
Research Article

Discrete Train Speed Profile Optimization for Urban Rail
Transit: A Data-Driven Model and Integrated Algorithms Based
on Machine Learning

Kang Huang ,1,2,3 Jianjun Wu ,1,2 Xin Yang,1 Ziyou Gao,1,2 Feng Liu,4 and Yuting Zhu3,5

1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,
Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China

3School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
4Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5, Bus 6, 3590 Diepenbeek, Belgium
5Beijing Transport Institute, Beijing 100073, China

Correspondence should be addressed to JianjunWu; jjwu1@bjtu.edu.cn

Received 19 October 2018; Accepted 26 March 2019; Published 2 May 2019

Academic Editor: Hocine Imine

Copyright © 2019 Kang Huang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Energy-e	cient train speed pro
le optimization problem in urban rail transit systems has attractedmuch attention in recent years
because of the requirement of reducing operation cost and protecting the environment. Traditionalmethods on this problemmainly
focused on formulating kinematical equations to derive the speed pro
le and calculate the energy consumption, which caused
the possible errors due to some assumptions used in the empirical equations. To 
ll this gap, according to the actual speed and
energy data collected from the real-world urban rail system, this paper proposes a data-driven model and integrated heuristic
algorithm based on machine learning to determine the optimal speed pro
le with minimum energy consumption. Firstly, a data-
driven optimization model (DDOM) is proposed to describe the relationship between energy consumption and discrete speed
pro
le processed from actual data. �en, two typical machine learning algorithms, random forest regression (RFR) algorithm and
support vectormachine regression (SVR) algorithm, are used to identify the importance degree of velocity in the di�erent positions
of pro
le and calculate the traction energy consumption. Results show that the calculation average error is less than 0.1 kwh, and
the energy consumption can be reduced by about 2.84% in a case study of Beijing Changping Line.

1. Introduction

In recent years, urban rail transit has developed rapidly
around the world due to its high capacity, safety, superior
energy performance, and reliable service with su	cient
punctuality [1], which is becoming increasingly important for
large cities development [2]. For example, 35 cities in China
have urban rail transit with total length over 4750 km in 2017
[3]. According to the Web of China Rail Transit, there will be
more than 50 cities operating urban rail transit in the next few
years. In 2020, the total mileage of urban rail transit in China
will be 6000 km, making the rail systems an important com-
ponent of urban public transportation. Around the world,
more and more cities are traveling oriented to public trans-
portation. As shown in Figure 1 (which is from Global Cities

Public Transit Usage Report of moovit), urban rail transit
system has attracted much attention in recent years especially
in some large cities and accounts for a high proportion of
public transportation.However, the quick expansion of urban
rail transit networks led to the problem of larger energy
consumption. Taking Beijing rail transit as an example, in
2011, the total electric consumption of Beijing urban rail
transit was 750 million kwh, and 470 million kwh was used
for traction energy consumption, with the proportion as high
as 55% which has attracted tremendous attention in recent
years (Yin et al. [4]). In 2015, it reached 1.4 billion kwh,
accounting for 40%of the total operating cost of themetro[5],
which was equivalent to the annual electricity consumption
of 730,000 households (annual electricity consumption of
one household is based on 2016 BEIJING STATISTICAL
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Figure 1: Proportions of public transportation and urban rail
transit.

YEARBOOK from Beijing statistical information website).
In the European Union (EU), for instance, transport causes
approximately 31% of total greenhouse gas (GHG) emissions.
Within this sector, metropolitan transportation is responsible
for about 25% of the total CO2 emissions (González-Gil et al.
[6]).�erefore, energy saving has become an important issue
in real train operating in order to reduce the operation cost
and satisfy the requirement of environment protection.

To reduce the energy consumption in urban rail transit,
a lot of models have been developed in recent years which
mainly considered the train controlling between two stations
based on the kinematic equations. �ere are three types in
general, i.e., mathematical optimization models, simulation
methods, and multiple linear regression, and neural network
model based on the data. Although a lot of works had been
done in optimizing speed pro
les, existing methods have
some limitations: (1)�e mathematical optimization model
in theoretical aspects has been sounded. However, the actual
situation is o�en more complex, and the theory of opti-
mization may not get a good performance when the actual
facts are taken into consideration. (2) �e establishment of
the simulation model (e.g., agent-based simulation [7]) is
complicated and costly. Further, there is a certain deviation
between the simulation results and the actual measurement
data. (3)�e traction energy consumption and its in�uence
factors are not linear, and the precision of the multiple linear
regression model is limited. �e neural network relies too
much on the empirical information extracted from historical
data. �e phenomenon of over
tting is prone to occur, and
the generalization abilitymay be hard to guarantee. Besides, it
is easy to fall into the local optimum. In contrast, from view of
the data-driven optimization on the basis ofmachine learning
theories, the limitations could be avoided. Firstly, real-world
data that contains the in�uences from actual factors can
be utilized well. Secondly, machine learning has been well
applied in many 
elds, which provides a method to study
the existing information from data, acquire new information,
and improve performance of data set.�e process that utilizes
input data (real-world pro
le) to obtain output data (energy
consumption) is easier to be realized. �irdly, machine
learning is stable. For instance, the RFR and the SVR have
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Figure 2: Overall framework.

stable performance in the data set, and they have been widely
used in many 
elds, such as biology, medicine, economy,
managementm and so on [8] �erefore, it becomes possible
to optimize the train speed pro
le in the urban rail transit
system on the premise of verifying their e�ectiveness.

