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Preface

Discrete Wavelet Transform (DWT) is a wavelet transform that is widely used in numerical
and functional analysis. Its key advantage over more traditional transforms, such as the
Fourier transform, lies in its ability to offer temporal resolution, i.e. it captures both
frequency and location (or time) information. DWTs enable a multi-resolution and analysis
of a signal in frequency and time domains at different resolutions making it an effective tool
for digital signal processing. Its utility in a wide array of areas such as data compression,
image processing and digital communication has been effectively demonstrated. Since the
first DWT, the Haar wavelet, was invented by Alfred Haar, DWTs have gained widespread
applications mainly in the areas of signal processing, watermarking, data compression and
digital communication.

Recently, however, numerous variants of the DWT have been suggested, each with varying
modifications suited for specific state-of-the-art applications. This book presents a succinct
compendium of some of the more recent variants of DWTs and their use to come up with
solutions to an array of problems transcending the traditional application areas of image/
video processing and security to the areas of medicine, artificial intelligence, power systems
and telecommunications.

To effectively convey these recent advances in DWTs, the book is divided into two sections.
Section 1 of the book, comprising of three chapters, focuses on applications of variants of the
DWT in the traditional field of image and video processing, copyright protection and
watermarking.

Chapter 1 presents a so-called non-separable 2D lifting variant of the DWT. With its reduced
number of lifting steps for lower latency, the proposed technique offers faster processing of
standard JPEG 2000 images.

In chapter 2, the focus turns to the use of DWTs for copyright protection of digital images.
Therein, a pyramid-wavelet DWT is proposed in order to enhance the perceptual invisibility
of copyright data and increase the robustness of the published (copyrighted) data.

The last chapter of this section, chapter 3, discusses a new video resolution enhancement
technique. An illumination compensation procedure was applied to the video frames, whilst
simultaneously decomposing each frame into its frequency domains using DWT and then
interpolating the higher frequency sub-bands.

Section 2 of the book comprises of five chapters that are focused on applications of DWT
outside the traditional image/video processing domains. Where required, variations of the
standard DWT were proposed in order to solve specific problems that the application is
targeted at. The first chapter in this section, Chapter 4, presents an adaptive resolution



method using DWT for humanoid-robot vision systems. The functions of the humanoid
vision system include image capturing and image analysis. A suggested application for
proposed techniques is its use to describe and recognize image contents, which is necessary
for a robot’s visual system.

In Chapter 5, the DWT was used to solve some problems encountered in modelling and
simulation for recognition of physiological and behavioral traits through human gait and
facial image.

Chapter 6 focusses on a medical application for DWTs. Therein, a density estimation and
wavelet thresholding method is proposed to assess agitation and sedation in Intensive Care
Unit (ICU) patients. The chapter uses a so-called wavelet probability band (WPB) to model
and evaluate the nonparametric agitation-sedation regression curve of patients requiring
critical medical care.

In Chapter 7, an intelligent maximization control system with Improved Particle Swarm
Optimization (IPSO) using the Wavelet Neural Network (WNN) is presented. The proposed
system is used to control a self-Excited Induction generator (SEIG) driven by a variable
speed wind turbine feeding a grid connected to double-sided current regulated pulse width
modulated (CRPWM) AC/DC/AC power converters.

Finally, in Chapter 8, the application domain of the DWTs is shifted to the field of
telecommunications. Therein, DWT was used to suggest a demodulation of FM data in free-
space optical communication systems. Specifically, the DWTs were used to reduce the effect
of noise in the signals.

Together the two sections and their respective chapters provide the reader with an elegant
and thorough miscellany of literature that are all related by their use of DWTs.

The book is primarily targeted at postgraduate students, researchers and anyone interested
in the rudimentary background about DWTs and their present state-of-the-art applications
to solve numerous problems in varying fields of science and engineering.

The guest editor is grateful to the INTECH editorial team for extending the invitation and
subsequent support towards editing this book. Special thanks also to Dr. Abdullah M.
Iliyasu and Mr. Asif R. Khan for their contributions towards the success of the editorial
work. A total of 17 chapters were submitted from which only the eight highlighted earlier
were selected. This suggests the dedication and thoroughness invested by the distinguished
reviewers that were involved in various stages of the editorial process to ensure that the best
quality contributions are conveyed to the readers. Many thanks to all of them.

Chapter 7 is written by Manal K. Zaki and deals with fibre method modelling (FMM)
together with a displacement-based finite element analysis (FEA) used to analyse a three-
dimensional reinforced concrete (RC) beam-column. The analyses include a second-order
effect known as geometric nonlinearity in addition to the material nonlinearity. The finite
element formulation is based on an updated Lagrangian description. The formulation is
general and applies to any composite members with partial interaction or interlayer slip. An
example is considered to clarify the behaviour of composite members of rectangular sections
under biaxial bending. In this example, complete bond is considered. Different slenderness
ratios of the mentioned member are studied. Another example is considered to test the
importance of including the bond-slip phenomenon in the analysis and to verify the
deduced stiffness matrices and the proposed procedure for the problem solution.

XII Preface



I hope this book benefits graduate students, researchers and engineers working in resistance

design of engineering structures to earthquake loads, blast and fire. I thank the authors of

the chapters of this book for their cooperation and effort during the review process. Thanks

are also due to Ana Nikolic, Romana Vukelic, Ivona Lovric, Marina Jozipovic and Iva

Lipovic for their help during the processing and publishing of the book. I thank also of all

authors, for all I have learned from them on civil engineering, structural reliability analysis

and health assessment of structures.

Awad Kh. Al - Asmari
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Traditional Applications of DWT
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Chapter 1

Non Separable Two Dimensional Discrete Wavelet

Transform for Image Signals

Masahiro Iwahashi and Hitoshi Kiya

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51199

1. Introduction

Over the past few decades, a considerable number of studies have been conducted on two

dimensional (2D) discrete wavelet transforms (DWT) for image or video signals. Ever since

the JPEG 2000 has been adopted as an international standard for digital cinema applications,

there has been a renewal of interest in hardware and software implementation of a lifting

DWT, especially in attaining high throughput and low latency processing for high resolu‐
tion video signals [1, 2].

Intermediate memory utilization has been studied introducing a line memory based imple‐
mentation [3]. A lifting factorization has been proposed to reduce auxiliary buffers to in‐
crease throughput for boundary processing in the block based DWT [4]. Parallel and

pipeline techniques in the folded architecture have been studied to increase hardware uti‐
lization, and to reduce the critical path latency [5, 6]. However, in the lifting DWT architec‐
ture, overall delay of its output signal is curial to the number of lifting steps inside the DWT.

In this chapter, we discuss on constructing a ‘non-separable’ 2D lifting DWT with reduced

number of lifting steps on the condition that the DWT has full compatibility with the ‘sepa‐
rable’ 2D DWT in JPEG 2000. One of straightforward approaches to reduce the latency of the

DWT is utilization of 2D memory accessing (not a line memory). Its transfer function is fac‐
torized into non-separable (NS) 2D transfer functions. So far, quite a few NS factorization

techniques have been proposed [7, 14]. The residual correlation of the Haar transform was

utilized by a NS lifting structure [7]. The Walsh Hadamard transform was composed of a NS

lossless transform [8], and applied to construct a lossless discrete cosine transform (DCT)

[9]. Morphological operations were applied to construct an adaptive prediction [10]. Filter

coefficients were optimized to reduce the aliasing effect [11]. However, these transforms are

not compatible with the DWT defined by the JPEG 2000 international standard.

© 2013 Iwahashi and Kiya; licensee InTech. This is an open access article distributed under the terms of the

Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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In this chapter, we describe a family of NS 2D lifting DWTs compatible with DWTs defined

by JPEG 2000 [12, 14]. One of them is compatible with the 5/3 DWT developed for lossless

coding [12]. The other is compatible with the 9/7 DWT developed for lossy coding [13]. It is

composed of single NS function structurally equivalent to [12]. For further reduction of the

lifting steps, we also describe another structure composed of double NS functions [14]. The

NS 2D DWT family summarized in this chapter has less lifting steps than the standard sepa‐
rable 2D DWT set, and therefore it contributes to reduce latency of DWT for faster coding.

This chapter is organized as follows. Standard 'separable' 2D DWT and its latency due to the

total number of lifting steps are discussed, and a low latency 'non-separable' 2D DWT is in‐
troduced for 5/3 DWT in section 2. The discussion is expanded to 9/7 DWT in section 3. In

each section, it is confirmed that the total number of lifting steps is reduced by the 'non-sep‐
arable' DWT without changing relation between input and output of the 'separable' DWT.

Furthermore, structures to implement 'lossless' coding are described for not only 5/3 DWT

but also for 9/7 DWT. Performance of the DWTs is investigated and compared in respect of

lossless coding and lossy coding in section 4. Implementation issue under finite word length

of signal values is also discussed. Conclusions are summarized in section 5. References are

listed in section 6.

2. The 5/3 DWT and Reduction of its Latency

JPEG 2000 defines two types of one dimensional (1D) DWTs. One is 5/3 DWT and the other

is 9/7 DWT. Each of them is applied to a 2D input image signal, vertically and horizontally.

This processing is referred to 'separable' 2D structure. In this section, we point out the laten‐
cy problem due to the total number of lifting steps of the DWT, and introduce a 'non separa‐
ble' 2D structure with reduced number of lifting steps for 5/3 DWT.

2.1. One Dimensional 5/3 DWT defined by JPEG 2000

Fig.1 illustrates a pair of forward and backward (inverse) transform of the one dimensional

(1D) 5/3 DWT. Its forward transform splits the input signal X into two frequency band sig‐
nals L and H with down samplers ↓2, a shifter z +1 and FIR filters H1 and H2. The input signal

X is given as a sequence xn, n ∈  {0,1, ⋯  , N-1} with length N. The band signals L and H are

also given as sequences lm and hm, m ∈  {0,1, ⋯  , M-1}, respectively. Both of them have the

length M=N/2. Using the z transform, these signals are expressed as

X (z)= ∑
n=0

N −1

x
n
z

−n, L (z)= ∑
m=0

M −1

l
m
z

−m, H (z)= ∑
m=0

M −1

h
m
z

−m (1)

Relation between input and output of the forward transform is expressed as
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NS 2D DWT family summarized in this chapter has less lifting steps than the standard sepa‐

total number of lifting steps are discussed, and a low latency 'non-separable' 2D DWT is in‐

each section, it is confirmed that the total number of lifting steps is reduced by the 'non-sep‐

This processing is referred to 'separable' 2D structure. In this section, we point out the laten‐
cy problem due to the total number of lifting steps of the DWT, and introduce a 'non separa‐

 into two frequency band sig‐
with down samplers ↓2, a shifter 

∈ ⋯
∈ ⋯

∑
−

− ∑
−

− ∑
−

−

L (z)

H (z)
=

1 H2(z)

0 1

1 0

H1(z) 1

X
e
(z)

X
o
(z)

(2)

where

X
e
(z)

X
o
(z)

=
↓2 X (z)

↓2 X (z)z
= ↓2

1

z
X (z) (3)

The backward (inverse) transform synthesizes the two band signals L and H into the signal

X' by

X '(z)= 1z −1
↑2 X

e

'(z)

↑2 X
o

'(z)
= 1z −1 ↑2

X
e

'(z)

X
o

'(z)
(4)

where

X
e

'(z)

X
o

'(z)
=

1 0

−H1(z) 1

1 −H2(z)

0 1

L (z)

H (z)
(5)

In the equations (3) and (4), down sampling and up sampling are defined as

↓2 W (z)

↑2 W (z)
=

1 / 2 0

0 1

W (z 1/2) +W (− z 1/2)

W (z 2)
(6)

respectively for an arbitrary signal W(z). In Fig.1, the FIR filters H1 and H2 are given as

H1

H2

=
H1(z)

H2(z)
=

−1 / 2 0

0 1 / 4

(1 + z +1)

(1 + z −1)
(7)

for 5/3 DWT defined by the JPEG 2000 international standard.

2.2. Separable 2D 5/3 DWT of JPEG 2000 and its Latency

Fig.2 illustrates extension of the 1D DWT to 2D image signal. The 1D DWT is applied verti‐
cally and horizontally. In this case, an input signal is denoted as

X (z1, z2)= ∑
n1=0

N1−1

∑
n2=0

N2−1

x
n1,n2
z1

−n1
z2

−n2 (8)
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Down sampling and up sampling are defined as

↓2z1 W (z1, z2)

↓2z2 W (z1, z2)
=

1 / 2 0

0 1 / 2

W (z1
1/2, z2) +W (− z1

1/2, z2)

W (z1, z2
1/2) +W (z1, − z2

1/2)
(9)

and

↑2z1 W (z1, z2)

↑2z2 W (z1, z2)
=
W (z1

2, z2)

W (z1, z2
2)

(10)

respectively for an arbitrary 2D signal W(z1,z2). The FIR filters H1 and H2 are given as

H1

H2

=
H1(z1)

H2(z1)
=

−1 / 2 0

0 1 / 4

(1 + z1
+1)

(1 + z1
−1)

(11)

H1
*

H2
*

=
H1(z2)

H2(z2)
=

−1 / 2 0

0 1 / 4

(1 + z2
+1)

(1 + z2
−1)

(12)

for Fig.2, instead of (7) for Fig.1.

The structure in Fig.2 has 4 lifting steps in total. It should be noted that a lifting step must

wait for a calculation result from the previous lifting step. It causes delay and it is essentially

inevitable. Therefore the total number of lifting steps (= latency) should be reduced for faster

coding of JPEG 2000.

Figure 1. One dimensional 5/3 DWT defined by JPEG 2000.

The procedure described above can be expressed in matrix form. Since Fig.2 can be ex‐
pressed as Fig.3, relation between input vector X and output vector Y is denoted as

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications6
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↑
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can be ex‐

Y =(L
H2

* ,H1
*P23)(L H2,H1

P23)X (13)

for

X = X11 X12 X21 X22
T

,  Y = LL LH HL HH T (14)

and

P23 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

L p,q =

1 p

0 1

1 0

q 1

0 0

0 0

0 0

0 0

1 p

0 1

1 0

q 1

for p, q∈ {H1, H2, H1
* , H2

*}

(15)

Fig.4 illustrates that each of the lifting step performs interpolation from neighboring pixels.

Each step must wait for calculation result of the previous step. It causes delay. Our purpose

in this chapter is to reduce the total number of lifting steps so that the latency is lowered.

Figure 2. Separable 2D 5/3 DWT defined by JPEG 2000.

2.3. Non Separable 2D 5/3 DWT for Low latency JPEG 2000 Coding

In this subsection, we reduce the latency using 'non separable' structure without changing

relation between X and Y in (13). Fig.5 illustrates a theorem we used in this chapter to con‐
struct a non-separable DWT. It is expressed as

Theorem 1;

Y =Nd ,c,b,aX (16)

Non Separable Two Dimensional Discrete Wavelet Transform for Image Signals
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for

X = x1 x2 x3 x4
T

,  Y = y1 y2 y3 y4
T (17)

where

Nd ,c,b,a=

1 d b −bd
c 1 0 b

a 0 1 d

ac a c 1

(18)

for arbitrary value of a, b, c and d. These values can be either scalars or transfer functions.

Therefore, substituting

L d ,cP23L b,aP23 =Nd ,c,b,a (19)

with

a b c d = H1 H2 H1
* H2

* (20)

into (13), we have

Y =N
H2

* ,H1
* ,H2,H1

X (21)

for X and Y in (14).

Finally, the non-separable 2D 5/3 DWT is constructed as illustrated in Fig.6. It has 3 lifting

steps in total. The total number of lifting steps (= latency) is reduced from 4 (100%) to 3

(75%) as summarized in table 1 (separable lossy 5/3). Signal processing of each lifting step is

equivalent to the interpolation illustrated in Fig.7. In the 2nd step, two interpolations can be

simultaneously performed with parallel processing. Note that the non-separable 2D DWT

requires 2D memory accessing.

2.4. Introduction of Rounding Operation for Lossless Coding

In Fig.1, the output signal X' is equal to the input signal X as far as all the sample values of

the band signals L and H are stored with long enough word length. However, in data com‐
pression of JPEG 2000, all the sample values of the band signals are quantized into integers

before they are encoded with an entropy coder EBCOT. Therefore the output signal X' has

some loss, namely X'-X ≠  0. It is referred to 'lossy' coding.

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications8



−

 are stored with long enough word length. However, in data com‐

≠

Figure 3. Separable 2D 5/3 DWT for matrix expression (5/3 Sep).

Figure 4. Interpretation of separable 2D 5/3 DWT as interpolation.

Figure 5. Theorem 1.

