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DETERMINATION OF FINITE SETS BY X-RAYS

R. J. GARDNER AND PETER GRITZMANN

Abstract. We study the determination of finite subsets of the integer lattice
Zn, n ≥ 2, by X-rays. In this context, an X-ray of a set in a direction u gives
the number of points in the set on each line parallel to u. For practical reasons,
only X-rays in lattice directions, that is, directions parallel to a nonzero vector
in the lattice, are permitted. By combining methods from algebraic number
theory and convexity, we prove that there are four prescribed lattice directions
such that convex subsets of Zn (i.e., finite subsets F with F = Zn ∩ conv F )
are determined, among all such sets, by their X-rays in these directions. We
also show that three X-rays do not suffice for this purpose. This answers a
question of Larry Shepp, and yields a stability result related to Hammer’s
X-ray problem. We further show that any set of seven prescribed mutually
nonparallel lattice directions in Z2 have the property that convex subsets of
Z2 are determined, among all such sets, by their X-rays in these directions. We
also consider the use of orthogonal projections in the interactive technique of
successive determination, in which the information from previous projections
can be used in deciding the direction for the next projection. We obtain results
for finite subsets of the integer lattice and also for arbitrary finite subsets of
Euclidean space which are the best possible with respect to the numbers of
projections used.

1. Introduction

On September 19, 1994, a mini-symposium with the title Discrete Tomography,
organized by Larry Shepp of AT&T Bell Labs, was held at DIMACS. Some time ear-
lier, Peter Schwander, a physicist at AT&T Bell Labs in Holmdel, had asked Shepp
for help in obtaining three-dimensional information at the atomic level from two-
dimensional images taken by an electron microscope. A new technique, based on
high resolution transmission electron microscopy (HRTEM), can effectively mea-
sure the number of atoms lying on each line in certain directions (see [22]). At
present, this can only be achieved for some crystals and in a constrained set of lat-
tice directions, that is, directions parallel to a line through two points of the crystal
lattice. The aim is to determine the three-dimensional crystal from information of
this sort obtained from a number of different directions.
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An X-ray of a finite set F in a direction u is a function giving the number of its
points on each line parallel to u (see Section 2 for formal definitions), essentially
the projection, counted with multiplicity, of F on the subspace orthogonal to u.
Motivated by crystallographic work [16], we investigate the determination of finite
subsets of a lattice by their X-rays in finite sets of lattice directions. The affine
nature of this problem allows us to consider only the integer lattice Zn.

It is not difficult to see that given any prescribed finite set of m directions in En,
there are two different finite subsets of En with the same X-rays in these directions.
This can be accomplished by using a two-colouring of the edge graph of a suitable
parallelotope in Em and taking the projections on En of the two colour classes of
vertices (or see [3] or [9, Lemma 2.3.2]). An easy modification of this example shows
that the situation is no better in the lattice Zn; given any prescribed finite set of
lattice directions, there are two different finite subsets of Zn with the same X-rays
in these directions. In view of this, it is necessary to impose some restriction in
order to obtain uniqueness results.

A few earlier papers address this sort of problem. The lack of uniqueness for
arbitrary subsets of En was first noted by Lorentz [19] (see also [13]). Rényi [20]
proved that a set of m points in E2 or E3 can be distinguished from any other
such set by any set of (m + 1) X-rays in mutually nonparallel directions. Heppes
[15] extended this result to En, n ≥ 2. In the planar case, Rényi’s theorem was
dramatically improved by Bianchi and Longinetti [3], and results of a similar type
can be divined from work of Beauvais and Kemperman contained in [2]. The special
case in which finite subsets of Z2 are to be determined from their X-rays in the two
coordinate directions has long been associated with the problem of reconstructing
binary matrices from their column and row sums; see, for example, [4] and [21,
Section 6.3]. In this situation, several characterizations of the finite sets that are
uniquely determined are known. For more information, see the article of Fishburn,
Lagarias, Reeds and Shepp [8], who note connections with Boolean function theory,
switching circuit theory and game theory. The paper [8] also characterizes the
finite subsets of Zn that are uniquely determined by their projections, counted
with multiplicity, on the coordinate axes (we prefer the term “(n− 1)-dimensional
X-ray”).

When a finite subset of Zn is to be determined by X-rays in lattice directions,
therefore, all earlier results either place an a priori upper bound on the number of
points in the set or focus on X-rays in coordinate directions. In this paper, however,
the cardinality of the sets is completely unrestricted, and we allow arbitrary lattice
directions. Instead, we work with the natural class of convex lattice sets, that is,
finite subsets of Zn whose convex hulls contain no new lattice points.

In Theorem 5.7(i), we prove that there are certain prescribed sets of four lattice
directions – for example, those parallel to the vectors (1, 0), (1, 1), (1, 2) and (1, 5),
or others given in Remark 5.8 – such that any convex subset of Z2 may be distin-
guished from any other such set by its X-rays in these directions. Corollary 5.9(i)
notes that this extends readily to Zn, n ≥ 2 (for example, one can use four direc-
tions whose first two coordinates are those just given). Four is the best number
possible, since we demonstrate that no prescribed set of three lattice directions has
this property. This completely answers a question posed to the first author by
Larry Shepp.

Theorem 5.7(i) is a discrete analogue of the result in [12] which shows that there
are prescribed sets of four directions – for example, those whose slopes yield a
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transcendental cross ratio – such that any convex body in E2 may be distinguished
from any other by its continuous X-rays in these directions. Here, a continuous
X-ray is a function which returns the linear measures of parallel 1-dimensional
sections. Part of our technique derives from that of [12], but the discrete case is
much more complicated and we find it necessary to employ methods from the theory
of cyclotomic fields, in particular p-adic valuations. This allows a fine analysis which
shows that uniqueness will be provided by any set of four lattice directions whose
slopes (suitably ordered) yield a cross ratio not equal to 4/3, 3/2, 2, 3 or 4.

The theorem in [12] is, unfortunately, unstable in the sense that an arbitrarily
small perturbation of a suitable set of four directions may cause the uniqueness
property to be lost. The natural question arises of whether finite precision suffices
to guarantee determination, that is, are there four directions that can be specified
by a finite set of integers such that convex bodies are determined by continuous
X-rays taken in these directions? Theorem 6.2(i) provides an affirmative answer.

Perhaps more surprising and novel than the result concerning four directions is
Theorem 5.7(ii), which states that any prescribed set of seven mutually nonparallel
lattice directions has the property that any convex subset of Z2 may be distin-
guished from any other such set by its X-rays in these directions. It is shown in
Theorem 6.2(ii) that a similar result holds for continuous X-rays. In this case, how-
ever, the restriction to lattice directions is crucial, since for each m ∈ N, a convex
m-gon and its rotation by π/m about its centre have the same continuous X-rays
in m mutually nonparallel directions. We also demonstrate that the number seven
in the discrete case cannot be replaced by six.

A major task in achieving the above results involves examining lattice polygons
which exhibit a weak sort of regularity. We believe that the information we obtain,
especially Theorem 4.5, is of independent interest from a purely geometrical point
of view.

In [7], Edelsbrunner and Skiena introduced an interactive technique, which we
call successive determination, in which the previous X-rays may be examined at
each stage in deciding the best direction for the next X-ray. It was shown in [7]
that convex polygons can be successively determined by three X-rays, and in [10]
we proved that convex polytopes in E3 can be successively determined by only
two X-rays. In the final section of the present paper, we apply this technique to
finite sets of points, and find that it suffices to use orthogonal projections; the extra
information granted by X-rays is superfluous. We prove that finite subsets of Zn can
be successively determined by dn/(n−k)e projections on (n−k)-dimensional lattice
subspaces. When k = 1, this means that only two projections are required. This
actually contributes less to Schwander’s problem than the results concerning convex
lattice sets, since for technical reasons it is at present only possible in HRTEM to
take X-rays in directions parallel to integer vectors in which the coordinates are all
small. This constraint renders the successive determination technique ineffective,
in general, but future improvements in technology may change this situation.

Convexity is not needed for the previous result, but the underlying lattice struc-
ture plays an essential role; we find that arbitrary finite subsets of En require
(bn/(n− k)c+ 1) projections on (n− k)-dimensional subspaces for their successive
determination. In both results, the numbers cannot be reduced, even if projections
on (n− k)-dimensional subspaces are replaced by k-dimensional X-rays, functions
which give the number of points on each translate of a given k-dimensional subspace.
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In discussing inverse problems, it is important to distinguish between determi-
nation and reconstruction. The problem of finding an algorithm by which convex
bodies may be reconstructed to any prescribed degree of accuracy from their con-
tinuous X-rays in four suitable directions has not been completely solved, despite a
valuable contribution by Kölzow, Kuba and Volčič [18]. These authors present an
algorithm for this purpose, for which, however, no satisfactory performance analysis
exists. Barcucci, Del Lungo, Nivat and Pinzani [1] study the consistency problem
for special classes of planar lattice sets for X-rays in the coordinate directions. They
show that the problem of whether there exists a row- and column-connected planar
polyomino that is consistent with the X-ray data in the two coordinate directions
(and if it is, construct one such polyomino) can be solved in polynomial time. This
result stops short of proving that a convex lattice set that is consistent with given
X-rays in the two coordinate directions can be reconstructed in polynomial time,
since there are convex lattice sets that are not polyominoes. Despite this, there is
already a considerable literature on algorithmic aspects of the reconstruction prob-
lem, mostly for the case of two X-rays. A general treatment of complexity issues
in discrete tomography, including an extended bibliography, can be found in [11].

