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Abstract

A novel scheme for deformable tracking of curvilinear

structures in image sequences is presented. The approach

is based on B-spline snakes defined by a set of control

points whose optimal configuration is determined through

efficient discrete optimization. Each control point is as-

sociated with a discrete random variable in a MAP-MRF

formulation where a set of labels captures the deformation

space. In such a context, generic terms are encoded within

this MRF in the form of pairwise potentials. The use of

pairwise potentials along with the B-spline representation

offers nearly perfect approximation of the continuous do-

main. Efficient linear programming is considered to recover

the approximate optimal solution. The method is success-

fully applied to the tracking of guide-wires in fluoroscopic

X-ray sequences of several hundred frames which requires

extremely robust techniques.

1. Introduction

Applications requiring spatio-temporal information

about moving objects are various. A possible approach to

acquire this information is by means of tracking a paramet-

ric curve representation of the object in time. Tracking of

closed curves representing contours of objects has received

a considerable amount of attention in the computer vision

community [25]. In order to track curvilinear structures,

however, a curve representation of their centerlines would

be more appropriate than one of their contours, which

inevitably involves the model of an open curve. Since the

adaption of existing algorithms to the tracking of open
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Figure 1: MRF model for an open cubic B-spline curve C with

control points Pi. A sparse and a dense version of the discrete

set of labels L capturing the deformation space are illustrated

(each black square corresponds to a displacement plus the zero-

displacement at the control point position).

curves is not straight-forward, only little work can be

found, which tackles this problem.

We propose a unified framework for the tracking of open

and closed parametrized curves, which model object char-

acteristics like centerlines or boundaries. Based on a MAP-

MRF formulation, we derive a discrete scenario in which

the tracking solution can be regarded as the choice of an

optimal labeling only comprising the control points of the

curve, see Fig. 1. Our method performs in real-time, is

shown to be both robust and accurate, and is generic in the

choice of data and regularization terms. Moreover, the dis-

crete framework can track multiple curves at the same time

without altering or extending the model. In particular, we

summarize the contributions as:

Bridging the gap between continuous formulation and

discrete optimization: We propose a novel MAP-MRF

model for parametrized curves based on B-spline snakes de-

fined by a set of control points whose optimal configuration

is determined through efficient discrete optimization. Each

control point is associated with a discrete random variable

where a set of labels captures the deformation space. The

advantage of the MRF formulation is the ability of defin-

ing discrete local search spaces which can capture larger



deformation, are less sensitive to initialization, and are not

limited to the gradient direction of the cost function. Fur-

thermore, our model enables us to use powerful recently

proposed discrete optimization methods [15, 18].

Universality and accurate approximation of energies: In

our model, generic energy terms are encoded within the

MRF in the form of pairwise potential functions. We show

that the use of pairwise potentials along with the B-spline

representation offers nearly perfect approximation of con-

tinuous energy terms commonly used for curve tracking and

evolution. Besides generic likelihood terms driving the mo-

tion of the curve, we consider local regularization terms,

such as length preservation and/or diffusion. Additionally,

our framework allows the integration of higher-order terms

such as curvature without the need for introducing higher-

order cliques. Within such a discrete framework, no dif-

ferentiation of the energy terms is needed which allows for

further extensions to other (application specific) terms with-

out significant changes. For instance, we can easily employ

locally learned shape priors.

Evaluation of discretization effects: We perform exper-

iments on the discretization effects when modeling contin-

uous energies in a discrete setting. We present promising

tracking results with respect to different strategies for search

space discretization, energy approximation, and MRF opti-

mization. Two state-of-the-art methods, namely the TRW-S

[15] and the FastPD [18] algorithm, are compared for the

specific application of open curve tracking.

The remainder of the paper is organized as follows. First,

we give an overview about the related work on curve track-

ing. In Section 3, we present the continuous formulation,

followed by our discrete MRF model. Experiments on syn-

thetic data and an evaluation of the mentioned discretization

effects are presented in Section 4. Section 5 describes a spe-

cific application from the medical imaging domain, while

the last Section concludes our paper.

