fur-
therjustification for a discrete-time treatment of these data is given in section 6.1.
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The survival analysis of this dataset will investigate whether the intervention
has a significant effect on the event probabilities across the observation periods
after controlling for the effects of the other measured covariates: age at time of
release, race, prior work experience, marital status at time of release, parole status,
number of prior arrests, years of schooling, and employment status.

The first section of Table 1 displays the sample means and standard deviations
for the three continuous covariates to be considered in the analysis. The second
section of Table 1 displays the sample proportions for the binary covariates. All
covariates, with the exception of employment status, are time-invariant. Employ-
ment status is a time-varying binary covariate that indicates 1 or more weeks of
employment during a given month. The last section of Table 1 displays the sam-
ple information about the outcome of interest, defined as the month of re-arrest.
This part of the table is further explained in section 3.

i 2.2. School Removal Data

The second data set is from a school-based preventive intervention study car-
ried out by the Baltimore Prevention Research Center under a partnership among
The Johns Hopkins University, the Baltimore City Public Schools, and Morgan
State University. In this intervention trial, children were followed from first to sev-
enth grade with respect to the course of aggressive behavior (Kellam, Rebok,
lalongo, & Mayer, 1994). Teacher ratings of a child's aggressive behavior were
made during fall and spring for the first two grades and every spring in Grades 3-7.
The ratings were made using the Teacher's Observation of Classroom Adaptation-
Revised (TOCA-R) instrument (Werthamer-Larsson, Kellam, & Wheeler, 1991),
using an average of 10 items, each rated on a 6-point scale from "almost never" to
"almost always." The Good Behavior Game intervention was delivered at the
classroom level using control group classrooms in the same school (internal con-
trols) as well as in other schools matched on school characteristics (external con-
trols). A total of 11 elementary schools participated in the study. For this article
only the control groups' data are used. At the first-grade fall measurement there
were 6 internal and 10 external control classrooms, with a total of 404 children.

The survival analysis of these data will investigate the effects of the measured
covariates on trends in both aggression and school removal survival. Here, sur-
vival concerns not being removed from school. The analyses explore the rela-
tionship between the development of aggressive behavior in Grade 1 and Grade 2
and relate that to first school removal in Grades 3-7 using the discrete-time mixture
framework.

Table 2 shows the variables to be used in the survival analyses. The first section
of the table gives the sample means and standard deviations for the measures of
aggression in first and second grade as well as the two continuous covariates:
(1) the percentage of students in each subject's first-grade fall class on free or
reduced school lunch and (2) the classroom average aggression for each subject's
first-grade fall class. The second section of Table 2 displays the sample proportions
for the binary covariates. The last section of Table 2 displays the sample information
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TABLE 1
Variable Definitions and Sample Means for Recidivism Data (n = 432)

Variable Name Description M SD

Age Age (in Years) at Release 24.60 6.11
Priors Number of Prior Arrests 2.98 2.89
Educ Years of Schooling 3.48 0.83

M

Emp, 1st-month employment indicator 0.40
Emp2 2nd-month employment indicator 0.52
Emp3 3rd-month employment indicator 0.53
Emp4 4th-month employment indicator 0.54

Emps 5th-month employment indicator 0.55
Emp6 6th-month employment indicator 0.55
Emp7 7th-month employment indicator 0.57
Emp8 8th-month employment indicator 0.56
Empg 9th-month employment indicator 0.55
Emp1 O 10th-month employment indicator 0.55
Emp1 11 th-month employment indicator 0.57
Emp,2 12th-month employment indicator 0.56

Emp 13 13th-month employment indicator 0.55
Finaid Financial assistance indicator 0.50
Black Black racial indicator 0.88
Workexp Prior work experience indicator 0.57
Married Married at release indicator 0.12
Paroled Parole status indicator 0.62

Hazard
u, Ist-month re-arrest indicator 4/432 = 0.01
112 2nd-month re-arrest indicator 8h2s = 0.02
U3 3rd-month re-arrest indicator 714m = 0.02
u4 4th-month re-arrest indicator 8/413 = 0.02
u5 5th-month re-arrest indicator 13/4 = 0.03
u6 6th-month re-arrest indicator -hs2 = 0.02
U7 7th-month re-arrest indicator '°84 = 0.03
u8 8th-month re-arrest indicator 5A74 = 0.01

u9 9th-month re-arrest indicator "h69 = 0.03
Uio 10th-month re-arrest indicator l 358 = 0.03
ull 11th-month re-arrest indicator 8h47 = 0.02
u12 12th-month re-arrest indicator 9h39 = 0.03
U13 13th-month re-arrest indicator '2A3o = 0.03
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TABLE 2
Variable Definitions and Sample Meansfor School Removal Data (n = 404)

Variable Name Description M SD

y,p: First-grade fall TOCA-R measure 1.92 0.94
Yis First-grade spring TOCA-R measure 2.01 0.91
Y2F Second-grade fall TOCA-R measure 1.81 0.88
Y2s Second-grade spring TOCA-R measure 2.03 0.99
Cavlunch First-grade fall classroom average lunch 0.45 0.36
Cavtocalf First-grade fall classroom average TOCA-R 1.92 0.40

M
External External control group indicator 0.63
Male Male gender indicator 0.50
White White racial indicator 0.32
Lunch Subsidized school lunch indicator 0.46

Hazard
U3 IThird-grade school removal indicator 8hs4 = 0.02
114 Fourth-grade school removal indicator 9h36 = 0.02
115 Fifth-grade school removal indicator 5hn = 0.04
U6 Sixth-grade school removal indicator 'A62 = 0.06
u, Seventh-grade school removal indicator 59h3s = 0.17

about the outcome of interest, defined as the grade of school removal. This part of
the table is further explained in the next section.

3. Discrete-Time Survival Analysis Methodology

This section introduces the basic statistical components of discrete-time survival
analysis. The hazard and survival functions as well as the probability of observing
the sample (the likelihood) are presented. Estimations and plots of the marginal
hazard and survival probabilities are given for both data examples.