Main contributions of this research can be summarized
as follows:(1) A data-driven optimization model (DDOM) is pro-
posed to optimize the speed pro
le in urban rail transit
system. �e traditional speed pro
le optimization model is
easy to be analyzed in the theoretical aspects. In this paper, the
train speed pro
le is optimized based on the view of discrete
pro
le which can be applied in the practice easily.(2) Based on actual data obtained by experimental mea-
surements, a novel method of utilizing the machine learning
algorithm to calculate the energy consumption of speed
pro
le is proposed which can avoid considering longitudinal
train dynamics. Besides, the calculation error of machine
learning algorithm (RFR and SVR) on speed pro
le energy
is veri
ed.(3) To solve the proposed model, an integrated heuristic
optimization algorithm based on RFR and SVR is developed.
In addition, comparison of real data, results show average
2.84% energy reduction.

�e framework of this paper is shown in Figure 2.

2. Literature Review

During last years, many studies have focused on the energy-
e	ciency analysis of train traction; Scheepmaker et al. [23]
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Table 1: Some typical publications about energy-e	cient.

View Publication Years Model type Objective
Energy consumption
calculational method

Solution method

I
Cheng and
Howlett. [9].

1993
Discrete control

model
Energy consumption

of pro
le
Empirical-formula,
numerical integration

Optimize control

I Howlett et al. [10]. 1996
Continuous control

model
Energy consumption

of pro
le
Empirical-formula,
numerical integration

Optimize control

I Wong and Ho [11] 2004
Discrete control

model
Energy consumption

of pro
le
Genetic method Genetic search

I Albrecht et al. [12] 2013
Continuous control

model
Energy consumption

of pro
le
Empirical-formula,
numerical integration

Optimize control

I
Albrecht, Howlett

et al. [13, 14]
2016 a&b

Continuous control
model

Energy consumption
of pro
le

Empirical-formula,
numerical integration

Optimize control

I Yin et al. [15] 2014
Reinforcement

learning
Energy consumption

of pro
le

Empirical-formula,
numerical integration
Simulation platform

Dynamic
programming

I& II Nasri et al. [16] 2010 Simulation model
Energy consumption

of timetable

Empirical-formula,
numerical integration
Simulation platform

Simulation

II Sun et al. [17] 2013 MILP
Energy consumption

of timetable
Empirical-formula,
numerical integration

Genetic search

II Yang et al. [18] 2015a MILP
Energy consumption

of whole line

Taking into
consideration recovery

energy
Genetic search

II Li and Lo [19, 20] 2014 a&b
Integrated-operation

model
Energy consumption

of network
Empirical-formula,
numerical integration

Genetic search

II
Canca and Zarzo

[21]
2017 MILP

Energy consumption
of whole line

Empirical-formula,
numerical integration

Iterative algorithm
and

Python+Gurobi

II Yin et al. [22] 2017 MILP
Energy consumption
and the passenger

waiting time

Empirical-formula,
numerical integration

Lagrangian
relaxation
(LR)-based

heuristic algorithm

I: speed pro
les/driving strategy; II: energy-e	cient timetable.

summarized and gave a review from two aspects, (1) opti-
mizing the speed pro
les and driving strategies to reduce the
energy consumption (e.g., Howlett [24, 25]; Albrecht et al.
[12]; Scheepmaker and Goverde[26]; Yang et al. [18, 27]; Tian
et al. [28]; Sun et al. [17]; Yang et al. [29]) and (2) optimizing
the timetable by means of utilization of regenerative energy
with minimum energy consumption (e.g., Chevrier et al.
[30]; Li and Lo [19, 20]; Wang and Goverde [31]; Wang et
al. [32]; Zhao et al. [33]). Some typical publications about
energy-e	cient research are listed in Table 1. In essence,
energy consumption is related to the train traction process.
It is a fundamental work to improve the speed pro
les.
Over the past 25 years, the challenges in the train speed
pro
le optimization have resulted in a variety of analysis
frameworks. (1) Mathematical optimization models. �e
modern theory of optimal train control was developed during
the years 1992-2014 by the Scheduling and Control Group
(SCG) at the University of South Australia in a collection of
papers. For example, Howlett and Cheng [9] built a discrete
control model and con
rmed the fundamental optimality
of the accelerate-coast-brake strategy for energy-e	cient
train operation. On the basis of the Pontryagin maximum

principle, if no energy is recovered during braking, then
it becomes an optimal switching strategy. Wong and Ho
[11] showed that a genetic algorithm was more robust in
calculational processes. A�er reformulating the necessary
conditions for optimal switching,Howlett et al. [34] proposed
a less general model that the optimal switching points for
each steep section can be found by minimizing an intrinsic
local energy function. Albrecht et al. [13] used the Pontryagin
principle to 
nd necessary conditions on an optimal strategy
and showed that a strategy of optimal type uses only a limit-
ed set of optimal control modes, Maximum Power, HoldP
(Hold using Power), Coast, HoldR (Hold using Regenerative
braking), andMaximum Brake. Albrecht et al. [14] developed
general bounds on the position of optimal switching points
and proved that an optimal strategy always exists. And an
intrinsic local energy minimization principle for determina-
tion of optimal switching pointswas established, which shows
that the optimal strategy is unique. Huang et al. [35] pro-
posed an integrated approach for the energy-e	cient driving
strategy and timetable which was solved by a particle swarm
optimization (PSO) algorithm. Yang et al. [36] employed
an energy-e	cient through the Taylor approximation. �ey
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Figure 3: Illustration of the Changping Line.

Table 2: Overview of measurement characteristics.