2. Related Work

A pioneering solution to the problem of detecting and

tracking boundaries was proposed by Kass et al. [13] with

their work on snakes. The idea behind snakes or active con-

tours is matching a deformable model to image data by min-

imizing an energy function, which is composed of two com-

ponents. One component which attracts the curve to object

boundaries or its center in case of line-like structures and a

second component used to restrict the motion the curves un-

dergo. The first component models external energies driv-

ing the curve motion while the second component resem-

bles internal forces of the curve that impose regularity and

smoothness constraints on the problem.

In their work on the dynamic analysis of apparent con-

tours, Cipolla and Blake [7] use B-splines instead of sets

of pixels for modeling contours. They claim that the new

representation allows them to completely drop the snake’s

internal energy, implying that their approach relies on an

initialization being close to the global optimum. The pa-

rameters of the cost function are the components of the B-

spline’s control points and they are updated iteratively in

steepest gradient direction. For a sufficient capture range

a scale-space approach is required, which is also used by

Kass et al. [13]. A difficulty that can arise in this context is

oversmoothing. If the scale space parameter is chosen too

big in order to be able to lock onto a given contour, neigh-

boring edges and lines may merge and thus lead to a wrong

optimum in the cost function.

An approach for curve tracking based on dynamic pro-

gramming, which is closely related to our MRF formu-

lation, has been subject of major interest in the 1990s

[2, 10, 14]. Amini et al. [1] propose a method based on

B-splines, in which the energy is separated into a sum of

single energy terms, each term modeling the energy for a

single B-spline span. Considering small search windows

centered at the current locations of the control points, dy-

namic programming is used iteratively to compute the curve

updates. On the one hand, this algorithm does not approxi-

mate the energy, but employs the local support of B-splines

to compute an optimal solution for the continuous domain.

On the other hand, if each control point is given a reason-

able search space, the method cannot fulfill the hard real-

time constraints due to the costly evaluation of all possible

control point configurations.

For the application of snake-based segmentation,

Caselles et al. [6] introduced a novel scheme for the detec-

tion of object boundaries. They reformulated the original

snake cost function for B-splines into a geodesic formula-

tion where a level-set function u is sought after. However,

utilizing this approach for tracking, in particular open con-

tours, is not straight forward if possible at all. The prob-

lem arises from the fact that level-set methods require the

zero-level set to separate the image in at least two distinct

regions, which for open curves would only be the case if the

curve intersects the image border.

Another approach for tracking of curvilinear structures

is proposed by Isard and Blake with the CONDENSATION

algorithm [12]. Contours are again represented as B-splines

but are restricted in their appearance to a shape-space [3, 4].

The authors formulate a propagation rule of shapes as an

equivalent to Bayes’ rule for inferring a posterior state den-

sity from data for time-varying cases given a learned prior.

Besides the presented approaches many more exist [25],

however the discrete MAP-MRF formulation is a valuable

learning-free alternative to existing tracking methods. To

our knowledge, this is the first time that MRFs combined

with B-splines are applied to the problem of curve tracking.

In the following, we describe in detail the derivation of our

framework.



3. Method

Most tracking algorithms consist of two phases – the ini-

tialization phase where the object to be tracked has to be

identified, and the tracking phase where previous positions

of this object are known. In this work we will focus on the

second phase and within that phase especially on the curve

model and the associated optimization strategy. Feature im-

ages driving the optimization process are an important com-

ponent of tracking algorithms. Typically such images are

acquired by enhancing edges, lines, or corners through im-

age filtering techniques. We are not going into details on

their choice, since we do not make any strict assumptions

on their computation. In Section 5, an example for the a

feature image is presented for the specific case of guide-

wire tracking in X-ray images. In the following, we will

focus on the tracking phase by introducing the curve model

and our tracking algorithm.

