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This paper deals with the class of linear discrete-time systems with varying time delay.

The problems of stability and stabilizability for this class of systems are considered. Given

an upper bound and a lower bound on the time-varying delay, sufficient conditions for

checking the stability of this class of systems are developed. A control design algorithm

is also provided. All the results developed in this paper are in the LMI formalism which

makes their solvability easier using existing tools. A numerical example is provided to

show the effectiveness of the established results.
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1. Introduction

It is well established in the literature that time delay is the cause of performance degrada-

tions for dynamical systems. It can even be, in some circumstances, the cause of instability

of the system that we would like to control if such time delay is not taken into account

during the design phase. Time delay may occur either in continuous-time or discrete-

time systems and may be constant or time varying.

The control of systems with time delay has been a hot subject of research in the last

decades. Stability and stabilizability problems either for the continuous-time and dis-

crete-time deterministic and stochastic systems with time delay have been tackled and in-

teresting results have been reported in the literature. The reported results are divided into

delay-independent and delay-dependent conditions. The delay-independent conditions

present more conservatism than delay-dependent conditions since they do not depend

on the delay in the system.

For deterministic class of linear systems with time delay, we have seen an increasing

interest during the last two decades. Many papers, mainly on the class of deterministic

continuous-time linear systems with time delay have been published. Stability and stabi-

lizability problems have been studied and interesting results are available in the literature.
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However, for deterministic class of discrete-time linear systems with constant time delay

only few results have been reported in the literature. The main reason for this, we believe,

is that this kind of systems can be transformed to an equivalent system without time

delay and then we can use the known results on stability and stabilizability. For more in-

formation on some of the developed results for this class of systems, we refer the reader

to Boukas and Liu [1], Kim and Park [6], Song and Kim [9], Mukaidani et al. [7], Chang

et al. [4], Gao et al. [5], and references therein.

The problems of stochastic stability and stochastic stabilizability have also been tackled

by many authors and recently we have seen the publication of different results ranging

from delay independent to delay dependent for the continuous-time and the discrete-

time cases. Several situations were considered including constant time delay, time-varying

delay and mode-dependent time delay for the continuous-time systems and constant and

mode-dependent time delay for discrete-time systems. For more details on this subject

we refer the reader to Boukas and Liu [2], Boukas and Liu [1], and the references therein,

respectively, for the continuous-time and discrete-time cases. Other results can be found

in [8], [3], and the references therein.

To the best of the author knowledge, the mode-dependent time-delay case for the class

of discrete-time linear systems with varying time delay has not been fully investigated

and this will be the subject of this paper. Among the references that tackled the delay-

dependent stability and the stabilizability problems for linear systems with varying time

delay, we quote those of Mukaidani et al. [7], Chang et al. [4], Gao et al. [5], and the

references therein. The goal of this paper is to develop new LMI-based delay-dependent

sufficient conditions for stability and stabilizability for linear discrete-time systems with

varying time delay in the state.

The paper is organized as follows. In Section 2, the problem is stated and the objec-

tives of the paper are formulated. The problem of stability for the discrete-time linear

system with varying time delay is examined and delay-dependent sufficient conditions

are developed in Section 3. In Section 4, the stabilizability problem is investigated and

delay-dependent conditions are established. In addition, a design algorithm that stabi-

lizes the resulting closed-loop system is provided. A numerical example is given to show

the usefulness of the proposed theoretical results in Section 5.

2. Problem statement

The dynamics of the system we consider in this paper are assumed to be described by the

following difference equation:

xk+1 =Axk +Adxk−dk +Buk xk = φk, k ∈
[
−d, . . . ,0

]
, (2.1)

where xk ∈ Rn is the state at instant k, uk ∈ Rp is the control input at instant k, the

matrices A ∈ Rn×n, Ad ∈ R
n×n, and B ∈ Rn×p are constant matrices and dk is a positive

integer representing the time delay of the system that we assume to be time dependent

and satisfies the following:

0≤ d ≤ dk ≤ d, (2.2)

where d and d are known to be positive and finite integers.
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The aim of this paper is to establish the sufficient conditions that guarantee the stabil-

ity of the class of system (2.1). We will also tackle the stabilizability problem of this class

of systems. LMI-based delay-dependent conditions either for stability or stabilization are

targeted.