However, introducing rounding operations in each lifting step, all the DWTs mentioned

above become 'lossless'. In this case, a rounding operation is inserted before addition and

subtraction in Fig.1 as illustrated in Fig.8. It means

Non Separable Two Dimensional Discrete Wavelet Transform for Image Signals
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{y * = x + Round x0 + x1 + x2

x ' = y * −Round x0 + x1 + x2

(22)

which guarantees 'lossless' reconstruction of the input value, namely x'-x=0. In this structure

for lossless coding, comparing '5/3 Sep' in Fig.3 and '5/3 Ns1' in Fig.6, the total number of

rounding operation is reduced from 8 (100%) to 4 (50%) as summarized in table 2. It contrib‐
utes to increasing coding efficiency.

Figure 6. Non Separable 2D 5/3 DWT (5/3 Ns1).

Figure 7. Interpretation of non-separable 2D 5/3 DWT as interpolation.

Figure 8. Rounding operations for lossless coding.

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications10

JPEG 2000 defines another type of DWT referred to 9/7 DWT for lossy coding. It can be ex‐

α
β −

γ
δ −

α − ⋯ β − ⋯
χ ⋯ δ ⋯

⋯

⋅



−

table 2. It contrib‐

3. The 9/7 DWT and Reduction of its Latency

In the previous section, it was indicated that replacing the normal 'separable' structure by

the 'non-separable' structure reduces the total number of lifting steps. It contributes to faster

processing of DWT in JPEG 2000 for both of lossy coding and lossless coding. It was also

indicated that it reduces total number of rounding operations in DWT for lossless coding.

All the discussions above are limited to 5/3 DWT. In this section, we expand our discussion

to 9/7 DWT for not only lossy coding, but also for lossless coding.

3.1. Separable 2D 9/7 DWT of JPEG 2000 and its Latency

JPEG 2000 defines another type of DWT referred to 9/7 DWT for lossy coding. It can be ex‐
panded to lossless coding as described in subsection 3.4. Comparing to 5/3 DWT in Fig.1, 9/7

DWT has two more lifting steps and a scaling pair. Filter coefficients are also different from

(7). They are given as

H1(z)

H2(z)
=

α 0

0 β
(1 + z +1)

(1 + z −1)
,
H3(z)

H4(z)
=

γ 0

0 δ
(1 + z +1)

(1 + z −1)
(23)

and

{α = −1.586134342059924⋯ , β = −0.052980118572961⋯
χ = + 0.882911075530934⋯ , δ = + 0.443506852043971⋯
k = + 1.230174104914001⋯

(24)

for 9/7 DWT of JPEG 2000. Fig.9 illustrates the separable 2D 9/7 DWT. In the figure, filters

are denoted as

H1

H2

H3

H4

=
H1(z1)

H2(z1)

H3(z1)

H4(z1)
(25)

H1
*

H2
*

H3
*

H4
*

=
H1(z2)

H2(z2)

H3(z2)

H4(z2)
(26)

It should be noted that this structure has 8 lifting steps.

Fig.10 also illustrates the separable 2D 9/7 DWT for matrix representation. Similarly to (13),

it is expressed as

Y =(J
k
L

H4
* ,H3

*L H2
* ,H1

*P23)⋅ (J
k
L H4,H3

L H2,H1
P23)X (27)
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for

X = X11 X12 X21 X22
T

, Y = LL LH HL HH T (28)

and

P23 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

,
L p,q

Jk
=
diag M p,q M p,q

diag Kk Kk

for p, q∈ {Hr , Hr
*}, r∈ {1, 2, 3, 4}

(29)

In (29), a scaling pair Kk and filter a matrix Kp,q are defined as

Kk =
k −1 0

0 k
, M p,q =

1 p

0 1

1 0

q 1
(30)

Figure 9. Separable 2D 9/7 DWT in JPEG 2000.

3.2. Single Non Separable 2D 9/7 DWT for Low latency JPEG 2000 coding

In this subsection, we reduce the latency using 'non separable' structure without changing

relation between X and Y in (27), using the theorem 1 in (16)-(18) illustrated in Fig.5. Starting

from Fig.10, unify the four scaling pairs {k -1, k} to only one pair {k -2, k2} as illustrated in Fig.

11. It is denoted as

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications12
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∈ ∈

−

(JkL H4
* ,H3

*L H2
* ,H1

*P23)(JkL H4,H3
L H2,H1

P23)

= Jk
* ⋅L

H4
* ,H3

*L H2
* ,H1

*P23L H4,H3
L H2,H1

P23

= Jk
* ⋅L

H4
* ,H3

*(L H2
* ,H1

*P23L H4,H3
P23)P23L H2,H1

P23

(31)

where

Jk
* =diag k −2 1 1 k 2 (32)

Next, applying the theorem 1, we have the single non-separable 2D DWT as illustrated in

Fig.12. It is denoted as

Jk
* ⋅L

H4
* ,H3

*(L H2
* ,H1

*P23L H4,H3
P23)P23L H2,H1

P23

= Jk
* ⋅L

H4
* ,H3

*(NH2
* ,H1

* ,H4,H3

)P23L H2,H1
P23

(33)

As a result, the total number of lifting steps (= latency) is reduced from 8 (100%) to 7 (88%)

as summarized in table 1 (non-separable lossy 9/7).

Figure 10. Separable 2D 9/7 DWT for matrix expression.

3.3. Double Non Separable 9/7 DWT for Low latency JPEG 2000 Coding

In the previous subsection, a part of the separable structure is replaced by a non-separable

structure. In this subsection, we reduce one more lifting step using one more non-separable

structure. Starting from equation (31) illustrated in Fig. 11, we apply

Theorem 2;

L
Hs

* ,Hr
*P23L Hq,H p

P23 =P23L Hq,H p
P23L Hs

* ,Hr
* (34)
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Namely, (31) becomes

J
k

* ⋅L
H4

* ,H3
*(L H2

* ,H1
*P23L H4,H3

P23)P23L H2,H1
P23

= J
k

* ⋅L
H4

* ,H3
*(P23L H4,H3

P23L H2
* ,H1

*)P23L H2,H1
P23

(35)

as illustrated in Fig.13. Then the theorem 1 can be applied twice as

J
k

* ⋅ (L
H4

* ,H3
*P23L H4,H3

P23)(L H2
* ,H1

*P23L H2,H1
P23)

= J
k

* ⋅N
H4

* ,H3
* ,H4,H3

N
H2

* ,H1
* ,H2,H1

(36)

Figure 11. Derivation of single non separable 2D 9/7 DWT (step 1/2).

Figure 12. Derivation of single non separable 2D 9/7 DWT (step 2/2).

and finally, we have the double non-separable 2D DWT as illustrated in Fig.14. The total

number of the lifting steps is reduced from 8 (100%) to 6 (75 %). This reduction rate is the

same for the multi stage octave decomposition with DWTs.

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications14
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Figure 13. Derivation of double non separable 2D 9/7 DWT (step 1/2).

Figure 14. Derivation of double non separable 2D 9/7 DWT (step 2/2).

3.4. Lifting Implementation of Scaling for Lossless Coding

Due to the scaling pair {k -2, k2}, the DWT in Fig.14 can't be lossless, and therefore it is utilized

for lossy coding. However, as explained in subsection 2.4, it becomes lossless when all the

scaling pairs are implemented in lifting form with rounding operations in Fig.8. For exam‐
ple, the scaling pair Kk in equation (30) is factorized into lifting steps as

K
k

(L ) =
1 s4

0 1

1 0

s3 1

1 s2

0 1

1 0

s1 1
(37)

for
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s1 s3

s2 s4

=
k ⋅ s1 0

0 (k ⋅ s1)−1

k
−1 −1

1−k 1−k −1
(38)

Similarly, the scaling pair in equation (32) is also factorized as

J
k

*(L ) =

1 0 0 t4

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

t3 0 0 1

1 0 0 t2

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

t1 0 0 1

(39)

for

t1 t3

t2 t4

=
k

2
t1 0

0 (k 2
t1)

−1

k
−2 −1

1−k 2 1−k −2
(40)

as illustrated in Fig.15. In the equation above, t1 can be set to 1 [15].

Figure 15. Lifting implementation of scaling pairs.

Figure 16. Separable 2D 9/7 DWT for lossless coding (9/7 Sep).

Fig.16, Fig.17 and Fig.18 illustrate 2D 9/7 DWTs for lossless coding. As summarized in table

1, it is indicated that the total number of lifting steps is reduced from 16 (100%) in Fig.16 to

11 (69%) in Fig.17 and 10 (63%) in Fig.18. Furthermore, the total number of rounding opera‐

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications16
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ing performance first. Lossy coding performance is evaluated next and a problem due to fi‐



⋅

⋅ −

− −
− − −

−

− −

− − −

. Furthermore, the total number of rounding opera‐

tions is also reduced from 32 (100%) in Fig.16 to 16 (50%) in Fig.17 and 12 (38%) as summar‐
ized in table 2.

Figure 17. Single non separable 2D 9/7 DWT for lossless coding (9/7 Ns1).

Figure 18. Double non separable 2D 9/7 DWT for lossless coding (9/7 Ns2).

lossy lossless

5/3 9/7 5/3 9/7

separable 4 (100%) 8 (100%) 4 (100%) 16 (100%)

non

separable

single 3 ( 75%) 7 ( 88%) 3 ( 75%) 11 ( 69%)

double --- 6 ( 75%) --- 10 ( 63%)

Table 1. Total number of lifting steps

4. Performance Evaluation

In this section, all the DWTs summarized in table 3 are compared in respect of lossless cod‐
ing performance first. Lossy coding performance is evaluated next and a problem due to fi‐
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nite word length implementation is pointed out. This problem is avoided by compensating

word length at the minimum cost.

lossless

5/3 9/7

separable 8 (100%) 32 (100%)

non

separable

single 4 ( 50%) 16 ( 50%)

double --- 12 ( 38%)

Table 2. Total number of rounding operations

lossless

5/3 9/7

separable 5/3 Sep (Fig.3) 9/7 Sep (Fig.16)

non

separable

single 5/3 Ns1 (Fig.6) 9/7 Ns1 (Fig.17)

double --- 9/7 Ns2 (Fig.18)

Table 3. DWTs discussed in this chapter

4.1 Lossless Coding Performance

Table 4 summarizes lossless coding performance of the DWTs in table 3 at different number of

stages in octave decomposition. The EBCOT is applied as an entropy coder without quantiza‐
tion or bit truncation. Results were evaluated in bit rate (= average code length per pixel) in

[bpp]. Fig.19 illustrates the bit rate averaged over images. It indicates that '5/3 Ns1' is the best

followed by '5/3 Sep'. The difference between them is only 0.01 to 0.02 [bpp]. Among 9/7 DWTs,

'9/7 Ns1' is the best followed by '9/7 Sep'. The difference is 0.03 to 0.04 [bpp]. As a result of this

experiment, it was found that there is no significant difference in lossless coding performance.

Image DWT Number of Stages

1 2 3 4 5 6

Couple

5/3 Sep 4.74 4.65 4.63 4.62 4.62 4.62

5/3 Ns1 4.73 4.64 4.62 4.61 4.61 4.61

9/7 Sep 4.91 4.83 4.81 4.80 4.80 4.80

9/7 Ns1 4.89 4.80 4.79 4.78 4.78 4.77

9/7 Ns2 4.93 4.84 4.82 4.81 4.81 4.81

Boat
5/3 Sep 4.78 4.70 4.69 4.69 4.69 4.69

5/3 Ns1 4.77 4.69 4.69 4.68 4.68 4.68

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications18



stages in octave decomposition. The EBCOT is applied as an entropy coder without quantiza‐

Image DWT Number of Stages

9/7 Sep 4.87 4.80 4.80 4.79 4.79 4.79

9/7 Ns1 4.85 4.78 4.77 4.77 4.77 4.77

9/7 Ns2 4.87 4.80 4.80 4.79 4.79 4.79

Lena

5/3 Sep 5.06 4.97 4.95 4.95 4.95 4.95

5/3 Ns1 5.05 4.96 4.94 4.94 4.94 4.94

9/7 Sep 5.19 5.09 5.07 5.07 5.07 5.07

9/7 Ns1 5.17 5.06 5.05 5.04 5.05 5.05

9/7 Ns2 5.18 5.07 5.06 5.05 5.06 5.06

average

5/3 Sep 4.86 4.77 4.76 4.75 4.75 4.75

5/3 Ns1 4.85 4.76 4.75 4.74 4.74 4.74

9/7 Sep 4.99 4.91 4.89 4.89 4.89 4.89

9/7 Ns1 4.97 4.88 4.87 4.86 4.87 4.86

9/7 Ns2 4.99 4.90 4.89 4.88 4.89 4.89

Table 4. Bit rate for each image in lossless coding [bpp].

Figure 19. Bit rate averaged over images in lossless coding [bpp].

4.2. Lossy Coding Performance

Fig.20 indicates rate distortion curves of the DWTs in table 3 for an input image 'Lena'. Five-

stage octave decomposition of DWT is applied. Transformed coefficients are quantized with

the optimum bit allocation and EBCOT is applied as an entropy coder. In the figure, PSNR is

calculated as
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Q = −10log10

1
2552N1N2

∑
n1=0

N1−1

∑
n2=0

N2−1

Dn1,n2

2 (41)

where

Dn1,n2
=Yn1,n2

− Xn1,n2
(42)

From an input image Xn1,n2, a reconstructed image Yn1,n2 is generated through the forward

transform of the 5/3 (or 9/7) DWTs in table 3, and the backward transform of the standard

5/3 (or 9/7) DWT defined by JPEG 2000. This is to investigate compatibility between the non-

separable DWTs for lossless coding, and the separable DWTs in JPEG 2000 for lossy coding.

As indicated in Fig.20, there is no difference among '9/7 Sep', '9/7 Ns1' and '9/7 Ns2'. All of

them have the same rate-distortion curve. There is also no difference between '5/3 Sep' and

'5/3 Ns1'. It indicates that the non-separable DWTs in table 3 have perfect compatibility with

the standard DWTs defined by JPEG 2000. Note that this is true under long enough word

length. In this experiment, word length of signals Fs of both of the forward and the back‐
ward transform is set to 64 [bit].

Figure 20. Rare distortion curves at Fs=64 [bit] word length of signals.

4.3. Finite Word Length Implementation

Fig.21 indicates rate distortion curves for the same image but word length of signals in the

forward transform is shortened just after each of multiplications. Signal values are multi‐
plied by 2-Fs, floored to integers and then multiplied by 2Fs. As a result, all the signals have

the word length Fs [bit] in fraction. According to the figure, it was observed that '9/7 Ns1' is

slightly worse than '9/7 Sep', and '9/7 Ns2' is much worse. It was found that the NS DWTs

have quality deterioration problem at high bit rates in lossy coding, even though they have

less lifting steps.
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 of both of the forward and the back‐

forward transform is shortened just after each of multiplications. Signal values are multi‐

Figure 21. Rare distortion curves at Fs=2 [bit] word length of signals.

To cope with this problem, word length is compensated for '9/7 Ns2' at the minimum cost of

word length. In case of finite word length implementation, the distortion Dn1,n2 in (42) con‐
tains two kinds of errors; a) quantization noise q for rate control in lossy coding and b) trun‐
cation noise c due to finite word length expression of signals inside the forward transform.

Namely, Dn1,n2 =q+c. Assuming that q and c are uncorrelated and both of them has zero mean,

variance of the distortion is approximated as

Var D = {Var q (qc)

Var c (qc)
(43)

where Var denotes variance. This implies that PSNR in (41) becomes

Q = {6.02R + D0(qc)

C(qc)
(44)

where R denotes the bit rate and D0 is related to the coding gain [16].

It means that finite word length noise c is negligible at lower bit rates comparing to the

quantization noise q in respect of L2 norm. However, variance of c dominates over that of q

at high bit rates. Therefore the quality deterioration problem can be avoided by increasing

the word length Fs. We utilize the fact that C (compatibility) is a monotonically increasing

function of Fs. Their relation is approximately described as

C = p0 p1 1 Fs T (45)

with parameters p0 and p1. We compensate Fs at the minimum cost of word length by ΔFs so

that
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p0 p1 1 Fs + ΔFs T ≥ p'0 p'1 1 Fs T (46)

is satisfied where {p0, p1} are parameters of the corresponding NS DWT, and {p'0, p'1} are

those of the separable DWT. As a result, the minimum word length for compensation is

clarified as

ΔFs ≥a + bFs≅a,
a=(p'0 − p0) / p1, b= p'1 / p1 −1.

(47)

Figure 22. Compatibility versus word length.

5/3 Sep 5/3 Ns1 9/7 Sep 9/7 Ns1 9/7 Ns2

48.78 47.23 40.13 39.11 35.31

6.27 6.24 6.01 6.01 5.99

Table 5. Parameters in the rate distortion curves.

Fig.22 indicates experimentally measured relations between the compatibility C and the

word length Fs. Table 5 summarizes the parameters p0 and p1 calculated from this figure.