3.1. Curve Model

B-spline curves represent a convenient way in modeling

curvilinear structures and object boundaries. The main ad-

vantages are a low-dimensional representation of a contin-

uous curve, the implicit smoothness, and the local support

of individual control points. A B-spline curve is defined as

the linear combination of control points. Without loss of

generality, we consider the particular definition of an open

curve1

C(s) =

M
∑

i=1

Ni(s)Pi where s ∈ [0; 1] (1)

where Ni denote the basis functions and Pi the positions of

M control points (see also Fig. 1). In order to track a curvi-

linear structure or object boundary, one seeks the optimal

configuration of the control points such that the modeled

curve fits the object being visible in an image.

3.2. Curve Tracking in the Continuous Domain

In the following we review the general continuous for-

mulation of the curve tracking problem. Given an initial

curve C, we want to estimate the curve model parameters

which provide the best fit of the curve to the correspond-

ing structures visible in an image. A common approach of

formulating such a problem is through a maximum a poste-

riori (MAP) estimate. Given an observation I (in our case

a feature image), the MAP estimate is defined as

C∗ = arg max
C∈F

P (I |C)P (C) (2)

where C∗ is the optimal curve, P (I |C) is the likelihood

of the estimate and P (C) encodes the prior information on

1Note that closed curves can be constructed by merging certain tuples

of control points.

the set of feasible solutions F. Assuming Gibbs’ distribu-

tion for the prior and Gaussian for the likelihood, we can

reformulate the MAP estimate as an energy minimization

problem

C∗ = arg min
C∈F

E(I |C) + E(C) (3)

where the likelihood energyE(I |C) acts as a cost function

measuring the quality of a certain model configuration, and

the prior energy E(C) acts as a regularization (or smooth-

ness) term on the parameter space. In our scenario the like-

lihood term (4) is also referred to as the external energy,

driving the curve to its actual position,

Eext(I |C) =

∫ 1

0

ψ(I (C(s))) ds (4)

where ψ : R 7→ [0,∞) is a strictly decreasing function. The

prior is called the internal energy, used to constrain the mo-

tion of the curve. Changes in the length with respect to the

initialization can be penalized through the first derivative by

Elength
int (C) =

∫ 1

0

(

1 −
‖C ′(s)‖

‖C ′
init(s)‖

)2

ds. (5)

In our application, we penalize length changes with respect

to the curve Cinit detected during initialization. Length

preservation is an important constraint in case of open

curves because standard penalty terms on the first or higher-

order derivatives are favoring a shrinkage of the curve. In

case of closed curves, usually regularization terms such as

diffusion and curvature are considered

Ediff
int (C) =

∫ 1

0

‖C ′(s)‖2 ds (6)

Ecurv
int (C) =

∫ 1

0

‖C ′′(s)‖2 ds (7)

Often, different internal energies are combined by setting

weighting factors to the single terms. In case of B-splines,

the inherent smoothness is often sufficient and higher-order

terms such as curvature can be discarded [7]. The total en-

ergy of the curve tracking problem is the sum of the external

and internal energies

Etotal = Eext + λEint (8)

where λ acts as weighting controlling the influence of the

regularization term.

In continuous optimization, minimizing the above en-

ergies is commonly done in a gradient descent approach.

The initial contour is updated iteratively by computing the

derivative of the energy function with respect to the model

parameters. The algorithm stops if no further improvement
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Figure 2: Influence functions originating from an open cubic B-spline with eight control points.

on the energy can be achieved, meaning the method con-

verges to a local minimum. Even if sometimes convenient

to use, such an approach has two major drawbacks. First

of all, the algorithm requires the derivation of the energy

term, which is oftentimes complex to calculate analytically

and has to be done specifically for every function. Second,

a convergence to a good solution relies on the fact that the

initial contour is sufficiently close. If the gradient descent

starts far away from the structure to be tracked, chances

are high for obtaining bad solutions. This may easily hap-

pen in sequences with larger motions. Multi-resolution ap-

proaches (e.g. Gaussian scale space) might help in certain

scenarios but do not overcome this general limitation (see

also Section 2).