3.1. Event Time and the Likelihood

The most common representation of the event time distribution is the hazard
function. Define Tas a discrete random variable that indicates the time period when
the event occurs. In discrete time, the hazard function is defined as

hj=P(T=jlT>j). (1)

Essentially, hj is the probability of experiencing the event in time period j given
that it was not experienced beforej.

Another distributional representation of event time is the survival function. The
survival probability at time periodj is defined as the probability of not experiencing
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the event (i.e., the probability of "surviving," through time periodj). In discrete
time, the survival function is defined as

Sj=P(T>j). (2)

The survival probability can be expressed in terms of the hazard by

Sj = P(T > j) = P(T jI T 2 j)P(T # j - IIT 2 j -1)...

P(T7 • 21T 2 2)P(T7 lIT >1)

= f (I - hk). (3)
t ~~~~~~~~k=l

Suppose the duration of the study is made up of J time periods. A single non-
repeatable event is considered so that data collection (and the observation of risk)
is discontinued for individual i in time period j, for one of three reasons: (1) The
individual experiences the event in ji; (2) the individual drops out of the study in
j;; or (3) the study concludes. In the first case, T; =j;. In the second case, it is only
known that Ti > (j; - 1) because the individual dropped out during the period ji, it
is not known that T; >ji. And in the third cases, it is only known that T; > J. Indi-
viduals with T; > (j; - 1) and T; > J are right-censored: it is unknown whether they
experience the event after their observation period. For uncensored individuals
with T; =j;, the likelihood may be expressed in terms of the hazard as

P(Tj = j;) = P(T = j, I T 2 j,)P(T; X j; - I I T; 2 j; - 1) ...

P(T7 21T > 2)P(T 1 2Ti Ž1)

=hij,i (1 - h). (4)
k=1

For individuals with T; > (j; - 1), the likelihood may be expressed as

P(T > j; - 1) = 1 (1 - hik). (5)
k81

For individuals with T;> J, setting j,=J+ 1 allows the likelihood to be expressed as

P(T, > J) = P(M > j; -1) = fi (1- h.k), (6)
k81

the same as the likelihood for individuals censored before the conclusion of the
study.

It follows that the likelihood for the full sample is L = fl'j= 1j, where
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I; = (hi'g j) J t(1 - h,j) (7)
J=1

where o; is a 0/1 indicator with o, = 1 if T; = j;, that is, if individual i experiences
the event while under observation.

3.2. Estimating Hazard Probabilities

The sample estimates of the hazard probabilities, also known as the marginal
hazard probability estimates, are easily calculated from the event history data. The
sample-estimated hazard probability for time period j is simply the number of
events that are observed to occur in time period j divided by the total number of
subjects at risk in time periodj. "Subjects at risk" in this context refers to all those
subjects who have not yet experienced the event before periodj and are still under
observation in periodj; that is, are not censored during periodj. Take, for exam-
ple, the recidivism example. The hazard probability for a given month would be
the probability of being arrested in that month among those inmates who have not
been re-arrested before that month. For example, in the 1st month, all 432 released
inmates were at risk for re-arrest and four experienced re-arrest. The estimated
hazard probability for the 1st month is 4/432 = 0.01. For the 2nd month, only
432 - 4 = 428 inmates were at risk for re-arrest and eight were arrested. The esti-
mated hazard probability for the 2nd month is then 8/428 = 0.02. The 13 sample
hazard probabilities for the months of observation are given in the last portion of
Table 1. The sample hazard probabilities can be plotted by month as shown in
Figure 1. This representation of the sample hazard function suggests that the mar-
ginal hazard function may be constant or slightly increasing with mainly random
sampling accounting for the fluctuation in the range 0.01-0.03. The proportions of

It 3
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FIGURE 1. Sample-estimated hazard probabilities of re-arrest.
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FIGURE 2. Sample-estimated survival probabilities of re-arrest.

the initial population of inmates surviving through each month (i.e., the survival
probabilities) can be estimated directly from the estimated hazard probabilities
using the relationship defined in Equation 3. Figure 2 displays the plot of the esti-
mated survival probabilities by month. There is an increase in the proportion of the
total inmates re-arrested over time with almost 30% re-arrested by the end of the
13th month.

Figures 3 and 4 display the same sample-based estimates of the hazard and
survival probabilities, stratified by intervention status. There is no clear differ-
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FIGURE 3. Sample-estimated hazard probabilities of re-arrest by

intervention status.
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FI GURE 4. Sample-estimated survival probabilities of re-arrest by

intervention status.

ence in the hazard functions for the two groups, but the group of inmates not
receiving the financial aid intervention does have a slightly lower mean survival
curve, with almost 10% more of the initial control group re-arrested by the end
of the 13th month.

The last portion of Table 2 gives the estimated marginal hazard probabilities of
school removal in Grades 3-7 for the second data example. Figure 5 shows sam-
ple means for aggression in Grades 1 and 2 and the sample survival curve. The sur-
vival curve indicates that by end of Grade 7, about 75% of the children have not
experienced school removal. Figure 6 shows the corresponding picture when divid-
ing the sample into high and low-to-average aggression groups based on the upper
quartile of the aggression distribution in the fall of first grade. The figure clearly
indicates a relationship between aggressive behavior and school removal. The chil-
dren with higher aggression scores are seen to have a considerably lower mean sur-
vival curve, with almost half the children having experienced school removal by
the end of Grade 7.

Beyond the marginal hazard estimates, it may also be of interest to investigate
the relationship between the hazard probabilities and a set of observed covari-
ates. In line with Singer and Willet (1993), a logistic hazard function is consid-
ered, although the use of other link functions, such as the complementary
log-log, can also be found in the discrete-time survival literature (e.g., Hedeker,
Siddiqui, & Hu, 2000). Let zij be ap x 1 vector of values for the set of covariates,
(z1, . . . , zp), in time periodj for individual i. zj represents the set of time-varying
(i.e., time-dependent) covariates. Let xi be a q x 1 vector of values for the set of
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FIGURE5. Sample-estimated mean aggression trajectory and sur-

vival of school removaL

time-invariant covariates for individual i. Notice that x is not indexed by j
because the values for the x covariates are independent of time. Also note that
both continuous and categorical covariates can be accommodated which is not
the case working in the traditional log-linear framework that only allows cate-
gorical variables. The hazard can be related to the covariates using the logistic
function as shown below.
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hij = 1 + e('i3 (8)

where the logitij is expressed as

logitij = 13j + iej zij + C,(j xi. (9)

By dropping thej subscript from Kij and 1. in Equation 9, the effects of the covari-
ates are constrained to be equal across all time periods. This is referred to as the
proportional hazard odds model because the hazard odds ratio for the event'corre-
sponding to each covariate is constant across the time periods. The inverse logit of
,j is the hazard probability in time period 'when zj = 0 and x = 0. This is known as
the baseline hazard. A constant baseline hazard function can be imposed by drop-
ping thej subscript from the intercept, ,P,.