The control law we will use in the paper is given by the following:

uk = Kxk, (2.3)

where K is the control gain to be computed.

Notation 2.1. The notation used in this paper is quite standard. Rn and Rn×m denote,

respectively, the set of the n dimensional space of real vectors and the set of all n×m real

matrices. The superscript “⊤” denotes the transpose and the notation X ≥ Y(resp., X >

Y) where X and Y are symmetric matrices, meaning that X −Y is positive semidefinite

(resp., positive definite). P > 0 means that P is symmetric and positive definite. I is the

identity matrix with compatible dimension. We define xl(k)= xk+l, k− dk ≤ l ≤ k, noted

in the sequel by xk.

3. Stability

In this section, we present delay-dependent conditions that can be used to check if the

system we are considering is stable. The following result gives what conditions to be sat-

isfied to guarantee that the system (2.1) for uk = for k ≥ 0 is stable.

Theorem 3.1. For a given set of upper and lower bounds d and d for the time varying

delay rk, if there exist symmetric and positive-definite matrices P1 > 0, Q > 0 and R > 0, and

matrices P2 and P3 such that the following LMIs hold:

Q < R, (3.1)
⎡
⎢⎣
Q+

(
d−d

)
R−P1−A⊤P2−P⊤2 A −A⊤P3 +P⊤2 −P⊤2 Ad

−P⊤3 A+P2 P1 +P3 +P⊤3 −P⊤3 Ad

−A⊤d P2 −A⊤d P3 −Q

⎤
⎥⎦ < 0, (3.2)

then, system (2.1) is stable.

Proof. To prove our theorem, let us consider the following change of variables:

xk+1 = yk 0=−yk +Axk +Adxk−dk . (3.3)

Define x̃⊤k = [xk yk xk−dk ]⊤, and consider the following Lyapunov-Krasovskii candi-

date functional:

V
(

x̃k

)
=V1

(
x̃k

)
+V2

(
x̃k

)
+V3

(
x̃k

)
(3.4)
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with

V1

(
x̃k

)
= x̃⊤k E

⊤Px̃k, V2

(
x̃k

)
=

k−1∑

l=k−dk

x⊤l Qxl, V3

(
x̃k

)
=

−d+1∑

l=−d̄+2

k−1∑

m=k+l−1

x⊤mRxm,

(3.5)

where Q > 0 and R > 0, and E and P are, respectively, singular and nonsingular matrices

with the following forms:

E =

⎡
⎢⎣
I 0 0

0 0 0

0 0 0

⎤
⎥⎦ , P =

⎡
⎢⎣
P1 0 0

P2 P3 0

0 0 I

⎤
⎥⎦ (3.6)

with P1 is a symmetric and positive-definite matrix.

The difference ∆V(x̃k) is given by

∆V
(

x̃k

)
= ∆V1

(
x̃k

)
+∆V2

(
x̃k

)
+∆V3

(
x̃k

)
. (3.7)

Let us now compute ∆V1(xk):

∆V1

(
x̃k

)
=V1

(
x̃k+1

)
−V1

(
x̃k

)
= x̃⊤k+1E

⊤Px̃k+1− x̃⊤k E
⊤Px̃k

= y⊤k P1yk − x⊤k P1xk = y⊤k P1yk − 2
[
x⊤k 0 0

]
P1

⎡
⎢⎢⎢⎣

1

2
xk

0

0

⎤
⎥⎥⎥⎦

(3.8)

which can be rewritten using the fact that 0=−yk +Axk +Adxk−dk as follows:

∆V1

(
x̃k

)
= x̃⊤k

⎡
⎢⎢⎢⎣

⎡
⎢⎣

0 0 0

0 P1 0

0 0 0

⎤
⎥⎦−P⊤

⎡
⎢⎢⎢⎣

1

2
I 0 0

A −I Ad

0 0 0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

1

2
I A⊤ 0

0 −I 0

0 A⊤d 0

⎤
⎥⎥⎥⎦P

⎤
⎥⎥⎥⎦ x̃k. (3.9)

For V2(x̃k), by standard manipulation, we have

∆V2

(
x̃k

)
=V2

(
x̃k+1

)
−V2

(
x̃k

)
=

k∑

l=k+1−dk+1

x⊤l Qxl −
k−1∑

l=k−dk

x⊤l Qxl. (3.10)

Notice that

k∑

l=k+1−dk+1

x⊤l Qxl =

k−d∑

l=k+1−dk+1

x⊤l Qxl +
k−1∑

l=k+1−d

x⊤l Qxl + x⊤k Qxk,

k−1∑

l=k−dk

x⊤l Qxl =
k−1∑

l=k+1−dk

x⊤l Qxl + x⊤k−dkQxk−dk .

(3.11)



El-Kébir Boukas 5

Using this, we can rewrite ∆V2(xk) as follows:

∆V2

(
x̃k

)
= x⊤k Qxk − x⊤k−dkQxk−dk +

k−d∑

l=k+1−dk+1

x⊤l Qxl +
k−1∑

l=k+1−d

x⊤l Qxl −
k−1∑

l=k+1−dk

x⊤l Qxl.

(3.12)

For V3(x̃k), one has

∆V3

(
x̃k

)
=

−d+1∑

l=−d̄+2

k∑

m=k+l

x⊤mRxm−
−d+1∑

l=−d̄+2

k−1∑

m=k+l−1

x⊤mRxm

=

−d+1∑

l=−d̄+2

[ k−1∑

m=k+l

x⊤mRxm + x⊤k Rxk −
k−1∑

m=k+l

x⊤mRxm− x⊤k+l−1Rxk+l−1

]

=

−d+1∑

l=−d̄+2

[
x⊤k Rxk − x⊤k+l−1Rxk+l−1

]
=

(
d̄−d

)
x⊤k Rxk −

−d+1∑

l=−d̄+2

x⊤k+l−1Rxk+l−1

=

(
d̄−d

)
x⊤k Rxk −

k−d∑

l=k+1−d̄

x⊤l Rxl.

(3.13)

Notice that dk ≥ d for all k, we get

k−1∑

l=k+1−d

x⊤l Qxl ≤
k−1∑

l=k+1−dk

x⊤l Qxl,
k−d∑

l=k+1−dk+1

x⊤l Qxl ≤
k−d∑

l=k+1−d

x⊤l Qxl,

k−d∑

l=k+1−d

x⊤l Qxl <

k−d∑

l=k+1−d

x⊤l Rxl, since Q < R.

(3.14)

Finally, by using (3.9), (3.12), and (3.13) together with these inequalities and the con-

dition (3.2), we obtain

∆V
(

x̃k

)
≤

[
x⊤k y⊤k x⊤k−dk

]
M

⎡
⎢⎣

xk
yk

xk−dk

⎤
⎥⎦ < 0, (3.15)

where

M =

⎡
⎢⎣
Q+

(
d−d

)
R−P1−A⊤P2−P⊤2 A −A⊤P3 +P⊤2 −P⊤2 Ad

−P⊤3 A+P2 P1 +P3 +P⊤3 −P⊤3 Ad

−A⊤d P2 −A⊤d P3 −Q

⎤
⎥⎦ . (3.16)

This implies that the system is stable. �

Remark 3.2. The conditions of this theorem are delay dependent and can solve many

stability problems for discrete-time systems with time-varying delay. These conditions are

more appropriate for practical systems since practically it is impossible to know exactly

the delay but lower and upper bounds are always possible.
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Remark 3.3. In practice we are always interested in knowing what would be the maximum

time delay such that the system can remain stable. The answer to this question can be

obtained by solving the following nonlinear optimization problem:

max
d̄>0,P1>0,P2,P3,Q>0,R>0

d̄ s.t (3.1)–(3.2). (3.17)

When time delay is constant, that is, dk = d and d = d̄ = d, the results given by

Theorem 3.1 are replaced by the following ones.