3.3. Discrete Curve Tracking with MRFs

In order to overcome the limitations of continuous opti-

mization, we render our tracking problem in a discrete for-

mulation. Let us consider a graph G = (V, E) consisting of

a set of discrete variables or nodes V and a set of edges E
connecting neighboring pairs of variables in order to repre-

sent their dependencies. Additionally, we introduce a dis-

crete set of labels L capturing the search space of the model

parameters. Each label xi ∈ L is associated with a two-

dimensional displacement vector d
xi from the deformation

space D ⊂ R
2. Two possibilities for the discretization of

the deformation space are illustrated in Fig. 1. If we as-

sociate each control point of our B-spline model with one

node of our graph, the task is to assign an optimal label to

each of the nodes or a displacement to each of the control

points, respectively. Note that our graph is a chain with

|V| = M which is either open (|E| = M − 1) or closed

(|E| = M ). A common approach for modeling the labeling

task in terms of energy minimization is the usage of first-

order MRFs [19]

Emrf =
∑

i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (9)

where θi are the unary potentials and θij are the pairwise

potentials.

In most applications, the unary terms play the role of

the likelihood energy. Independently from all other nodes,

the cost for an assignment of a certain label xi is evaluated.

Then, the pairwise interaction terms play the role of regular-

ization between neighboring nodes. However, the assump-

tion that the likelihood of a labeling can be computed from

a sum of independent unary terms is actually not valid in

our scenario. Considering B-splines with higher-order ba-

sis functions, the effect of a single control point onto the

deformation of the curve cannot be modeled independently

from its neighbors because the basis functions overlap (see

also Fig. 2(a)). Therefore, we propose a novel MRF model

for the case of curve tracking using B-splines. First, we

will use the basis functions as weighting coefficients within

the energy terms. Thus, curve points close to a certain con-

trol point will have more influence on its energy than points

far away. A similar approach is used in [11] where the au-

thors are using MRFs for non-rigid image registration based

on cubic B-splines. Such a weighting allows a suitable ap-

proximation of the energy terms with respect to the con-

trol points. For improving this approximation, we propose

to reformulate the external energy from the continuous do-

main also as pairwise interaction terms. Modeling the ex-

ternal energy as pairwise terms has big advantages. The

non-vanishing interval of basis functions along the curve

domain for control point tuples is bigger than the interval

corresponding to a single control point (see also Fig. 2(b)

and 2(c)). Compared to unary potentials, the energy com-

putation for the simultaneous movement of a pair of control

points yields a more accurate approximation of the contin-

uous energy2. Following these observations, we define the

MRF energy as

Emrf =
∑

(i,j)∈E

(

θij
ext(xi, xj) + λ θij

int(xi, xj)
)

(10)

where our discrete version of Eq. (4) is defined as

θij
ext(xi, xj) =

∫ 1

0

N̂ij(s)ψ(I (Cij(xi, xj , s))) ds (11)

2Mind that for exact energy computation one would need to define

cliques of size d + 1 where d is the degree of the B-spline basis functions.



and Eq. (5) is reformulated in the discrete domain as

θij
int(xi, xj) =

∫ 1

0

N̂ij(s)

(

1 −
‖C ′

ij(xi, xj , s)‖

‖C ′
init(s)‖

)2

ds.

(12)

Here, the weighting coefficient N̂ij(s) evaluates the pair-

wise influence of a curve point s to the energy of pair (i, j)
and the curve function Cij(xi, xj , s) describes the poten-

tial deformation of a curve when two control points i and j
are displaced simultaneously by d

xi and d
xj , respectively.

The potential deformation can be computed very efficiently

since only certain parts of the curve affected by the defor-

mation have to be recomputed

Cij(xi, xj , s) = C(s) +Ni(s)d
xi +Nj(s)d

xj . (13)

Similar to (12), other energy terms such as diffusion (6) and

curvature (7) can be formulated in the discrete domain.