Table 6 summarizes two parameters a and b in (47) which were calculated from p0 and p1. It

indicates that Fs of '9/7 Ns1' and '9/7 Ns2' should be compensated by more than 0.17 and 0.81

[bit], respectively so that these NS DWTs have the compatibility greater than that of '9/7

Sep'. Similarly, it also indicates that '5/3 Ns1' should be compensated by more than 0.25 [bit].

As a result, the minimum word length for compensation is found to be 1 bit at maximum as

summarized in table 7.

Fig.23 illustrates rate distortion curves for the compensated NS DWTs. It is confirmed that

the deterioration problem observed in Fig.21 is recovered to the same level of the standard

separable DWTs of JPEG 2000. It means that the finite word length problem peculiar to the

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications22
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Δ ≥

Δ ≥ ≅
− −

non-separable 2D DWTs can be perfectly compensated by adding only 1 bit word length, in

case of implementation with very short word length, i.e. Fs=2 [bit].

5/3 Sep 5/3 Ns1 9/7 Sep 9/7 Ns1 9/7 Ns2

a 0 0.248 0 0.170 0.805

b 0 0.0048 0 0.0000 0.0033

Table 6. Parameters for word length compensation.

5/3 Sep 5/3 Ns1 9/7 Sep 9/7 Ns1 9/7 Ns2

ΔFS 0.000 0.248 0.000 0.170 0.805

ΔF
s

0 1 0 1 1

Table 7. The minimum word length for compensation.

Figure 23. Rare distortion curves in lossy coding mode with Fs=2+ΔFs

5. Conclusions

In this chapter, 'separable' 2D DWTs defined by JPEG 2000 and its latency due to the total

number of lifting steps were discussed. To reduce the latency, a 'non-separable' 2D DWTs

were introduced for both of 5/3 DWT and 9/7 DWT. It was confirmed that the total number

of lifting steps is reduced by the 'non-separable' DWT maintaining good compatibility with

the 'separable' DWT. Performance of these DWTs were evaluated in lossless coding mode,

and no significant difference was observed. A problem in finite word length implementation

in lossy coding mode was discussed. It was found that only one bit compensation guaran‐
tees good compatibility with the 'separable' DWTs.
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In the future, execution time of the DWTs on hardware or software platform should be in‐
vestigated.
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copied and distributed through digital media. These concerns motivated significant re‐
]. New progress in digital technologies, such as com‐

be effective, a watermark must be imperceptible within its host, easily extracted by the own‐

it has many specifications that make the watermarking process robust. Some of these specifi‐
]: Space-frequency localization, Multi-resolution representation, Superior Hu‐

]. It uses or‐

Another transform technique that is used extensively in image coding is the pyramid trans‐

rates and at the same time low complexity encoding. Like the DWT, pyramid transform pro‐
vides multi-resolution representation of the images. These properties can be used in water‐



Chapter 2

A Pyramid-Based Watermarking Technique for Digital

Images Copyright Protection Using Discrete Wavelet

Transforms Techniques

Awad Kh. Al-Asmari and Farhan A. Al-Enizi

Additional information is available at the end of the chapter
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1. Introduction

With the growth and advances in digital communication technologies, digital images have

become easy to be delivered and exchanged. These forms of digital information can be easily

copied and distributed through digital media. These concerns motivated significant re‐
searches in images watermarking [1]. New progress in digital technologies, such as com‐
pression techniques, has brought new challenges to watermarking. Various watermarking

schemes that use different techniques have been proposed over the last few years [2-10]. To

be effective, a watermark must be imperceptible within its host, easily extracted by the own‐
er, and robust to intentional and unintentional distortions [7]. In specific, discrete wavelet

transforms (DWT) has wide applications in the area of image watermarking. This is because

it has many specifications that make the watermarking process robust. Some of these specifi‐
cations are [4]: Space-frequency localization, Multi-resolution representation, Superior Hu‐
man Visual system (HVS) modeling, and adaptively to the original image. A wavelet-based

watermarking technique for ownership verification is presented by Y. Wang [11]. It uses or‐
thonormal filter banks that are generated randomly to decompose the host image and insert

the watermark in it.

Another transform technique that is used extensively in image coding is the pyramid trans‐
form which was first introduced by Burt and Adelson [12]. It can provide high compression

rates and at the same time low complexity encoding. Like the DWT, pyramid transform pro‐
vides multi-resolution representation of the images. These properties can be used in water‐
marking to establish a robust data hiding system.
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In this chapter, our target is to develop an algorithm using optimal pyramid decomposition

technique, and combine it with wavelet decompositions. The algorithm will be used for data

hiding in digital images to meet the requirements of imperceptibility, robustness, storage re‐
quirements, security, and complexity.

2. Wavelet and Pyramid Transforms

The wavelet transform has the advantage of achieving both spatial and frequency localiza‐
tions. Wavelet decomposition depends mainly on filter banks, typically the wavelet decom‐
position and reconstruction structures consist of filtering, decimation, and interpolation.

Figure 1. shows two-channel wavelet structure [11].

Figure 1. Two-channel wavelet transform structure: (a) decomposition, (b) reconstruction.

Where H0, H1, G0, and G1 are the low decomposition, high decomposition, low reconstruc‐

tion and high reconstruction filters, respectively. For the perfect reconstruction (i.e. x0 = x
∧

0 ),

these filters should be related to each other according to the relations given below:

H0(z)G0(z) + H1(z)G1(z)=2 (1)

H0(− z)G0(z) + H1(− z)G1(z)=0 (2)

Special type of wavelet filters is the orthonormal filters. These filters can be constructed in

such a way that they have large side-lobes. This makes it possible to embed more water‐
marks in the lower bands to avoid the effect of the different images processing techniques.

These filter banks can be generated randomly depending on the generating polynomials.
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hiding in digital images to meet the requirements of imperceptibility, robustness, storage re‐

The wavelet transform has the advantage of achieving both spatial and frequency localiza‐
tions. Wavelet decomposition depends mainly on filter banks, typically the wavelet decom‐

 are the low decomposition, high decomposition, low reconstruc‐
∧

− −

such a way that they have large side-lobes. This makes it possible to embed more water‐

For two-channel orthonormal FIR real coefficient filter banks, the following relations shall

be applied [11]:

G0(z)G0(z
−1) + G0(− z)G0(− z −1)=2 (3)

G1(z)= − z −2k+1
G0(− z −1);k∈Z (4)

H i(z)=Gi(z
−1), i∈ {0,1} (5)

If P(z) was defined as a polynomial, where

P(z)=G0
(z).G0

(z −1) (6)

Then it can be written as:

P(z)=1 + ∑
k=odd

akz
−k , ak =a−k (7)

Depending on the factorization of the polynomials given in equation (7), analysis and syn‐
thesis filters can be generated. If k = 5, then we can get four filters each of length six which

constitute the two-dimensional analysis and synthesis filters. A decomposition structure can

be applied as shown in Figure 2 where sub-band ca1 (the blue square) is chosen for further

decompositions.

Figure 2. Five-level wavelet decomposing structure.
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This decomposing structure is applied to King Saud University (KSU book) image of size

512×512 pixels shown in Figure 3. The resulting wavelet sub-bands are shown in Figure 4.

Figure 3. KSU book image.

Figure 4. Five-level discrete-wavelet decomposition of KSU book image.
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To have a good understanding of the DWT and its effects on the image, it is better to study

this decomposition technique in the frequency domain. Frequency spectrum of the original

KSU image (the book) is shown in Figure 5, and frequency responses of the four sub-bands

that result from the first level decomposition are shown in Figure 6. The spectrums of the

four bands show the effect of the filtering process, and the shapes of these filters. From these

two figures it can be seen that the spectrum of sub-band ca1 is very close to the shape of the

original image because it is only a decimated version of KSU image, whereas the other sub-

bands represent the details of the test image. This is the reason why the visual perception is

more sensitive to low-frequency variations than to high-frequency variations.

Figure 5. Spectrum decomposition of KSU image.

Figure 6. Spectrums of the 1st-level wavelet decomposition sub-bands of KSU image (the book) (a) ca1, (b) ch1, (c) cv1,

and (d) cd1.

Pyramid transform was first introduced by Burt and Adelson [12]. It was used mainly for

image compression. Like the DWT, pyramid transform provides the multi-resolution struc‐
ture. If x0(n1,n2) is the original image of size L1×L2 pixels, then its pyramid structure can be

done as shown in Figure 7.
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Figure 7. Three-level pyramid decomposition of an image x0(n1,n2).

For decimation by a factor of 2, the image will be filtered using analysis lowpass filter H,

and then it will be decimated by a factor of two. This results in an image x1(n1,n2) which is

1/4 of the size of x0(n1,n2) and it is called the first-level image of the pyramid. The second

level image x2(n1,n2) can be obtained from x1(n1,n2) by the same process, and this process is

completed for the higher levels. The image x1(n1,n2) can be interpolated by a factor of 2 and

then filtered using synthesis filter G. The resulting image will be I[x1(n1,n2)]. Where I[.] is the

spatial interpolation and filtering operation. The synthesis filter G is a time reversal version

of the analysis filter H. The difference (error image) e0(n1,n2) is given by:

e0(n1, n2)= x0(n1, n2)−  I x1(n1, n2) (8)

This process can be done for the higher levels and we will have the error images e1(n1,n2),

e2(n1,n2)…etc. The optimizing of the analysis and synthesis filters plays the major role in the

perfect reconstruction of the images. For watermarking purposes, random filters will be

used. The error images e0, e1, and e2 and the decimated image d3 in space domain are shown

in Figures [8-11]. Frequency responses of the error images e0, e1, e2 and decimated image d3

for KSU image (the book) are shown in Figure 12. The frequency response of the original

image indicates that most of the energy is concentrated in the low frequency bands, mainly

around the zero frequency. High frequency bands contain less energy. This results in limita‐
tions on the hiding capacity in these regions. These facts have a great effect in watermarking

algorithm. So that normally high-pass bands are avoided in watermarking due to the com‐
pression effects, and low-pass bands are also avoided because there will be huge artifacts on

the visual quality of the images. To perform the watermarking in the pyramid and the wave‐
let transforms, two requirements should be met. First, the filter banks should be generated

randomly, and the decomposition structure and the bands being used for watermarking

must be determined by the owner. This requires the storage of the coefficients that are used

for generating these filters, and the decomposition structure of the host image. The second

requirement for practical watermarking system is to perform the hiding and the extracting

processes in minimum time. Storage requirements as seen before are not that large. The fil‐
ters can be generated by changing only three coefficients. The running time is related direct‐
ly to the computational complexity of the pyramid and wavelet transforms.
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around the zero frequency. High frequency bands contain less energy. This results in limita‐

algorithm. So that normally high-pass bands are avoided in watermarking due to the com‐

the visual quality of the images. To perform the watermarking in the pyramid and the wave‐

processes in minimum time. Storage requirements as seen before are not that large. The fil‐
ters can be generated by changing only three coefficients. The running time is related direct‐

Figure 8. Pyramid decomposed KSU book image in space domain, e0 image.

Figure 9. Pyramid decomposed KSU book image in space domain, e1 image.

Figure 10. Pyramid decomposed KSU book image in space domain, e2 image.

Figure 11. Pyramid decomposed KSU book image in space domain, d3 image.
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Figure 12. Frequency responses of the pyramidal components of KSU image (a) e0 image, (b) e1 image, (c) e2 image,

(d) decimated image d3.

Computational complexity depends on the number of operations (here multiplications) re‐
quired to transform an image for a number of levels N. A mathematical derivation of this

complexity for pyramid transform is introduced in [13]. The derivation assumes that circular

convolution based on fast Fourier transform (FFT) and inverse fast Fourier transforms (IFFT)

is used for transforming an image pyramidally. This derivation is summarized below.

For an image x0(n1,n2) of size L1×L2, the number of multiplications needed for the first level

x1(n1,n2) with decimation factor M will be

L 1L 2log2L 1 +
L 1L 2

M
log2L 2

(9)

The first part of equation (9) results from horizontal filtering and the second part is the num‐
ber of multiplications needed for vertical filtering after decimated by M. Let

K1 = L 1log2L 1

And

K2 = L 2log2L 2

(10)

Then equation (9) can be applied for higher levels. In general, the total number of multiplica‐
tions needed to get the decimated images x1(n1,n2), x2(n1,n2),…, xN-1(n1,n2) and the difference

images e0(n1,n2), e1(n1,n2),…, eN-2(n1,n2) can be written as follows in equations (11) and (12) [13]:

2(L 2K1 +
L 1

M
K2

) N =1 (11)
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Computational complexity depends on the number of operations (here multiplications) re‐

) results from horizontal filtering and the second part is the num‐

Then equation (9) can be applied for higher levels. In general, the total number of multiplica‐

2 ∑
i=0

N −1 L 2K1

(M )2i +
L 1K2

(M )2i+1 − L 1L 2 ∑
i=0

N −2

(i + 1)
M + 1

(M )2i+3 N ≥2 (12)

Where N is number of decomposition levels, M is the decimation factor.

The above analysis can be extended to the wavelet transform taking into account that there

are four filters for each stage of decompositions and four filters for each stage of reconstruc‐
tions, and the decimation factor is M = 2. Numbers of multiplications in the wavelet trans‐
form are shown in equations (13) and (14).

8(L 2K1 +
L 1

M
K2

) N =1 (13)

8 ∑
i=0

N −1 L 2K1

(M )2i +
L 1K2

(M )2i+1 − L 1L 2 ∑
i=0

N −2

(i + 1)
M + 1

(M )2i+3 N ≥2 (14)

Our algorithm performance will be measured in terms of peak signal-to-noise ratio (PSNR)

between the original image and the watermarked one, and the correlation between the origi‐
nal watermark and the extracted one. False alarm probability Pf is an important aspect in the

watermarking systems. It is the probability that the extracted pattern from unwatermarked

image or an image watermarked with another pattern, has a correlation with the original

watermark greater than the threshold value T, or the probability that the extracted pattern

from our watermarked image has a correlation with the original one less than the threshold

value. This probability is related to the threshold that is chosen.

The watermark extraction is similar to determining a signal in a noisy environment [11];

since the watermark is of size n by n and the energy of the extracted pattern is normalized

before computing the correlation, then, all the possible patterns are lying on a sphere of di‐
mension n2 with radius one. If we define m = n2, the surface area of a m-dimensional sphere

of radius ρ is given in equation (15):

S =mVmρ m−1 (15)

Where Vm =π m/2 / (m / 2) ! . All the patterns are assumed to have equal probabilities. Then, the

false alarm probability Pf equals to the fraction of two areas A1 / A . A is the area of the whole

sphere, while A1 contains all points on the sphere whose inner products with the point cor‐
responding to the rotated watermark pattern are larger than T. By rotating the coordinate

axes to make the rotated watermark pattern correspond to point [1,0,…,0]T, then, A1 can be

calculated as follows:
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A1 = ∫
T

1

(m −1)Vm−1
( 1− x 2)m−2 dx

1− x 2
(16)

And A=mVm . Therefore, Pf can be calculated as given below [11]:

Pf =

∫
T

1

(m −1)Vm−1
( 1− x 2)m−3

dx

mVm

(17)

As the threshold value of the correlator increases, then the false alarm probability decreases

which indicates more reliability. Accepted false alarm probability depends on the require‐
ments, for example a Pf less than 1.35×10-11, corresponds to a correlation threshold value that

should be greater than 0.40.

3. Proposed Watermarking Technique

In this section, we introduce our digital image watermarking technique. The technique con‐
sists of two stages: first stage is the pyramid transform and the second stage is the DWT. The

watermark can be a logo image of size n×n pixels. If x0(n1 ,n2) was the original image of size

L1×L2 pixels, then the pyramid structure for three levels can be done as shown in Figure 7,

where H and G are the analysis and synthesis filters respectively, e0(n1,n2), e1(n1,n2), and

e2(n1,n2) are the error images, and d3 is the decimated image.

Our proposed algorithm will use one of the error images resulting from the pyramid decom‐
position as a host image for the wavelet watermarking process. That is, the watermark will

be inserted in one of the error images using wavelet decomposition. A method for wavelet

image watermarking is proposed by Y. Wang [11]. It uses FIR, real-coefficients, randomly

generated orthonormal filter banks. The watermark will replace the coefficients of one of the

higher sub-bands. Then, the watermarked image will be reconstructed. However, a method

for generating optimal pyramid transform filters has been introduced by F. Chin [14]. There‐
fore, The original image can be pyramidally decomposed using random analysis filters for

three levels resulting in three error images e0, e1, and e2 of sizes L1×L2, (L1/2)×(L2/2), and (L1/4)×

(L2/4) pixels respectively. Each of these error images can be used for wavelet watermarking

process that will be interpreted in three methods.