The first author has introduced the term “geometric tomography” for the area
of mathematics dealing with the general problem of retrieving information about
a geometric object from data about its sections, or projections, or both. We refer
the interested reader to [9], which, however, mentions the discrete case only briefly.

We are most grateful to Larry Shepp for posing the problem of determining
convex lattice sets by X-rays in lattice directions, and to Larry Washington for
suggesting the use of p-adic valuations.

2. Definitions and preliminaries

If k1, . . . , km are integers, then gcd(k1, . . . , km) denotes their greatest common
divisor. If x ∈ R, then bxc and dxe signify the greatest integer less than or equal
to x, and the smallest integer greater than or equal to x, respectively.

If A is a set, we denote by |A|, intA, clA, bdA, and convA the cardinality,
interior, closure, boundary and convex hull of A, respectively. The dimension of
A is the dimension of its affine hull aff A, and is denoted by dimA. The symbol
11A represents the characteristic function of A. The symmetric difference of two
sets A and B is A4B = (A \B) ∪ (B \A). The notation for the usual orthogonal
projection of A on S⊥ is A|S⊥, and we also write x|S⊥ for the projection of the
point x on S⊥.

As usual, Sn−1 denotes the unit sphere in Euclidean n-space En. By a direction,
we mean a unit vector, that is, an element of Sn−1. If u is a direction, we denote
by u⊥ the (n−1)-dimensional subspace orthogonal to u, and by lu the line through
the origin parallel to u.

We write λk for k-dimensional Lebesgue measure in En, where 1 ≤ k ≤ n, and
where we identify λk with k-dimensional Hausdorff measure. We also write λ0 for
the counting measure.

Let F be a subset of En, and u ∈ Sn−1. The (discrete) X-ray of F in the direction
u is the function XuF defined by

XuF (x) = |F ∩ (x+ lu)| ,
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for x ∈ u⊥. The function XuF is in effect the projection, counted with multiplicity,
of F on u⊥. Some authors refer to XuF as a projection, but in this paper, this
term is reserved for the usual orthogonal projection.

We shall also need the following generalization of the previous definition. Let F
be a subset of En, let 1 ≤ k ≤ n− 1, and let S be a k-dimensional subspace. The
k-dimensional (discrete) X-ray of F parallel to S is the function XSF defined by

XSF (x) = |F ∩ (x+ S)| ,
for x ∈ S⊥. The X-ray introduced before corresponds to k = 1 if we identify a 1-
dimensional subspace with either direction parallel to it. One can, of course, regard
the discrete X-ray XSF of a set F as

XSF (x) =

∫
S

11F (x+ y)dλ0(y),

for x ∈ S⊥. Note that the support of the k-dimensional X-ray XSF is F |S⊥, the
projection of F on the (n− k)-dimensional subspace S⊥.

For the most part, the present paper deals with these discrete X-rays. However,
we also require the following continuous analogue. Let K be a convex body in
En. The k-dimensional (continuous) X-ray of K parallel to S is the function XSK
defined by

XSK(x) =

∫
S

11K(x+ y)dλk(y),

for x ∈ S⊥. When k = 1, we can speak of the (continuous) X-ray XuK of K in a
direction u by associating u with the 1-dimensional subspace lu.

In the sequel, the unqualified term “X-ray” will always mean “discrete X-ray”.
We now define two different ways in which X-rays can be used to distinguish one

set in a class from other sets in the same class.
Let F be a class of finite sets in En and U a finite set of directions in Sn−1.

We say that F ∈ F is determined by the X-rays in the directions in U if whenever
F ′ ∈ F and XuF = XuF

′ for all u ∈ U , we have F = F ′.
We say that a set F ∈ F can be successively determined by X-rays in the direc-

tions uj, 1 ≤ j ≤ m, if these can be chosen inductively, the choice of uj depending
on XukF , 1 ≤ k ≤ j − 1, such that if F ′ ∈ F and XujF

′ = XujF for 1 ≤ j ≤ m,
then F ′ = F .

We also say that sets in F are determined (or successively determined) by m
X-rays if there is a set U of m directions such that each set in F is determined (or
successively determined, respectively) by the X-rays in the directions in U .

Let S be a finite set of k-dimensional subspaces of En. The phrases “F ∈ F
is determined (or successively determined) by the k-dimensional X-rays parallel to
the subspaces in S” and “sets in F are determined (or successively determined) by
m k-dimensional X-rays” are defined analogously. It should also be clear how the
corresponding concepts are defined for continuous X-rays and for projections.

Note that if the sets in F can be determined by a set of X-rays, then each set in
F can be successively determined by the same X-rays.

We shall mainly study finite subsets of lattices. A lattice is a subset of En that
consists of all integer combinations of a fixed set of n linearly independent vectors.
Any lattice in En is the image of the integer lattice Zn under a nonsingular linear
transformation.
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Let L ⊂ En be a lattice. A convex set in L is a finite set F such that F =
L∩ convF . We also refer to such sets as convex lattice sets. A lattice direction is a
direction parallel to a nonzero vector in L. A lattice subspace is one that is spanned
by vectors of L.

Due to the affine nature of the problem of determining sets by X-rays, it generally
suffices to consider only Zn, so by the word “lattice” in the terms above, we shall
mean Zn unless it is stated otherwise.

A convex polygon is the convex hull of a finite set of points in E2. A lattice
polygon is a convex polygon with its vertices in Z2. By a regular polygon we shall
always mean a nondegenerate convex regular polygon. An affinely regular polygon
is a nonsingular affine image of a regular polygon.

Let U ⊂ S1 be a finite set of directions in E2. We call a nondegenerate convex
polygon P a U -polygon if it has the following property: If v is a vertex of P , and
u ∈ U , then the line v + lu meets a different vertex v′ of P .

Clearly U -polygons have an even number of vertices. Note that an affinely regular
polygon with an even number of vertices is a U -polygon if and only if each direction
in U is parallel to one of its edges.

3. A cyclotomic theorem

Suppose that m and kj , 1 ≤ j ≤ 4, are positive integers and

fm(k1, k2, k3, k4) =
(1− ωk1m )(1− ωk2m )

(1− ωk3m )(1− ωk4m )
,(1)

where ωm = e2πi/m is an mth root of unity. For our application to discrete tomog-
raphy we shall need to know which rational values are attained by this cyclotomic
expression. For technical reasons we shall restrict the domain of fm to the set Dm,
where

Dm = {(k1, k2, k3, k4) ∈ N4 : 1 ≤ k3 < k1 ≤ k2 < k4 ≤ m−1 and k1+k2 = k3+k4}.
We begin with a simple but useful observation.

Lemma 3.1. The function fm is real valued and fm(d) > 1 for d ∈ Dm.

Proof. Let d = (k1, k2, k3, k4) ∈ Dm. Since sin θ = −e−iθ(1−e2iθ)/2i and k1 +k2 =
k3 + k4, we have

fm(d) =
sin k1π

m sin k2π
m

sin k3π
m sin k4π

m

.

Therefore fm is real valued. Using k1 + k2 = k3 + k4 and the identity 2 sinx sin y =
cos(x− y)− cos(x+ y), we obtain

sin
k1π

m
sin

k2π

m
− sin

k3π

m
sin

k4π

m
=

1

2

(
cos

(k1 − k2)π

m
− cos

(k3 − k4)π

m

)
.

The right-hand side is positive because 1 ≤ k3 < k1 ≤ k2 < k4 ≤ m − 1 implies
that

0 ≤ |k1 − k2| < |k3 − k4| ≤ m− 1 .

Therefore the numerator of fm(d) is larger than its denominator, so fm(d) > 1.

The next three lemmas use only elementary trigonometric arguments, but are
needed for the main result of this section.
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Lemma 3.2. If

cosα+ cosβ − cos(α + β) = 1,

then α+ β = (2j + 1)π or α = 2jπ or β = 2jπ, for some integer j.

Proof. Substituting x = (α + β)/2 and y = (α− β)/2, we obtain

cos(x+ y) + cos(x− y)− cos 2x = 1,

or cos2 x = cosx cos y. If cosx = 0, then α + β = (2j + 1)π, for some integer j. If
cosx 6= 0, then cosx = cos y, so x+ y ≡ 0 (mod 2π) or x− y ≡ 0 (mod 2π). This
implies that α = 2jπ or β = 2jπ, for some integer j.