We consider two different versions for defining the in-

fluence functions, either through the addition of basis func-

tions which we will call the sum model (see Fig. 2(b))

il = min(1, span(s) − d− 1)

ih = min(span(s) + 2,M)

N̂+
ij (s) =

Ni(s) +Nj(s)

Nil
(s) + 2

∑ih−1
k=il+1Nk(s) +Nih

(s)
, (14)

or through multiplication which we will call the product

model (see Fig. 2(c))

N̂∗
ij(s) =

Ni(s)Nj(s)
∑M−1

k=1 Nk(s)Nk+1(s)
. (15)

In both cases, the normalization is needed because the over-

all integral of the basis functions should be equal to one in

order to preserve the energy. The performance of the two

versions will be evaluated in our experiment section and

compared to the naı̈ve approach of modeling the external

energy through unary potentials, i.e.

θi
ext(xi) =

∫ 1

0

Ni(s)ψ(I (Ci(xi, s))) ds. (16)

We believe that our model is a good compromise be-

tween model accuracy and complexity. One could claim

that the approximation error could be reduced (or even com-

pletely removed) if more complex models are used. How-

ever, the consideration of higher-order cliques [21] or high-

dimensional label spaces is currently computationally in-

tractable in real-time environments such as tracking. An-

other advantage of our MRF model is the capability of

tracking multiple objects simultaneously by combining the

single MRF energies, one per object, into one global label-

ing problem.

3.4. Optimization

Once our problem is formulated in a discrete setting, we

need to choose an MRF optimization strategy. Fortunately,

recent advances in discrete optimization brought a couple of

very powerful techniques, mainly either based on iterative

graph-cuts or efficient message passing. Regarding our spe-

cific model, there are two properties which should be con-

sidered when using one of the existing techniques. First,

for the special case of open curves our graph is a tree (see

Fig. 1) allowing the exact computation of the global opti-

mal labeling when using max-product algorithms [20, 24]

(e.g. Belief Propagation, TRW-S [15]). Second, our en-

ergy is nonsubmodular which is a (theoretical) problem for

some methods using graph-cuts [17]. Using certain trunca-

tion techniques [22] on the energy terms make it still pos-

sible to use graph-cut based techniques (e.g. Expansion

Move [5]). Another possibility for minimizing nonsubmod-

ular functions is described in [16] but this technique might

result in unlabeled nodes which is not appropriate in our

setting. There are also methods based on iterative graph-

cuts which can handle a wider class of MRF energies (e.g.

Swap Move [5], FastPD [18]). Especially the FastPD algo-

rithm is interesting in our case since a good performance

with strong optimality properties is reported. A detailed

review of the existing optimization methods is out of the

scope of this paper. We refer the reader to the given ref-

erences. In our experiment section we compare the perfor-

mance of the TRW-S and the FastPD algorithm as represen-

tatives for the message-passing and graph-cut approaches.

As we shall see, as usual there is a compromise between

speed and accuracy.

4. Synthetic Experiments

In this section we present the performance analysis of

our approach on synthetic data. Basically, we perform two

different experiments to investigate particular model prop-

erties. The first experiment is dedicated to determine the

influence of the approximation error in the likelihood po-

tential functions. The second experiment determines the in-

fluence of different versions for discretization of the search

space.

4.1. Approximation Error

In order to determine the influence of the approximation

error we perform several tests on synthetic data. An initial

open B-spline curve with six control points is deformed by

assigning random labelings. After deformation, an image

frame is generated by careful rasterization which we then

use for the tracking algorithm. In this experiment we use

the TRW-S as the optimization method since it can recover

the global optimal solution for our energy function [20]. By

knowing that the exact ground truth spline is within our dis-



Max. Def.