Method that depends on decomposing e0 will increase the computational complexity. Further‐
more, the visual quality of the reconstructed image is found to be affected when the differ‐
ence image e2 is decomposed. This is due to the fact that the watermark is hidden in the lower

frequency bands, which will affect the significant coefficients of the decomposed image. The

method that depends on decomposing e1 will provide a trade-off between imperceptibility,

robustness, and computational complexity. These observations will be presented in the sim‐
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which indicates more reliability. Accepted false alarm probability depends on the require‐

In this section, we introduce our digital image watermarking technique. The technique con‐

Our proposed algorithm will use one of the error images resulting from the pyramid decom‐

14]. There‐

 will increase the computational complexity. Further‐
more, the visual quality of the reconstructed image is found to be affected when the differ‐

robustness, and computational complexity. These observations will be presented in the sim‐

ulation results. Therefore, e1 can be wavelet decomposed using the analysis filter banks that

were generated according to a structure chosen by the owner and guarantees imperceptibil‐

ity and robustness. A possible structure is shown in Figure 2. Then, the watermark which is

16×16 pixels image will be scrambled, rotated, and then it will replace the black sub-band

shown in Figure 13. Wavelet and pyramid reconstructions using the synthesis filters will then

be performed. The proposed watermarking algorithm using e1 is shown in Figure 14.

Figure 13. Wavelet decomposition structure for the error image e1.

Figure 14. Proposed Pyramid-Wavelet watermarking algorithm using e1.
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4. Experimental Results

In this section we demonstrate the performance of our algorithm using our proposed meth‐
od on grayscale test images of sizes 512×512 pixels, and compare it with method of Y. Wang

[11]. The test images are Lena, Baboon, Peppers, Goldhill, and Barbara. The original and wa‐
termarked images of Lena are shown in figure 15. Our algorithm performance will be meas‐
ured in  terms of  peak signal-to-noise  ratio  (PSNR)  between the  original  image  and the

watermarked one, and the correlation between the original watermark and the extracted

one. For accepted false alarm probability Pf (i.e. less than 1.35×10-11), correlation threshold

value should be greater than 0.40 [11]. For comparison, the average values over the five test

images are computed. Table 1 shows the average PSNR and the average correlation val‐
ues for our method and method of Y. Wang [11]. Our proposed method gives higher aver‐
age  values  for  both  the  PSNR  and  the  correlation.  This  guarantees  good  perceptual

transparency and reliability.

Figure 15. Original and watermarked images.

Proposed method Y. Wang [11]

Average PSNR 46.52 42.14

Average correlation 0.992 0.986

Table 1. Average PSNR and correlation of proposed method and Y. Wang method [8].
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In this section we demonstrate the performance of our algorithm using our proposed meth‐

[11]. The test images are Lena, Baboon, Peppers, Goldhill, and Barbara. The original and wa‐
termarked images of Lena are shown in figure 15. Our algorithm performance will be meas‐

images are computed. Table 1 shows the average PSNR and the average correlation val‐
ues for our method and method of Y. Wang [11]. Our proposed method gives higher aver‐

To see the robustness of our algorithm, the watermarked images were subjected to certain

common attacks. These attacks are JPEG compression, median filters, histogram equaliza‐
tion, zero mean 100 variance Gaussian noise, and 1% salt-and-pepper noise. The average

compression over the five test images is 0.328 bpp. Table 2 shows the average correlation

values for the five test images with these attacks. It can be seen that our proposed algorithm

provides higher values with two of the attacks. These attacks are the median filter and the

JPEG compression. However, for the additive noise and the histogram equalization, it gives

approximately the same average values. Importance of this result is that median filters and

JPEG attacks are among the worst attacks in watermarking systems. They are able to destroy

many watermarking systems without affecting the visual quality. Surviving them gives the

used algorithm high robustness.

The other important advantage of our proposed algorithm is the savings in the computa‐
tional complexity. Normally, DWT and pyramid transform use the fast Fourier transform

(FFT). Computational complexity depends on the number of multiplications being per‐
formed [13]. Table 3 shows the number of multiplications and savings for our method and

method of Y. Wang [11]. It can be shown that our method achieves a saving of 54%. This is

due to the fact that the wavelet decomposition was performed on a smaller image e1 of size

256×256 pixels rather than performing it on the original image of 512×512 pixels.

Type of Attack

Average Correlations

Proposed method Y. Wang [11]

JPEG compression

(average: 0.328 bpp)
0.602 0.562

Median filter 0.909 0.430

Histogram equalization 0.965 0.963

Gaussian noise 0.967 0.974

1% Salt-and-pepper noise 0.948 0.956

Table 2. Average correlations of proposed method and Y. Wang method [11] upon some common attacks.

Hiding technique Proposed method Y. Wang [11]

Number of multiplications 16,687,104 36,347,904

Savings in computational

complexity (%)
54.09 0

Table 3. Computational complexity and savings with respect to method of Y. Wang [11].
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5. Application on Digital Color Images

The proposed Pyramid-Based Watermarking Technique can also be applied on the digital

color images. In this section, we demonstrate the performance of our algorithm using the

proposed method on standard RGB color test images of sizes 512×512 pixels and the water‐
mark was inserted in the green component. The test images are Lena, Baboon, and Peppers.

The original and watermarked images of Lena are shown in Figure 16. Table 4 shows the

correlation values of the watermarking process for the images. To ensure the robustness of

our method, it was subjected to attacks of Gaussian noise of zero mean and variance of 100,

1% salt-and-pepper noise, and JPEG compression. Tables 5 and 6 show the correlation val‐
ues when adding the two types of noise. It can be seen that our proposed algorithm is robust

to these kinds of noise. Table 7 shows the correlation values when our watermarked images

were compressed using JPEG compression at quality factors of 50,60,70,80, and 90 to differ‐
ent bit rates. It can be seen that for an average bit rate of 1.67 bpp, the normalized correla‐
tion is 0.50. This value is above the threshold mentioned in reference [10] which is 0.23. So,

our algorithm is robust against JPEG compression at quality factors greater than 50.

Figure 16. a). The original standard 512×512 RGB color image. (b) Watermarked color image.

Image Correlation

Lena 1

Baboon 1

Peppers 1

Table 4. Correlation values of watermarking process of color images using our proposed method.
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proposed method on standard RGB color test images of sizes 512×512 pixels and the water‐

show the correlation val‐

were compressed using JPEG compression at quality factors of 50,60,70,80, and 90 to differ‐
ent bit rates. It can be seen that for an average bit rate of 1.67 bpp, the normalized correla‐

Image Correlation

Lena 0.90

Baboon 0.98

Peppers 0.77

Table 5. Correlation values of watermarking process of color images using our proposed method upon attack of

Gaussian noise.

Image Correlation

Lena 0.91

Baboon 0.98

Peppers 0.70

Table 6. Correlation values of watermarking process of color images using our proposed method upon attack of 1%

salt-and-pepper noise.

Image
Quality

factor

Bitrate

(bpp)

Correlation

Proposed method

Lena

50 0.74 0.29

60 0.85 0.30

70 1.03 0.41

80 1.34 0.44

90 2.11 0.74

Baboon

50 1.54 0.50

60 1.78 0.54

70 2.13 0.65

80 2.71 0.75

90 4.06 0.91

Peppers

50 0.80 0.23

60 0.93 0.29

70 1.13 0.35

80 1.47 0.42

90 2.45 0.67

Average 1.67 0.50

Table 7. Correlation values of watermarking process of color images using our proposed method upon attack of JPEG

compression.
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6. Conclusions

In this chapter, we proposed a pyramid-wavelet watermarking technique. The technique

uses the spatial-frequency properties of the pyramid and wavelet transforms to embed a wa‐
termark in digital images. From the results, the proposed algorithm achieved a trade-off be‐
tween the perceptual invisibility and the robustness. However, it enhanced the performance

of the wavelet-based watermarking algorithm of Y. Wang [11] in many aspects such as com‐
pression and median filter attacks. The security issues were addressed extensively in the de‐
sign, where the filter banks being used are generated randomly. The owner has full control

on the filter banks, the decomposition structure, and the band being used for embedding.

On the other hand, the watermark can be also controlled by the owner; he can rotate and

scramble it. The proposed algorithm provided savings in the computational complexity

which is a significant aspect in watermarking systems design. The filters being used for pyr‐
amid and wavelet transform should be optimized for perfect reconstruction, and this will

help in designing robust watermarking systems to get the best performance.
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1. Introduction

Mobile phones are one of the most commonly used tools in our daily life and many people

record videos of the various events by using the embedded cameras, and usually due to low

resolution of the cameras, reviewing the videos on the high resolution screens is not very

pleasant. That is one of the reasons that nowadays resolution enhancements of low resolu‐
tion video sequences are at the centre of interest of many researchers. There are two main

approaches in the literature for performing the resolution enhancement. The first approach

is multi-frame super resolution based on the combination of image information from several

similar images taken from a video sequence (M. Elad and A. Feuer, PAMI, 1999). The second

approach is referred as single-frame super resolution, which uses prior training data to en‐
force super resolution over a single low resolution input image. In this work we are follow‐
ing the first approach which is multi frame resolution enhancement taken from low

resolution video sequences.

Tsai and Huang are the pioneers of super resolution idea (1984). They used the frequency

domain approach. Further work has been conducted by Keren et al. (1988) describing a spa‐
tial domain procedure by using a global translation and rotation model in order to perform

image registration. Furthermore, Reddy and Chatterji (1996) introduced a frequency domain

approach for super resolution. Later on, Cortelazzo and Lucchese (2000) presented a method

for estimating planar roto-translations that operates in the frequency domain. Irani and Pe‐
leg (1991) have developed a motion estimation algorithm, which considers translations and

rotations in spatial domain. Meanwhile, further researches have been conducted on devel‐
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oping on resolution enhancement of low resolution video sequences (Demirel and Izadpana‐
hi, 2008, B. Marcel, M. Briot, and R. Murrieta, 1997, Demirel et al. [EUSIPCO] 2009, N.

Nguyen and P. Milanfar, 2000, Robinson et al 2010). Vandewalle et al. (2006) considered a

frequency domain technique to specifically register a set of aliased images. In their method

images were differently considered by a planar motion method. Their proposed algorithm

used low-frequency information which has the highest signal-to-noise ratio (SNR), and in

their setup, the aliasing-free part of the images.

Wavelet transform is also being widely used in many image processing applications, espe‐
cially in image and video super resolution techniques (Piao et al. 2007, Demirel et al. [IEEE

Geoscience and Remote Sensing Letter] 2010, Temizel and Vlachos 2005, Demirel and An‐
barjafari 2010, Anbarjafari and Demirel [ETRI], 2010 ). A one-level discrete wavelet trans‐
form (DWT) of a single frame of a video sequence produces a low frequency subband, and

three high frequency subbands oriented at 0 , 45 , and 90 (Mallat,1999).

In this work, we have proposed a new video resolution enhancement technique which gener‐
ates sharper super resolved video frames. The proposed technique uses DWT to decompose

low resolution frames of the video sequences into four subbands, namely, low-low (LL), low-

high (LH), high-low (HL), and high-high (HH). Then the three high frequency subbands (LH,

HL, and HH subbands) of the respective frames have been enlarged by using bicubic interpo‐
lation. In parallel, the input low resolution frames have been super resolved by using Irani and

Peleg technique separately (Irani and Peleg, 1991). Illumination inconsistence can be attribut‐
ed to uncontrolled environments. Because Irani and Peleg registration technique is used, it is

an advantage that the frames used in the registration process have the same illumination. In

this paper, we have also proposed a new illumination compensation method by using singu‐
lar value decomposition (SVD). The illumination compensation technique is performed on the

frames before the implementation of Irani and Peleg resolution enhancement technique. Final‐
ly,  the interpolated high frequency subbands,  obtained from DWT of the corresponding

frames, and their respective super resolved input frames have been combined by using in‐
verse DWT (IDWT) to reconstruct a high resolution output video sequence. The proposed tech‐
nique has been compared with several state-of-art image resolution enhancement techniques.

The following registration techniques are used for comparison purposes:

• Cortelazzo and Lucchese registration technique (2000)

• Marcel et al., registration technique (1997)

• Vandewalle et al., registration technique (2006)

• Keren et al., registration technique (1988),

The reconstruction techniques used in this work for comparison are:

• Bicubic interpolation

• Iterated Back Projection (1991)
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The experimental results are showing that the proposed method overcomes the aforemen‐
tioned resolution enhancement techniques. Also as it will be shown in the experimental sec‐

pair of orthogonal zero-crossing lines. The angle that these lines make with the axes is iden‐
tical to half the rotation angle between the two images. Thus the rotation angle will be com‐

In this method a registration algorithm that uses the Fourier domain approach to align im‐

the image, the spectrum will rotate in the same direction. Therefore, the rotational compo‐
nent can first be estimated. Then, after compensating for rotation, and by using phase corre‐

Irani et al. have developed a motion estimation algorithm. This algorithm considers transla‐
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• Robust super resolution technique (Zomet et al., 2001)

• Structure Adaptive Normalized Convolution (Pham et al., 2006)

The experimental results are showing that the proposed method overcomes the aforemen‐
tioned resolution enhancement techniques. Also as it will be shown in the experimental sec‐
tion, the proposed illumination compensation improves the quality of the super resolved

sequence (the PSNR) by 2.26 dB for Akiyo video sequence.

2. State-of-art super resolution methods

In this section a brief introduction of four super resolution methods, which have been used

to compare the performance of the proposed super resolution technique, are reviewed.

2.1. L. Lucchese et al. super resolution method

Lucchese et al. super resolution method operates in the frequency domain. The estimation of

relative motion parameters between the reference image and each of the other input images

is based on the following property: The amplitude of the Fourier transform of an image and

the mirrored version of the amplitude of the Fourier transform of a rotated image have a

pair of orthogonal zero-crossing lines. The angle that these lines make with the axes is iden‐
tical to half the rotation angle between the two images. Thus the rotation angle will be com‐
puted by finding these two zero crossings lines. This algorithm uses a three-stage coarsest to

finest procedure for rotation angle estimation with a wide range of degree accuracy. The

shift is estimated afterwards using a standard phase correlation method.

2.2. Reddy et al. super resolution method

In this method a registration algorithm that uses the Fourier domain approach to align im‐
ages which are translated and rotated with respect to one another, was proposed. Using a

log-polar transform of the magnitude of the frequency spectra, image rotation and scale can

be converted into horizontal and vertical shifts. These can therefore also be estimated using

a phase correlation method. Their method utilizes reparability of rotational and translational

components property of the Fourier transform. According to this property, the translation

only affects the phase information, whereas the rotation affects both phase and amplitude of

the Fourier transform. One of the properties of the 2D Fourier Transform is that if we rotate

the image, the spectrum will rotate in the same direction. Therefore, the rotational compo‐
nent can first be estimated. Then, after compensating for rotation, and by using phase corre‐
lation techniques, the translational component can be estimated easily.

2.3. Irani et al. super resolution method

Irani et al. have developed a motion estimation algorithm. This algorithm considers transla‐
tions and rotations in spatial domain. The motion parameters which are unknown can be

DWT Based Resolution Enhancement of Video Sequences
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computed from the set of approximation that can be derived from the following equation

(1), where the horizontal shift a, vertical shift b, and rotation angle θ between two images g1

and g2 can be expressed as:

g2
(x, y)= g1

(xcosθ − ysinθ + a, ycosθ + xsinθ + b) (1)

Finally, after determining and applying the results, the error measure between images g1

and g2 is approximated by (1) where this summation is counted over overlapping areas of

both images.

E (a, b, θ)=∑ g1
(x, y) + (a− yθ −

xθ 2

2
) ∂g1

∂ x

+ (a + xθ −
yθ 2

2
) ∂g1

∂ y − g2
(x, y) 2

(2)

For reducing E to its minimal value and obtaining more accurate result, the linear system in

(5) is applied. By solving the following matrix, the horizontal shift a, vertical shift b, and ro‐
tation angle θ will be computed as follows.

M =

a

b

c

, B =

∑
∂g1

∂ x (g1 − g2)

∑
∂g1

∂ y (g1 − g2)

∑ R(g1− g2)

(3)

A=

∑ ( ∂g1

∂x )2

∑ ( ∂g1

∂x
∂g1

∂y ) ∑ (R ∂g1

∂x )
∑ ( ∂g1

∂x
∂g1

∂y ) ∑ ( ∂g1

∂y )2

∑ (R ∂g1

∂y )
∑ (R ∂g1

∂x ) ∑ (R ∂g1

∂y ) ∑R 2

3x3

(4)

AM =B⇒A −1AM =A −1B⇒M =A −1B (5)

Fig. 1 (a-d) shows the four low resolution consecutive frames, where (e), (f) and (g) shows

super resolved high resolution images by using Cortelazzo et al., Reddy et al., and Irani et.

al methods respectively.
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The main loss of an image or a video frame after being super resolved is on its high frequen‐
cy components (i.e. edges), which is due to the smoothing caused by super resolution tech‐

each subband (i.e. LL, LH, HL and HH video sequences). Then, the Irani et al. super resolu‐
tion method in (1991) is applied to all subband video sequences separately. This process re‐

the output video sequence would contain sharper edges than the super resolved video se‐

and LH will preserve more high frequency components after the super resolution of the re‐

super resolution technique explained above. The static regions are similarly transformed in‐
to wavelet domain and each static subband sequence is interpolated by bicubic interpola‐
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Figure 1. a) through (d) are four low resolution images taken from a video sequence. (e) High resolution image of (a)

through (d) using Cortelazzo et al. (f), Reddy et al. (g) and Irani et al. methods.