Lemma 3.3. The solutions of

(1− eiϕ)(1 − eiθ) = (1 − eiψ),(2)

where 0 < ϕ < θ < 2π and 0 < ψ < 2π, are given by θ = ϕ + π, ψ = 2ϕ, for
arbitrary ϕ.

Proof. Equation (2) is equivalent to

eiθ + eiϕ − eiψ = ei(ϕ+θ).(3)

By taking real and imaginary parts, squaring both sides in each equation, and
adding, we obtain

cos(θ − ψ) + cos(ϕ− ψ)− cos(θ − ϕ) = 1.

We let α = θ − ψ and β = ψ − ϕ, and apply Lemma 3.2. If α = 2jπ, then
j = 0 and θ = ψ, which contradicts (2), and β = 2jπ is similarly not possible. If
α+ β = (2j + 1)π, then j = 0, so θ = ϕ+ π. Using the real part of (3), we obtain
the equation

cosψ = cos 2ϕ,

so ψ + 2ϕ ≡ 0 (mod 2π) or ψ − 2ϕ ≡ 0 (mod 2π). Using the restrictions on ϕ, θ
and ψ, we see that ψ + 2ϕ = 2π or ψ = 2ϕ. The second possibility is already of
the required form, so suppose that ψ = 2π − 2ϕ. Using the imaginary part of (3),
we see that ϕ = πj/2 for some integer j. This yields only the solution ϕ = π/2,
ψ = π, θ = 3π/2, which is again of the required form.

Lemma 3.4. Consider the equation

(1− eiϕ)(1 − eiθ) = c,(4)

where 0 < ϕ < θ < 2π. When c = 1, (1 +
√

3i)/2, (1 − √
3i)/2, −i or i, the

unique solution is (ϕ, θ)=(π/3, 5π/3), (5π/6, 11π/6), (π/6, 7π/6), (π/6, 5π/6) or
(7π/6, 11π/6), respectively.

Proof. If c = 1, (4) becomes

eiϕ + eiθ = ei(ϕ+θ).(5)

By taking real and imaginary parts, squaring both sides in each equation, and
adding, we obtain

cos(θ − ϕ) = −1

2
.

Therefore θ = ϕ+ 2π/3 or θ = ϕ+ 4π/3. Substituting back into (5), we find that

cosϕ = 1/2 and sinϕ = −√3/2 or sinϕ =
√

3/2, respectively. Since 0 < ϕ < θ <
2π, only the latter is possible, so θ = 5π/3 and ϕ = π/3.
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When c = (1 +
√

3i)/2 (or c = (1 −√
3i)/2), we obtain (2) by setting ψ = 5π/3

(or ψ = π/3, respectively). The required solutions are then provided by Lemma 3.3.
If c = ±i, then (4) gives

eiϕ + eiθ − 1∓ i = ei(ϕ+θ),(6)

with real part

cosϕ+ cos θ − cos(ϕ+ θ) = 1.

By Lemma 3.2, the only valid solutions are θ = π − ϕ or θ = 3π − ϕ. The
imaginary part of (6) gives sinϕ = ±1/2, and this yields only the values stated in
the lemma.

We now summarize some facts from the theory of p-adic valuations, which rep-
resents the most important tool in this section. An excellent introductory text is
that of Gouvêa [14].

Let p be a prime number. The p-adic valuation on Z is the function vp defined
by vp(0) = ∞ and by the equation

n = pvp(n)n′ ,

for n 6= 0, where p does not divide n′; that is, vp(n) is the exponent of the highest
power of p dividing n. The function vp is extended to Q by defining

vp(a/b) = vp(a)− vp(b) ,

for nonzero integers a and b; see [14, p. 23]. Note that vp is integer valued on
Q \ {0}. As in [14, Chapter 5], vp can be further extended to the algebraic closure
Q̄p of a field Qp, whose elements are called p-adic numbers, containing Q. Note
that Q̄p contains the algebraic closure of Q and hence all the algebraic numbers.
On Q̄p \ {0}, vp takes values in Q, and satisfies vp(−x) = vp(x),

vp(xy) = vp(x) + vp(y),(7)

vp

(
x

y

)
= vp(x)− vp(y)(8)

and

vp(x+ y) ≥ min{vp(x), vp(y)}.(9)

See [14, p. 143]. The following proposition can be deduced from [14, Chapter 5] (or
see [17, pp. 60–66]).

Proposition 3.5. If a ∈ Q̄p has minimal monic polynomial xn + a1x
n−1 + · · · +

an−1x+ an over Qp, then

vp(a) =
vp(an)

n
.(10)

The next proposition is Exercise 7 in [17, p. 74]. We include the proof as a
service to the reader.

Proposition 3.6. Let p be a prime and let r, s, t ∈ N. If r is not a p-power and
gcd(r, s) = 1, then

vp(1− ωsr) = 0.(11)
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If gcd(p, s) = 1, then

vp(1− ωspt) =
1

pt−1(p− 1)
.(12)

Proof. By (7), we have

rvp(ω
s
r) = vp

(
(ωsr)

r
)

= vp(1) = 0,

so vp(ω
s
r) = 0. Therefore, with (7) and (9),

vp
(
1− (ωsr)

j
) ≥ min

{
vp
(
1− (ωsr)

j−1
)
, vp
(
(ωsr)

j−1(1− ωsr)
)}

= min
{
vp
(
1− (ωsr)

j−1
)
, vp
(
(ωsr)

j−1
)

+ vp
(
1− ωsr

)}
= min

{
vp
(
1− (ωsr)

j−1
)
, vp(1− ωsr)

}
,

for each j ∈ N. By induction on j, we obtain

vp
(
1− (ωsr)

j
) ≥ vp(1 − ωsr) ≥ min{vp(1), vp(ω

s
r)} = 0.

Suppose that vp(1 − ωsr) > 0. By the above, vp
(
1 − (ωsr)

j
)
> 0 for all j ∈ N.

Now assume that r is not a p-power and that gcd(r, s) = 1. Let q be a prime factor
of r different from p, and let a = (ωsr)

(r/q). Then a 6= 1, aq = 1 and vp(1 − a) > 0.
Consequently,

0 =
aq − 1

a− 1
=

(
(a− 1) + 1

)q − 1

a− 1
= q +

q∑
j=2

(
q

j

)(
a− 1

)j−1
.

Therefore

vp(q) = vp

(a− 1)

q∑
j=2

(
q

j

)
(a− 1)j−2


≥ vp(a− 1) + min

2≤j≤q

{
vp

((
q

j

))
+ vp

(
(a− 1)j−2

)}
≥ vp(1 − a) > 0,

a contradiction to the definition of vp(q). This proves (11).
To prove (12), let

Φ(x) =
xp

t − 1

xpt−1 − 1
= xp

t−1(p−1) + xp
t−1(p−2) + · · ·+ xp

t−1

+ 1.

Then ωspt is a root of Φ(x), so (ωspt−1) is a root of Φ(x+1). Applying the Eisenstein

criterion ([14, Proposition 5.3.11], compare [14, Lemma 5.6.1]), we see that Φ(x+1)
is irreducible over Qp. Also, Φ(x+1) is of degree pt−1(p−1) and has constant term
p, so by (10), we have

vp(1− ωspt) = vp(ω
s
pt − 1) =

vp(p)

pt−1(p− 1)
=

1

pt−1(p− 1)
,

as required.

We are now ready to begin examining the rationality of (1).

Lemma 3.7. Let l1, l2 and m be positive integers with l1 ≤ l2 < m, and suppose
that gcd(l1, l2,m) = 1. The only solutions of

(1 − ωl1m)(1 − ωl2m) = q ∈ Q(13)
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occur when (i) at least one of the factors is (1−ω2), or when (ii) (1−ω3)(1−ω2
3) = 3,

(iii) (1− ω4)(1 − ω3
4) = 2 or (iv) (1− ω6)(1 − ω5

6) = 1.

Proof. Suppose that q 6= 1. Then vp(q) 6= 0 for some prime p, so by (7) and (11),
lj/m = sj/p

tj , where gcd(p, sj) = 1, for at least one value of j. Let t be the
minimum value of tj , j = 1, 2. Since q is a nonzero rational, vp(q) is an integer.
As we showed in the proof of the previous proposition, the p-adic valuation of each
term on the left-hand side of (13) is nonnegative. Taking the p-adic valuation of
both sides of (13) and using (7), (11) and (12), we see that

1 ≤ vp(q) = vp
(
(1− ωl1m)(1− ωl2m)

) ≤ 2

pt−1(p− 1)
,

which implies that pt ≤ 4. If pt = 2, then we have (i). If pt = 3, then (12) with
p = 3 implies that both factors are of the form (1 − ωs3), and (ii) follows. Similar
considerations when pt = 4 give only (iii) as a new solution.

If q = 1, we are led to consider the equation

(1− eiϕ)(1 − eiθ) = 1 ,

where 0 < ϕ < θ < 2π, and it follows from Lemma 3.4 that the only possibility is
(iv).