Model

Unary Pairwise Sum Pairwise Product

6 1.00 (± 0.43) 0.34 (± 0.19) 0.28 (± 0.17)

8 1.15 (± 0.52) 0.36 (± 0.23) 0.30 (± 0.19)

10 1.33 (± 0.60) 0.42 (± 0.25) 0.36 (± 0.22)

12 1.41 (± 0.70) 0.43 (± 0.27) 0.36 (± 0.23)

14 1.74 (± 0.82) 0.48 (± 0.30) 0.43 (± 0.28)

16 1.79 (± 0.93) 0.49 (± 0.32) 0.43 (± 0.29)

18 2.00 (± 1.04) 0.52 (± 0.34) 0.47 (± 0.32)

20 2.19 (± 1.15) 0.57 (± 0.40) 0.52 (± 0.34)

Table 1: Synthetic experiment for assessing the energy approx-

imation error under different amounts of deformation and three

different likelihood models. Reported are the average curve dis-

tances and standard deviations in pixels over one hundred frames

per sequence.
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Figure 3: Plot of the average curve distances from Table 1.

crete label space, we can estimate the error induced by the

energy approximation only. We generate eight sequences

each consisting of one hundred frames. Different amounts

of maximum deformation is applied in each sequence, from

6 to 20 pixels control point displacements. We evaluate both

proposed pairwise versions, the sum model and the prod-

uct model, as well as the naı̈ve approach with unary poten-

tials for the external energy. For a quantitative evaluation

of the synthetic results, we compute the average curve dis-

tance (ACD) in pixels between the resulting curve C and

the ground truth Cgt as

ACD(C,Cgt) =

∫ 1

0

dmin(C(s), Cgt) ds (17)

dmin(P,Cgt) = arg min
u

|P − Cgt(u)| (18)

The solution to equation (18) is found by minimizing

(P − Cgt(u))
⊤
C ′

gt(u)

|P − Cgt(u)| |C ′
gt(u)|

(19)

w.r.t. u via Newton iterations.

5 0.59 ( 0.80 ( 0.54 ( 0.75 (

Max. Def. Steps

SPARSE DENSE

TRW-S FastPD TRW-S FastPD

6

5 0.31 (± 0.20) 0.44 (± 0.30) 0.31 (± 0.18) 0.40 (± 0.27)

10 0.32 (± 0.21) 0.44 (± 0.30) 0.31 (± 0.19) 0.41 (± 0.26)

20 0.32 (± 0.21) 0.44 (± 0.30) 0.32 (± 0.19) 0.41 (± 0.26)

8

5 0.37 (± 0.26) 0.51 (± 0.40) 0.35 (± 0.22) 0.51 (± 0.36)

10 0.37 (± 0.26) 0.52 (± 0.40) 0.35 (± 0.23) 0.48 (± 0.34)

20 0.37 (± 0.26) 0.51 (± 0.38) 0.36 (± 0.23) 0.47 (± 0.32)

10

5 0.45 (± 0.33) 0.64 (± 0.49) 0.44 (± 0.27) 0.60 (± 0.42)

10 0.44 (± 0.32) 0.60 (± 0.46) 0.43 (± 0.27) 0.57 (± 0.40)

20 0.44 (± 0.31) 0.60 (± 0.46) 0.44 (± 0.27) 0.56 (± 0.37)

12

5 0.50 (± 0.39) 0.71 (± 0.57) 0.47 (± 0.31) 0.65 (± 0.47)

10 0.49 (± 0.37) 0.69 (± 0.54) 0.47 (± 0.30) 0.64 (± 0.44)

20 0.49 (± 0.37) 0.68 (± 0.52) 0.47 (± 0.30) 0.63 (± 0.43)

14

5 0.59 (± 0.45) 0.45) 0.80 (± 0.63) 0.63) 0.54 (± 0.36) 0.36) 0.75 (± 0.54) 0.54)

10 0.57 (± 0.44) 0.77 (± 0.60) 0.54 (± 0.35) 0.71 (± 0.52)

20 0.57 (± 0.43) 0.75 (± 0.59) 0.54 (± 0.34) 0.70 (± 0.53)

16

5 0.63 (± 0.52) 0.95 (± 0.86) 0.61 (± 0.41) 0.87 (± 0.73)

10 0.62 (± 0.48) 0.88 (± 0.74) 0.59 (± 0.39) 0.82 (± 0.65)