Corollary 3.4. If there exist symmetric and positive-definite matrices P1 > 0, Q > 0, and

matrices P2 and P3 such that the following LMI holds:

⎡
⎢⎢⎣
Q−P1−A⊤P2−P⊤2 A −A⊤P3 +P⊤2 −P⊤2 Ad

−P⊤3 A+P2 P1 +P3 +P⊤3 −P⊤3 Ad

−A⊤d P2 −A⊤d P3 −Q

⎤
⎥⎥⎦ < 0, (3.18)

then system (2.1) is stable.

Remark 3.5. The conditions of this corollary are delay independent, which makes them

conservative.

4. Stabilizability

The aim of this section is to design a state-feedback controller which stabilizes the result-

ing closed-loop system. Using the controller expression (2.3) and system dynamics (2.1),

we get the following dynamics for the closed-loop system:

xk+1 = [A+BK]xk +Adxk−dk . (4.1)

If we let A= A+BK , based on the results on stability, the closed-loop system will be

stable if there exist symmetric and positive-definite matrices P1 > 0, Q > 0, R > 0, and

matrices P2 and P3 that satisfy the following LMIs:

Q < R,
⎡
⎢⎢⎣
Q+

(
d−d

)
R−P1−A

⊤

P2−P⊤2 A −A
⊤

P3 +P⊤2 −P⊤2 Ad

−P⊤3 A+P2 P1 +P3 +P⊤3 −P⊤3 Ad

−A⊤d P2 −A⊤d P3 −Q

⎤
⎥⎥⎦ < 0.

(4.2)

If we denote by X the inverse of P, we have

X =

⎡
⎢⎣
X1 0 0

X2 X3 0

0 0 I

⎤
⎥⎦ , X1 = P−1

1 , 0= P2X1 +P3X2, X3 = P−1
3 . (4.3)
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Pre- and postmultiplying the second LMI, respectively, by X⊤ and X and using these

relations, we get

⎡
⎢⎢⎣
X⊤1 QX1 +

(
d−d

)
X⊤1 RX1−X1 +X⊤2 P1X2 ⋆ ⋆

−AX1−BKX1 +X2 +X⊤3 P1X2 X⊤3 P1X3 +X3 +X⊤3 ⋆

0 −A⊤d −Q

⎤
⎥⎥⎦ < 0, (4.4)

which can be rewritten as after letting Y = KX1:

[
X⊤1 QX1 +

(
d−d

)
X⊤1 RX1−X1 ⋆

−AX1−BY +X2 X3 +X⊤3

]
+

[
X⊤2
X⊤3

]
P1

[
X2 X3

]

+

[
0

−AdQ−1

]
Q
[

0 −Q−1A⊤d

]
< 0,

(4.5)

which gives in turn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X1 ⋆ ⋆ ⋆ ⋆ ⋆

−AX1−BY +X2 X3 +X⊤3 ⋆ ⋆ ⋆

X2 X3 −X1 ⋆ ⋆

0 −Q−1A⊤d 0 −Q−1
⋆ ⋆

X1 0 0 0 −Q−1
⋆

X1 0 0 0 0 −
1

d−d
R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (4.6)

Letting S=Q−1 and T = R−1, we get the following results.