Parameter Unit Resolution

Speed km/h 0.001

Position m 0.001

Time s 0.2

Train weight ton 1

Current slope 1‰ 1

EBI speed km/h 0.001

Station spacing m 0.001

Expected acceleration of PID (km/h)/s 1

Electric energy consumption Kwh 1

transformed the train scheduling problem using a nonconvex
formation into a quadratic formation and search the solution
by a PSO method. (2) Simulation method. Yin et al. [15]
built an ITO (intelligent train operation) simulation platform
on the basis of the multiple-point-mass train model that
the platform consists of four parts, i.e., the Input Module,
the Algorithm Module, the Train Module, and the Output
Module. (3) Multiple linear regression model and neural
network model based on the data. Fernándeza et al. [37]
modeled electric trains energy consumption using neural
networks, providing a reliable estimation of the consumption
along a speci
c route when being fed with input data such as
train speed, acceleration, or track longitudinal slope.

Big data analytics (BDA) has increasingly attracted a
strong attention of analysts, researchers and practitioners in
railway transportation and engineering 
led [38]. From a
data-driven view, this paper mainly focuses on how to obtain
the optimal speed pro
le based on well-developed machine
learning algorithms. �ere are still seldom researches aiming
at optimal speed pro
le by this proposed method.

3. Data Analysis and Preprocessing

3.1. Data Overview. During the operation of the subway,
the most widely used power is electricity. Some are used
for the consumption of facilities in the train, such as air

conditioning, lighting, etc. �e rest is for traction of metro
trains. Our data resources are formed by urban rail transit
train running state and corresponding energy consumption,
which are derived from Changping Line of Beijing urban
rail transit. �e operation section of Changping Line is
from the Xi’erqi station to the Changpingxishankou station,
with operating mileage of 31.9 kilometers and total of 12
stations opened (as illustrated in Figure 3). In order to
accurately capture the actual traction power consumption
during the operation of the subway, we installed sensors and
computers on the train. �e total energy consumption and
the energy consumptions of various electrical appliances in
the train are both recorded. �en, the total consumption
is subtracted from the electrical energy consumed by the
electrical appliances, and the rest is the energy consumed by
the traction of the subway train. �e provided data covers
running stage of 4 months. �ere are two circle running
tests every night in the up and down direction. �e types of
recorded data are showed in Table 2.

3.2. Data Preprocessing

Symbols

�: number of section is discretized to.

V
0
� : �th speed point of original pro
le ��.
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Table 3: Part types of the original data.

Time Velocity(km/h) Distance(m)

�01 V
0
1 �01�02 V
0
2 �02. . . . . . . . . . . . . . . . . .�0� V
0
� �0�. . . . . . . . . . . . . . . . . .�0� V
0
� �0�
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Figure 4: MingTombs-Changpingxishankou.

�0� : �th position point of original pro
le ��.
�0� : �th time point of original pro
le ��.��: it is the �th displacement from the beginning of
the urban rail transit section.

V�: the speed at ��.��: the time at ��.∇�: the time interval used to record the speed and
displacement data during train traction.

	0� : distance set at a time interval ∇�. 	0� ={�0� | � =1, 2 . . . �}.
Using these recorded data, we can draw out the running

process of the urban rail transit train. Taking MingTombs-
Changpingxishankou of the down direction, for instance
(showed in Figure 4), the train operation process is divided
into three stages.�e
rst stage is accelerating until approach-
ing the maximum speed limit; the second stage is �uctuating
in the high-speed zone; the third stage is the deceleration
braking until the train stops. Normally, di�erences in track
conditions are caused by construction and geological reasons.
�ere will be limited speed at di�erent locations in each
section of the urban rail transit. In this section, there are
three speed limiting sections: 0 
→ 	���1, 	���1 
→	���2, 	���2 
→ ��. Each part has its maximum speed
limit.

Train running state form is shown in Table 3 (m: the
number of data recorded on an original speed pro
le). A

speed pro
le has three elements, speed, time, and distance.
�e time interval between records in the table is 0.2 seconds.
However, the running time between two stations varies from
almost one to several hundred seconds. �is means that
a speed pro
le may be made up of thousands of records.
We need to calculate the energy consumption from the
pro
le, that is to say, to 
nd the relationship between energy
consumption and the thousands of data records, which is the
so-called “high-dimensional” data in statistics.

Although machine learning algorithms under the back of
big data are suitable for dealing with high-dimensional data,
for extremely high-dimensional situations, large amounts of
data are needed as training sets, and calculation precision is
hard to be gained [39]. �erefore, we choose dimensionality
reduction for the limitation of data quantity. Not only can the
algorithm achieve good training e�ect, but also the accuracy
of the original high-dimensional data can be reserved.

Process of reducing the dimension is as follows: (1)�e
section length 	0 can be obtained from records, then 	0
is divided into � small sections (the uniform segmentation
method is chosen in this paper). �us, the (n+1) points are
represented by {�0, . . . �� . . . �� | � = 0, 1, . . . �}. Clearly,�0 = 0, �� = 	0 (section total length). Taking MingTombs-
Changpingxishankou of the down direction, for instance, as
shown in Figure 5, a uniform interval of 50m and 5m is
selected for discrete process. In Figure 5(a), the speed pro
le
record number drops to 26, getting 26 control points during
the train traction, respectively, in Figure 5(b), speed pro
le
record number is 247, and the density of control points is
higher.(2) Find the latter and previous positions of �� in original
pro
le within ∇� interval, recorded as �−� and �+� . Sequence{�−0 . . . �−� . . . �−� }, {�+0 . . . �+� . . . �+� } is obtained.(3) In the original velocity pro
le, we can get the velocity
and time corresponding to the �−� and �+� , recorded as V−� , V

+
� ,�−� , and �+� . In the small section from �−� to �+� , the train is

assumed to be in a uniformly accelerated state. As shown in
Figure 6, by using V

−
� , V
+
� , �−� , and �+� , the V� can be obtained.