4. Discrete-Time Survival in a General Latent Variable Framework

Muth6n and Shedden (1999) and Muthen and Muthen (2001, Appendix 8) con-
sider a general latent variable modeling framework involving both categorical and
continuous latent variables. Estimation is carried out using the EM algorithm to
obtain maximum-likelihood estimates. The procedure is incorporated in the Mplus
program (Muth6n & Muth6n, 1998-2004). The model is given in the appendix and
relevant parts of it are summarized here, followed by an explanation of how the
discrete-time survival model fits into the framework.

The general model can be characterized as a finite mixture model. Mixture mod-
eling allows for unobserved heterogeneity in the sample, where different individ-
uals can belong to different subpopulations without the subpopulation membership
being observed but instead inferred from the data. Another way to conceptualize
mixture modeling is as a nonparametric approach to estimating an underlying con-
tinuousfrailty distribution; that is, a random effect for the outcome that represents
differences in individuals with respect to the survival process. Mixture modeling
captures this heterogeneity by a latent categorical variable. Modeling with a con-
tinuous frailty in this framework is typically approached by assuming a Normal
distribution for the random effect and then using numerical quadrature to integrate
over the unobserved frailty where the points and weights for the numerical inte-
gration are fixed according to a Normal distribution. Using mixture modeling, in
contrast, allows estimation of the points and weights (corresponding to class fac-
tor means and class proportions), resulting in a nonparametric estimation of the
frailty, free of the normality assumption. Mixture modeling has a wide variety of
applications. Overviews with latent class and growth mixture applications are
given in Muthen (2001a, 2001b) and Muthen and Muth6n (2001). Applications to
randomized trials are given in Muthen et al. (2002), Jo (2002), and Jo and Muthen
(2000, 2001).

Let c denote a latent categorical variable with K classes, c e I 1, . . . , K), where
c; = kif individual ibelongs to class k The model relates c to ap x 1 covariate vector x
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by multinomial logistic regression using the (K - 1)-dimensional parameter vec-
tor of logit intercepts, a,, and the (K - 1) x p parameter matrix of logit slopes, rF,
where fork= 1, 2, . .. , K,

P(c; = kx)= x) K (10)

s=I

where the last class is a reference class with coefficients standardized to zero,
=, O' YK= .

Define an r x I vector u of binary 0/1 variables with conditional independence
given ci and xi. That is,

P(uIl, Uj2, . . , Ui,rI Ci, x) = P(ul I ci, xi) P(u,i2jc;, xi) . . . P(ujiI Ci, xi). (11)

Define ui*= (u4, u42, . .., U*,)' as continuous latent response propensities underlying
u. Here, ujis related to uj through a threshold parameter tj,

P(ujj = 11 c, xi) = 1 (12)
1 + e(j4

For example, the higher the t, the higher u* needs to be to exceed it, and the
lower the probability of u = 1 (the use of a threshold parameter instead of an
intercept parameter is needed when ordered polytomous u's are considered in
this framework).

It is convenient to introduce a continuous latent variable vector ri" = (7luli,
nu2* **. n"fi)'. Conditional on class k

ui = Auk rlui + KU,* x (13)

llui = lUk + "uk Xi (14)

where Auk is an r xflogit parameter matrix varying across the K classes, Kuk is an
r x q logit parameter matrices varying across the K classes, a"*, is anf x 1 logit
parameter vector varying across the K classes, and ru,k is anf x q logit parameter
matrix varying across the K classes. The model structure in Equations 13 and 14 is
useful when the u vector represents repeated measures, and the latent classes cor-
respond to different trajectory classes.

4.1. Fitting Discrete-Time Survival Into the General Framework

Section 3.1 described and expressed the likelihood in terms of a final time
period of observation for each individual, denoted ji, and an indicator, o,, for
whether an event occurred for individual i during the observation. To carry out
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discrete-time survival analysis in this general framework, the data on each indi-
vidual are put in terms of a set of binary 0/1 event history indicators uj, j = 1,
2, . . , J, where uij = 0 if individual i is observed to be at risk for the event of inter-
est for the whole of time period j but does not experience the event and u,j = 1 if
individual i experiences an event in time period j, where J is the last time period
of data collection for the study. Consider again the three reasons given for obser-
vation of an individual to terminate: (1) individual i experiences the event in time
period j, < J; (2) individual i is lost to follow-up during time period j; < J; or
(3) individual i does not experience the event of interest, and the study concludes.
In cases (1) and (2), individual i has missing values for uj, j > ji, and uLj, j 2 ji,
respectively. These three cases correspond to three patterns of u observations:
(1) u = 0 for all time periods before the event occurs, u = 1 for the period of the
event, and u missing for all subsequent periods; (2) u = 0 for all time periods
before loss to follow-up and u missing for all subsequent periods; and (3) u = 0
for all time periods of observation.

As an example consider five time periods. An individual who is censored after

time period five (j, = J + 1 = 6) has the event history

(O 0 0 0 0),

an individual who experiences the event in period four (j; = 4) has the event history

(O 0 0 1 999),

and an individual who drops out after period three, that is, is censored sometime
during period four (j, = 4), has the event history

(O 0 0 999 999),

where unobserved u information is represented as u = 999 to denote missing data.
Thus, the complete event history information on individual i may be entered into
a J x I data vector ul.

