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Discrete Variable Methods

for a Boundary Value Problem

with Engineering Applications

By Riaz A. Usmani

Abstract. In this paper we develop numerical techniques of order 2, 4 and 6 for the

solution of a fourth order linear equation. A priori error bound is obtained for the

fourth order method to prove the convergence of the finite difference scheme. A suf-

ficient condition guaranteeing the uniqueness of the solution of the boundary value

problem is also given. Numerical illustrations are tabulated and results compared

with the classical Runge-Kutta method.

1. Introduction. We consider the problem of bending a rectangular clamped beam

of length / resting on an elastic foundation. The vertical deflection w of the beam satis-

fies the system

(1 , ) [L + ikID)] w = ET1 q(x),      L = d4/dx4,

w(0) = wil) = w'iO) = w'il) = 0,

where D is the flexural rigidity of the beam, and k is the spring constant of the elastic

foundation, and the load qix) acts vertically downwards per unit length of the beam.

The details of the mechanical interpretation of (1.1) are given in [7, p. 175]. Mathe-

matically, the system (1.1) belongs to a general class of boundary problems of the form

(1 2) (I + /(x)Mx) = *(*),      a < x < b,

yia) = Ax,   yib) = A2,   y\a) = Bx,   y\b) = B2,

where the functions fix) and g(x) are continuous on [a, b] and A¡, B¡ (i = 1, 2) are fi-

nite real arbitrary constants. The analytical solution of (1.2) for arbitrary choices of

fix) andgix) cannot be determined. Faced with this difficulty, we resort to discrete

variable methods for obtaining an approximate solution of the system. A numerical

technique used for approximating y over a finite set of grid points [xn } C [a, b] by fi-

nite difference methods is given in [1, p. 165].

We introduce the set {xn },

xn=a + nh,    A = (A -a)(-V 4- 1),    w=0(l)/V4-l.

We further define the discretization error en = yn -zn, whereyn =yixn) and zn is its

numerical approximation. The authors of [1] have proved

(1.3) max   ("   max      lej, le. I/A3'2, le^l/A3'2] < 0(A3/2)
\2<n<N-l J

provided fix) > 0 on [a, b]. Babuska et al. thus showed that the resulting error is

0(A3/2) based on the finite difference scheme.
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1088 RIAZ A. USMANI

(1.4)

0)  -4^0 4- lyx - 4y2 +y3= 2hy'0 + aV<4> + 0(A3),

(ii)  SV„ = AV<4> + 0(A6),      n = 2(1)/V- 1,

_(iii) ^_2 - 4>v_. 4- 7^ - 4^. = -2A^+1 4- A4^4). + 0(A3).

They also remarked that in case of the boundary value problem (1.2) one may arrive at

a more detailed analysis of the inverse matrix associated with the system of linear equa-

tions (1.4) in relation to the properties of the corresponding Green's function. For in-

stance, such an analysis would yield max„ \en I = Oih ).

The purpose of this note is two-fold.  We first examine the conditions under

which the system (1.2) has a unique solution.  We then pass on to describe ways in

which the numerical solution of (1.2) obtained in [1] can be improved.  In fact, we

develop and analyze three finite difference schemes of order 2, 4, and 6, respectively,

to obtain an approximate solution of (1.2).  In the end numerical evidence is included

to demonstrate the superiority and practical usefulness of our finite difference scheme

for a wider class of boundary value problems (1.2) than considered in [1].

2. Uniqueness of Solution of (1.2).

Theorem 2.1.    77ie boundary value problem (1.2) Aas a unique solution if

inf fix) = - 7? >- a/ib - a)4,
X

where a = 500.5639. . . .

We preface the proof of this theorem by a lemma.

Lemma 2.2.   For the system

iL - X)y = 0,   yia) = /(a) = yib) = y\b) = 0,

X   <  0   «   not  an   eigenvalue;   X   =   Xn   >   0   is  an   eigenvalue  provided

cos [(6 -a)X^]cosh[(A - a)\%] = 1.

The proof of the lemma is not difficult.  We omit it for brevity.   For correspond-

ing eigenfunctions, see [7].  We remark that the equation cos p cosh p = 1 has in-

finitely many roots

p. < p2 < ■ ■ • < pn < ■ ■ ■

with pn —*■ °° as n —> °°.  Also, two distinct roots he in each one of the intervals

((4m - l)/2, (4m 4- l)/2),      m = 1, 2, . . . .

We obtain numerically, using Newton-Raphson's method, the smallest root

p. = 4.7300407. . .

and ib - a)4X. = p4 = o or X. = alib - a)4.

The proof of Theorem 2.1 now follows from Lemma 2.2 in the standard way.