2.4. Motion-based localized super resolution technique by using discrete wavelet transform

The main loss of an image or a video frame after being super resolved is on its high frequen‐
cy components (i.e. edges), which is due to the smoothing caused by super resolution tech‐
niques. Hence, in order to increase the quality of the super resolved image, preserving the

edges is essential. Hence, DWT has been employed in order to preserve the high frequency

components of the image by decomposing a frame into different subband images, namely

Low-Low (LL), Low-High (LH), High-Low (HL), and High-High (HH).

LH, HL, and HH subband images contain the high frequency components of the input

frame. The DWT process for each frame of the input video generates 4 video sequences in

each subband (i.e. LL, LH, HL and HH video sequences). Then, the Irani et al. super resolu‐
tion method in (1991) is applied to all subband video sequences separately. This process re‐
sults in 4 super resolved subband video sequences. Finally, IDWT is used to combine the

super resolved subbands to produce the high resolution video sequence.

By super resolving the LL, LH, HL and HH video sequences and then by applying IDWT,

the output video sequence would contain sharper edges than the super resolved video se‐
quence obtained by any of the aforementioned super resolution techniques directly. This is

due to the fact that, the super resolution of isolated high frequency components in HH, HL

and LH will preserve more high frequency components after the super resolution of the re‐
spective subbands separately than super resolving the low resolution image directly.

In this technique, the moving regions are extracted to be super resolved with the proposed

super resolution technique explained above. The static regions are similarly transformed in‐
to wavelet domain and each static subband sequence is interpolated by bicubic interpola‐
tion. The high resolution sequence of the static region is generated by composing the

interpolated frames using the IDWT. Eventually, the super resolved sequence is achieved by

combining the super resolved moving sequence and the interpolated static region sequence.

The method can be summarized with the following steps:

1. Acquire frames from video and extract motion region(s) using frame subtraction.

2. Determine the significant local motion region(s) by applying connected component labeling.

3. Apply DWT to decompose the static background region into different subbands.

DWT Based Resolution Enhancement of Video Sequences
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4. Apply bicubic interpolation for enhancing resolution of each subband obtained from step 3.

5. Use IDWT to reconstruct the super resolved static background.

6. Apply DWT to decompose the moving foreground region(s) into different subbands.

7. Super resolve the extracted subbands by applying Irani et al. super resolution method.

8. Use IDWT to reconstruct the super resolved moving region(s).

9. Combine the sequences obtained from steps (5) and (8) to generate the final super re‐
solved vide sequence.

In the first step, four consecutive frames are used where each frame is subtracted from the

reference frame so the differences between frames are extracted. After applying OR opera‐
tion for all subtracted images local motion(s) will appear.

In the second step, the area of local motion(s) can be determined by using connected compo‐
nent labeling. In the third, fourth, and fifth steps the rest of the frames which does not in‐
clude any motion and it is static, will be decomposed by DWT, interpolated with the help of

bicubic interpolation, and composed by IDWT.

Figure 2. First four consecutive frames taken from a video sequence with one moving region. The rectangular moving

part for each four frames is changing adaptively.

Fig. 2 shows four consecutive frames taken from a video sequence. The second frame is used

as the reference frame. The rectangular part shown in each frame corresponds to the moving

part. The rest of the reference frame is the static part. In every four frame the rectangular

moving part will change according to the moving part in those frames.

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications50

In the sixth, seventh and eighth steps, motion parts will be decomposed into different sub‐
bands by DWT, super resolved by using Irani et al. super resolution technique, and all sub‐

In the final step, we combine super resolved motion frames with the interpolated back‐



9. Combine the sequences obtained from steps (5) and (8) to generate the final super re‐

reference frame so the differences between frames are extracted. After applying OR opera‐

In the second step, the area of local motion(s) can be determined by using connected compo‐
nent labeling. In the third, fourth, and fifth steps the rest of the frames which does not in‐

In the sixth, seventh and eighth steps, motion parts will be decomposed into different sub‐
bands by DWT, super resolved by using Irani et al. super resolution technique, and all sub‐
bands will be composed by IDWT.

In the final step, we combine super resolved motion frames with the interpolated back‐
ground to achieve the final high resolution video sequence. The algorithm is shown in Fig. 3.

Figure 3. The algorithm of the proposed super resolution method for video enhancement.
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3. Proposed Resolution Enhancement Technique

As mentioned in the introduction, there are many super resolution techniques for enhancing

the resolution of the video sequences. The main loss of a video frame after being super re‐
solved is on its high frequency components (i.e. edges), which is due to the smoothing

caused within the super resolution processes. Also in many video resolution enhancement

techniques due to slight changes in illumination of the successive frames, registration will be

done poorly which causes drop in the quality of the super resolved sequence. Therefore, in

order to increase the quality of the super resolved video sequence, preserving the edges

(high frequencies) of each frame and correcting the slight illumination differences can in‐
crease the quality of the super resolved sequence.

In the present work, the Irani and Peleg registration technique is used for registration in

which at each stage four successive frames are used. The frames can be named as f0, f1, f2,

and f3 in which f1 is the reference frame (subject to resolution enhancement). The illumina‐
tion compensation is applied in order to reduce the illumination difference between f0, f2,

and f3  and f1  for better registration. The illumination compensation is obtained by apply‐
ing illumination enhancement using singular value decomposition (SVD) (Demirel et al. [IS‐
CIS], 2008) iteratively. The number of iteration depends on the threshold, τ, value which is
equalled to the difference between the mean of the reference frame and the mean of the cor‐
responding frame and is chosen according to the application. In this paper, the threshold

value has been heuristically chosen to be 0.2. The aim of illumination correction technique

is to enhance the illumination of frames f0,  f2,  and f3  in order to have the same illumina‐
tion as the reference frame. For this purpose each frame has been decomposed into three ma‐
trices by using SVD:

f i =U iΣiV i
T i =0,1,2,3 (6)

in which U and V are two orthogonal square matrices known as hanger and aligner respec‐
tively, and Σ is a matrix containing the sorted eigenvalues of f on its main diagonal. As it

is reported in (Demirel et al. [IEEE Geoscience and Remote Sensing Letter] 2010, Demirel et

al. [ISCIS], 2008), Σ contains the intensity information of the given frame. The first singu‐
lar value, σ1, is usually much bigger than the other singular values. That is why manipulat‐
ing the σ1  will  affect  the illumination of  the image significantly.  Hence our aim will  be

correcting the illumination of the frames in the way that the biggest singular value of the

enhanced frame is close enough to the highest singular value of the reference frame. For

this purpose a correction coefficient is calculated by using:

ξ f j =
max(Σ f 1

)
max(Σ f j

) j =0,2,3 (7)

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications52

ξ Σ

(quantization will take the place), therefore highest singular value obtained from the repeti‐
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Then the enhanced frame is constructed by using:

f enhanced j
=U j(ξjΣj)V j

T j =0,2,3 (8)

Because after obtaining the enhanced frame, it will be converted into 8-bit representation

(quantization will take the place), therefore highest singular value obtained from the repeti‐
tion of equation (8) will slightly differ from the highest singular value in the right hand side

of equation (10). The algorithm of the illumination enhancement technique is shown in Fig. 4.

Figure 4. The illumination compensation technique used before the registration.

Fig. 5 is showing the convergence of pixel average of two of the frames towards the refer‐
ence frame for Akiyo video sequence in progressive iterations.
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In this work, discrete wavelet transform (DWT) (Mallat, 1999) has been applied in order to

preserve the high frequency components of each frame. The one level DWT process for each

frame of the input video generates four video sequences (i.e. LL subband sequences and

three high frequency subband sequences with 0 , 45 , and +90 orientations known as LH, HL,

and HH subbands). In parallel to DWT process, the Irani and Peleg super resolution techni‐
que is applied to video sequences in spatial domain. This process results in super resolved

frame which can be regarded as a LL subband of a higher (target) resolution frame. The LH,

HL, and HH subbands of the higher (target) resolution frames are generated by interpola‐
tion of the previously extracted LH, HL, and HH subbands from the input reference frames.

Finally, Inverse DWT (IDWT) is used to reconstruct the super resolved subbands to produce

the resolution enhanced frame, resulting in a high resolution video sequence.

Figure 5. The convergence of the mean of the first (blue) and the third (red) frames of the Akiyo sequence to the

mean of the second frame (reference).

By super resolving the different subbands of video sequences and then by applying IDWT,

the output video sequence contains sharper edges. This is due to the fact that, the proposed

super resolution technique isolates high frequency components and preserves more high

frequency components after the super resolution of the respective subbands separately than

other super resolution technique.

The proposed method can be summarized with the following steps:

10. Acquire frames from a video.

11. Apply the proposed illumination compensation technique before registration.

12. Apply DWT to decompose the low resolution input video sequence into different sub‐
band sequences.

13. Super resolve the original corresponding frame by applying Irani and Peleg super reso‐
lution technique.

14. Apply bicubic interpolation to the extracted high frequency subbands (LH, HL, and HH).

15. Apply IDWT to the output of step 4 and three outputs of step 5 in order to reconstruct

the high resolution super resolved sequence.
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In the fourth step, four illumination compensated consecutive frames are used for registra‐

holding his/her digital camera while taking a series of four shoots of a scene within a short pe‐

conventional and state-of-art techniques mentioned in the introduction is reported. The quan‐



and HH subbands). In parallel to DWT process, the Irani and Peleg super resolution techni‐

HL, and HH subbands of the higher (target) resolution frames are generated by interpola‐

12. Apply DWT to decompose the low resolution input video sequence into different sub‐

13. Super resolve the original corresponding frame by applying Irani and Peleg super reso‐

In the fourth step, four illumination compensated consecutive frames are used for registra‐
tion in implementation of Irani and Peleg super resolution technique. Fig. 6 illustrates the

block diagram of the proposed video resolution enhancement technique.

A possible application of the proposed resolution enhancement technique is that if someone is

holding his/her digital camera while taking a series of four shoots of a scene within a short pe‐
riod of time. The small translation of the person’s hands during capturing the snapshots which

may cause some illumination changes is sufficient to reconstruct the high resolution image.

In all steps of the proposed technique db.9/7 wavelet function and bicubic interpolation are

used. In the next section, the result of comparison between the proposed technique with the

conventional and state-of-art techniques mentioned in the introduction is reported. The quan‐
titative results are showing the superiority of the proposed method over the other techniques.

Figure 6. The block diagram of the proposed video resolution enhancement technique.
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4. Results and Discussions

Super resolution method proposed in this paper is compared with the state-of-art super res‐
olution techniques using Vandewalle (2006), Marcel (1997), Lucchese (2000), and Keren (1988)

registration followed by interpolation, iterated back projection, robust super resolution, and

structure adaptive normalized convolution techniques for reconstruction. The proposed meth‐
od has been tested on four well known video sequences (Xiph.org Test Media, 2010), name‐
ly Mother daughter, Akiyo, Foreman, and Container. Table 1 is showing the PSNR value of

the aforementioned super resolution techniques for the above video sequences.

RESOLUTION ENHANCEMENT TECHNIQUE PSNR (dB) VALUE FOR DIFFERENT SEQUENCES

REGISTRA-

TION
RECONSTRUCTION

MOTHER

DAUGHTER
AKIYO FOREMAN CONTAINER

Vandewalle

Interpolation 24.29 29.45 28.01 23.6

Iterated Back Projection 27.1 31.49 30.17 24.3

Robust SR 27.15 31.5 30.24 24.46

Structure Adaptive Normalized

Convolution
28.95 32.98 33.46 26.38

Marcel

Interpolation 24.44 29.6 28.16 24.96

Iterated Back Projection 27.12 31.52 29.84 25.2

Robust SR 27.18 31.54 30.24 25.25

Structure Adaptive Normalized

Convolution
28.66 33.16 33.25 26.28

Lucchese

Interpolation 24.1 29.62 28.19 24.53

Iterated Back Projection 27.06 31.52 29.88 25.28

Robust SR 27.13 31.55 30.29 25.31

Structure Adaptive Normalized

Convolution
29.01 32.8 33.3 26.36

Keren

Interpolation 23.16 29.6 28.17 24.78

Iterated Back Projection 27.17 31.53 29.87 25.31

Robust SR 27.2 31.55 30.29 25.46

Structure Adaptive Normalized

Convolution
28.63 32.97 33.25 26.15

Proposed resolution enhancement technique

without illumination compensation
31.53 34.07 35.87 28.94

Proposed resolution enhancement technique with

illumination compensation
32.17 35.24 36.52 30.07

Table 1. The average PSNR (dB) values of different resolution enhancement techniques on the test video sequences.
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Fig. 7 is demonstrating the visual result of the proposed method for proposed method com‐
pared with other state-of-art techniques for ‘mother-daughter’ video sequences. As it is ob‐

zoomed segment of the frame (b), and the super resolved frame by using: Keren (c), Lucchese (d), Marcel (e), Vande‐



Super resolution method proposed in this paper is compared with the state-of-art super res‐

structure adaptive normalized convolution techniques for reconstruction. The proposed meth‐
od has been tested on four well known video sequences (Xiph.org Test Media, 2010), name‐

The low resolution video sequences are generated by downsampling and lowpass filtering

each frame of the high resolution video sequence (Temizel, 2007). In this way we keep the

original high resolution video sequences for comparison purposes as a ground truth. All

video sequences have 300 frames and the reported average PSNR values in Table 1 are the

average of 300 PSNR values. The low resolution video sequences have the size of 128x128

and the super resolved sequences have the size of 256x256.

Fig. 7 is demonstrating the visual result of the proposed method for proposed method com‐
pared with other state-of-art techniques for ‘mother-daughter’ video sequences. As it is ob‐
servable from Fig. 4, the proposed method is results in a sharper image compared with the

other conventional and state-of-art video super resolution techniques.

Figure 7. The visual representation of a frame of low resolution of ‘mother-daughter’ video sequence (a) and a

zoomed segment of the frame (b), and the super resolved frame by using: Keren (c), Lucchese (d), Marcel (e), Vande‐
walle (f) registration technique with Structure Adaptive Normalized Convolution reconstruction technique, and the

proposed technique (g).
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5. Conclusion

This paper proposes a new video resolution enhancement technique by applying an illumi‐
nation compensation technique based on SVD before registration process and using DWT in
order to preserve the high frequency components of the frames. The output of the Irani and
Peleg technique is used as LL subband in which LH, HL, and HH subbands are obtained by
using bicubic interpolation of the former high frequency subbands. Afterwards all these
subbands have been combined using IDWT to generate respective super resolved frame.
The proposed technique has been tested on various well known video sequences, where the
quantitative results show the superiority of proposed technique over the conventional and
state-of-art video super resolution techniques.
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1. Introduction

The RoboCup (Kitano et al., 1995) is an international joint project to stimulate research efforts

in the field of artificial intelligence, robotics, and related fields. According to the rules for the

2009 RoboCup, in the league for kid-sized robots (Avalable, 2009), the competitions were to

take place on a rectangular field with an area of 600 × 400 cm2 containing two goals and two

landmark poles, as shown in Fig. 1. A goal was placed in the middle of each goal line, with

one of the goals colored yellow and the other colored blue. As shown in Fig. 2, each goal for

the kid-sized robot field had a crossbar height of 90 cm, a goal wall height of 40 cm, a goal wall

width of 150 cm, and a 50 cm depth for the goal wall. The two landmark poles were placed on

each side of the two intersection points between the touch line and the middle field line. The

landmark pole was a cylinder with a diameter of 20 cm. It consisted of three segments, each

20 cm in height, stacked on top of each other. The lowest and the highest segments have the

same color as the goal on its left side, as shown in Fig. 3. The ball is the standard size orange

tennis ball. All of the above objects are the most critical characteristics in the field, and they

are also the key features which we have to pay attention to.

The functions of humanoid robot vision system include image capturing, image analyses, and

digital image processing by using visual sensors. For digital image processing, it is to transform

the image into the analyzable digital pattern by digital signal processing. We can further use

image analysis techniques to describe and recognize the image content for the robot vision.

The robot vision system can use the environment information captured in front of the robot to

recognize the image by means of the technique of human vision system. An object recognition

algorithm is thus proposed to the humanoid robot soccer competition.
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Generally speaking, object recognition uses object features to extract the object out of the

picture frame, and thus shape (Chaumette, 1994) and (Jean & Wu, 2004), contour (Sun et al,

2003), (Kass et al., 1988), and (Canny, 1986), color (Herodotou et al., 1998) and (Ikeda, 2003),

texture, and sizes of object features are commonly used. It is important to extract the informa‐
tion in real-time because the moving ball is one of the most critical object in the contest field.