It is assumed that the missing data in the last example is ignorable in the sense
that the reason for the individual dropping out after period three is unrelated to
individual's event status following drop out. The conventional assumption of non-
informative censoring, that is, that censoring times are independent of event times
conditional on the observed covariates, corresponds to the assumption of ignorable
missingness in the general latent variable model. Under the assumption of MAR
(Little & Rubin, 2002), the observed data likelihood for uncensored individuals, in
terms of the event indicators, is

P(T = j;) = P(unj, = 1) P(uik = 0). (15)
k=I
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For censored individuals, the observed data likelihood may be expressed as

P(T > j; -1) = j P(uik = 0). (16)
k=1

It follows that the observed data likelihood for the full sample is L = II, li, where

l; = J P(u,jk) = P(_ijj; = 1)81 jj[1 - P(uijk = 1)], (17)
k:ujk999 k=1

where o; is defined as before, and number of classes is specified as singular, that is,
K=1.

It is immediately evident that the maximum likelihood estimates for the event
indicator probabilities under the assumption of MAR based on the observed data
likelihood in Equation 17 are the same as the maximum likelihood estimates for
the hazard probabilities based on the likelihood function given in Equation 7.
That is,

h Qj = P(uqj). (18)

Note that the sample means based on the observed data for the event indicators are
equal to the estimated hazard probabilities as given in Tables 1 and 2.

Furthermore, expressing the hazard probabilities as a function of the observed
covariates using the logit link function is equivalent to the logistic regression
of ui on the observed covariates. Equation 9 can be rewritten as a special case of
the more general latent variable model given in Equations 12-14 with K= 1 and
-j = ji3.

P(Uj= l l xi, zi) = 1 (ogi:j) ' (19)
1 +-

where

logitjj = fSj + W1j zij + ic'j Xi + X j (20)

7l.i = (X. + YU, xi, (21)

where f3j is the time-specific logit intercept parameter that may also be interpreted
as the logit baseline hazard, 1% is ap x 1 logit parameter vector that may vary across
the J time periods, -Kj is a q x I logit parameter vector that may vary across the J
time periods, X.4 is anf x 1 logit parameter vector that may vary across the J time
periods, acu is anf x 1 time-invariant logit parameter logit, and 7u is a q x 1 time-
invariant logit parameter vector.
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The notational distinction between time-invariant covariates (x) and time-
varying covariates (z) is used to make explicit that il may only be a function of
covariates that are invariant across the J time periods. Notice that the intercept
notation rather than the threshold notation is used here, but it is simple to move
between the two specification recalling that fj = -ti. Using A, functional forms
for the logit of the baseline hazard probabilities can be specified; for example,
linear trends such as Au = (0, 1, . . . , J)', where J is the number of time periods,
and fj = f for all j = 1, . . . , J, so that f is the intercept of the linear trend in the
logit baseline hazard probabilities, and a", is the mean slope. Au could also be
used to specify a piecewise baseline hazard function; for example, Au = (0, 0, 0,
1, . . ., 1)' with f3j = f3 for allj = 1, ... ., J, so that f3 is the logit of the baseline
hazard for time periods j < 3, and ,3 + a., is the logit of the baseline hazard for
time periodsj > 2. As stated before, a constant baseline hazard probability model
can be obtained by setting fj = ,B for all j = 1, . . . , J, and ax = 0. Also, the pro-
portional hazard odds model can be conveniently obtained by simply dropping
thej subscript from ic, and ic. Note that all effects of the x covariates on the haz-
ard probabilities that go through mu are automatically time-invariant because 7lh
does not vary across the J time periods.

5. Mixture Analysis

It is often important to take into account unobserved heterogeneity in survival
among the subjects studied. Unobserved heterogeneity in the form of unobserved
covariates or even random error can result in biased estimates of main effect
parameters as well as standard errors if not explicitly taken into account (Vaupel,
Manton, & Stallard, 1979). In continuous-time survival modeling it is common
to model unobserved heterogeneity using frailties, that is, representing hetero-
geneity by random effects (continuous latent variables); see, for example,
Hougaard (2000). This article takes heterogeneity into account using latent
classes of individuals. A general discrete-time survival mixture model is intro-
duced, where different latent classes have different hazard and survival func-
tions. Three different types of survival mixture models will be considered, a
generic multiple-class model, a "long-term survival" model with two classes, and
a multiple-class model combining the survival model with a growth mixture
model. Other examples of this approach for special cases can be found in the
discrete-time survival literature; for example, log-linear latent class models used
by Vermunt (1997), long-term survivor models applied by Steele (2000), and
semiparametric mixed Poisson regression models by Land, Nagin, and McCall
(2001).

Consider the multiple-class modification of Equations 19-21 for class k (k= 1,
2,. . . K),

hijk = P(uju = 1 1C; = k, x, zj7) (22)
,I + e- ~ ~ (22
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where

logitijk = Pjk + K2jk Zij + lC'Xjk Xi + Xujk Ilut (23)

Tlui = auk + Yuk Xi, (24)

With multiple classes, the model adds the prediction of class membership by
covariates x as in (10),

eaq + Y"Xi

P(c = k I xi) =K (25)

e=l

The inclusion of multiple classes modifies the likelihood expression in Equation 7,
L = I,lin li, as

1, = ,[~Q[Ri (hi I (I1 hok) (26)
st=l _J=l

where ik= P(c1= k I x). For multiple-class models, identification of model parameters
needs to be carefully considered. The multiple-class model is a special case of latent
class analysis with covariates. A recent treatment of identification issues for latent
class modeling with covariates is given in Huang and Bandeen-Roche (in press).

A caution should be issued here also about the susceptibility of these multiple-
class models to convergence at locally rather than globally optimal solutions, as is
true for mixture models in general. Multiple sets of starting values should be used,
and the convergence pattern for the likelihood through the iterations of the EM
algorithm should be carefully monitored.

As shown earlier, from a latent class point of view, the discrete-time survival
model presented in Section 4 can be viewed as a single-class model. When covari-
ates are not present, the discrete-time survival model with unstructured hazard
probabilities has the special feature of perfectly fitting the data on the us. A Pear-
son or likelihood-ratio chi-square statistic has zero value irrespective of the data.
As a note, the degrees of freedom computed assuming a unrestricted multinomial
model as the alternative is not correct for these models because it does not take into
account what might be referred to a "structural zeros" in a categorical data analysis
setting (i.e., not all response patterns for the binary us are allowed in the discrete-
time setting; e.g., a zero cannot follow a one).