�erefore, we can get the {V0 . . . V� . . . V�}, where V0 = V� =0. Figure 6(a) indicates speed pro
le can be represented by
fewer points. Figure 6(b) shows error between the simpli
ed
pro
le and original one could be ignored when compared the
whole length of section.

3.3. Extraction of Training Data Set and Testing Data Set.
A�er processing above, {V� − ��}, {V+� − �+� − �+� }, {V−� − �−� − �−� }
can be obtained. For example, let ��(� = 0, 1 . . . �) be with
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Figure 5: Pro
les description at di�erent distance intervals. (a) 50m interval. (b) 5m interval.
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le.

a uniform interval of 5m, and part of results are shown in
Table 4.

�e speed pro
le sequence {V� − ��}, � = 1, 2, . . . � and
the traction energy consumptions of each sequence � are
extracted. And the data is shown in Table 5 (q: number of
processed data records). �en, to eliminate dimension, the
data is normalized. �e extracted data is divided into two
parts. 80% is as the training set, and 20% is as the test set.

4. Formulation

In this section, a data-driven optimization model (DDOM)
is proposed to optimize the urban rail transit traction energy
consumption, which discretizes velocity pro
le and describes
the relation between velocity pro
le and energy consumption
as a complex mapping-relation.

4.1. Symbols and Assumptions

Parameters

�0� : velocity set at a time interval ∇�. �0� ={V0� | � =1, 2 . . . �}.
	0� : distance set at a time interval ∇�. 	0� ={�0� | � =1, 2 . . . �}.
�0� : time set with a time interval of ∇�. �0� ={�0� | � =1, 2 . . . �}.
�∗: set of processed speed pro
les, and {{V� − ��} |� = 0, 1 . . . �} ∈ �∗.
��: the acceleration at ��.��: energy consumption of urban rail transit trac-
tion under running time of �.
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Table 4: Part of the velocity series a�er being processed.

� V
−
� (��/ℎ) �−� (m) �−� (∇�) V�(��/ℎ) ��(�) V

+
� (��/ℎ) �+� (�)

1 0 0 0 0 0 0 0

2 9.18 4.64 21 9.657 5 9.9 5.19

3 14.256 9.33 28 14.811 10 14.94 10.16

4 18.612 14.928 34 18.659 15 19.296 16

5 21.492 19.462 38 21.824 20 22.248 20.698

6 24.408 24.646 42 24.593 25 25.128 26.042

7 26.568 28.954 45 27.042 30 27.252 30.468

8 28.764 33.622 48 29.371 35 29.484 35.26

9 30.888 38.652 51 31.442 40 31.608 40.408

10 33.012 44.04 54 33.419 45 33.804 45.918

11 35.172 49.786 57 35.25 50 35.892 51.78

12 36.576 53.812 59 36.991 55 37.296 55.884

13 37.944 57.992 61 38.617 60 38.664 60.14

14 40.068 64.554 64 40.197 65 40.716 66.816

15 41.436 69.118 66 41.709 70 42.156 71.46

16 42.804 73.838 68 43.134 75 43.488 76.254

17 44.172 78.708 70 44.528 80 44.856 81.2

18 45.576 83.732 72 45.897 85 46.224 86.3

19 46.944 88.908 74 47.213 90 47.592 91.552

20 48.204 94.23 76 48.368 95 48.78 96.94

Table 5: Data format of training and testing set.

Serial number �0 �1 . . . ��−1 �� Time Energy consumption

1 V
1
0 V

1
1 . . . V

1
�−1 V

1
� �1 �1

2 V
2
0 . . . . . . . . . . . . �2 �2. . . . . . . . . . . . . . . . . . . . . . . .

q-1 V
	−1
0 . . .. . . . . . . . . . . . . �	−1

q V
	
0 V

	
1 . . . V

	
�−1 V

	
� �� �	

V
���

� : minimum speed limit corresponding to ��.
V
���

� : maximum speed limit corresponding to ��.
����: minimum acceleration limit in operational
section.

����: maximum acceleration limit in operational
section.

����: minimum time limit in operational section.

����: maximum time limit in operational section.

Assumption. During the process of �−� 
→ �� 
→ �+� ,
because the interval is small enough, it is assumed that the
train is in uniform acceleration. According to the theorem of
V�������−����������� relationship in physics, the quadratic

function can be given.

((V+� )2 − V�2)(�+� − ��) = 2�� � = 1 . . . � (1)

(V�2 − (V−� )2)(�� − �−� ) = 2�� � = 1 . . . � (2)

�� = (V+� − V−� )∇� � = 1 . . . .� (3)

Derived by formulas (1)-(3), we get the velocity sequence{V0 . . . V� . . . V�} as follows:
V� = √2�� (�� − �−� ) + (V−� )2

= √ 2 (V+� − V−� ) (�� − �−� )∇� + (V−� )2 � = 1 . . . �
(4)

or

V� = √(V+� )2 − 2�� (�+� − ��)
= √(V+� )2 − 2 (V

+
� − V
−
� ) (�+� − ��)∇� � = 1 . . . �

(5)
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4.2. Train Operation Constraints. During the running state
from one station to a neighboring station, some constraints
should be satis
ed.

Speed limit (SL) constraints: the speed limit of the section
at �� should be satis
ed.