20 0.62 (± 0.48) 0.85 (± 0.70) 0.58 (± 0.39) 0.81 (± 0.64)

18

5 0.75 (± 0.66) 1.06 (± 0.99) 0.71 (± 0.49) 1.01 (± 0.86)

10 0.74 (± 0.63) 1.05 (± 0.96) 0.70 (± 0.45) 0.90 (± 0.73)

20 0.74 (± 0.60) 1.03 (± 0.94) 0.70 (± 0.45) 0.90 (± 0.71)

20

5 0.84 (± 0.73) 1.18 (± 1.11) 0.74 (± 0.55) 1.09 (± 0.97)

10 0.81 (± 0.70) 1.10 (± 0.98) 0.74 (± 0.50) 0.99 (± 0.83)

20 0.80 (± 0.67) 1.09 (± 0.96) 0.73 (± 0.49) 1.01 (± 0.89)

Time per 

Frame (ms)

5 146.61 16.52 1238.87 48.93

10 566.74 31.30 > 1.6·10
4

198.34

20 2219.61 61.53 > 23∙10
4

904.95

Table 2: Synthetic experiment for comparing the sparse and dense

deformation space discretization. Runtimes are assessed on a 2.16

GHz Intel Mobile CPU. ACDs are given in pixels.

The results are summarized in Table 1. The product

model performs best on all sequences. Especially, when

considering larger deformations the approximation error

has a strong influence in case of unary potentials while both

pairwise models still yield very good results of always less

than one pixel. The error characteristics are also depicted in

Fig. 3. Throughout this experiment we set λ = 0 since we

do not want to penalize for length changes in case of syn-

thetic deformation where the length preserving constraint

does not hold.

4.2. Deformation Space Discretization

Our second experiment aims at the evaluation of differ-

ent discretization strategies. Since the number of labels is

an important parameter for the runtime of MRF optimiza-

tion techniques, we want to determine a reasonable com-

promise between speed and tracking accuracy. We propose

two different strategies for discretization, a sparse one and

a dense one, see Fig. 1. Both versions are parametrized

by two values, the number of sampling steps along a cer-

tain displacement direction and the range which defines the

allowed maximum displacement. In case of sparse dis-

cretization, the deformation space is sampled along eight

directions, namely horizontal, vertical and diagonal each in



positive and negative direction. In case of dense sets, we

sample the complete square space at a control point. Given

the number of steps S, we get |Lsparse| = 8S + 1 includ-

ing the zero-displacement. For the dense version we get

|Ldense| = (S + 1)2. Similar to the first experiment, we

generate eight synthetic sequences by assigning uniformly

distributed random displacements on the six control points.

Thus, this time the ground truth is not covered by our la-

bel space. The range of the label space is set to the maxi-

mum random deformation and we test different values for

the number of sampling steps, namely 5, 10, and 20.

Again, we use the ACD as a measure of tracking quality.

In this experiment we also evaluate the performance of two

different optimization techniques, in particular TRW-S and

FastPD. The results are summarized in Table 2. Again, we

set λ = 0 and this time only the pairwise product model

is used. The results show that the use of FastPD combined

with sparse label sets is extremely efficient and reasonable

tracking accuracy can be achieved. In fact, the difference

between sparse and dense label sets is quite small regarding

the tracking error while in case of sparse sets we achieve

real-time performance in all experiments. Expectedly, the

TRW-S gives the better results in terms of accuracy but it

is not suitable for real-time applications. This conclusion

encourages the use of FastPD and sparse discretization in

our further application on real data.

5. Application

In the following, we show the successful application of

our algorithm to the tracking of guide-wires in fluoroscopic

image sequences (see Fig. 4(a)). Fluoroscopy is a modal-

ity in which low-dose X-ray videos are generated using

intraoperative C-arms. The tracking information acquired

from such sequences can be used to improve the navigation

task of the physician by enhanced visualization techniques.

Consequently, a reduction of X-ray dose is achieved and the

treatment becomes less hazardous for patient and clinicians.