Theorem 4.1. For a given set of upper and lower bounds on the time-varying delay dk, d,

and d, if there exist symmetric and positive-definite matrices X1 > 0, S > 0, and T > 0 and

matrices X2 > 0 and X3 > 0 such that the following LMIs hold:

T < S,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X1 ⋆ ⋆ ⋆ ⋆ ⋆

−AX1−BY +X2 X3 +X⊤3 ⋆ ⋆ ⋆ ⋆

X2 X3 −X1 ⋆ ⋆ ⋆

0 −SA⊤d 0 −S ⋆ ⋆

X1 0 0 0 −S ⋆

X1 0 0 0 0 −
1

d−d
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
(4.7)

then system (2.1) is stable under the controller (2.3) and the control gain is given by K =

YX−1
1 .

Similarly, when the time delay is constant, that is, dk = d, d = d̄ = d, Theorem 4.1 is

reduced to the following corollary.
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Corollary 4.2. If there exist symmetric and positive-definite matrices X1 > 0 and S > 0

and matrices X2 > 0 and X3 > 0 such that the following LMI holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−X1 ⋆ ⋆ ⋆ ⋆

−AX1−BY +X2 X3 +X⊤3 ⋆ ⋆ ⋆

X2 X3 −X1 ⋆ ⋆

0 −SA⊤d 0 −S ⋆

X1 0 0 0 −S

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (4.8)

then system (2.1) is stable under the controller (2.3) and the control gain is given by K =

YX−1
1 .

Remark 4.3. To find the maximal upper bound of the time delay, d̄, for which system

(2.1) is stable, we need to solve the following optimization problem:

max
d̄>0,X1>0,X2,X3,Y ,S>0,T>0

d̄ s.t (4.7). (4.9)

5. Numerical examples

To illustrate the usefulness of the previous theoretical results, let us give the following

numerical example.

Example 5.1. Let us consider a system described by (2.1) and suppose that the system

data are as follows:

A=

[
0 1

−2 −3

]
, Ad =

[
0.01 0.1

0.0 0.1

]
, B =

[
0.0

1.0

]
, d = 10, d = 1.

(5.1)

Solving LMI (4.7), we get

X1 =

[
1.0917 0.0116

0.0116 0.4353

]
> 0, X2 =

[
0.0017 0.0673

−0.0000 −0.0028

]
,

X3 =

[
−0.9270 −0.0263

−0.0184 −0.4209

]
, S=

[
15.3477 0.0758

0.0758 11.3502

]
> 0,

T =

[
12.7561 0.0936

0.0936 8.5862

]
> 0, Y =

[
2.2177 1.2879

]
.

(5.2)

Therefore, the controller (2.3) with gain

K =
[

2.0005 2.9051
]

(5.3)

stabilizes the system under study.

We have simulated these discrete-time systems with time varying delay with the con-

troller we designed and the results are illustrated in Figure 5.1 and Figure 5.2. These fig-

ures show that the closed-loop system is stable under the computed state feedback con-

troller.
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Figure 5.1. The behaviors of the states x1(t) and x2(t) in function of time t.
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Figure 5.2. The behaviors of the control law u(t) in function of time t.

6. Conclusion

In this paper, we have studied the problems of stability and stabilizability for a class of

linear discrete-time systems with varying time delay in the state. Sufficient conditions in

the LMI formalism have been developed to solve the above problems. An algorithm to

design the stabilizing state feedback controller is also provided. A Numerical example is

included to demonstrate the effectiveness of the proposed techniques.



10 Discrete-time systems with time-varying time delay

References

[1] E.-K. Boukas and Z. K. Liu, Robust H∞ control of discrete-time Markovian jump linear systems

with mode-dependent time-delays, IEEE Transactions on Automatic Control 46 (2001), no. 12,

1918–1924.

[2] , Deterministic and Stochastic Time Delay Systems, Birkhäuser, Massachusetts, 2002.
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E-mail address: el-kebir.boukas@polymtl.ca

mailto:el-kebir.boukas@polymtl.ca


Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