V
���
� < V� < V

���
� � = 1 . . . � (6)

V
���
� and V

���
� are determined by the actual speed limit of the

section.
Acceleration constraints: in order to satisfy the comfort of

passengers on the train, the acceleration needs to be kept in
a suitable range. As shown in formula (7)-(8), ���� and ����
are determined by actual empirical parameters, and ���� >0, ���� < 0.
((V�+1)2 − V�2)(2 (��+1 − ��)) = �� ∈ [����, ����] � = 1 . . . (� − 1) (7)

(V�2 − (V�−1)2)(2 (�� − ��−1)) = �� ∈ [����, ����] � = 1 . . . � (8)

Train operation time constraints: transportation e	-
ciency also should be taken into account. �erefore, the train
running time � also needs to be within a certain range as
shown in formula (9).

� ∈ [����, ����] (9)

where ���� and ���� are determined by the service level
and operational condition.

Train operation distance constraints: to ensure that the
train can reach the station accurately, the total displacement
of the train in the section must be equal to the length of the
section.

�� = 	0 (10)

4.3. Objective Function. When the section running time of
train is �, the corresponding energy consumption is ��, which
has a complicated relationship with the sequence of velocity
points.�at is,��({�0−V0} . . . {��−V�} . . . {��−V�}) i=0,1. . .n.�e
optimization of urban rail transit speed pro
le is to minimize
the energy consumption under the condition of satisfying
transportation task, and the objective function of data-driven
optimization model (DDOM) is showed in (11).

min� = min
�
{�� ({V� − ��} | � = 0, 1 . . . �)}

� ∈ [����, ����] , ({V� − ��} | � = 0, 1 . . . �) ∈ �∗ (11)

5. A Greedily Heuristic Algorithm for Model

In this section, 
rstly two energy consumption calculation
methods based on machine learning algorithm are intro-
duced.�en, by analysis the characters of them, an integrated
optimization �ow is developed with a combination of their
merits.

5.1. Energy Consumption Calculation Based on Machine
Learning Algorithm. From the view of data-driven method,
urban rail transit train runs within each section and pro-
duces a traction speed pro
le that corresponds to an energy
consumption value. Although the factors a�ecting the energy
consumption of each train are not only related to the
speed pro
le, the external factors are determined once the
operational section is 
xed. Moreover, the transmission
characteristic of the train is determinedwhen the type of train
is selected; then the energy consumption is only related to the
speed pro
le during the traction process.�erefore, the speed
pro
le becomes the key to the energy consumption of train
traction.

In this paper, two typical machine learning algorithms
(RFR and SVR) are introduced, where RFR is utilized to
get velocity points’ importance degrees in di�erent positions,
which can be responsible for obtaining these pairs space-
speed with a major contribution to the energy consumption.
And, SVR is employed to calculate the energy consumption
of the pro
le.�eprogramming environment is Python 3 and
its machine learning module is scikit-learn.

5.1.1. Random Forest Regression (RFR) Algorithm Module.
Random forest is a kind of ensemble learning algorithm,
which uses multiple trees to train and predict a classi
er, and
also can be used for regression [40]. Based on decision trees
combined with aggregation and bootstrap ideas, random
forests were introduced by Breiman in 2001, which added
an additional layer of randomness to bagging. In addition
to constructing each tree using a di�erent bootstrap sample
of the data, random forests change how the classi
cation
or regression trees are constructed. �ey are a powerful
nonparametric statistical method allowing consideration in a
single and versatile framework regression problem [41]. �e
random forest optionally produces two additional pieces of
information: a measure of the importance of the predictor
variables and a measure of the internal structure of the data
(the proximity of di�erent data points between one and
another). In this paper, we can take advantages of this module
to get velocity points’ importance degree in di�erent positions
which can be used in heuristic solution process for model.

Evaluation and Analysis of RFR. In the utilization of RFR
algorithm, two important parameters should be calibrated:
the number of split attributes (Mtry) and number of decision
trees (Ntree). For simplicity, the enumeration method is used
to traverse the two parameters. �e convergence process is
shown in Figure 7 over ten experiments. We can see that,
when Ntree≥50, the average error is close to 0.1kwh. For
di�erent Mtrys, errors are shown in Figure 8(a), and there
is an acceptable convergence range in Figure 8(b). When the
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Figure 7:�e error values at di�erent Ntrees.

Mtry=2 or 3, the error is minimal. �erefore, the optimal
parameter combination used in this paper is Mtry=2 or 3
andNtree≥50. By using the FR algorithm, the traction energy
consumption evaluation average error is less than 0.1kwh and
within range of 1%.

In addition to the high precision evaluation ability, we
also get importance degrees of the velocity in di�erent
displacements during the traction energy consumption of the
urban rail transit.We can
nd that the speed at which position
is more signi
cant to the energy consumption in a section,
which indicates contributions to energy consumption of pairs
space-speed. For instance, in the section of MingTombs-
Changpingxishankou, section length is 1230m, the impor-
tance degrees at di�erent positions are shown in Figure 9.

5.1.2. Support Vector Machine Regression (SVR) Algorithm
Module. Support vector machine (SVM) algorithm is from
statistical learning theory (SLT), which is based on the struc-
tural risk minimization principle that can avoid excessive
learning problems and ensure the generalization ability of
the model. In essence, it can solve the convex quadratic
programming problem and avoid falling into the local min-
imum. It can be applied not only to classi
cation problems
but also to the case of regression [42]. �erefore, it can be
divided into support vector classi
cation (SVC) and support
vector regression (SVR). Because of its solid theoretical
foundation and its complete theoretical derivation, support
vector machine is an e�ective tool in dealing with small
samples, nonlinear, local issues. In this paper, it is applied to
calculate the energy consumption based on real data.