Adding covariate information or restricting the form of the hazard function makes
it possible to fit a multiple-class model. This is discussed further in the next section
in the context of the special two-class model including a class referred to as long-
term survivors. The need to use covariate information to identify unobserved het-
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erogeneity is analogous to the need for covariates to identify frailties in continuous-
time survival analysis (see, e.g. Nielsen, Gill, Andersen, & Soerensen, 1992)

5.1. Long-Term Survivors

As reported by McLachlan and Peel (2000), the notion of long-term survivors
has been used in continuous-time survival modeling at least since Boag (1949); for
an overview, see Maller and Zhou (1996). A typical application concems women
treated for breast cancer, ultimately dying of causes other than cancer. For a recent
application in the context of discrete-time survival modeling of contraceptive ster-
ilisation, see Steele (2000). Long-term survival means that there is a latent class of
individuals whose risk is essentially zero across all time period, that is, individu-
als who have a zero hazard probability throughout the observation period. Using
the u notation of section 4.1, an individual who experiences the event (u = 1 obser-
vation at any time period) is known to not be a member of the long-term survivor
class, while individuals who are censored may or may not be members of the long-
term survivor class. In this way, the latent class variable c of section 4 is observed
in part of the sample. In the general modeling framework, this is handled using the
training data feature presented in the appendix. Individuals who experience the
event are only allowed to be in the class of non-long-term survivors, while cen-
sored individuals have unknown class membership and are classified in the analy-
sis. The model also incorporates a prediction of class membership by covariates.

Because the survival probability is one for the long-term survival class, the sur-
vival function for the mixture model may be written as

S,j= IS + (1-i); (27)

where SNL7 is the survival function for the non-long-term survivors, and 1 - 7i is
the probability of being a member of the long-term survivor class. The long-term
survivor model fits into the general framework by noting that the zero hazards for
the longterm survival class are obtained by setting OJ,L7S = -°° (or, equivalently,
,cj = o), ic,LTs =0, °cvLTS= 0, and )LJ,LTS = 0 for all js in Equation 24. The model is
completed by the logistic regression for class membership,

log[7r/(1 - 7=)] = yC xi, (28)

which is a special case of Equation 10.
It may be noted that the long-term discrete-time survival model is not identified

unless covariates are present. This is in line with the earlier observation that the
single-class discrete-time survival model fits the data on u perfectly, so that more
than one class cannot be extracted. Intuitively, there is no information from which
to distinguish long-term survivors from other individuals who are censored. With
covariate information, however, a distinction between long-term survivors versus
those who are at risk for ultimately experiencing the event can be made based on
the difference versus similarity in covariate values relative to those who experienced
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the event. The covariates may influence the latent class membership probability
ltik = P(c, = k I xi). The covariates may also influence the event history indicator
probabilities, hjyk, either directly or via the factor Tlui.

It is important to recognize a potential weakness of the long-term discrete-time
survival model. Because this model needs covariates to be identified, different sets
of covariates may produce nontrivial differences in the latent class formation. In
contrast to this situation, the next section presents a model where the latent classes
are defined by information that is separate from the event history.

5.2. Combined Discrete-Time Survival and Growth Mixture Modeling

Discrete-time survival analysis can be combined with a growth mixture model.
For continuous-time survival analysis, related developments for single-class mod-
els include Henderson, Diggle, and Dobson (2000). In the model studied here, the
latent classes are defined by the growth mixture model in terms of different devel-
opmental trajectory classes and serve as latent categorical predictors in the survival
part. Drawing on the general modeling framework of the appendix, this means that
the survival model for u is analyzed jointly with the growth mixture model for y.
Maximum-likelihood estimation is also used in this case.

Consider as an example repeated measures on continuous outcomes ya, (i = 1,
2, . .. , n) that can be described by only two random effects (growth factors) Tl0;
and r1 1i and a time-specific residual e,

y, =o +l 1ai,+Ei,. (29)

Different trajectory classes are allowed for by letting the means, variances, and
covariance of rio and ill vary across the classes. The variances of e, may also vary
across classes. The covariates of x may influence class membership as in Equation 10.
They may also have class-varying influence on the growth factors (k = 1, 2,. . ., K),

loi = Lok + YOk Xi + Oi, (30)

i= Ik+Y7kXi+ ~li, (31)

The latent class variable is related to covariates x as in the general framework of
section 4,

e",k + Y'kXi

P(c; = k I xi) K , $+,Y¢, ' Xi(32)

The model given in Equations 29-32 is referred to as growth mixture modeling and
was introduced in Muthen and Shedden (1999); for overviews, see, e.g., Muth6n
(2001a, 2001b).
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The new feature of the modeling is that the latent class variable for the growth
mixture part of the model can be specified to influence the survival part of the
model. For example, if the latent growth class variable had a proportional effect on
the hazard odds, then the logit of hujk would be given as

logitlik = Pj + ICZjk Zi3 + ICXik Xi + ?"ujk lui (33)

Tlui = auk + Yuk Xi, (34)

where the the intercept parameters, Pis, are held invariant across the latent classes
and auK = 0 (for a reference class), so that the latent class membership for the
growth model influences the hazard function through the class-varying aX and the
class-varying y influence from x.

More complex models may also be fitted in the general modeling framework.
Without covariates, it may be noted that the added y information makes it possible
to identify more than one class for the u variables. That is, even when the distri-
bution of the us does not require more than one class, more than one class can be
specified for the us. When covariates are present, the growth mixture model may
be combined with a multiple-class discrete-time survival model. This means that
two different latent class variables are needed. Modeling with several latent class
variables using the general framework was described in Muthen (2001b).

6. Examples

This section illustrates the methodology using the recidivism and school removal
examples presented in section 2. The recidivism example is used to examine a single-
class survival model with time-invariant and time-varying covariates. The school
removal example is used to illustrate the combined analysis of a growth mixture
model and a survival model. All analyses are carried out using the Mplus program.
Input for the analyses are found at www.statmodel.com.