Recall that the function fm is defined by (1). An mth root of unity ωkm is called a
p-power root of unity if k/m = s/pt for positive integers s and t with gcd(p, s) = 1.

Lemma 3.8. Let d = (k1, k2, k3, k4) ∈ Dm. Suppose that fm(d) = q ∈ Q and the

numerator of q has a prime factor p such that in (1) ω
kj
m is a p-power root of unity

for exactly two values of j. Up to multiplication of m and d by the same factor, we
have m = 12 and one of the following:

(i) d = (6, 6, 4, 8), q = 4/3; (ii) d = (6, 6, 3, 9), q = 2;

(iii) d = (6, 6, 2, 10), q = 4; (iv) d = (4, 8, 3, 9), q = 3/2;

(v) d = (4, 8, 2, 10), q = 3; (vi) d = (4, 4, 2, 6), q = 3/2;

(vii) d = (8, 8, 6, 10), q = 3/2; (viii) d = (4, 4, 1, 7), q = 3;

(ix) d = (8, 8, 5, 11), q = 3; (x) d = (3, 9, 2, 10), q = 2;

(xi) d = (3, 3, 1, 5), q = 2; (xii) d = (9, 9, 7, 11), q = 2.

Proof. Note that by Lemma 3.1, we have q > 1, so the numerator of q does indeed
have at least one prime factor. By taking the p-adic valuation of both sides of the
equation fm(d) = q, and applying (7), (8), (11) and (12), we see that since vp(q) is
a positive integer, both p-power roots of unity are in the numerator of (1). Arguing
as in the previous lemma, we also see that both are square roots, both are cube
roots or both are fourth roots.

Assume that both p-power roots of unity are square roots. Then the numerator
in (1) is (1−ω2)(1−ω2) = 4, so the denominator of (1) is rational. By Lemma 3.7,
we must have

(1− ω2)(1 − ω2)

(1− ω3)(1− ω2
3)

=
(1− ω6

12)(1 − ω6
12)

(1− ω4
12)(1 − ω8

12)
=

4

3
,

or
(1− ω2)(1 − ω2)

(1− ω4)(1− ω3
4)

=
(1− ω6

12)(1 − ω6
12)

(1− ω3
12)(1 − ω9

12)
= 2,
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or
(1− ω2)(1− ω2)

(1− ω6)(1 − ω5
6)

=
(1− ω6

12)(1 − ω6
12)

(1− ω2
12)(1− ω10

12)
= 4.

These are (i)–(iii) in the statement of the lemma.
Assume that both p-power roots of unity are cube roots. If the numerator of (1)

is (1−ω3)(1−ω2
3) = 3, then Lemma 3.7 can be applied to the rational denominator

of (1). Cases (i) and (ii) of Lemma 3.7 are incompatible with the condition that
d ∈ Dm (the former would imply that k3 or k4 lies between k1 and k2). So we
obtain only

(1− ω3)(1 − ω2
3)

(1− ω4)(1 − ω3
4)

=
(1− ω4

12)(1− ω8
12)

(1− ω3
12)(1− ω9

12)
=

3

2

and
(1− ω3)(1 − ω2

3)

(1− ω6)(1 − ω5
6)

=
(1− ω4

12)(1 − ω8
12)

(1− ω2
12)(1− ω10

12)
= 3 .

These are (iv) and (v) in the statement of the lemma.
Suppose that the numerator of (1) is

(1− ω3)(1− ω3) =
3

2
(1−√

3i) or (1− ω2
3)(1− ω2

3) =
3

2
(1 +

√
3i).

With (7), (8), (11) and (12), the 3-adic valuation shows that the numerator of q
must be three. Since q > 1, either q = 3/2 or q = 3. Suppose that q = 3/2. The
2-adic valuation shows that either one of the factors in the denominator of (1) is
a square root or both factors are fourth roots. Direct computation shows that the
latter is impossible and that the former yields only

(1− ω3)(1− ω3)

(1− ω6)(1− ω2)
=

(1− ω4
12)(1 − ω4

12)

(1− ω2
12)(1 − ω6

12)
=

3

2

and
(1− ω2

3)(1− ω2
3)

(1− ω2)(1 − ω5
6)

=
(1− ω8

12)(1− ω8
12)

(1− ω6
12)(1 − ω10

12)
=

3

2
.

These are (vi) and (vii) in the statement of the lemma.
If q = 3 and the numerator of (1) is (1− ω3)(1− ω3), we are led to consider the

equation

(1− eiϕ)(1 − eiθ) =
(1 − ω3)(1− ω3)

3
=

1

2
−
√

3

2
i ,

with 0 < ϕ < θ < 2π. By Lemma 3.4, ϕ = π/6 and θ = 7π/6, yielding

(1− ω3)(1 − ω3)

(1− ω12)(1 − ω7
12)

=
(1− ω4

12)(1 − ω4
12)

(1− ω12)(1 − ω7
12)

= 3 ,

which is (viii) above. If q = 3 and the numerator of (1) is (1−ω2
3)(1−ω2

3), we need
to solve the equation

(1− eiϕ)(1 − eiθ) =
(1 − ω2

3)(1− ω2
3)

3
=

1

2
+

√
3

2
i ,

with 0 < ϕ < θ < 2π. Lemma 3.4 shows that only the solution

(1− ω2
3)(1− ω2

3)

(1− ω5
12)(1 − ω11

12)
=

(1− ω8
12)(1 − ω8

12)

(1− ω5
12)(1− ω11

12)
= 3,

which is (ix) above, can occur.
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Similar arguments apply when both p-power roots of unity are fourth roots in
the numerator of (1). The 2-adic valuation shows that the numerator of q must be
2. Further, since q > 1, we have q = 2.

If the numerator of (1) is (1− ω4)(1− ω3
4) = 2, then the denominator is one, so

by Lemma 3.7 the only solution is

(1− ω4)(1 − ω3
4)

(1− ω6)(1 − ω5
6)

=
(1− ω3

12)(1 − ω9
12)

(1− ω2
12)(1− ω10

12)
= 2 .

This is (x) in the statement of the lemma. If the numerator of (1) is (1−ω4)(1−ω4),
we are led to the equation

(1 − eiϕ)(1− eiθ) =
(1− ω4)(1 − ω4)

2
= −i,

and with the aid of Lemma 3.4 we obtain (xi) above, namely,

(1− ω4)(1 − ω4)

(1− ω12)(1 − ω5
12)

=
(1− ω3

12)(1− ω3
12)

(1− ω12)(1− ω5
12)

= 2.

Finally, if the numerator of (1) is (1− ω3
4)(1 − ω3

4), we need to solve the equation

(1− eiϕ)(1− eiθ) =
(1− ω3

4)(1 − ω3
4)

2
= i,

and then Lemma 3.4 yields only

(1− ω3
4)(1− ω3

4)

(1− ω7
12)(1 − ω11

12)
=

(1− ω9
12)(1 − ω9

12)

(1− ω7
12)(1− ω11

12)
= 2.

This is (xii) in the statement of the lemma.

In addition to the “sporadic” solutions of fm(d) = q ∈ Q, d ∈ Dm, exhibited by
the previous lemma, we have the following infinite family of solutions.

Lemma 3.9. Let s ∈ N and m = 2s. Then fm(d) = 2 when d = (2k, s, k, k + s),
1 ≤ k ≤ s/2 and when d = (s, 2k, k, k + s), s/2 ≤ k < s.

Proof. By direct computation, we have

(1− ω2k
m )(1 − ωsm)

(1− ωkm)(1− ωk+sm )
= 2,

with the same result if the two factors in the numerator are interchanged.

We are now ready to prove the main result of this section.

Theorem 3.10. Suppose that d ∈ Dm and fm(d) = q ∈ Q. Then q ∈ {4/3, 3/2, 2,
3, 4}. Moreover, all possible solutions are provided by the two previous lemmas.

Proof. Note that d ∈ Dm implies that m ≥ 4. By Lemma 3.1 we have q > 1, so the
numerator of q has a prime factor p. Then vp(q) is a positive integer. By (7), (8),

(11) and (12), there is at least one value of j, 1 ≤ j ≤ 4, such that ω
kj
m is a p-power

root of unity, that is, kj/m = sj/p
tj for integers sj and tj with gcd(p, sj) = 1.

Lemma 3.8 deals with the case when this occurs for exactly two values of j.
Suppose that it occurs for one, three, or four values of j. By (7), (8), (11) and (12),
vp(q) cannot be a positive integer unless p = 2 and tj = 1 for some j, in which
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case the corresponding factor is (1 − ω2) = 2 and is in the numerator of fm(d).
Therefore

(1− ω
kj′
m )

(1 − ωk3m )(1 − ωk4m )
=
q

2
,

where j′ = 1 or 2. Let q/2 = a/b, where gcd(a, b) = 1. If a 6= 1 then (7), (8), (11)

and (12) imply that a = 2, so (1− ωkj′m ) = (1− ω2). Using Lemma 3.7, we see that
the only solutions are (i)–(iii) of Lemma 3.8.