The complex feature such as contour is not suited to recognize in our application. The objects

don’t have the obvious texture which is not suited to use in the contest field. However the

object color is distinctive in the contest field, we mainly choose the color information to

determine the critical objects.

Although this approach is simple, the real-time efficiency is still low. Because there is a lot of

information to be processed in every frame for real-time consideration, Sugandi et al. (Sugandi

et al, 2009) proposed a low resolution method to reduce the information. It can speed up the

processing time, but the low resolution results in a shorter recognizable distance and it may

increase the false recognition rate. In order to improve the mentioned drawbacks, we propose

a new approach, adaptive resolution method (ARM), to reduce the computation complexity

and increase the accuracy rate.

The rest of this study is organized as follows. Section 2 presents the related background such

as the general color based object recognition method, low resolution method, and encountered

problems. Section 3 describes the proposed approach, ARM. The experimental results are

shown in Section 4. Finally, the conclusions are outlined in Section 5.

Figure 1. The field for the competitions.

Figure 2. The goal information.
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texture, and sizes of object features are commonly used. It is important to extract the informa‐

Figure 3. The landmark information.

2. Background

2.1. Color based object recognition method

An efficient vision system plays an important role for the humanoid robot soccer players. Many

robot vision modules have provided some basic color information, and it can extract the object

by selecting the color threshold. The flow chart of a traditional color recognition method is

shown in Fig. 4. The RGB color model comes from the three additive primary colors, red, green,

and blue. The main purpose of the RGB color model (Gonzalez & Woods, 2001) is for the

sensing, representation, and display of images in electronic systems, such as televisions and

computers, and it is the basic image information format. The X, Y, and Z axes represent the

red, green, and blue color components respectively, and it can describe all colors by different

proportion combinations. Because the RGB color model is not explicit, it can be easily influ‐
enced by the light illumination and make people select error threshold values.

Figure 4. The flow chart of the traditional color recognition method.

An HSV (HSV stands for hue, saturation, and value) color model relates the representations

of pixels in the RGB color space, which attempts to describe perceptual color relationships

more accurately than RGB. Because the HSV color model describes the color and brightness
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component respectively, the HSV color model is not easily influenced by the light illumination.

The HSV color model is therefore extensively used in the fields of color recognition. The HSV

transform function is shown in eqs. (1)-(3) as follows:
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In (1), (2), and (3), the range of H, hue, is 0°~360°; the range of S, is 0~1, and the range of V,

value, is 0~255. The RGB values are confined by (4):

max ( , , )

min ( , , )
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=

=
(4)

where “max” indicates the maximum value in the RGB color components and “min” indicates

the minimum value in the RGB color components. Hence, we can directly make use of H and

S to describe a color range of high environmental tolerance. It can help us to obtain the

foreground objects mask, M(x,y), by the threshold value selection as shown in (5).
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M
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(5)

where TH1, TH2, and TS are the thresholds of hue and threshold of saturation by manual setting.

The foreground object mask usually accompanies with the noise, and we can remove the noise

by the simple morphological methods, such as dilation, erosion, opening, and closing. It needs

to separate the objects by labeling when many objects with the same colors are existed in the

frame. The following procedure is the flow for labeling (Gonzalez & Woods, 2001):

Step 1: Scan the threshold image M(x,y); Step 2: Give the value Labelcolor
i  to the connected

component Q{n} of pixel(x,y); Step 3: Give the same value to the connected component of Q{n};
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Step 4: Until no connected component can be found; Step 5: Update, i = i+1. Then go to Step 1
and repeat Steps 2~4; Step 6: Completely scan the image.

By using the above-mentioned procedure, the objects can be extracted. Although this method
is simple, it is only suitable for low frame rate sequences. For a high resolution or noisy
sequence, this approach may need very high computation complexity.

2.2. Low resolution method

To overcome the above-mentioned problems, several approaches of low resolution method

were proposed (Sugandi et al., 2009), (Cheng & Chen et al., 2006). The flow chart of a general

low resolution method is shown in Fig. 5. Several low resolution methods, such as the approach

of applying 2-D discrete wavelet transform (DWT) and the using of 2×2 average filter (AF),

were discussed. (Cheng & Chen, 2006) applied the 2-D DWT for detecting and tracking moving

objects and only the LL3-band image is used for detecting motion of the moving object (It is

suggested that the LL3-band is a good candidate for noise elimination (the user can choose a

suited decomposition level according to the requirement, and actually there is no need to do

the reconstruction for these applications). Because noises are preserved in high-frequency, it

can reduce computing cost for post-processing by using the LL3-band image. This method can

be used for coping with noise or fake motion effectively, however the conventional DWT

scheme has the disadvantages of complicated calculation when an original image is decom‐
posed into the LL-band image. Moreover if it uses an LL3-band image to deal with the fake

motion, it may cause incomplete moving object detecting regions. In (Sugandi et al., 2009)

proposed a simple method by using the low resolution concept to deal with the fake motion

such as moving leaves of trees. The low resolution image is generated by replacing each pixel

value of an original image with the average value of its four neighbor pixels and itself as shown

in Fig. 6. It also provides a flexible multi-resolution image like the DWT. Nevertheless, the low

resolution images generated by using the 2×2 AF method are more blurred than that by using

the DWT method. It may reduce the preciseness of post-processing (such as object detection,

tracking, and object identification), because the post-processing depends on the correct

location of the moving object detecting and accuracy moving object.

Figure 5. The flow chart of a general low resolution method.
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Figure 6. Diagram of the 2×2 AF method

In order to detect and track the moving object more accurately, we propose a new approach,

adaptive resolution method (ARM), which is based on the 2-D integer symmetric mask-based

discrete wavelet transform (SMDWT) (Hsia et al, 2009). It does not only retain the features of

the flexibilities for multi-resolution, but also does not cause high computing cost when using

it for finding different subband images. In addition, it preserves more image quality of the low

resolution image than that of the average filter approach (Sugandi et al., 2009).

2.2.1. Symmetric Mask-Based Discrete Wavelet Transform (SMDWT)

In 2-D DWT, the computation needs large transpose memory and has a long critical path. On

the other hand SMDWT has many advanced features such as short critical path, high speed

operation, regular signal coding, and independent subband processing (Hsia et al, 2009). The

derivation coefficient of the 2-D SMDWT is based on the 2-D 5/3 integer lifting-based DWT.

For computation speed and simplicity considerations, four-masks, 3×3, 5×3, 3×5, and 5×5, are

used to perform spatial filtering tasks. Moreover, the four-subband processing can be further

optimized to speed up and reduce the temporal memory of the DWT coefficients. The four-

matrix processors consist of four-mask filters, and each filter is derived from one 2-D DWT of

5/3 integer lifting-based coefficients.

In the ARM approach, we can select only the LL-band mask of SMDWT (The moving object

is low-frequency energy). Unlike the conventional DWT method to process row and column

dimensions respectively by low-pass filter and down-sampling, the LL-mask band of SMDWT

can be used to directly calculate the LL-band image. The matrix function of the LL-mask is

shown in (6) and the coefficients of the LL-mask are shown in Fig. 7 (Hsia et al, 2009). SMDWT

(using the LL-band mask only) can reduce the image transfer computing cost and remove

the noise. Besides, this approach can have accurate object tracking for various types of

occlusions.
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Figure 7. The subband masks coefficients of the LL-mask.

3. The proposed method

3.1. Adaptive Resolution Methos (ARM)

ARM takes advantage of the information obtained from the image to know the area of the ball

and chooses the most suitable resolution. The operation flow chart is shown in Fig. 8. After

HSV color transformation, ARM chooses the most proper resolution by the situation at this

moment in time. The high resolution approach brings a longer recognizable distance but with

a slower running speed. On the other hand, the low resolution approach brings a lower

recognizable distance but with a faster running speed. When we got the area information of

the ball from the image last time, we could convert it as the “sel” signal through the adaptive

selector to choose the appropriate resolution. The “sel” condition is shown in (7):

( )
( )
( )
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1 2

2

0 original size ,   0       

 sel = 1 1-level SMDWT ,  

2 2-level SMDWT ,              

ball thd

thd ball thd
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if A A

if A A A

if A A

  


 
 ³

(7)

In (7), Athd1 and Athd2 are the threshold values for the area of ball. The relationship between the

resolution and the distance of the ball is described in Table 1. According to Table 1, we can

conclude that Athd1 and Athd2 are set to 54 and 413, respectively. The threshold selection is

performed for each different resolution of working environment. The threshold value is used

to produce the recognizable distance. If the ball disappears in the frame, the frame will change

into the original size to have a higher probability to find out the ball. Since the sizes of other

critical objects (such as goal and landmark) in the field are larger than the ball, they can be

recognized easily. Fig. 9 shows the results of different resolutions after the HSV transformation.

3.2. Sample object recognition method

According to the above-mentioned color segmentation method, it can fast and easily extract

the orange ball in the field, but it is not enough to recognize the goals and landmarks. The

colors of the goals and landmarks are yellow and blue, and by color segmentation the extraction

of goals and landmarks may not be correct as shown in Fig. 10. Therefore we have to use
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more features and information to extract them. Since the contest field is not complicated, a

simple recognition method can be used to reduce the computation complexity. The land‐
mark is a cylinder with three colors. Let us look at one of the landmark with the upper and

bottom layers in yellow, and the center layer in blue; this one is defined as the YBY-land‐
mark. The diagram is shown in Fig. 11. The color combinations of the other one are in contrast

of the previous one, and the landmark is defined as the BYB-landmark. The labels of the YBY-

landmark can be calculated by (8). The BYB landmark is in the same manner as the YBY-

landmark.
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Figure 8. The flow chart of ARM.

(a)

(a) 

(b)

(b) 

(c) 

Figure 9. The results after the HSV transformation under the resolutions of video. (a) Recognizable max distance of

ball in 320×240; (b) Recognizable max distance of ball in 160×120; (c) Recognizable max distance of ball in 80×60
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simple recognition method can be used to reduce the computation complexity. The land‐

bottom layers in yellow, and the center layer in blue; this one is defined as the YBY-land‐
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Figure 10. False segmentation of the landmark

Figure 11. The diagram of the landmark.

Figure 12. The result of landmark recognition.

Resolution Level of DWT Recognizable max distance of ball *Area of ball

320×240 0(original) 404.6 cm 18 pixels

160×120 1 322.8 cm 54 pixels

80×60 2 121.3 cm 413 pixels

*The area means the pixel number in the original resolution.

Table 1. The relationship between the resolution and the distance of the ball.
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According to the above-mentioned labeling procedure, we labeled all of the yellow and blue

components in the frame and assigned the numbers to those components. Where L Y
i  is defined

the pixels of the i-th yellow component (Y), ymin and ymax the minimum value and the maximum

value for the object i at y direction respectively, xc and yc the center point of the object at the

horizontal and vertical direction respectively. The vertical bias value βY is set as 15. The

landmark is composed of two same color objects in the vertical line, and the center is in different

color. If it can find an object with this feature, the system can treat this object as the landmark

and outputs the frame coordinate data.

The result of landmark recognition is shown in Fig.12. Eq. (9) is used to define the label of the

ball:

( ) ( )
( ) ( )

( ) ( )
max min

1 2

max min

, , ,    is the maxaimum
s s
O Os

O ss s
O O

L x L x
B x y L x y if A

L y L y
a a


=   Ç


(9)

where is the pixel of the s-th orange component in a frame. Since the ball is very small in the

picture frame, in order to avoid noise, the ball is treated as the maximum orange object and

with a shape ratio of height to width approximately equal to 1. Here α1 and α2 are set to 0.8

and 1.2, respectively. The result of ball recognition is shown in Fig. 13. The goal recognition is

defined in (10).

( ) ( )

( ) ( ) ( ) ( )

, , ,  

 , , , ,

m
B B

m m m
B BYB B YBY B B

G x y L x y

if L x y P x y L x y P x y A 

=

Ï Ç Ï Ç 
(10)

where is the pixel of the m-th blue component in a picture frame. Since the blue goal is

composed of the blue object, it is not a part of the YBY-landmark and BYB-landmark. The size

of the goal in the field is the largest object, and therefore we set the parameter γ as 50. The

result of goal recognition is shown in Fig. 14. The yellow goal is in the same manner as the blue

goal.

Figure 13. The result of ball recognition.
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Figure 14. The result of goal recognition.

3.3. Coordinate transformation

Because our proposed approach, ARM is using the different resolutions in the object recogni‐
tion, we transform the coordinate into the original resolution by level-based of DWT when the

object information is outputted. The transform equation is defined in (11).

( ) ( ), 2 , 2n n
nO x y LL x y= ´ ´ (11)

where O is the original image, LLn is the LL-band iamge after transformation, and n is the

transformation level.

4. Experimental results

In this work, the environment information is extracted by the Logitech QuickCam Ultra Vision

(Using the monocular vision technique). The image resolution is 320×240, and the frame rate

is 30 FPS (frame per second). For the simulation computer, the CPU is Intel Core 2 Duo CPU

2.1GHz, and the development tool is Borland C++ Builder 6.0. The graphical interface is shown

in Fig. 15.

This work is dedicated to the RoboCup soccer humanoid league rules of the 2009 competition.

In order to prove the robustness of the proposed approach, many scenes of various situations

are simulated to verify the high recognition accuracy rate and fast processing time. For the

analyses of recognition accuracy rate, it is classified as a correct recognition if the critical object

is labeled completely and named correctly such as the objects of Goal[B] and Ball shown in

Fig. 16(a). On the other hand there are two categories for false recognition, “false positive” and

“false negative”. “False positive” means that the system recognizes the irrelevant object as the

critical object, such as the Goal[Y] shown in Fig. 16(b). “False negative” means the system

cannot label or name the critical object, such as those balls shown in Figs. 16(c) and 16(d).

4.1. Low resolution analysis

Several low resolution methods, such as down-sampling (DS), AF, and SMDWT, were

implemented and simulated in this experiment and the noise removing capabilities with these
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methods were analyzed. The flow chart of noise removing for the low resolution approaches

is shown in Fig. 17. The input frame resolution is 320×240, and the resolution turns to be 160×120

after the low resolution processing. The noise numbers under different low resolution methods

were counted. The contents of the simulated scene are obtained by turning the camera to left

to see the YBY-landmark and keeping turning until the YBY-landmark disappeared from the

camera scope. In this situation the background of the scene produces noise very easily. The

hue threshold values of the orange, yellow, and blue colors are set as 35~45, 70~80, and 183~193,

respectively, and the saturation threshold of the orange, yellow, and blue colors values are all

set as 70. The experimental results under different low resolution methods, DS, AF, and

SMDWT, are shown in Figs. 18-20, respectively.

The experiment data are listed in Table 2. According to Table 2, the DS approach has the worst

noise removing capability; the 2×2 AF approach also has a bad noise removing capability for

Figure 15. The graph interface for simulation.

(a) (b) 

(c) (d) 

Figure 16. The determination of recognition accuracy. (a) correct recognition. (b) false positive. (c) false negative. (d)

false negative.
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big noise block even though this method can make the image smoother. On the other hand,

the SMDWT approach (using LL-mask only) has a better noise removing capability than the

other methods, and it can retain the information of low-frequency component and remove the

noise of high-frequency component in the image.

Figure 17. The flow chart of noise removing capability.

(a) (b) 

(c) 

Figure 18. Fig. 18. The noise removing capability by using DS. (a) frame 37. (b) frame 67. (c) frame 97.
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(a) (b) 

(c) 

Figure 19. The noise removing capability by using 2×2 AF method. (a) frame 37. (b) frame 67. (c) frame 97.

(a) (b) 

(c) 

Figure 20. The Gaussian noise removing capability by using SMDWT. (a) frame 37. (b) frame 67. (c) frame 97.

In order to improve the noise removing capability of the whole system, we added the opening

operator (OP) of mathematical morphology after labeling in the flow chart of Fig. 17. The

results after adding the opening operator are shown in Figs. 21-23.
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(a) (b) 

(c) 

Figure 22. The noise removing capability by using 2×2 AF method and opening operator. (a) frame 37. (b) frame 67.

(c) frame 97.

Method Total frame Total noise number *Average noise number Average frame rate

DS

153

4,133 27.01 42.24 FPS

AF 3,191 20.86 41.03 FPS

SMDWT 2,670 17.45 38.13 FPS

*Average noise number = (Total noise number) / (Total frame)

Table 2. The noise counts under different low resolution methods.

(a) (b) 

(c) 

Figure 21. The noise removing capability by using DS and opening operator. (a) frame 37. (b) frame 67. (c) frame 97.
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(a) (b) 

(c) 

Figure 23. The noise removing capability by using SMDWT and opening operator. (a) frame 37. (b) frame 67. (c) frame

97

The experiment data after adding the opening operator are shown in Table 3. Compared with

the results of Table 2, the noise numbers are reduced significantly after adding the opening

operator, and it can reduce the unnecessary computation. The SMDWT approach has the best

performance and the frame rate can be as high as 30 FPS. Therefore this work adopts the

SMDWT approach as the low resolution method.