6.1. Recidivism Analyses

The recidivism data were described in section 2.1. The primary interest for this
analysis is to assess accurately the effects of the financial assistance intervention
while accounting for the other covariates related to re-arrest. In his series of
continuous-time analyses of this data, Allison (1984, 1995) found consistently sig-
nificant effects for age at release and number of prior arrests, with nonsignificant
or borderline significant intervention effects. For example, when applying the
exponential regression model, the estimated hazard for re-arrest of those in the finan-
cial assistance group was approximately 72% of that for individuals in the control
group who received no aid, with a two-tailed t test p value of approximately .09
(Allison, 1984). In the discrete-time analyses to be presented, the effects of the aid
intervention on the hazard for re-arrest are also examined. Instead of the 52 week-
long intervals treated as continuous-time observations, the outcomes in this arti-
cle have been grouped into 13 4-week intervals to be modeled as discrete-time
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observations. In the original study, inmates were assessed on a monthly basis, so
this treatment of the data may have greater reliability with regard to time-varying
covariate effects. In addition, the discrete-time framework allows testing of the
modeling assumptions such as constancy of the baseline hazard function and
proportionality of covariate effects that could only be informally evaluated in the
continuous-time setting using sensitivity analysis. It is also possible to expand the
evaluation of the intervention to allow for its influence on latent survival class
membership.

A first analysis step separately evaluates the proportionality assumption for each
of the covariates. The fit of the model using the hazard logit defined in Equation
21, which allows for time-specific covariate effects, is compared to the model that
constrains the covariate effects to be equal across time using the factor rin. The sec-
ond model is the proportional hazard odds model. The models with and without the
proportionality assumption are shown in diagrammatic form in Figures 7 and 8,
respectively. Considering intervention status as a time-invariant covariate, the chi-
square difference for these two models is 12.2 with 12 degrees of freedom, sug-
gesting that there is little evidence in the data to reject the proportional hazard odds
assumption. Looking at each covariate in tum, no evidence was found to reject the
proportionality assumption for any of the covariates, including the time-varying
employment status.

As the next step, a model with all the covariates is constructed, allowing for relax-
ation of the proportionality assumption when called for by the first step in the analy-
sis. This model may then be used to evaluate the functional form of the baseline
hazard. In the preceding analysis step, the hazard is completely unstructured. A spe-
cific structure may now be imposed on the logit baseline hazard, such as constancy
or linear trend, and model fit compared to the unstructured case. A model with con-
stancy of the hazard may be defined as in Equation 21, removing the subscriptj from
the intercept a and setting c, = 0. Considering the constant hazard model, the chi-
square difference, compared to the unstructured hazard model, is 8.8 with 12 degrees
of freedom, suggesting that there is little evidence in the data to reject the constant
baseline hazard assumption. Table 3 shows the results from the model with the pro-
portionality and constant hazard assumptions applied. These results are consistent

FIGURE 7. Recidivism path diagram: Survival

model with time-varying covariate effects.
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FIGURE 8. Recidivism path diagram: Survival

model with proportional hazard odds assuimption

applied to time-invariant covariates.

with the previous continuous-time analyses (Allison, 1984). Figure 9 shows the
model-estimated mean survival plots for both the one-class model for the two inter-
vention groups at the overall sample mean values for the other covariates.

Figure 10 displays the diagram for a multiple-class model with covariates. How-
ever, for these particular data with the set of covariates used here and the relatively
low base rate of re-arrest, there is not sufficient information to make a convincing
inference about multiple latent classes of survival, and results of such an analysis
are not presented.

TABLE 3
I-Class Survival Model wvith Constant Hazard and Proportional Odds Assutmptions

Thresholds (X) Est. SE t

U1-U13 1.80 0.82 -2.20

Latent Class Growth Factor (1lH) Est. SE t

Finaid -0.33 0.19 -1.72
Black 0.37 0.29 1.27
Workexp 0.01 0.21 0.05
Married -0.29 0.39 -0.75
Paroled -0.07 0.20 -0.36
Age -0.05 0.02 -2.07
Priors 0.07 0.03 2.55
Educ -0.21 0.13 -1.67

Event Indicator Regression Est. SE t

Empl-Emp 13 -1.04 0.21 -4.90

Log likelihood =-514.18, BIC 1089.04, 10 free parameters. Boldface entries indicate significance at
the 5% level.
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FIGURE 9. Model-estimated survival probabilities of re-arrest by

intervention statusfor one-class modeL

6.2. School Removal Analyses

School removal data were described in section 2. It was seen that aggressive
behavior in the classroom in the fall of Grade I was associated with a higher risk
for school removal in later grades. The measure of aggressive behavior may, how-
ever, contain considerable time-to-time variation as well as measurement error. It
may not represent a more sustained level of aggressive behavior and does not cap-
ture the trend of behavioral development. In the current analyses, information will,

FIGURE 10. Recidivism path diagram: Multiple-class suir-

vival model wvith time-varying and time-invariant covariates.
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therefore, be incorporated from repeated measures of the child's aggressive behav-
ior. Behavioral development during the four time points of fall and spring in
Grades 1 and 2 is used to predict survival in terms of school removal during Grades
3-7. This is achieved using the combination of growth mixture modeling and sur-
vival analysis discussed in section 5.2. In this way, a latent trajectory class vari-
able serves to capture the growth shape of aggressive behavior development and
is used as a latent class predictor added to the set of observed covariates for the sur-
vival process.

In their growth mixture analysis of the aggressive behavior data, Muthen et al.
(2002) found evidence of at least three trajectory classes for the development dur-
ing Grades 1-7: a class with initially high but decreasing aggression trajectory; a
class with medium but increasing aggression; and a class with a low stable aggres-
sion level. Therefore, a three-class model will also be used here. Muthen et al.
(2002) used a linear model for development in Grades 1 and 2 (Model 3).

The covariates to be used are those given in Table 2. The school removal data
are obtained as students within classrooms, where some covariates are observed
on the individual level and some on,the classroom level. For these data there are
16 different classrooms. Such multilevel data need special procedures to obtain
correct standard errors and drawing on Muthen et al. (2002), a "sandwich estima-
to?' is used here.