If a = 1, then since q > 1, we have b = 1 and q = 2. We are then led to consider
the equation

(1− eiϕ)(1 − eiθ) = (1 − eiψ),

where 0 < ϕ < ψ < θ < 2π. By Lemma 3.3, the only solutions are θ = ϕ + π,
ψ = 2ϕ, for arbitrary ϕ. It is easy to see that these yield precisely the solutions
given in Lemma 3.9.

Corollary 3.11. All solutions of f12(d) = q ∈ Q are given by (i)–(xii) of Lemma
3.8 and

(xiii) d = (2, 6, 1, 7), q = 2; (xiv) d = (4, 6, 2, 8), q = 2;

(xv) d = (6, 8, 4, 10), q = 2; (xvi) d = (6, 10, 5, 11), q = 2.

Proof. By the previous theorem, any solution different from (i)–(xii) of Lemma 3.8
must be given by Lemma 3.9. The four new solutions for m = 12 occur when
k = 1, 2, 4 and 5 in that lemma. (The solution corresponding to k = 3 is (ii) of
Lemma 3.8.)

4. Affinely regular lattice polygons and lattice U-polygons

Chrestenson [5] shows that any regular polygon whose vertices are contained in
Zn for some n ≥ 2 must have 3, 4 or 6 vertices. This is implied by the following
theorem, but does not seem to imply it.

Theorem 4.1. The only affinely regular lattice polygons are triangles, parallelo-
grams and hexagons.

Proof. Let P be an affinely regular lattice polygon with m vertices. Then there
is an affine transformation φ such that φ(R) = P , where R is the regular polygon
with m vertices given in complex form by 1, ωm, . . . , ω

m−1
m , with ωm = e2πi/m. The

case m ≤ 4 is clear, so suppose that m ≥ 5. The points ω−2
m , ω−1

m , 1, ωm, ω2
m are

mapped by φ onto vertices of P , points p−2, p−1, p0, p1, p2, say, in Z2. The pairs
{1, ωm}, {ω−1

m , ω2
m} lie on parallel lines. Therefore

‖ω2
m − ω−1

m ‖
‖ωm − 1‖ =

‖p2 − p−1‖
‖p1 − p0‖ =

√
q ,

for some q ∈ Q. The left-hand side is

‖ωm + 1 + ω−1
m ‖ = 1 + 2 cos θ ,

where θ = 2π/m, so 2 cos θ =
√
q − 1.

The pairs {ω−1
m , ωm}, {ω−2

m , ω2
m} also lie on parallel lines. An argument similar

to that above yields
‖ω2

m − ω−2
m ‖

‖ωm − ω−1
m ‖ = 2 cos θ =

√
r ,
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for some r ∈ Q. Therefore
√
q − 1 =

√
r, and squaring both sides we see that√

q, and hence cos θ, is rational. Now 2 cos θ = ωm + ω−1
m , where ωm and ω−1

m are
algebraic integers. Since 2 cos θ is rational, it must be in Z. Therefore 2 cos θ is −2,
−1, 0, 1 or 2, and then θ = 2π/m ≤ 2π/5 implies that θ = π/3. Consequently,
m = 6, corresponding to hexagons, for example the hexagon with vertices at (1, 0),
(1, 1), (0, 1), (−1, 0), (−1,−1) and (0,−1).

The following proposition (see [12] or [9, Chapter 1]) was proved by applying
Darboux’s theorem [6] on midpoint polygons.

Proposition 4.2. Suppose that U ⊂ S1 is a finite set of directions. There exists a
U -polygon if and only if there is an affinely regular polygon such that each direction
in U is parallel to one of its edges.

It is important to observe that despite the previous proposition a U -polygon need
not itself be affinely regular, even if it is a lattice U -polygon. This is demonstrated
by the following example, which is, in a sense, maximal (see Remark 4.6).

Example 4.3. Let U ⊂ S1 consist of six lattice directions parallel to the vectors
(1, 0), (2, 1), (1, 1), (1, 2), (0, 1) and (−1, 1), respectively. Let Q be the dodecagon
with vertices at (3, 1), (3, 2), (2, 3), (1, 3), (−1, 2), (−2, 1), and the reflections of
these points in the origin. Then Q is a lattice U -polygon (see Figure 1). The fact
that Q is not affinely regular follows from Theorem 4.1.

Lemma 4.4. If U ⊂ S1 is any set of three lattice directions, then there exists a
lattice U -polygon.

Proof. We can assume without loss of generality that the directions in U are mu-
tually nonparallel. Let (sj , tj) ∈ Z2, 1 ≤ j ≤ 3, be vectors parallel to the directions
in U . We may assume that s1 > s2 > s3, and that either t1 = t2 = t3 > 0, or
t1 = 0, s1 > 0 and t2 = t3 > 0. Let

h = s2t3 − s3t2, k = s1t3 − s3t1, l = s1t2 − s2t1.

Then h, k, l > 0, and the points (0, 0), (hs1, ht1), (hs1 +ks2, ht1 +kt2), (hs1 +ks2 +
ls3, ht1 + kt2 + lt3), (ks2 + ls3, kt2 + lt3) and (ls3, lt3) are the vertices of a convex
lattice hexagon P . It is easy to check that each diagonal of P is parallel to one of
its edges, and it follows that P is a lattice U -polygon.

We now use Theorem 3.10 to prove our main result about U -polygons.

Theorem 4.5. Let U ⊂ S1 be a set of four or more mutually nonparallel lattice
directions, and suppose that there exists a U -polygon. Then |U | ≤ 6, and the cross
ratio of the slopes of any four directions in U , arranged in order of increasing angle
with the positive x-axis, is 4/3, 3/2, 2, 3 or 4.

Proof. Let U be as in the statement of the theorem. By Proposition 4.2, U must
consist of directions parallel to the edges of an affinely regular polygon. Therefore
there is a nonsingular affine transformation φ such that if

V = {φ(u)/‖φ(u)‖ : u ∈ U},
then V is contained in a set of directions that are equally spaced in S1, that is, the
angle between each pair of adjacent directions is the same. Since the directions in
U are mutually nonparallel, we can assume that there is an m ∈ N such that each
direction in V can be represented in complex form by ehπi/m, h ∈ N, 0 ≤ h ≤ m−1.
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Figure 1. The lattice U -polygon of Example 4.3.

Let uj , 1 ≤ j ≤ 4, be directions in U . Note that the cross ratio of the
slopes of these lattice directions is a rational number, q say. We can assume that
φ(uj)/‖φ(uj)‖ = ehjπi/m, where hj ∈ N, 1 ≤ j ≤ 4, and 0 ≤ h1 < h2 < h3 < h4 ≤
m− 1. The map φ preserves cross ratio, so

(tan h3π
m − tan h1π

m )(tan h4π
m − tan h2π

m )

(tan h3π
m − tan h2π

m )(tan h4π
m − tan h1π

m )
= q.

Manipulating the left-hand side, we obtain

sin (h3−h1)π
m sin (h4−h2)π

m

sin (h3−h2)π
m sin (h4−h1)π

m

= q.

Let k1 = h3 − h1, k2 = h4 − h2, k3 = h3 − h2 and k4 = h4 − h1; then 1 ≤ k3 <
k1, k2 < k4 ≤ m− 1 and k1 + k2 = k3 + k4.

Using sin θ = −e−iθ(1− e2iθ)/2i, we obtain

q =
(1− ωk1m )(1 − ωk2m )

(1− ωk3m )(1 − ωk4m )
= fm(d),

with d = (k1, k2, k3, k4), as in (1). Then d ∈ Dm if its first two coordinates are
interchanged, if necessary, to ensure that k1 ≤ k2; note that this operation does
not change the value of fm(d). By Theorem 3.10, q ∈ {4/3, 3/2, 2, 3, 4}.
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Suppose that |U | ≥ 7. Let U ′ be a set of any seven of these directions, and let
V ′ = {φ(u)/‖φ(u)‖ : u ∈ U ′}. We may assume that all the directions in V ′ are in
the first two quadrants, so one of these quadrants, say the first, contains at least
four directions in V ′. We can apply the above argument to these four directions,
where the integers hj now satisfy 0 ≤ h1 < h2 < h3 < h4 ≤ m/2, and where we
may also assume, by rotating the directions in V ′ if necessary, that h1 = 0. As
above, we obtain a corresponding solution of fm(d) = q ∈ Q, d ∈ Dm, where fm(d)
is as in (1).

Suppose that this solution is of the form of Lemma 3.9. Then using h1 = 0, we
find that h4 = k4 = k + s > m/2, a contradiction. By Theorem 3.10, therefore,
our solution must derive from (i)–(xii) of Lemma 3.8. Since this applies to any four
directions in V ′ lying in the first quadrant, all such directions must correspond to
angles with the positive x-axis which are integer multiples of π/12.