Method Total frame Total noise number Average noise number Average frame rate

DS + OP

153

408 2.67 38.01 FPS

AF + OP 334 2.18 37.73 FPS

SMDWT + OP 60 0.39 30.95 FPS

Table 3. The noise counts under different low resolution methods with opening operator

4.2. Adaptive Resolution Method (ARM) analyses

In this experiment, we try to verify that ARM does not only retain high recognition accuracy

rate, but also can raise the system processing efficiency. The hue threshold values of the orange,

yellow, and blue colors are set as 35~45, 70~80, and 183~193, respectively. The saturation

threshold values of the orange, yellow, and blue colors are all set as 70. To verify the ARM

approach, the camera is set in the center of the contest field. The scene tries to simulate that

the robot kicks ball into the goal and the vision system will track the ball. The results under

resolutions of 320×240, 160×120, 80×60, and ARM are shown in Figs. 24-27, respectively.
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(a) (b) 

(c) 

Figure 24. The result of object recognition under resolution 320×240. (a) frame 20. (b) frame 35. (c) frame 110.

(a) (b) 

(c) 

Figure 25. The result of object recognition under resolution 160×120. (a) frame 20. (b) frame 35. (c) frame 110.
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(a) (b) 

(c) 

Figure 26. The result of object recognition under resolution 80×60. (a) frame 20. (b) frame 35. (c) frame 110.

(a) (b) 

(c) 

Figure 27. The result of object recognition under the ARM approach. (a) frame 20. (b) frame 35. (c) frame 110.

The experiment data of the accuracy rate and average FPS under different resolutions and

ARM are shown in Table 4 and Fig. 28. According to Table 4, although the 320×240 resolution

has a high accuracy rate, the processing speed is slow. The 80×60 resolution has the highest

processing speed, but it has the lowest accuracy rate. By this approach, it gets high accuracy

rate only when the object is close to the camera. On the other hand, the proposed ARM

approach does not only have a high accuracy rate, but also keeps high processing speed.

According to Fig. 28, the result shows that ARM selects the most proper resolution when the
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ball is in different distances. ARM uses the 80×60 resolution when the level is equal to 2 and

uses the 160×80 resolution when the scale level is equal to 1. As the scale level is equal to 0,

ARM selects the original input frame size (320×240).

Figure 28. The relationship between frame number and frame rate under different resolutions and ARM.

Resolution Total frame Object frame False positive False negative Accuracy rate Average frame rate

320×240

138 138

0 6 95.65% 16.93 FPS

160×120 0 52 62.32% 31.46 FPS

80×60 0 109 21.01% 59.84 FPS

ARM 0 7 94.93% 21.17 FPS

Table 4. The experimental results of the accuracy rate and average FPS under different resolutions and ARM.

4.3. The critical objects recognition analysis

In this experiment, several scenes were simulated to improve the robustness of feature

recognition approaches proposed in this work.

4.3.1. Landmark recognition analysis

According to (8), the landmark is composed of two same color objects in the vertical line, and

the bias value β is the key point to make sure whether this block is a landmark or not. A small

bias value β will cause the missing recognition, however a large β may recognize an irrelevant

block as a landmark, and these two situations are shown in Fig. 29.
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(a) (b) 

Figure 29. The diagram of false recognition of landmark. (a) the case of small β. (b) the case of large β.

In this experiment, different values of β were set to test the effects. The scene is used for

simulating that the camera captures a slantwise landmark when the robot is walking. The hue

threshold values of the orange, yellow, and blue colors are set as 35~45, 65~75, and 175~185,

respectively. The saturation threshold values of the orange, yellow, and blue colors are all set

as 60. The results under values of β equal to 5, 10, 15, and 20 are shown in Figs. 30-33, respec‐
tively.

The experiment data of landmark recognition is shown in Table 5. According to this table, we

can have a higher recognition accuracy rate when β is greater than 15. Generally speaking, the

vibration of robot walking is not more intense than the simulation, and therefore β is set as 15

in this work. It will increase the chance of false recognition as a larger β is used.

(a) (b) 

(c) 

Figure 30. The result of object recognition with β equal to 5. (a) frame 246. (b) frame 253. (c) frame 260.

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications82

β

β



β β.

β

β equal to 5, 10, 15, and 20 are shown in Figs. 30-33, respec‐

β
β

β

β

(a) (b) 

(c) 

Figure 31. The result of object recognition with β equal to 10. (a) frame 246. (b) frame 253. (c) frame 260.

(a) (b) 

(c) 

Figure 32. The result of object recognition with β equal to 15. (a) frame 246. (b) frame 253. (c) frame 260.
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(a) (b) 

(c) 

Figure 33. The result of object recognition with β equal to 20. (a) frame 246. (b) frame 253. (c) frame 260.

β Total frame Object frame Correct recognition Accuracy rate Average frame rate

5

664 664

304 45.78% 20.02 FPS

10 545 82.08% 20.07 FPS

15 637 95.93% 20.15 FPS

20 631 95.03% 20.18 FPS

Table 5. The experimental results under different values of β.

4.3.2. Goal recognition analysis

The goal is the largest critical object in the field, and hence the camera always captures the

incomplete goal in the frame when the robot is walking in the field. It causes a false recognition

easily by using the feature of the shape ratio to recognize the goal. We improve this drawback

by using the proposed method in Section 3.2 and the experimental results are shown here. The

camera is set in the center of the contest field. The scene tries to simulate that the robot raises

its head to see the goal and turns right to see the YBY-landmark and then turns left to see the

BYB-landmark. The hue threshold values of the orange, yellow, and blue colors are set as 35~45,

70~80, and 183~193, respectively. The saturation threshold values of the orange, yellow, and

blue colors are all set as 60. The results are shown in Fig. 34 and the experiment data are listed

in Table 6. According to the result, the system can make the correct recognition of goal even

though the goal is occluded.
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(a) (b) 

(c) 

Figure 34. The results of goal recognition. (a) frame 34. (b) frame 76. (c) frame 118.

condition Total frame Object frame False positive False negative Accuracy rate Average frame rate

Goal Recognition 328 297 0 7 97. 64% 21.98 FPS

Table 6. The experiment data of goal recognition.

4.3.3. Ball recognition analysis

For the ball recognition, the system determines the orange block which has the maximum

pixels as a ball for preventing the influence of noise. In this experiment, two balls are used in

the scene. One ball is static in the field, and the other one moves into the frame and then moves

away from the camera. The hue threshold values of the orange, yellow, and blue colors are set

as 35~45, 70~80, and 183~193, respectively. The saturation threshold values of the orange,

yellow, and blue colors are all set as 60. The result is shown in Fig. 35 and the experiment data

are shown in Table 7. The static ball is labeled absolutely if only one ball is in the field, and the

result is shown in Fig. 35(a). Because another ball has a bigger area when it is moving into the

frame, the system will label the moving ball and determine the static ball as noise, and the

result is shown in Fig. 35(b). When the moving ball is distant from the camera, the static ball

is labeled again, and the result is shown in Fig. 35(c).
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(a) (b) 

(c) 

Figure 35. The result of ball recognition. (a) frame 124. (b) frame 131. (c) frame 156.

(a) (b) 

(c) 

Figure 36. The result of ball recognition. (a) frame 145. (b) frame 151. (c) frame 153.

condition Total frame Object frame False positive False negative Accuracy rate Average frame rate

Ball Recognition 274 274 0 0 99.99% 30.93 FPS

Ball Occlusion 289 289 3 0 98.96% 20.69 FPS

Table 7. The experiment data of ball recognition.
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Besides, it can also handle the situation when the ball is occluded partially by using the feature

recognition proposed. We use the scene that the ball is occluded by the landmark during the

ball moving in the frame from left to right. The hue threshold values of the orange, yellow,

and blue colors are set as 35~45, 70~80, and 175~185, respectively. The saturation threshold

values of the orange, yellow, and blue colors are all set as 50. The results are shown in Fig.

36 and the experiment data are shown in Table 7.

4.4. Environmental tolerance analysis

The color deviation by luminance variation has the most influence to the result of the color-

based recognition method proposed in this work. Before the robot soccer competition we

usually have one day to prepare for the contest, and therefore we can regulate the threshold

values easily by the graph interface according to the luminance of the field. The results under

different luminance are shown in Fig. 37. The reference threshold values are shown in Table 8.

(a) (b) 

(c) (d) 

Figure 37. The results of object recognition under different luminance. (a) 16 lux. (b) 178 lux. (c) 400 lux. (d) 893 lux.

Luminance Hue_O Sat_O Hue_Y Sat_Y Hue_B Sat_B

16 lux 3∼13 10 118∼128 50 220∼230 96

178 lux 13∼23 60 119∼129 60 205∼215 96

400 lux 17∼27 50 61∼71 50 190∼200 50

596 lux 17∼27 50 57∼67 50 180∼190 50

893 lux 23∼33 50 57∼67 45 180∼190 50

Table 8. The threshold values used under different luminance.
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The system cannot only recognize the critical objects under different luminance, but it can also

accommodate the light changing suddenly. This experiment simulates that the robot recog‐
nizes the BYB-landmark and ball in the field under the light changing suddenly. The hue

threshold values of the orange, yellow, and blue colors are set as 33~43, 67~77, and 175~185,

respectively. The saturation threshold values of the orange, yellow, and blue colors are all set

as 50. The results are shown in Fig. 38 and the experiment data are listed in Table 9. According

to the result, the proposed method has a good performance about environmental tolerance.

(a) (b) 

(c) 

Figure 38. The result of object recognition under the light changing suddenly. (a) frame 388. (b) frame 440. (c) frame

535.

condition Total frame Object frame False positive False negative Accuracy rate Average frame rate

Light Influence 1,219 1,219 0 0 99.99% 31.14 FPS

Table 9. The experiment data of light influence.

4.5. Synthetic analyses

In this experiment, several scenes were simulated to compare the recognition accuracy rate

and processing time between the 320×240 resolution and ARM. Scene 1: the ball is approach

it to the camera slowly. Scene 2: the robot is approaching the ball after shooting the ball to the

goal. Scene 3: the robot finds the ball and then tries to get approaching and kick it. Scene 4: the

camera captures a blurred image when the head motor of the robot is rotating very fast. Scene

5: the robot localizes itself by seeing the landmarks. The hue threshold values of the orange,

yellow, and blue colors are set as 35~45, 70~80, and 185~190, respectively. The saturation

threshold values of the orange, yellow, and blue colors are all set as 50. The experiment data

of these scenes are shown in Table 10 and the experimental results are shown in Figs. 39-43,
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accommodate the light changing suddenly. This experiment simulates that the robot recog‐
respectively. According to the simulation results, our proposed method accommodates many

kinds of scenes. It has the accuracy rate of more than 93% on average and the average frame

rate can reach 32 FPS. It does not only maintain the high recognition accuracy rate for the high

resolution frames, but also increases the average frame rate for about 11 FPS compared to the

conventional high resolution approach. Furthermore, all of the experimental result videos

mentioned in this section are appended in.

(a) (b) 

(c) (d) 

Figure 39. The result of Scene 1. (a) frame 11. (b) frame 46. (c) frame 63. (d) frame 65.

(a) (b) 

(c) (d) 

Figure 40. The result of Scene 2. (a) frame 89. (b) frame 98. (c) frame 240. (d) frame 347.
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(a) (b) 

(c) (d) 

Figure 41. The result of Scene 3. (a) frame 81. (b) frame 159. (c) frame 456. (d) frame 793.

(a) (b) 

(c) (d) 

Figure 42. The result of Scene 4. (a) frame 81. (b) frame 162. (c) frame 273. (d) frame 620.
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(h) 

(d) (e) 

(g) 

(f) 

(a) (c) (b) 

Figure 43. The result of Scene 5. (a) frame 106. (b) frame 211. (c) frame 347. (d) frame 372. (e) frame 434. (f) frame

581. (g) frame 748. (h) frame 954.

Scene Resolution Total frame Object frame False positive False negative Accuracy rate
Average frame

rate

1
320×240

165 165
1 5 96.36% 20.49 FPS

ARM 0 4 97.58% 23.31 FPS

2
320×240

409 409
27 1 93.15% 21.36 FPS

ARM 11 2 96.82% 29.88 FPS

3
320×240

919 919
16 15 96.63% 19.75 FPS

ARM 1 28 96.84% 28.48 FPS

4
320×240

679 627
3 83 86.28% 19.29 FPS

ARM 2 88 85.65% 27.31 FPS

5
320×240

1,114 1,114
12 60 93.54% 22.38 FPS

ARM 4 74 93.00% 40.58 FPS

Total
320×240

3,286 3,234
59 164 93.10% 20.78 FPS

ARM 18 196 93.38% 32.25 FPS

Table 10. The experimental results of several kinds of scene simulation.
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5. Conclusions

An outstanding humanoid robot soccer player must have a powerful object recognition system

to fulfill the functions of robot localization, robot tactics, and barrier avoiding. In this study,

we propose an HSV color based object segmentation method to accomplish object recognition.

The object recognition system uses the proposed adaptive resolution method (ARM) and

sample object recognition method, and it can recognize objects. The experimental results

indicate that the proposed method is not only simple and capable of real-time processing but

that it also achieves high accuracy and efficiency with the functions of object recognition and

tracking. The method achieves a high accuracy rate of more than 93% on average, and the

average frame rate can reach 32 FPS in indoor situations.
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signifies a character on a feature of the human subject. Recognizing physiological and be‐

understand‐
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1. Introduction

In the present chapter the authors have ventured to explain the process of recognition of

physiological and behavioural traits of human-gait and human-face images, where a trait

signifies a character on a feature of the human subject. Recognizing physiological and be‐
havioural traits is a knowledge intensive process, which must take into account all variable

information of about human gait and human face patterns. Here the trained data consists of

a vast corpus of human gait and human face images of subjects of varying ages. Recognition

must be done in parallel with both test and trained data sets. The process of recognition of

physiological and behavioural traits involves two basic processes: modelling and understand‐
ing. Recognition of human-gait images and human-face images has been done separately.

Modelling involves formation of a noise-free artificial human gait model (AHGM) of hu‐
man-gait images and formation of artificial human-face model (AHFM) of human-face im‐
ages. Understanding involves utilization of the hence formed models for recognition of

physiological and behavioural traits. Physiological traits of the subject are the measurement

of the physical features of the subject for observation of characteristics. The observable char‐
acters may be categorized into four factors: built, height, complexion and hair. Behavioural

traits of the subject involve the measurement of the characteristic behaviour of the subject

with relevant to four factors: dominance, extroversion, patience and conformity. Recognition in

this chapter has been done in two environments: open-air space and clear-under-water space.

The current chapter presents a well defined application of high-end computing techniques

like soft-computing, utility computing and also some concepts of cloud computing.
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Figure 1. A Schematic diagram for the formation of AHGM

2. Modelling of AHGM and AHFM

2.1. Illustration of an Artificial Human-Gait Model (AHGM)

Human-gait analysis is a systematic study and analysis of human walking. It is used for di‐
agnosis and the planning of treatment in people with medical conditions that affect the way

they walk. Biometrics such as automatic face and voice recognition continue to be a subject

of great interest. Human-Gait is a new biometric aimed to recognize subjects by the way

they walk (Cunado et al. 1997). However, functional assessment, or outcome measurement

is one small role that quantitative human-gait analysis can play in the science of rehabilita‐
tion. If the expansion on human-gait analysis is made, then ultimate complex relationships

between normal and abnormal human-gait can be easily understood (Huang et al. 1999;

Huang et al. 1999). The use of quantitative human-gait analysis in the rehabilitation setting

has increased only in recent times. Since past five decades, the work has been carried out for

human-gait abnormality treatment. Many medical practitioners along with the help of scien‐
tists and engineers (Scholhorn et al. 2002) have carried out more experimental work in this

area. It has been found from the literature that two major factors: time and effort, play a vital

role. In the present chapter, a unique strategy has been adopted for further analysis of hu‐
man-gait using above two factors for the recognition of physiological and behavioral traits

of the subject. Many researchers from engineering field till 1980 have not carried out the

work onhuman-gait analysis. In the year 1983, Garrett and Luckwill, carried the work for

maintaining the style of walking through electromyography and human-gait analysis. In the

year 1984, Berger and his colleagues, detected angle movement and disturbances during

walking. In the year 1990, Yang and his colleagues, further carried the experimental work

for the detection of short and long steps during walking. In the year 1993 Grabiner and his
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year 1994, Eng and his colleagues, with little modifications and detection of angles, have car‐
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ing Euclidean distance measures. The speed of the human-gait can be calculated using Man‐
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subject, the difference in the length of two feet can be detected. From the symmetrical measure‐
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Human-gait analysis is a systematic study and analysis of human walking. It is used for di‐

is one small role that quantitative human-gait analysis can play in the science of rehabilita‐

human-gait abnormality treatment. Many medical practitioners along with the help of scien‐

role. In the present chapter, a unique strategy has been adopted for further analysis of hu‐

colleagues investigated that when an obstacle is placed in the path of a subject, how much

time is taken by the subject to recover its normal walking after hitting an obstacle. In the

year 1994, Eng and his colleagues, with little modifications and detection of angles, have car‐
ried out the same work. In the year 1996 again Schillings and his colleagues investigated

similar type of work with little bit modifications in the mechanism as adopted by Grabiner

and Eng in the year 1993 and 1994 respectively. In the year 1999 Schillings and his collea‐
gues further carried the work that was done in the year 1996 with little modifications. In the

year 2001 Smeesters and his colleagues calculated the trip duration and its threshold value

by using human-gait analysis. From the literature, it has been also observed that very little

amount of work has been carried out using high-end computing approach for the biometri‐
cal study through human-gait. The schematic diagram for the formation of knowledge-

based model, that is, AHGM has been shown in figure 1.