Since fluoroscopic images are very noisy, a robust yet accu-

rate method must be applied, which runs at 7-15 Hz.

5.1. Initialization

As a preprocessing step, we initialize our tracking algo-

rithm with curves that are automatically extracted from the

first frame of the sequence. To this end, we employ a line

detector [23], which yields an ordered set of points for each

curvilinear structure it detects. Afterwards, a B-spline is fit-

ted to each of the point sets. For our application we use an

algorithm, which minimizes discontinuity jumps in the k-th

derivative when the desired curve has degree k [8]. In our

case we choose a cubic B-spline model, i.e. k = 3.

5.2. Feature Image

Since our algorithm is tracking tubular structures, we use

a feature image comprising the ridgeness measure proposed

by Frangi et al. [9]. Their measure is a function of the

eigenvalues λ1 and λ2 of the Hessian H and is computed as

I =

{

0 if λ2 > 0,

exp(−
R2

B

2β2 )
(

1 − exp(− S2

2γ2 )
) (20)

where |λ1| ≤ |λ2|. RB = λ1/λ2 is a blobness measure

corresponding to the eccentricity of the second order ellipse

and S2 = |H|F = λ2
1 + λ2

2 is a measure penalizing homo-

geneous regions in images. In all of our tests β = 0.5 and

γ = 5.0. An example image is shown in Fig. 4(b).

5.3. Performance Evaluation

We perform tests on two clinical sequences of 142 and

228 frames with a resolution of 512 × 512 pixels. In or-

der to evaluate the tracking results, we manually segment

the guide-wires in each frame. Throughout the experiment

the length preserving term (12) is used where the regular-

ization parameter is set to λ = 0.9. In the first sequence,

the line detection results in a single initial curve whereas

in the second sequence two curves are detected which are

tracked simultaneously (see Fig. 4(c) and 4(d)). Through-

out the experiments, we use the product model and the

FastPD optimization on a sparse label space with 15 steps

and a range of 15 pixels. The range is confirmed by clinical

experts and corresponds to the expected maximum defor-

mation regarding patient’s breathing and physician’s guide-

wire manipulation. Similar to our synthetic experiments,

the ACD measure (17) is assessed for the accuracy anal-

ysis. The mean ACD over all frames is determined to be

0.35 (±0.29) pixels for the first sequence. The tracking er-

ror of the two curves in the second sequence is 0.22 (±0.20)
and 0.31 (±0.27) pixels, respectively. Our method achieves

real-time performance of more than 9 frames per second on

a 2.16 GHz Intel Mobile CPU which includes the computa-

tion of the feature image.

6. Conclusion

In this paper, we introduce a novel framework for the fast

tracking of parametrized curves. Based on an MRF formu-

lation and efficient discrete optimization, our algorithm is

shown to be generic, robust to poor features and high de-

formations of the object to be tracked, while an accuracy

on a sub-pixel level can be continuously maintained. More-

over, hard real-time constraints can be met even if multiple

curves are tracked at the same time.

The application of this paper is the tracking of open

curves representing guide-wires in noisy fluoroscopic im-

age sequences. However, the method can be easily extended



(a) Fluoro Image (b) Frangi Features (c) Sequence 1 (d) Sequence 2

Figure 4: Application of guide-wire tracking. (a) and (b) show a fluoroscopic frame and its respective feature image. (c) and (d) show

exemplary tracking results for the two sequences (zoomed in). Green lines show the manual segmentation, red lines show the tracked

curves. The green stars represent the sparse search space.

to closed curves and used for object contour detection and

tracking. To this end, only the B-spline curve model has to

be slightly altered while the core tracking can be left un-

changed as it only relies on the control points of the spline.

Furthermore, we could benefit from learned shape pri-

ors estimated from a training set by defining an additional

pairwise potential as

θij
prior(xi, xj) = − log(p(d(C̄, Cij))) (21)

where p denotes the probability of a distance d(·, ·) between

a mean shape C̄ and Cij .
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