A first analysis step investigates the three-class growth mixture analysis of the
four aggressive behavior measures in Grades 1 and 2. The model is given in Equa-
tions 29-32. In this model the means of the growth factors are allowed to vary
across classes, whereas the slopes in the regressions of the growth factors on the
covariates are taken to be class-invariant for simplicity. In line with Muthen et al.
(2002), the low class is allowed to have its own variances for the intercept growth
factor and for the time-specific residual variances, while the other two classes have
the same variances and the same covariance between the growth factors. The high,
medium, and low classes were found to contain 8%,48%, and 44% of the children,
respectively.

As a second step, the survival part for Grades 3-7 was added to the model. The
model with a single latent class variable is shown in diagrammatic form in Figure 11.
In this model, the latent trajectory classes influence the survival part of the model
by letting the x,, parameter in Equation 24 vary across classes. For simplicity, the
y, parameters in Equation 24 are held invariant across classes.

The addition of the survival part did not alter the class percentages to a large
degree; the new percentages' were 10%, 48%, and 43%, respectively, for the three
classes. The estimated mean growth curves in each class also did not change much.
The stability of the results may indicate that the growth mixture model is rather well
defined. In principle, however, the survival information does contribute to the defi-
nition of the latent classes. The fact that the addition of the survival information did
not alter the classes much could mean that the survival information is either weaker
than the growth information or that it concurs with the growth information. The esti-
mated coefficients for the growth mixture growth factors, class membership, and sur-
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FIGURE 11. School removalpath diagram: Growth + Survival

model wvith time-invariant covariates and single latent class

variable.

vival regressed on the covariates are shown below in Table 4. For simplicity, entries
have been left empty when estimates are held equal to a class to the left in the table.

In the three-class model, the latent class regression part of the model finds that
the log odds of being in the high class relative to the low class is significantly
increased by being in the external control group relative to the internal control
group, being male relative to being female, and having a high class average aggres-
sion score. The regression coefficients for the intercept and slope factors show
influence of covariates within each class. The intercept factor is significantly increased
by an individual not being in the external control group, not being white, and being
in a class with a low class average lunch value (a poverty indicator). The slope fac-
tor is significantly increased by a high class average lunch value and a low class
average aggression value in fall of first grade. For the survival part of the model,
the latent class growth factor coefficients show an increase in the hazard for school
removal by being male, having a high class average lunch value, and having a low
class average aggression value. Here, the class-varying intercept values indicate
the influence of latent class on hazards. Using the low class as comparison group,
membership in the high class gives a significantly increased hazard, as does mem-
bership in the medium class. Figure 12 shows the model-estimated mean aggression
trajectories and survival of school removal for the three-class model.

Figure 13 shows a diagram for the model with two latent class variables, one
for the trajectory classes and one for the survival classes. The model is that of
Equations 29-32 combined with Equations 22-24. The parameters of the growth
mixture part of the model only vary across the three trajectory classes, while the
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TABLE 4
Three-Class Growvth + Survival Mixture Model Parameter Estimates

Parameter High Class Medium Class Low Class

Intercept Factor (Tb) Est. SE Est. SE Est. SE

Intercept 3.89 0.38 2.13 0.22 1.34 0.13
External -0.28 0.05
Male 0.06 0.05
White -0.13 0.06
Lunch -0.01 0.04
Cavlunch -0.22 0.07
Cavtocalf 0.13 0.07

Slope Factor (ill) Est. SE Est. SE Est. SE

Intercept 0.17 0.27 0.35 0.02 0.28 0.19
External -0.01 0.07
Male 0.03 0.04
White 0.03 0.07
Lunch -0.02 0.03
Cavlunch 0.19 0.08
Cavtocalf -0.19 0.10

Thresholds (X) Est. SE Est. SE Est. SE

U3 3.86 0.64
U4 3.68 0.63
1X5 3.02 0.69
U6 2.44 0.64
U7 1.10 0.54

Latent Class Growth Factor (r1.) Est. SE Est. SE Est. SE

Intercept 2.41 0.43 0.79 0.28 0.00 fixed
External 0.05 0.26
Male 0.68 0.23
White -0.48 0.33
Lunch -0.28 0.26
Cavlunch 1.37 0.39
Cavtocalf -0.94 0.26

Latent Class Regression Est. SE Est. SE Est. SE

Intercept -10.97 1.16 -3.99 0.77
External 1.69 0.42 0.68 0.33
Male 1.71 0.61 0.53 0.41
White -0.14 0.44 -0.31 0.35
Lunch 0.78 0.79 0.77 0.26
Cavlunch 0.55 0.93 -0.88 0.65
Cavtocalf 3.41 0.40 1.90 0.45

Class Proportions 0.10 0.48 0.43

Log likelihood =-1432.49, BIC= 3218.92,59 free parameters. Boldface entries indicate significance
at the 5% level.
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FIGURE 13. School removal path diagram: Growvth + Survival

model wvith time-invariant covariates and both trajectory and
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intercept parameters au in Equation 24 of the survival part of the model vary across
the trajectory classes as well as the survival classes. This model will not explored
here, but future analysis efforts may focus on attempts to-predict latent classes of
survival using aggression trajectory classes in addition to observed covariates.

7. Conclusions

This article has introduced an approach to discrete-time survival analysis using a
general latent variable framework. Conventional discrete-time survival analysis is a
special case within this framework where a single-class latent class analysis of event
history indicators is performed. The single-class model can be identically estimated
in a traditional logistic regression model (see, e.g., Singer & Willett, 1993). The great
advantage of this more general framework is that it allows for powerful and, at the
same time, straightforward, modeling extensions, some of which were proposed and
exemplified here. First, unobserved heterogeneity among subjects can be captured
using multiple latent classes, where each class was allowed to have its own survival
function. A special case of this is long-term survivor model in which a subgroup of
individuals have zero hazard for experiencing the event. The mixture extension can
also be used for nonparametric estimation of an unspecified continuous frailty dis-
tribution. Second, the general modeling framework makes it possible to place the sur-
vival analysis in a larger analytic as well as conceptual model in order to study the
relationship of survival to other outcomes. As an example, survival analysis was
combined with growth mixture modeling of repeated measures. These extensions
show the usefulness of integrating the survival analysis in the broader framework.