Before using the SVR, the 
rst step requires the determi-
nation of the kernel functions. �e second step is to optimize
parameters corresponding to di�erent kernel functions. In
this paper, three typical kernel functions are veri
ed: radial
basis kernel function (RBF), linear kernel function (LIN-
EAR), and polynomial kernel function (POLY).(1) For RBF, calibration parameters include� penalty fac-
tor and&���� value. As shown in Figure 10(a), convergence
rate of RBF is very fast. When � ≥ 20, the error will drop to
a lower level. As � ≥ 100, the average error of traction energy

consumption can reach about 0.1kwh. �e best combination
of parameters is � ≥ 30, and &���� = 3.(2) For LINEAR, calibration parameter is � penalty fac-
tor. As shown in Figure 10(b), the convergence is slow. When� ≥ 900, the average error of traction energy consumption
also can reach about 0.1kwh, which means that it will take a
little longer time to reach minimum errors.(3) For POLY, calibration parameter is � penalty factor.
As shown in Figure 10(c), average error is �uctuating up-
down at 0.1Kwh and not stable, which fails to achieve better
convergence results.

Comparing the performance of the three kernel func-
tions, average error of the RBF kernel function is the best,
which means that the traction energy consumption can be
calculated under the optimal parameter conditions.

5.1.3. Analysis of the Two Machine Learning Algorithms. For
RFR algorithm, stable performance is in the data set, and
the evaluation results are satisfactory. At the same time, the
more momentous point is that the importance degrees of the
velocity points in di�erent positions can be sorted, which
will be a valid guiding to the optimization control of the
speed pro
le. For example, we can adjust the speed with
high importance degree in the speed pro
le optimization
process. As for the SVR algorithm, although the performance
is not good in some kernel conditions, the ability to calculate
in the RBF kernel function is also serviceable enough. For
optimizing the speed pro
le of an urban rail transit train, we
should 
nd a speed pro
le that is not less than the existing
energy consumption or is even lower than the existing energy
consumption. However, the RFR algorithm has a fatal �aw:
random forest cannot make the output beyond the range
of data set, which may lead to over
tting in modeling
of some speci
c data with noise. �erefore, the design of
urban rail transit speed pro
le optimization algorithms could
be bene
cial to the combination virtues of the SVR and
RFR.

5.2. Optimization Process. Form the view of discrete train
speed pro
le optimization, the key problem is how to design
a method to get a more energy-e	cient pro
le; thus a group
of combinations {V� − ��}(� = 0, 1 . . . �) should be found.
Velocity V� in every position can be in a range, and the
number of {V�−��}(� = 0, 1 . . . �) combinations will be beyond
imagination. It is necessary to discretize the speed changing
value. �us, there should be a step size used for the speed
adjustment. A simple and e�ective step size is the unit from
recording instrument (in our experiment, it is 0.001km/h).
Further, a heuristic process can be proposed to reduce the
combinations: we can utilize important degree from RFR
to adjust the velocity with 
xed order. �en, energy-saving
pro
le will be easier to get by the heuristic process. As shown
in Figure 11, in one operation section, of the real-world data,
there are many pro
les under the same running time but
with di�erent energy consumptions. Under every running
time condition, we can try to 
nd a satisfactory pro
le at
this 
xed running time. �en, the best of them with di�erent

xed running time is taken as the optimal solution. Based
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Figure 8: Convergence process and errors in RFR. (a) Errors in di�erent Mtrys. (b) Convergence range.
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on this, we develop an integrated greedily heuristic algorithm
combined with RFR and SVR.

Parameters

'+: set of index values corresponding to the speed at
which the importance degree is arranged in descend-
ing order.

'−: set of index values corresponding to the speed at
which the importance degree is arranged in ascending
order.'(�)+: in descending order, the speed index value
corresponding to the ��ℎ importance degree.'(�)−: in ascending order, the speed index value
corresponding to the ��ℎ importance degree.
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Figure 11: Distribution of solutions.

Step 1. In the case of optimal parameters, random forest
regression (RFR) Algorithm Module (Section 5.1.1)) is used
to obtain the importance degree of speed series {V�−��}.�en,
sort them (because the importance degrees of {V0 − �0}. {V� −��} are zero, they are excluded) in descending order. And
the * speed sequences {V�+ − ��+} of the previous m%(* =� ∗ �/100) are selected. For the corresponding importance
degree �+� (1 ≤ � ≤ *), we can get �+1 ≥ �+2 . . . ≥ �+� . . . ≥ �+�.
�en, in ascending order, similarly, the * speed sequences{V�− − ��−} of the previous m% are selected, and get �−1 ≤�−2 . . . ≤ �−� . . . ≤ �−�.
Step 2. Initialize the operation time � of the urban rail transit
train, and set �0 = ����. According to the minimum and
maximum time in the data, ����, ���� are determined, and
discretized unit of time is ∇�. �en let � = 1, 5 = 0.
Step 3. In the case of � = �0 + 5 ∗ ∇�(5 = 0, 1, 2 . . . 5���) ∈[����, ����], we choose the minimum energy speed pro
le����� from the data set, and begin to adjust the velocity
sequence. �e adjustment process is as follows: assume that
the �+� {� = 1, 2 . . . .*} importance degree corresponds to{V� − ��}, then adjusted speed V� is V

∧
� = V� + 6 ∗ 7(6 =6��� . . . 0, 1, 2 . . . 6���) (6���, 6���, V∗�,���, and V

∗
�,��� should

meet acceleration constraints and speed constraints). To
ensure the train can reach the station, displacement change
caused by adjusting V� is∇�∧� (in formula (12)), whichmust be
o�set by another displacement change ∇�−� (in formula (13))

in di�erent positions. As shown in Figure 12, we choose the
speed V� at (�−� {� = 1, 2 . . . .*} corresponds to V�) to o�set the
displacement change.