3. Finite Difference Methods.   Our basic finite difference formulas can be

derived from

(3-D ^v=(54456+aôô8-745l0 + ---K - = 2'3'
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see [2, p. 19].   From (3.1) we obtain the scheme

(3.2) SVB =**;#+g äV6-^).      n=2il)N-l,xn_2<^„<xn + 2.

We note that from (3.2), on neglecting truncation error, and setting yn ~ zn, we

obtain

(3.3) 54z„=A4z|)v,      « = 2(l)rV-l.

The system (3.3) gives us N - 2 equations in the N unknowns zn, n = 1(1 )N.   At

the boundaries we develop the following formulas

(0 -y»*,, +9yx-\y2+y3= 3hy'0 + g [Sy™ + 18^] + ¿AV6^,),

(3.4),.... 9 ^0 11
(") yN-2 - 2 ■%-! + ^/v - y »%+1

= -ifty'N+i +^[x¥N-3ylN+1] +¿aV6W.

where x0 < £. < x3 and xN_2 < %N < xN+..

From (3.4), on neglecting truncation errors and settingyn — zn, we obtain two

more equations in the zn unknowns

(i)  -y z0 + 9z. - | z2 + z3 = 3A¿?. 4- ̂  [-3z'0v 4- 18z«v],

(3-5)

00 zN-2 -\zN-i +9^-y^+, =-3Ai92 + ^[18zjj-3z*+1],

where zj,v =-/„z„ + £„.

Therefore, Eqs. 3.5(i), (3.3), and 3.5(h) form our method of order 2.  We shall

give a general method for proving the convergence of our finite difference scheme in

the next section.  Note that the matrix associated with the system of linear equations

in unknowns zn is a five-band matrix.

Our fourth order method is based on the formulas

11 9
(i) -y^o +9^i -j?2 + y*

.4 g

= 3hy'o + 2~8Ô [8y° + 151^ + 52^2V ~J%\ + é¡Oyo" + °(h^

00 « V« = t [>i-i + 4^v + ̂ v+11 -1(5 -C" + oih9),

(3.6)
..... 9 , n 11
(ni) yN_2 - 2^-1 + 9yN _ y-»Vu

= -Ifty'N+i  + m ^N-2 + 52^_, + I5ly% + 8y"+x]280

vV'i + oi*9)-
A8

6720-
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1090 RIAZ A. USMANI

The derivation of these formulas can be effected by standard methods given in [1],

[4].  However, 3.6(h) can be very easily deduced from (3.1) by operating on both

sides with (1 4- a52) and choosing a so that the coefficient of S6 is zero and finding

the coefficient of S8 to be 1/720.   (This technique was pointed out to the author

by Professor L. Fox, Oxford University, United Kingdom.)

Finally, our sixth order method is based on the scheme

(i) -y^o+97, -\y2 +y3=3hy'0+h* ¿ ßrf --^AlVtt,),
n = 0

x0 <£. <x3,

00 *4y* = In" Hrt + 124^-i + 474ynv + 12V;+1 -ylnv+2]

(3-7) ,,0
yx(V'        x„_2<^<xn + 2,n = 2H)N-l,

3024'

(iii)   yN_2 -\yN_x  +9y„--jyN+l  =   '^'n+I   + **    Z   -W^-JH-..

9 , „        11 s

960 ^     y   ^N^' XN-2  < £¿V < XAT+ 1 '

where

ÛV 0P • •• - 0s) = 33^ (937, 18240, 5990, 140, -135, 28).

The equation 3.7(h) can also be deduced from (3.1) by operating on both sides of it

with (1 4- cyS2 4- ßo4), choosing a, ß so that the coefficients of S6 and S8 are both

zero, and finding the coefficient of 510 to be 1/3024.

4.  Convergence of our Numerical Methods. Let Y = (yn), Z = (zn),C = (cn),

T = (tn), E = (en) be A-dimensional column vectors.  Then we can write the standard

matrix equations for any of the three numerical methods described in the previous

section as follows:

(i) MY = C + T,

(41) (ii) MZ = C,

(iii) ME = T.

We also have in each of the three cases

(4.2) M = A+ h*BF,    F = diag(/„),

where A = (amn), A~x = (a* „) with a,. = aNN = 9, a. 2 = aNN_x = - 9/2; other-

wise,
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DISCRETE VARIABLE METHODS 1091

a      =mn

6,

-4,

1,

0,

m = n,

\m -n\ = 1,

Im -ni = 2,

Im -n\ >2.

It is known [8] that A is a monotone matrix and

(4.3) u-^T^,^f[¡+-^\.
see Appendix for proof.

Our main purpose is to derive a bound on If II = maxn \en\.  In order to ac-

complish this we need the following lemma.