We claim that all directions in V ′ have the latter property. To see this, suppose
that there is a direction v ∈ V ′ in the second quadrant, and consider a set of four
directions vj , 1 ≤ j ≤ 4, in V ′, where v4 = v and vj , 1 ≤ j ≤ 3, lie in the first

quadrant. Suppose that vj = ehjπi/m, 1 ≤ j ≤ 4. Then hj is an integer multiple of
m/12, for 1 ≤ j ≤ 3. Again, we obtain a corresponding solution of fm(d) = q ∈ Q,
d ∈ Dm. If this solution corresponds to one of (i)–(xii) of Lemma 3.8, then clearly
h4 is also an integer multiple of m/12. Suppose, then, that the solution is of the
form of Lemma 3.9. We can take h1 = 0 as before, and then we find that either
(i) h2 = s − k, h3 = s and h4 = k + s, 1 ≤ k ≤ s/2, or (ii) h2 = k, h3 = 2k and
h4 = k + s, s/2 ≤ k < s, where m = 2s. Since s = m/2 = 6(m/12) is a multiple of
m/12, we conclude in either case that k, and hence h4 = k + s, is also a multiple
of m/12. This proves the claim.

It remains to examine the case m = 12 in more detail. Let hj , 1 ≤ j ≤ 4,
correspond to the four directions in V ′ having the smallest angles with the positive
x-axis, so that h1 = 0 and hj ≤ m/2 = 6, 2 ≤ j ≤ 4. We have already shown
that the corresponding d = (k1, k2, k3, k4) must occur in (i)–(xii) of Lemma 3.8.
Since hj ≤ 6, 1 ≤ j ≤ 4, we also have kj ≤ 6, 1 ≤ j ≤ 4, so the only possibilities
are (vi) or (xi) of Lemma 3.8, that is, d = (4, 4, 2, 6) or (3, 3, 1, 5). These yield
(h1, h2, h3, h4) = (0, 2, 4, 6) or (0, 2, 3, 5), respectively.

Suppose that h corresponds to any other direction in V ′ in the first quadrant,
and replace (h1, h2, h3, h4) by (h2, h3, h4, h) = (2, 4, 6, h) or (2, 3, 5, h), respectively.
We obtain d = (4, h−4, 2, h−2) or (3, h−3, 2, h−2), respectively, which must also
occur in (i)–(xii) of Lemma 3.8. The only possibility, (4, h−4, 2, h−2) = (4, 4, 2, 6),
when h = 8, is not valid since this corresponds to a direction in the second quadrant.

Let h correspond to any direction in V ′ in the second quadrant. We have already
seen that only h = 8 can result from (i)–(xii) of Lemma 3.8. However, we now have
to consider also (xiii)–(xvi) of Corollary 3.11. We can only have (4, h−4, 2, h−2) =
(4, 6, 2, 8), giving h = 10.

We have shown that there is only one possible set of more than four directions,
namely, the set of six directions ehπi/12, h ∈ {0, 2, 4, 6, 8, 10}. Our assumption that
|U | ≥ 7 is therefore impossible.

Remark 4.6. The previous theorem implies that if P is a lattice U -polygon, then
|U | ≤ 6. Example 4.3 exhibits a lattice U -polygon P for which |U | = 6. The proof
of the previous theorem indicates that this can only occur if there is a nonsingular
affine transformation φ taking the directions in U to a set of vectors which when
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normalized are given in complex form by ehπi/12, h ∈ {0, 2, 4, 6, 8, 10}. In fact, let

φ(x, y) =
(
x+ (

√
3− 2)y, (

√
3− 1)(x+ y)

)
.

Then φ maps the regular dodecagon inscribed in the unit circle, with one vertex
at (1,0), to the affinely regular dodecagon Q with vertices (1,

√
3− 1), (

√
3− 1, 1),

(2−√
3, 1), (

√
3− 2,

√
3− 1), (1−√

3, 2−√3), (−1,
√

3− 2), and the reflections of
these six points in the origin. The slopes of the edges of Q, namely, −1, 0, 1/2, 1, 2
and ∞, are the same as those of P , which is the corresponding lattice U -polygon.
Of course, Q itself is not a lattice polygon, and indeed there is no affinely regular
lattice dodecagon, by Theorem 4.1. Successive second midpoint polygons of P ,
when dilatated by a factor of 4, are also lattice polygons. Moreover, the polygon
resulting from P by repeatedly taking the second midpoint polygon and scaling
suitably is, by Darboux’s theorem (see [6] and [12]), an affinely regular U -polygon,
and in fact this is just Q (up to dilatation). The polygon Q fails to be a lattice
polygon because the limit of such a sequence need not be a lattice polygon.

5. Determination of convex lattice sets by X-rays

In this section we apply the results of the previous section to the determination
of convex lattice sets by X-rays in lattice directions.

Lemma 5.1. Let u ∈ Sn−1 and let F1, F2 be finite subsets of En such that XuF1 =
XuF2. Then |F1| = |F2|.
Proof. |F1| =

∑
x∈u⊥ XuF1(x) =

∑
x∈u⊥ XuF2(x) = |F2|.

Lemma 5.2. Let U ⊂ S1 be a finite set of at least three mutually nonparallel lattice
directions, and let F1, F2 be convex subsets of Z2 such that XuF1 = XuF2 for u ∈ U .
Then either F1 = F2 or dimF1 = dimF2 = 2.

Proof. It is easy to see that if F1 6= F2, then dimFj ≥ 1, j = 1, 2. Suppose that
dimF1 = 1. Let uj, 1 ≤ j ≤ 3, be directions in U and let the endpoints of the line
segment convF1 be the lattice points a and b. If some uj , 1 ≤ j ≤ 3, is parallel
to F1, then F1 = F2. Therefore we may assume that a is the only point of F1

on each of the lines a + luj , 1 ≤ j ≤ 3. These lines dissect the plane into six
closed cones, one of which, C say, contains F1. Suppose that the boundary of C is
contained in (a + lu1) ∪ (a + lu2), so that C ∩ (a + lu3) = {a}. There must be a
point a′ ∈ F2 ∩ (a+ lu3). If a 6∈ F2, then a 6= a′, and either a′ + lu1 or a′ + lu2 does
not meet F1, a contradiction. Therefore a ∈ F2, and similarly b ∈ F2. This implies
that F1 ⊂ F2. Since |F1| = |F2| by Lemma 5.1, we have F1 = F2.

The following example shows that the previous lemma is false if |U | = 2, a
phenomenon that cannot occur for continuous X-rays.

Example 5.3. Let u1 and u2 be directions parallel to the vectors (2, 1) and (−1, 1),
respectively. Then the 2-dimensional set F1 = {(0, 0), (0,−1), (1, 0), (1, 1)} and the
1-dimensional set F2 = {(−1, 0), (0, 0), (1, 0), (2, 0)} have the same X-rays in the
directions u1 and u2. See Figure 2.

Lemma 5.4. Let u ∈ Sn−1 and let F1, F2 be finite subsets of En such that XuF1 =
XuF2. Then the centroids of F1 and F2 lie on the same line parallel to u.
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Figure 2. The sets F1 and F2 of Example 5.3.

Proof. Let cj be the centroid of Fj , and set xj = cj |u⊥, j = 1, 2. If the origin in
En is o, we have

o = o|u⊥ =

∑
y∈Fj

(y − cj)

 |u⊥

=
∑
x∈u⊥

∑
y∈Fj∩(x+lu)

(y|u⊥ − cj |u⊥) =
∑
x∈u⊥

XuFj(x)(x − xj),

and therefore

xj =
1

|Fj |
∑
x∈u⊥

XuFj(x)x,

for j = 1, 2. By the assumption XuF1 = XuF2 and Lemma 5.1,

1

|F1|
∑
x∈u⊥

XuF1(x)x =
1

|F2|
∑
x∈u⊥

XuF2(x)x,

so x1 = x2, as required.

Theorem 5.5. Let U ⊂ S1 be a finite set of two or more mutually nonparallel
lattice directions. The following statements are equivalent.

(i) Convex subsets of Z2 are determined by X-rays in the directions in U .
(ii) There does not exist a lattice U -polygon.

Proof. Suppose that there exists a lattice U -polygon P . Partition the vertices of P
into two disjoint sets V1, V2, where the members of each set are alternate vertices
in a clockwise ordering around P . Let u ∈ U . Since P is a U -polygon, each line
parallel to u containing a point in V1 also contains a point in V2. Let

C = (Z2 ∩ P ) \ (V1 ∪ V2) ,

and let Fj = C ∪ Vj , j = 1, 2. Then F1 and F2 are different convex subsets of Z2

with equal X-rays in the directions in U .
Conversely, suppose that F1, F2 are different convex subsets of Z2 with equal

X-rays in the directions in U , and let E = convF1 ∩ convF2. We may assume
that |U | ≥ 4, since Lemma 4.4 provides a lattice U -polygon whenever |U | ≤ 3. By
Lemma 5.2, dimFj = 2, j = 1, 2. Lemma 5.4 shows that F1 and F2 have the same
centroid, so intE 6= ∅.