Step 4. �en, we can get a new pro
le a�er adjustment of
V� and V�. Support vector machines regression algorithm
(SVR) module (Section 5.1.2) is used to calculate the energy
consumption. We adjust the velocity until 6 = 6��� and
get the minimum energy consumption �����,� during the

adjustment process and the corresponding speed V
∧
� . �en,

let V� = V
∧
� and V� = V

∧
� .

Formulas (12) and (13) show the calculation of ∇�∧� and∇�−� where velocity changes are ∇V∧� and ∇V−� . To ensure the
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Figure 12: Explanation of changes of velocity and displacement.

balance of displacement, let ∇�∧� = ∇�−� .
∇�∧� = ∇V∧� ∗ (�

−
� − �−�−1)2 + ∇V∧� ∗ (�

−
�+1 − �−� )2

= ∇V∧� ∗ (�
−
�+1 − �−�−1)2 = (V∧� − V�) (�−�+1 − �−�−1)2

(12)

∇�−� = ∇V−� ∗ (�
−
� − �−�−1)2 + ∇V−� ∗ (�

−
�+1 − �−� )2

= ∇V−� ∗ (�
−
�+1 − �−�−1)2 = (V−� − V�) (�−�+1 − �−�−1)2

(13)

Step 5. If � = *, then go to Step 6; if � = � + 1, repeat Step 3.

Step 6. If � = ����, then go to Step 7; if 5 = 5+1, repeat Step 3.
Step 7. Get all the energy consumption �����,� , � ∈ [����, ����].
�en,8��� = ���� �����,� , * = � ∗ �/100, � ∈ [����, ����].
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Figure 13: Algorithm �ow.

Finally, algorithm �ow is shown in Figure 13.

6. Numerical Experiment

6.1. Section Parameters

Section Parameters

Sectional length(��): 1230m.

Speed limits(SL): (1)0 − 200�, 	9 = 60��/ℎ (2) 200� − 1100�, 	9 = 80��/ℎ (3)1100� −1230�, 	9 = 50��/ℎ.

Acceleration: ���� = −���� = 1.5�/�2.
Operation time: ���� = 95.4(�), ���� = 103.4(�).

We take Changping Line MingTombs-Changpingxishankou
section of down direction as a numerical experiment to
explain the optimization process, and the section parameters
are listed as above. And there are two cases in di�erent
intervals. A complete operation state is showed in Figure 14.

6.2. Optimization Result

Case 1. ��(� = 0, 1 . . . �) is set as an uniform interval of
5m, and let V0 = V246 = 0, �0 = 0, �246 = 1230. �e
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Figure 14: Train operation state.
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Figure 16: Optimization results with big intervals. (a) m=50%. (b) m=100%.

operation time is 103.4s. �e results a�er optimization are
shown in Figure 15. We can see that the optimal pro
le is not
smooth. It suddenly increases or decreases in some places.
Apparently, the availability of the optimized pro
le is not
enough.

Case 2. ��(� = 0, 1 . . . �) is set as an uniform interval of 50m,
and let V0 = V26 = 0, �0 = 0, �26 = 1230. Figure 16
shows the optimal results when � = 50% (showed in

Figure 16(a)) and� = 100% (showed in Figure 16(b)). In this
case, the operation time is also 103.4s. �e optimized energy
consumption can be reduced by 0.65 kwh. We can see that
the speed pro
le is much smoother than Case 1 with rate of
energy reduction is 3.1%(0.65/21∗100%). In Figure 16(a), for
m=50%, a�er optimization, the acceleration stage is slightly
�at. However, in Figure 16(b), when m=100%, whole speed
pro
le is �atter compared to the original pro
le, and it ismore
valuable in practice.
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Figure 17: �e obtained pro
les in di�erent sections. Section (a)–(j) are listed in Table 6.

Operation sections with di�erent distances should not
have the same discrete interval. For longer section, the
interval could be bigger. For example, distance of Xi’erqi-
Life Science Park is 5455m, and interval could be 200m.

In addition, the comparison of pro
le before and a�er
optimization is shown in Figures 17(a)–17(j). Optimization
results of other operation sections are listed in Table 6. We
can see that, in some section, the maximum energy saving
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Table 6: Optimization results of other sections.

Section name
Minimum energy

consumption of actual
data(KWh)

A�er
optimization

(KWh)

Net energy
saving(KWh)

Energy saving
(%)

Section
length(m)

interval(m)