Lemma 4.1.  If B is a matrix of order N and \\B II < 1, then (/ 4- B)~x exists

and 11(7 4- B)~x II < 1/(1 - IIAll).

For proof see [3, inequality (3.6.9)].

We now turn back to the error equation 4.1(iii) and write it in the form

(4.4)
E = M~XT= ÍA+ h*BFTxT = (/ 4- h*A~xBF)~XA~xT,

llfll <
i a-1 i il m

by Lemma 4.1
1 -hA\\A~x\\ 115II If I

provided

(4.5) HAlA-l\ \\B\\ llflKl.

For instance, for our numerical procedure based on (3.6), we have

in < 0.002183 A8M8,   Ms = max l/8>(x)l,

B =

151    13
280    70

2
3

1
6

1"280

1
6

2
3

2
3

1      13    151"280    70    280

so that II5II < 1, If I = maX;<. l/(x)l = fM, and

(4.6) llflKAT.4,

where
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1092 RIAZ A. USMANI

K = 0.002183M8G(1 -fMG)~x,    G = &^- + h (¿'^"K

provided fM satisfies

f 384
(4.7) fa - W») I < {b.ar+8h3(b_ay

While stronger results of the form (4.7) no doubt exist, the upper bound in (4.7) can-

not be disregarded altogether.  The inequality (4.6) proves the convergence of the

method.  In a similar manner we can prove the convergence of the method based on

3.5(i), (3.3) and 3.5(h) and, finally, the convergence of the method based on Eqs.

(3.7).

5.  Numerical Illustrations.  In this section we illustrate the three numerical

techniques discussed in Section 3 by the following two boundary value problems of the

type (1.2), with /(x) > 0.

(5.1)   y*+4y = l,   yi-l) =yH) = 0, /(-I) = -/(» = 4(cofh ^TosV

The analytical solution of (5.1) is

yix) = 0.25 [1 - 2 [sin 1 sinh 1 sin x sinh x

4- cos 1 cosh 1 cos x cosh x] /(cos 2 4- cosh 2)].

yiv +xy = -(8 4- 7x +x3)ex,

(5.2)
y(0)=y(l) = 0,   /(0)=1,   y'(l) = -e.

The analytical solution of (5.2) is y(x) = x(l - x)ex.

All computations are performed in double precision arithmetic using an IBM

370/65 computer at The University of Manitoba.  The experiments are summarized

in Table I.

To broaden the scope of the application of our methods, we now consider a

boundary value problem of the form (1.2) with f(x) changing sign on [a, b].  Con-

sider, for instance

yv-^ = -(ll+9x+jc2-xV,      -Kx<l,

(5-3)

yi-l)=yil) = 0,   y'(-l) = 2e-x,   y'(l) = -2e,

with >>(x) = (1 -x2^* as its analytical solution.   We summarize the experimental

results in Table II.

It is verified from Tables I and II that on reducing the step-size from A to A/2,

the maximum observed error llfll is approximately reduced by a factor 1/2P, where

p is the order of the numerical method, except possibly when the rounding errors are

significant.  Such entries in these tables have been underlined.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DISCRETE VARIABLE METHODS 1093

O

A

s
is

,o

UJ
-J
03
<

C
O

_2
o

¡*)

O

in

-O
o

c
'Ü

Ë
o
o

-O
-.
•ca
>

-O
o
o.

C

c
o
o

■a
o

■a
»H

O

5

O
-C

ü
E

-O

O

-C

-o
o

-C

E

-T3
»-
O

C
CS

-a
o

J3

-a
IM

O

-C-»»
NO

-o
o

J3

T3

O

-g

-o
o
»c

-a

O

-o
c

»h        fn      »»

b b     b

r^

o

b b

—c       -h     ON
-O ON       ■*}■
t—     <^i    -h

odd

o
»     -I

b b b
X

■*!•      m      no
NO        00        »-i
r-      r-~      i/->

C4 O
(S

b b

O    o

»i-      *f>

b b

00
LO

CN

x

ON
in
oq
d

x

es
d

r^
m

U-) \£>

t~ ON »H -H

b b b b

—i        (N        O     O
o     on     o   »-<

d     d     d   d

b b b

00       o

o     d

(N
00
rs

b b b

ON       fS

O     O

b     b
XXX

r-     no     o
r-     O     O
-H Tt —,

odd

o
i/->
es
d

es
NO

■"-■

c.
fs

b

NO
rs

Nl-

m «

b

00

b

o
o
r^

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1094 RIAZ A. USMANI

m

Table n

Observed II f II for the problem (5.3), fix) changes sign, A = 2~m

4th order method 6th order method

1

2

3

4

5

6

7

0.128 x 10~3

0.127 x 10"4

0.852 x 10-6

0.543 x 10~7

0.341 x 10"8

0.303 x 10~9

0.237 x 10-6

0.494 x 1(T8

0.807 x 10,-10

-il

0.148 x 10,-8

0.156 x IP"

0.231 x IP"10

0.351 x 10-9

For the sake of comparison we also solved some of these boundary value prob-

lems by a modified shooting technique, the details of which are given in [5].  It can

be shown that a boundary value problem (1.2) is equivalent to a system of 12 first or-

der differential equations.  The details are omitted for brevity. The resulting system of

differential equations is solved by a fourth order Runge-Kutta method [6, p. 110].