Since convFj , j = 1, 2, are convex polygons, int(convF14convF2) contains
finitely many components. The assumption F1 6= F2 implies that there is at least
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one component. Let these components be Cj , 1 ≤ j ≤ m0, ordered clockwise around
the boundary of E. Call Cj of type r if C ⊂ int(convFr \ E), for r = 1, 2. Note
that it is possible for two or more adjacent Cj ’s to be of the same type. Suppose,
without loss of generality, that C1 is of type 1 and is preceded by a component of
type 2. Let j1 be the smallest integer for which Cj1 is of type 2, and let

D1 =

j1−1⋃
j=1

Cj .

Now let j2 > j1 be the smallest integer for which Cj2 is of type 1, and let

D2 =

j2−1⋃
j=j1

Cj .

Continuing in this way, we obtain sets Dj , 1 ≤ j ≤ m1, such that each Dj is either
a finite union of components of int(convF1 \E) or a finite union of components of
int(convF2 \ E). Moreover, these two possibilities alternate clockwise around the
boundary of E. Let D = {Dj : 1 ≤ j ≤ m1}.

Suppose that D ∈ D consists of type 1 components. The set A =
(
(clD)\E)∩Z2

is a nonempty finite set of lattice points contained in F1 \ E. If u ∈ U and z ∈ A,
then there is a lattice point z′ such that

z′ ∈ (F2 \ E) ∩ (z + lu),

because XuF1 = XuF2. Then z′ 6∈ E, so the line z + lu meets some member of D
consisting of type 2 components. Denote this member of D by uD.

We claim that uD does not depend on which point z ∈ A is used for its definition.
To see this, suppose that zj ∈ A, j = 1, 2, and that the line zj + lu meets D′

j ∈
D, where D′

1 and D′
2 are distinct, and therefore disjoint, and consist of type 2

components. Then there is a D′, between D′
1 and D′

2 in the clockwise ordering
around the boundary of E, consisting of type 1 components. This means that there
is a lattice point z3, contained in the open strip bounded by zj+lu, j = 1, 2, and such
that z3 ∈ (clC)\E, where C is one of the components of int(convF1 \E) contained
in D′. Since XuF1 = XuF2, there is a point z′3 ∈ z3 + lu and z′3 ∈ (clC′) \E, where
C ′ is a component of type 2. This is only possible if C′ ⊂ D, a contradiction. This
proves the claim.

Let uA =
(
(cluD)\E)∩Z2. Then uA is a finite set of lattice points contained in

F2 \E. Furthermore, Xu(uA) = XuA, so |uA| = |A|, by Lemma 5.1; in particular,
uA is nonempty.

Let D ∈ D, and define

D′ = {uik · · ·ui1D : k ∈ N, uij ∈ U, 1 ≤ j ≤ k}.
Then D′ is the set of members of D obtained from D by applying the above process
through any finite sequence of directions from U . We know D′ is finite, so we can
relabel its members as Dj , 1 ≤ j ≤ m. Let Aj =

(
(clDj)\E

)∩Z2 be the nonempty
finite sets of lattice points corresponding to Dj , for 1 ≤ j ≤ m.

Let cj be the centroid of Aj , 1 ≤ j ≤ m. Let tj be the line through the common
endpoints of the two arcs, one in bd(convF1), and one in bd(convF2), which bound
the finite union Dj of components of int(convF14convF2) such that Aj = Dj∩Z2.
Then tj separates the convex hull of Aj , and hence cj , from the convex hull of the
remaining centroids ck, 1 ≤ k 6= j ≤ m. It follows that the points cj , 1 ≤ j ≤ m,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2290 R. J. GARDNER AND P. GRITZMANN

Figure 3. The sets F1 and F2 of Remark 5.6.

are the vertices of a convex polygon P . If u ∈ U and 1 ≤ j ≤ m, suppose that Ak is
the set arising from u and Aj by the process described above. Then by Lemma 5.4,
the line cj+ lu also contains ck. The points cj therefore pair off in this fashion, so m
is even, and since |U | ≥ 2 we have m ≥ 4, and P is nondegenerate. Consequently,
P is a U -polygon.

Let |Aj | = |Ak| = s for 1 ≤ j ≤ k ≤ m. Then each vertex cj of P belongs
to the lattice of points whose coordinates are rationals with denominator s. The
dilatation sP of P is then the required lattice U -polygon.

Remark 5.6. In the proof of the previous theorem, it is necessary to employ finite
unions of components. This is in contrast to the continuous case (cf. [12] or [9,
Chapter 1]), where single components pair off in each direction in U . Figure 3
shows two convex lattice sets, F1 (white dots) and F2 (black dots), with equal
X-rays in the vertical direction, for which int(convF1 \ E) is a single component,
whereas int(convF2 \E) has two components.

Theorem 5.7. (i) There are sets of four lattice directions such that convex sub-
sets of Z2 are determined by the corresponding X-rays.

(ii) Convex subsets of Z2 are determined by any set of seven X-rays in mutually
nonparallel lattice directions.

(iii) There is a set of six mutually nonparallel lattice directions such that convex
subsets of Z2 are not determined by the corresponding X-rays.

(iv) Convex subsets of Z2 cannot be determined by three X-rays in lattice direc-
tions.

Proof. To prove (i), we see that by Theorem 4.5 and the previous theorem, it
suffices to take any set of four lattice directions such that the corresponding cross
ratio (formed as in Theorem 4.5) is not 4/3, 3/2, 2, 3 or 4. Parts (ii), (iii) and (iv)
are an immediate consequence of the previous theorem together with Theorem 4.5,
Example 4.3 and Lemma 4.4, respectively.

Remark 5.8. It is easy to construct sets of four lattice directions that yield unique-
ness as in Theorem 5.7(i). For example, the sets of lattice directions parallel to
the vectors in the following sets have this property: {(1, 0), (1, 1), (1, 2), (1, 5)},
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{(1, 0), (2, 1), (0, 1), (−1, 2)} and {(2, 1), (3, 2), (1, 1), (2, 3)}. For each of these sets,
the cross ratio is not equal to 4/3, 3/2, 2, 3 or 4.

Let S be a 2-dimensional lattice subspace. A set F ∈ Zn is called S-convex if
F ∩ (x + S) is convex, with respect to the 2-dimensional lattice Zn ∩ (x + S), for
each x ∈ Zn.

Corollary 5.9. Let S be a 2-dimensional lattice subspace, and let U ⊂ Sn−1 ∩ S
be a set of mutually nonparallel lattice directions with respect to the lattice Zn ∩ S.

(i) There are sets U with |U | = 4 such that S-convex subsets of Zn are determined
by X-rays in the directions in U .

(ii) If |U | ≥ 7, then S-convex subsets of Zn are determined by X-rays in the
directions in U .

Proof. By affine invariance we need only apply Theorem 5.7(i) and (ii) to each
section Zn ∩ (x+ S) with x ∈ Zn.

In particular, convex subsets of Zn are determined by certain sets of four, and
any set of seven, X-rays in mutually nonparallel lattice directions contained in a
2-dimensional lattice subspace. Theorem 5.7(iii) and (iv) show that the numbers
of directions in the previous corollary are the best possible.

Although our results completely solve the basic problem of determining convex
lattice sets by X-rays, one might attempt to characterize the sets of lattice direc-
tions in general position such that convex subsets of Zn are determined by the
corresponding X-rays. This question remains unanswered, as does the analogous
question for continuous X-rays (see [9, Problem 2.1]).

6. Determination of convex bodies by continuous X-rays

The following result was proved in [12].

Proposition 6.1. Let U ⊂ S1 be a set of two or more mutually nonparallel direc-
tions. The following statements are equivalent.

(i) Convex bodies in E2 are determined by continuous X-rays in the directions in
U .

(ii) There does not exist a U -polygon.

Proposition 4.2 above, also proved in [12], classifies sets U of directions allowing
U -polygons, but this is not needed for the following result.

Theorem 6.2. (i) There are sets of four lattice directions such that convex bod-
ies in E2 are determined by the corresponding continuous X-rays.

(ii) Convex bodies in E2 are determined by continuous X-rays in any set of seven
mutually nonparallel lattice directions.

Proof. This is the same as the proof of Theorem 5.7(i) and (ii) when Proposition 6.1
is substituted for Theorem 5.5.

The number of continuous X-rays required in the previous theorem cannot be
reduced. For (i), we simply note that convex bodies cannot be determined by any
set of three continuous X-rays, by the results of [12] (or see [9, Corollary 1.2.12]).
For (ii), we apply the argument at the beginning of the proof of Theorem 5.5 to
the lattice U -polygon P of Example 4.3, where |U | = 6. The corresponding convex
subsets F1, F2 of Z2 yield lattice hexagons. Let Qj = convFj , j = 1, 2. It is
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straightforward to check that Q1 and Q2 are different affinely regular hexagons
with the same continuous X-rays in the directions in U .