Xi’erqi-Life Science Park 28 26.94 1.06 3.79 5455 200

Life Science
Park-Zhuxinzhuang

19 18.44 0.56 2.95 2405 100

Zhuxinzhaung-
Gonghuacheng

19 18.36 0.64 3.39 3810 200

Gonghuacheng-Shahe 20 19.13 0.87 4.35 2037 100

Shahe-Shahe University
Park

22 20.88 1.12 5.08 1967 100

Shahe University
Park-Nanshao

30 29.45 0.55 1.83 5364 200

Nanshao-Beishaowa 14 13.55 0.45 3.21 2003 100

Beishawa-Changping
dongguan

16 15.66 0.34 2.13 1687 100

Changping
dongguan-Changping

22 21.58 0.42 1.91 2439 100

Changping-MingTombs 39 38.56 0.44 1.13 3522 200

MingTombs-
Changpingxishankou

21 20.35 0.65 3.10 1230 50

Total 250 242.9 7.1 2.84 31964 -

Average value 22.73 22.08 0.65 - - -

is 5.08% (in the section Shahe to Shahe University Park),
which is a good performance. And, for a 31.9km lengthwith 12
stations train line, energy saving is 2.84%. �e improvement
may look modest when compared with previous researches
(most claim saving energy above 4%). However, our improve-
ment is compared with a real-world result that had already
been imposed with an optimal control (traditional train
optimal control with on the basis of Pontryagin maximum
principle). �ere is an ATO (automatic train system, which
is equipped with optimal control) in Beijing Changping Line
and Yizhuang Line. Yizhuang Line and Changping Line
have some similar features, train type, number of organized
group, passenger intensity, power supply mode, and so on.
A well-designed method in real world that is applied into
Yizhuang Line can achieve average saving energy blow 3%
from the operator’s statement. �erefore, the improvement
based on an ATO pro
le which makes it look modest is
reasonable. Besides, for di�erent section, there are di�erent
improvements. �e results may be triggered by many factors,
like di�erent section external environments (radius of curve,
slope, air humidity, and so on). �e optimized control e�ects
in di�erent sections are key to the room for improvement. If
the room for improvement is limited, the real improvement
may be also limited. �erefore, there is no quantitative result
to illustrate the di�erent improvements in each section.

7. Conclusion

Reducing train traction energy consumption is one of the
e	cient ways to cut energy cost in urban rail transit systems.
And to protect the environment, the optimization of urban

rail transit traction energy conservation has been a signi
cant
task in urban rail transit operation and management. �e
traction energy consumption of a single train is related to the
speed pro
le between stations.When energy-e	cient pro
les
are applied in every section, there will be a positive e�ect on
reducing energy consumption of the urban rail transit system.
�erefore, train speed pro
le optimization is a fundamental
work.

In this paper, the speed pro
le optimization problem is
discretized, and the decision variables of the speed pro
le
become a series of space-speed points. From this viewpoint, a
data-driven urban rail transit train speed pro
le optimization
model (DDOM) is proposed to describe the relationship
between pro
les and energy consumption. Two machine
learning algorithms, namely, random forest regression (RFR)
and support vector regression (SVR), are taken into account.
RFR is applied to get the important degree of velocity in
positions, and the degree is utilized as heuristic information
to decide the optimization order of velocity in di�erent
positions. SVR is used to calculate energy consumption of
pro
les with a high accuracy (95%). Combined with the
advantages of the two algorithms, an integrated heuristic
greedy optimization algorithm is developed to solve the
model, which can reduce energy consumption by 2.84%.
In some theory research, energy conservation percentage is
higher than our results. However, few are veri
ed based on
the real-world data. Furthermore, our methods may be quite
simple and can be applied to practice easily.

Nevertheless, because the data samples are far from
enough, when adjusting velocity in di�erent positions to get
a new pro
le in the optimization process, range of velocity
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change is limited. �ere is still some room for an improve-
ment on the basis of the optimization results. Although there
are many di�erent views, the data-driven method is new
to the problem, and applying machine learning algorithms
to the 
eld of energy saving in urban rail transit is the
innovation. Future research can be focused on the following
areas. Firstly, a further improved algorithm for a di�erent
heuristic strategy could be studied. For instance, based on the
data machine learning method, the regenerative electricity
consumption in the braking process may be reused in the
trains from neighboring sections. �us, instead of optimizing
one single train speed pro
le in each section separately, train
speed pro
les fromneighboring sections should be taken into
account. Secondly, in the urban rail transit networks, if power
supply in the network nodes (transfer stations) is transmitted
from the same transformer substation, the energy-saving
optimization of trains can be extended to the urban rail transit
network.

Data Availability

�e data used to support the 
ndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

�e authors declare that they have no con�icts of interest.

Acknowledgments

�is work is supported by the China National Funds for
Distinguished Young Scientists (71525002), National Nature
Science Foundation of China (71890972/71890970, 71771018,
and 71621001), and Beijing Municipal Natural Science Foun-
dation (L181008).

References

[1] X. Guo, J. Wu, J. Zhou, X. Yang, D. Wu, and Z. Gao, “First-train
timing synchronization using multi-objective optimization in
urban transit networks,” International Journal of Production
Research, 2018.

[2] L. Kang, X. Zhu, H. Sun, J. Wu, Z. Gao, and B. Hu, “Last train
timetabling optimization and bus bridging servicemanagement
in urban railway transit networks,” OMEGA -�e International
Journal of Management Science, vol. 74, no. 1, pp. 31–44, 2018.

[3] X. Yang, H. Yin, J.Wu, Y. Qu, Z. Gao, and T. Tang, “Recognizing
the critical stations in urban rail networks: an analysis method
based on the smart-card data,” IEEE Intelligent Transportation
Systems Magazine, vol. 11, no. 1, pp. 29–35, 2019.

[4] J. Yin, Y. Wang, T. Tang, J. Xun, and S. Su, “Metro train
rescheduling by adding backup trains under disrupted scenar-
ios,” Frontiers of Engineering Management, vol. 4, no. 4, pp. 418–
427, 2017.

[5] T. Tang and J. Xun, “Research on energy-e	cient driving
strategy in Beijing Yizhuang line,” Journal of BeijingJiaoTong
University, vol. 40, no. 4, pp. 20–24, 2016.
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