Table m

Observed llf II

Problem Runge-Kutta fourth order

method for modified

shooting technique

Our fourth order method

(5.1) 1/8

1/16

0.140 x 10-5

0.879 x 10-7

0.282 x 10-7

0.179 x 10-8

(5.2) 1/8

1/16

0.174 x 10-4

0.113 x 10_s

0.783 x 10-7

0.516 x 10-8

Table III shows that our fourth order method outperforms the classical fourth order

Runge-Kutta method.
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Appendix.  The inequality (4.3) is proved by Usmani and Meek in [8], but for

the sake of completeness we shall outline the proof very briefly below.  The matrix

A defined by (4.2) is of the form

9       aT        0

A=    b   Pn-2     b*

0     aTR      9

where aT = (-9/2, 1, 0, . . . , 0), bT = (-4, 1, 0, . . . , 0). Here T denotes the

operation of transposition and for a row vector v = (u., v2, . . . , vn), t/* = (uB,

vn-i, ■ ■ ■ , vx)- Note a, b are (A- 2) dimensional column vectors. The matrix

Pn-2 ~ (Pq) xs a five-band matrix of order N - 2 such that

6,

-4,

(2) Pij =
1,

0,

i.-/i = i,

1.-/1 = 2,

otherwise.

The matrix A     is likewise of the form

(3) A~x =

d

ßR

c

ß     Qn-2

d     aTR

where a = (a,), ß = (J3f) are (A - 2) dimensional column vectors and c, d are scalars.

Using AA~X = IN, we find that the unknowns c, d, a, ß, QN_2 satisfy the following

equations.

(i)  9c + aTß = 1,

(ii) 9d + aTßR = 0,

(4) (hi) cb + PN_2ß + dbR = 0,

(iv)  9aT + aTQN_2 = 0T,

(v) baT + PN_2QN_2 + bRaTR = IN_2.

Note 0 denotes a (A - 2) dimensional null column vector.  The first three equations

determine c, d, ß while the remaining two equations determine a, QN_2 ■  In each case

we need to use f^i2 = (Pq) which is symmetric and for i > j

(5) h -<N ¡m-wf» ° w ̂  -xi. - o - g +1 » - m * di .

see [5].  Now a lengthy but elementary calculation yields

(6)   c =
N2

d =
N

3(/V 4- l)2' 3(_V 4- I)2
; I-«*™:*,   i-iw-2.

3(A4- l)2
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Now a is obtained on eliminating QN_2 from the remaining two equations in the

form

a. = {NiN - / - 1X-V - 0[(3A + l)i + 2(A 4- 1)]

(7) + i(i 4- 1)[(3A 4- 1)(/V - i - 1) + 2(/V + 1)] }/[6(A - 1)(A + l)3],

i= iiiyv-2.

Finally, from 4(v) we have

Qn-2 = P~n-2 +h   with H = -PNx_2ibaT + bRaTR).

Let H = (A/;), then htj is

=      ii + 1)(A~0     { (7V _ . _ 1)(7V _ yy _ .)[(37V + i)7- + 2(Af 4- 1)]
"     6AÍ/V- 1YA4- 1)3 m "

(8)
4- ¡(j + l)(i + l)[(3N 4- 1)(A - / - 1) + 2(A + 1)] ],

/,/= l(l)N-2.

It is easy to conclude by inspection of c, d, a¡, ßt, p„ and hy that the matrix A is

monotone (that is, A~x > 0).  The sum of the elements of the /th row of PNX_2 is

i(i + 1XA - / - l)(N - 0/24 while the sum of the elements of the ith row of H is

(N - 2)(A 4- 3)(z 4- 1)(A - 0/[24(A 4- 1)].   Finally, let the sum of the elements of

the .th row in A~x be R¡, then

(9) Ri=K24(Ntl)   [(Af+1)(A'-'-+l>- + 2],      ' = KD^.

It can be seen that R¡ attains a maximum value for i = (N + l)/2.   Thus,

(10) \\A-X\\<R (N+l)jN+3)iN2+3)
11.4     II ̂ -^(at+d/2 - 384

and from this foUows the desired inequality (4.3).
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