7. Successive determination of finite sets by projections or X-rays

Two simple comments should set the stage. First, a single projection in any
non-lattice direction will distinguish any subset of a lattice from any other. Second,
given any finite set of lattice subspaces, there are two different convex lattice sets
with equal projections on those subspaces. (To see this, choose a convex lattice
polytope of maximum dimension in the orthogonal complement of each subspace,
and take their Minkowski sum. All lattice sets obtained by taking all lattice points
in the Minkowski sum except one of its vertices have the same projections on each
of the given subspaces.) We shall focus on the successive determination of finite
(and not necessarily convex) subsets of a lattice by projections on lattice subspaces.

Lemma 7.1. Let 1 ≤ l ≤ n − 1 and let T be an l-dimensional lattice subspace in
En. Suppose that B is an (n− l)-dimensional ball in T⊥ with centre at the origin.
Then there is an (n − l)-dimensional lattice subspace S such that if F and F ′ are
subsets of (B × T ) ∩ Zn with F |S⊥ = F ′|S⊥, then F = F ′.

Proof. Let bj ∈ Zn, 1 ≤ j ≤ n, be an integer basis of En such that T is spanned
by b1, . . . , bl and T⊥ is spanned by bl+1, . . . , bn. Let M1,M2 denote the matrices
with columns b1, . . . , bl, and bl+1, . . . , bn, respectively, and set c =

∑n
j=l+1 ‖bj‖.

Let 0 < ε ≤ 1, let Zε be the l × (n− l) matrix

Zε =

1 ε . . . εn−l−1

...
...

...
...

1 ε . . . εn−l−1


and let

S(ε) = {x ∈ En : (MT
1 + εZεM

T
2 )x = 0}.

Suppose that v ∈ (Zn \ {o}) ∩ S(ε). Then MT
1 v + εZεM

T
2 v = 0, so

bTj v = −εbTl+1v − ε2bTl+2v − · · · − εn−lbTnv,

for 1 ≤ j ≤ l. Since v 6= 0, we have bTj v 6= 0 for some j with 1 ≤ j ≤ n. If v 6∈ T⊥,

we can assume, without loss of generality, that bT1 v 6= 0. Then

1 ≤ |bT1 v| = ε|(bl+1+εbl+2+ · · ·+εn−l−1bn)
T v| ≤ ε(‖bl+1‖+ · · ·+‖bn‖)‖v‖ = εc‖v‖.

If v ∈ T⊥, then bTj v = 0 for 1 ≤ j ≤ l, so if k is the first index such that bTk v 6= 0,
then

0 = −εk−lbTk v − εk−l+1bTk+1v − · · · − εn−lbTnv.
Consequently,

1 ≤ |bTk v| = ε|(bk+1+εbk+2+· · ·+εn−k−1bn)
T v| ≤ ε(‖bk+1‖+· · ·+‖bn‖)‖v‖ ≤ εc‖v‖.

In both cases, therefore, we have ‖v‖ ≥ (εc)−1.
Let A = M1(M

T
1 M1)

−1. Then

‖v|T ‖ = ‖AMT
1 v‖ = ε‖AZεMT

2 v‖ ≤ ε‖A‖ ‖ZεMT
2 v‖ ≤ εc

√
l‖A‖ ‖v‖,

where ‖A‖ is the spectral norm of A, defined by

‖A‖ = max{‖Ax‖/‖x‖ : x 6= 0},
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where ‖x‖ denotes the Euclidean norm of x. It follows that if ε ≤ (2c
√
l‖A‖)−1,

then

‖v|T⊥‖ ≥ ‖v‖ − ‖v|T ‖ ≥ 1

2εc
.

This implies that if v1 and v2 are lattice points in the translate z + S(ε) of S(ε),
where z ∈ Zn, then the distance between v1|T⊥ and v2|T⊥ is at least (2εc)−1.

Let r be the radius of B, let ε0 satisfy

0 < ε0 ≤ min

{
1,

1

2
√
lc‖A‖ ,

1

4cr

}
and let S = S(ε0). Then for each z ∈ Zn, the translate z + S of S meets at most
one lattice point in B × T , so S clearly has the required property.

We remind the reader that the support of the k-dimensional X-rayXSF is F |S⊥,
the projection of F on the (n − k)-dimensional subspace S⊥. We shall therefore
formulate the next two theorems in terms of projections on (n − k)-dimensional,
rather than k-dimensional, subspaces.

Theorem 7.2. Let 1 ≤ k ≤ n− 1. Finite subsets of Zn can be successively deter-
mined by dn/(n − k)e projections on (n − k)-dimensional subspaces. This number
is the best possible, even if the projections on (n − k)-dimensional subspaces are
replaced by k-dimensional X-rays.

Proof. Let F be a finite subset of Zn, and let m = dn/(n − k)e. Choose k-
dimensional lattice subspaces Sj , 1 ≤ j ≤ m − 1, in general position. Let T =⋂m−1
j=1 Sj , and let l = dimT . Then

l = (m− 1)k − (m− 2)n = n− (m− 1)(n− k),

so 0 < l ≤ n− k. Let
G(Sj) = {x+ Sj : x ∈ F |S⊥j },

for 1 ≤ j ≤ m− 1, so G(Sj) is a finite set of translates of Sj whose union contains
F and which can be constructed from the projection F |S⊥j . Then

F ⊂ G =

m−1⋂
j=1

(⋃G(Sj)
)
,

and G is a finite union of translates of T . Therefore G ∩ T⊥ is finite, so it is
contained in an (n− l)-dimensional ball B in T⊥ with centre at the origin. Let S
be the (n− l)-dimensional lattice subspace supplied by Lemma 7.1, and let Sm be
any k-dimensional lattice subspace contained in S. Suppose that F ′ is a finite subset
of Zn such that F |S⊥j = F ′|S⊥j . Then F and F ′ are both subsets of (B × T ) ∩ Zn,
so F = F ′, by Lemma 7.1.

Let S be an arbitrary set of (m− 1) k-dimensional lattice subspaces. The above
computation shows that the intersection of the subspaces in S is a lattice subspace
of dimension at least one, so this intersection contains a line parallel to a lattice
direction u. Consequently X-rays parallel to the subspaces in S cannot distinguish
between two different finite sets F and F ′ in Zn such that XuF = XuF

′.

Corollary 7.3. Finite subsets of Zn can be successively determined by two projec-
tions in lattice directions.

Proof. Let k = 1 in Theorem 7.2.
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The following theorem uses a discrete version of the argument of [10, Theorem
4.2].

Theorem 7.4. Let 1 ≤ k ≤ n − 1. Finite subsets of En can be successively de-
termined by (bn/(n− k)c+ 1) projections on (n− k)-dimensional subspaces. This
number is the best possible, even if the projections on (n−k)-dimensional subspaces
are replaced by k-dimensional X-rays.

Proof. Let F be a finite subset of En, and let m = bn/(n − k)c + 1. Choose k-

dimensional subspaces Sj , 1 ≤ j ≤ m − 1, in general position. Let T =
⋂m−1
j=1 Sj .

Then

dimT = (m− 1)k − (m− 2)n = n− (m− 1)(n− k),

so 0 ≤ dimT < n− k. As in the previous theorem, let

G(Sj) = {x+ Sj : x ∈ F |S⊥j },
for 1 ≤ j ≤ m− 1, so G(Sj) is a finite set of translates of Sj whose union contains
F and which can be constructed from the projection F |S⊥j . Then

F ⊂ G =

m−1⋂
j=1

(⋃G(Sj)
)
,

and G is a finite union of translates of T . Since dimT < n− k, we can choose a k-
dimensional subspace Sm such that for all x ∈ S⊥m, the k-dimensional plane x+Sm
intersects at most one of the translates of T in G, and each of these intersections
is a single point. Then z ∈ F if and only if z belongs to the intersection of some
translate of T in G with some plane in G(Sm). This proves the first statement.

By [10, Theorem 5.3], there is a zonotope Z in En such that given any set S
of bn/(n − k)c k-dimensional subspaces, there is a different zonotope Z(S) with
the same continuous X-rays as Z parallel to these subspaces. Let F be the set
of vertices of Z. It is straightforward to check, by following the argument of [10,
Section 5], that the set F (S) of vertices of Z(S) has the same X-rays as F parallel
to the subspaces in S. It follows that F cannot be successively determined by any
set of bn/(n− k)c k-dimensional X-rays.

Corollary 7.5. Finite subsets of En, n ≥ 3, can be successively determined by
projections in two directions. Finite subsets of E2, however, require projections in
three directions for their successive determination.

Proof. Let k = 1 in Theorem 7.4.

We remark that it is not hard to generalize Theorems 7.2 and 7.4 to allow
the use of projections on subspaces of varying dimensions. Finite subsets of Zn
can be successively determined by projections on lattice subspaces of dimensions
(n− k1), . . . , (n− km) if and only if

k1 + · · ·+ km ≤ (m− 1)n,

and arbitrary finite subsets of En can be successively determined by projections on
subspaces of dimensions (n− k1), . . . , (n− km) if and only if

k1 + · · ·+ km < (m− 1)n.
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