Many further extensions are of interest in this framework. Some analyses, includ-
ing those described in this article, have been previously available in that the esti-
mation of the general framework as presented had been implemented in an earlier
version of the computer program Mplus (Muthen & Muthen, 1998-2004), which
was utilized here. As noted throughout the article, special cases of the more general
model have been explored by other authors using alternative model specifications.
Examples of other extensions that have been investigated within this framework
include survival modeling of recurrent event and multiple spell processes (Masyn,
2003) and discrete-time competing risk models. In addition, recent advances in
model specification and estimation in this framework, found in the latest Version 3
of Mplus, -pernit more sophisticated event history analysis using continuous frail-
ties, multilevel data, and measurement models for covariates as well as outcomes.
This also presents even more opportunities for simultaneous modeling of survival
processes with other parallel and adjacent longitudinal processes than that which
has formerly been explored. It is hoped that this article will stimulate further inno-
vative applications beyond the analysis possibilities presented here.

I Appendix

Consider the observed variables x, y, and u, where x denotes a q x 1 vector of
covariates, y denotes ap x 1 vector of continuous outcome variables, and u denotes
an r x 1 vector of binary and ordered polytomous categorical outcome variables.
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Consider latent variables 11 denoting an m x 1 vector of continuous variables and
c denoting a latent categorical variable with K classes, c E( I, ... , K}, where c; = k
if individual i belongs to class k. The model has three parts: c related to x; u related
to c and x; and y related to c and x. The following summary draws on Muthen and
Muthen (2001, Appendix 8).

The model relates c to x by multinomial logistic regression using the K-1-
dimensional parameter vector of logit intercepts ctx and the (K- 1) x q parameter
matrix of logit slopes rI, where for k = 1, 2,... , K

ack 7Yckxi

P(c 1= kj x,) = e (35)

where the last class is a reference class with coefficients standardized to zero, acK
= 0, yTc = 0. The latent classes of c influence both u and y. Consider first the u part
of the model.

For u, conditional independence is assumed given c, and xi,

P(uil, u2, . . . , ui,I c;, xi) = P(u,, I c1, xi) P(u,2 c;, xi) . . . P(ujr I c;, xi) (36)

The categorical variable ugj (j = 1, 2, . . . , r) with SJ ordered categories follows an
ordered polytomous logistic regression (proportional odds model), where for
categories s= 0, 1, 2, .. ., Sj- 1 and jo= -, Tjsj= -,

Uij =S, if Tj, k5,< 4i < j, k.j+ , t37)

P(uij= sl c;, xi) = F.(uA) - F,(u%), (38)

IF,() =1 + (,u) ' (39)

where for u*= = (=i, AM ut )', m, = (m,;i m"20 .. ., 1i,)', and conditional on
class k

u* =Aukr lui +Kuk xi, (40)

Ilui = a"* + rUk Xi, (41)

where A"* is an r xflogit parameter matrix varying across the K classes, K"k is an
r x q logit parameter matrix varying across the K classes, auk is anfx 1 vector logit
parameter vector varying across the K classes, and ruk is anfx q logit parameter
matrix varying across the K classes. The thresholds may be stacked in the
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.(Si - 1) x 1
j-l

vectors rk varying across the K classes.
It should be noted that Equation 40 does not include intercept terms given the

presence of X parameters. Furthermore, X parameters have opposite signs than u*
in Equation 40 because of their interpretation as thresholds or cutpoints that a latent
continuous response variable u* exceeds or falls below (see also Agresti, 1990,
pp. 322-324). For example, with a binary uj scored 0/1, (38) leads to

1
P(ujj = 1 C, xi) = 1 - (, (42)

1
- 1 + e-X°gi (43)

1 + e105s1

where logit = _- + u*. For example, the higher the X the higher u* needs to be to
exceed it, and the lower the probability of u = 1.

The model structure in Equations 40 and 41 is useful when the u vector repre-
sents repeated measures, and the latent classes correspond to different trajectory
classes. In this case, the elements of mu correspond to growth factors in random
effects growth modeling, except that nu has zero variance conditional on x.

Consider next the y part of the model. Multivariate normality is assumed for y
conditional on x and class k

y, = Vk + Ak I + Kk xi + Ei, (44)

i1i = ak + Bk i + rk xi + (k , (45)

where the residual vector Ej is N(0, O9k) and the residual vector (i is N(0, To, both
assumed to be uncorrelated with other variables. This part of the mixture model builds
on a general structural equation model generalized to the K classes of the mixture.

The Mplus mixture model is estimated by maximum-likelihood using the EM
algorithm. Missing data on u and y are handled using the MAR assumption (Little
& Rubin, 2002). The analysis makes it possible to incorporate knowledge about
class membership for certain individuals. Individuals with known class member-
ship are referred to as training data (see also Hosmer, 1973; McLachlan & Basford,
1988). The training data typically consists of 0 and 1 class membership values for
all individuals, where 1 denotes which classes an individual may belong to. Known
class membership for an individual corresponds to having training data value of 1
for the known class and 0 for all other classes. Unknown class membership for an
individual is specified by the value 1 for all classes. With class membership train-
ing data, the class probabilities are renormed for each individual to add to one over
the admissible set of classes.
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For comparison of fit of models that have the same number of classes and are
nested, the usual likelihood-ratio chi-square difference test can be used. Com-
parison of models with different numbers of classes, however, is accomplished
by a Bayesian information criterion (BIC; Kass & Raftery, 1993; Schwartz,
1978),

BIC = -2 logL + d In n, (46)

where d is the number of free parameters in the model. The lower the BIC value,
the better the model.

When the model contains only u, Pearson and likelihood ratio chi-square tests
against the unrestricted multinomial alternative can be computed,

2 I (oi - ei)2

cells e;

X = 2 , o; log ol/ei, (48)
cells

where o; is the observed frequency in cell i of the multivariate frequency table for
u and e; is the corresponding frequency estimated under the model. With missing
data on u, the EM algorithm described in Little and Rubin (2002; chapter 9.3,
pp. 181-185) is used to compute the estimated frequencies in the unrestricted multi-
nomial model.
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