Figure 1 gives an outline of the process of formation of AHGM. In this process a known hu‐
man-gait image has to be fed as input. Then it has to be pre-processed for enhancement and

segmentation. The enhancement is done for filtering any noise present in the image. Later on it

is segmented using connected component method (Yang 1989; Lumia 1983). Discrete Cosine

Transform (DCT) is employed for loss-less compression, because it has a strong energy com‐
paction property. Another advantage in using DCT is that it considers real-values and pro‐
vides better approximation of an image with fewer coefficients. Segmentation is carried out for

the detection of the boundaries of the objects present in the image and also used in detecting

the connected components between pixels. Hence the Region of Interest (ROI) is detected and

the relevant human-gait features are extracted. The relevant features that have to be selected

and extracted in the present chapter are based on the physical characteristics of human-gait of

the subject. The physical characteristics that must be extracted are: foot-angle, step-length,

knee-to-ankle (K-A) distance, foot-length and shank-width. These features are calculated us‐
ing Euclidean distance measures. The speed of the human-gait can be calculated using Man‐
hattan distance measures. Based on these features relevant parameters have to be extracted.

The relevant parameters based on aforesaid geometrical features are: mean, median, standard

deviation, range of parameter (lower and upper bound parameter), power spectral density

(psd), auto-correlation and discrete wavelet transform (DWT) coefficient, eigen-vector and ei‐
gen-value. In this chapter of the book, the above parameters have been experimentally extract‐
ed after analyzing 10 frames of human-gait image of 100 different subjects of varying age

groups. As the subject walks, the configuration of its motion repeats periodically. For this rea‐
son, images in a human-gait sequence tend to be similar to other images in the sequence when

separated in time by the period of the human-gait. With a cyclic motion such as a human-gait,

the self-similarity image has a repeating texture. The frequency of the human-gait determines

the rate at which the texture repeats. Initially the subject is standing at standstill position. Dur‐
ing this instance the features that have to be extracted are the foot-length, symmetrical meas‐
ures of the knee- length, curvature measurement of the shank, maximum-shank-width and

minimum-shank-width. Through the measurement of the foot-length of both the legs of the

subject, the difference in the length of two feet can be detected. From the symmetrical measure‐
ment of the knee-length, the disparity in length of legs, if any, can be measured. Through cur‐
vature measurement  of  the shank,  any departure  from normal  posture  can be detected.
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Measurement of shank-width helps in predicting probable anomalies of the subject and also

will show any history of injury or illness in the past. The relevant feature based parameters that

have to be extracted are fed as input to an Artificial Neuron (AN) as depicted in figure 2. Each

neuron has an input and output characteristics and performs a computation or function of the

form, given in equation (1):

( ) T
i i iO = f S  and S = W X (1)

where X = (x1,x2,x3,….,xm) is the vector input to the neuron and W is the weight matrix with

wij being the weight (connection strength) of the connection between the jth element of the

input vector and ith neuron. WT means the transpose of the weight matrix. The f (.) is an acti‐
vation or nonlinear function (usually a sigmoid), Oi is the output of the ith neuron and Si is

the weighted sum of the inputs.

 

Y 

XN 

X3 

X2 

X1 

WN 

W3 

W2 

W1 

 

Linear Combiner 

··· 

Activation 

function, f(.) 

Threshold = -1 

Figure 2. An artificial neuron

A single artificial neuron, as shown in figure 2, by itself is not a very useful tool for AHGM

formation. The real power comes when a single neuron is combined into a multi-layer struc‐
ture called artificial neural networks. The neuron has a set of nodes that connect it to the

inputs, output or other neurons called synapses. A linear combiner is a function that takes

all inputs and produces a single value. Let the input sequence be {X1,X2,…,XN} and the syn‐
aptic weight be {W1,W2,W3,….,WN}, so the output of the linear combiner, Y, yields to equa‐
tion (2),

1

N

i i

i

Y XW

=

= (2)

An activation function will take any input from minus infinity to infinity and squeeze it into

the range –1 to +1 or between 0 to 1 intervals. Usually an activation function being treated as

a sigmoid function that relates as given in equation (3), below:
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In the present chapter, feed-forward network has to be used as a topology and back propa‐

AHGM. This model has to be optimized for the best match of features using genetic algo‐

algorithms are theoretically and computationally simple on fitness values. The crossover op‐
eration has to be performed by combining the information of the selected chromosomes (hu‐

has to be utilized by modifying the offspring values after selection and crossover for the op‐

Based on the assumption that the original image is additive with noise. To compute the ap‐
proximate shape of the wavelet (that is, any real valued function of time, possessing a spe‐

template-matching method.Mathematically, for the detection of wavelets in noisy image, as‐
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1 Y
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e
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+
(3)

The threshold defines the internal activity of the neuron, which is fixed to –1. In general, for

the neuron to fire or activate, the sum should be greater than the threshold value.

In the present chapter, feed-forward network has to be used as a topology and back propa‐
gation as a learning rule for the formation of corpus or knowledge-based model called

AHGM. This model has to be optimized for the best match of features using genetic algo‐
rithm. The matching has to be done for the recognition of behavioural features of the subject,

not only in open-air-space but also in under-water-space. The reason for adopting genetic

algorithm is that, it is the best search algorithm based on the mechanics of natural selection,

mutation, crossover, and reproduction. They combine survival of the fittest features with a

randomized information exchange. In every generation, new sets of artificial features are

created and are then tried for a new measure after best-fit matching. In other words, genetic

algorithms are theoretically and computationally simple on fitness values. The crossover op‐
eration has to be performed by combining the information of the selected chromosomes (hu‐
man-gait features) and generates the offspring. The mutation and reproduction operation

has to be utilized by modifying the offspring values after selection and crossover for the op‐
timal solution. Here in the present chapter, an AHGM signifies the population of genes or

human-gait parameters.

2.1.1. Mathematical formulation for extraction of physiological traits from human-gait

Based on the assumption that the original image is additive with noise. To compute the ap‐
proximate shape of the wavelet (that is, any real valued function of time, possessing a spe‐
cific structure), in a noisy image and also to estimate its time of occurrence, two methods are

generally used. The first one is simple-structural-analysis method and the second one is the

template-matching method.Mathematically, for the detection of wavelets in noisy image, as‐
sume a class of wavelets, Si(t), I = 0,...N-1, all possess certain common structural features.

Based on this assumption that noise is additive, then the corrupted image has to be modeled

by the equation,

( ) ( ) ( )X m,n  = i m,n  + G d m,n (4)

where i(m,n) is the clean image, d(m,n) is the noise and G is the term for signal-to-noise ratio

control. Next windowing the image and assuming G = 1, equation (4) becomes:

( ) ( ) ( )w w wx m,n  = i m,n  + d m,n (5)

Fourier transform of both sides of equation (5), yields:
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( ) ( ) ( )jω1 jw2 jω1 jw2 jω1 jw2
w w wX e ,e  = I e ,e  + D e ,e (6)

Where Xw(ejω1,ejw2), Iw(ejω1,ejw2) and Dw(ejω1,ejw2) are the Fourier transforms of windowed
noisy, original-image and noisy-image respectively.

To de-noise this image, wavelet transform has to be applied. Let the mother wavelet or basic
wavelet be ψ(t), which yields to,

( ) 2y t  = exp j2pft – t( /2) (7)

Further as per the definition of Continuous Wavelet Transform CWT (a,τ), the relation

yields to,

( ) ( a x(tCWT a,t = 1/ y) {( )t-t /a t} dò (8)

The parameters obtained in equation (8) have to be discretized, using Discrete Parameter
Wavelet Transform (DPWT).

This DPWT (m, n) is to be obtained by substituting a =a0
m, τ = n τ0a0

m. Thus equation (8) in
discrete form results to equation (9),

( ) ( )/2 -mDPWT m, n  = 2 2 k –( , n)Ψ  
k l

m x k l   (9)

where ‘m’ and ‘n’ are the integers, a0 and τ0 are the sampling intervals for ‘a’ and ‘τ’, x(k,l) is
the enhanced image. The wavelet coefficient has to be computed from equation (9) by sub‐
stituting a0 = 2 and τ0 = 1.

Further the enhanced image has to be sampled at regular time interval ‘T’ to produce a sam‐
ple sequence {i (mT, nT)}, for m = 0,1,2, M-1 and n=0,1,2,…N-1 of size M x N image. After
employing Discrete Fourier Transformation (DFT) method, it yields to the equation of the
form,

( )
1 1

0 0

( , )expI u,v ( 2 / )= ( /
M N

m n

i m n j um M vn Np
 

= =

   (10)

for u=0,1,2,…,M-1 and v = 0, 1, 2, ……..,N-1

In order to compute the magnitude and power spectrum along with phase-angle, conver‐
sion from time-domain to frequency-domain has to be done. Mathematically, this can be for‐
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Wavelet Transform (DPWT).
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discrete form results to equation (9),
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where ‘m’ and ‘n’ are the integers, a  and τ are the sampling intervals for ‘a’ and ‘τ’, x(k,l) is
the enhanced image. The wavelet coefficient has to be computed from equation (9) by sub‐

 = 2 and τ  = 1.

Further the enhanced image has to be sampled at regular time interval ‘T’ to produce a sam‐
ple sequence {i (mT, nT)}, for m = 0,1,2, M-1 and n=0,1,2,…N-1 of size M x N image. After
employing Discrete Fourier Transformation (DFT) method, it yields to the equation of the

1 1
( , )expI u,v ( 2 / )= ( /p

 
   (10)

for u=0,1,2,…,M-1 and v = 0, 1, 2, ……..,N-1

In order to compute the magnitude and power spectrum along with phase-angle, conver‐
sion from time-domain to frequency-domain has to be done. Mathematically, this can be for‐

mulated as, let R(u,v) and A(u,v) represent the real and imaginary components of I(u,v)

respectively.

The Fourier or magnitude spectrum, yields to,

1/2
2 2( , ) ( , ) ( , )I u v R u v A u vé ù= +ë û (11)

The phase-angle of the transform is defined as,

1 ( , )
( , ) tan

( , )

A u v
u v

R u v
j  é ù

= ê ú
ë û

(12)

The power-spectrum is defined as the square of the magnitude spectrum. Thus squaring

equation (11) yields to,

2 2 2( , ) ( , ) ( , ) ( , )P u v I u v R u v A u v= = + (13)

Due to squaring, the dynamic range of the values in the spectrum becomes very large. Thus

to normalize this, logarithmic transformation has to be applied in equation (11). Thus it,

yields,

( , ) log(1 ( , ) )
normalize

I u v I u v= + (14)

The expectation value of the enhanced image has to be computed and it yields to the rela‐
tion as,

( )
1 1

0 0

1
( , )E I u,v  =

M N

u v

I u v
MN

 

= =

é ùë û   (15)

where ‘E’ denotes expectation. The variance of the enhanced image has to be computed by

using the relation given in equation (16),

( ) ( ) ( )
2

Var I u,v  = E I u,v  – I’ u,v{é ù é ùë û ë û (16)

The auto-covariance of an enhanced image has to be also computed using the relation given

in equation (17),
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( ) ( ) ( ) ( ) ( ){ }xxC u,v  = E I u,v  – I’ u,v I u,v  – I’ u,vé ù é ùë û ë û (17)

Also the powerspectrumdensity has to be computed from equation (17),

1 1

0 0

( ) ( , ) ( , )exp( 2 ( ))
M N

E xx
m n

P f C m n W m n j f m np
 

= =

=    (18)

where Cxx(m,n) is the auto-covariance function with ‘m’ and ‘n’ samples and W(m,n) is the

Blackman-window function with ‘m’ and ‘n’ samples.

The datacompression has to be performed using Discrete Cosine Transform (DCT). The

equation (19) is being used for the data compression.

( )
1 1

0
c

0

2 ( )
( , )cosDCT u,v =

M N

m n

T m n
I m n

MN

p 

= =

æ ö
ç ÷
è ø

  (19)

Further for the computation of principal components (that is, eigen-values and the corre‐
sponding eigen-vectors), a pattern vectorpn̄, which can be represented by another vector qn̄

of lower dimension, has to be formulated using (10) by linear transformation. Thus the re‐
sultant yields to equation (20),

n np M qé ù= ë û (20)

where M = I (m, n)  for m= 0 to M-1 and n = 0 to N-1.

andqn̄ = min([M]), such that qn̄> 0

Taking the covariance of equation (20), it yields, the corresponding eigen-vector, given in

equation (21),

cov( )nP p= (21)

and thus

. .i i iP M Ml= (22)

where ‘λi’are the corresponding eigen-values.
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Further for the computation of principal components (that is, eigen-values and the corre‐

of lower dimension, has to be formulated using (10) by linear transformation. Thus the re‐

é ùë û

l

where ‘λ

Segmentation of an image has to be performed using connected-component method. For

mathematical formulation, let ‘pix’ at coordinates (x,y) has two horizontal and two vertical

neighbours, whose coordinates are (x+1,y), (x-1,y), (x,y+1) and (x,y-1). This forms a set of 4-

neighbors of ‘pix’, denoted as N4(pix). The four diagonal neighbours of ‘pix’ have coordi‐
nates (x+1,y+1),(x+1,y-1),(x-1,y+1) and (x-1,y-1), denoted as ND(pix). The union of N4(pix)

and ND(pix), yields 8-neighbours of ‘pix’. Thus,

( ) ( ) ( )8 4 DN pix  = N pix N pixÈ (23)

A path between pixels ‘pix1’ and ‘pixn’ is a sequence of pixels pix1, pix2, pix3,…..,pixn-1,pixn,

such that pixk is adjacent to pk+1, for 1 ≤ k < n. Thus connected-component is defined, which

has to be obtained from the path defined from a set of pixels and which in return depends

upon the adjacency position of the pixel in that path.

From this the speed of walking has to be calculated. Mathematically, it has to be formulated

as, let the source be ‘S’ and the destination be ‘D’. Also assume that normally this distance is

to achieve in ‘T’ steps. So ‘T’ frames or samples of images are required.

Considering the first frame, with left-foot (FL) at the back and right-foot (FR) at the front, the

coordinates with (x,y) for first frame, such that FL(x1,y1) and FR(x2,y2). Thus applying the

Manhattan distance measures, the step-length has to be computed as,

2 1 2 1step length x x y y =    (24)

Let normally, Tact steps are required to achieve the destination. From equation (24), T1 has to

be calculated for the first frame. Similarly, for ‘nth’ frame, Tn has to be calculated. Thus total

steps, calculated are,

calc 1 2 3 nT = T + T + T + ……+ T (25)

Thus walking-speed or walking-rate has to be calculated as,

,

,

,

act calc

act calc

act calc

norm if T T

walking speed fast if T T

slow if T T

 =
 = 
 >

(26)

2.1.2. Mathematical formulation for extraction of behavioral traits from human-gait

Next to compute the net input to the output units, the delta rule for pattern association has

to be employed, which yields to the relation,
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1
-inj

,

y =
n

i ij
i j

x w
=

 (27)

where ‘y-inj’ is the output pattern for the input pattern ‘xi’ and j = 1 to n.

Thus the weight matrix for the hetero-associative memory neural network has to be calculat‐
ed from equation (27). For this, the activation of the output units has to be made conditional.

iy

1 0

0 0

1 0

=

inj

inj

inj

if y

if y

if y







+ >


=
 

(28)

The output vector ‘y’ gives the pattern associated with the input vector ‘x’. The other activa‐
tion function may also be used in the case where the target response of the net is binary.

Thus a suitable activation function has been proposed by,

( )
0

x  =
1

f
0

0

if x

if x

 >
 =

(29)

Considering two measures, Accuracy and Precision has been derived to access the perform‐
ance of the system, which may be formulated as,

Accuracy =
ReCorrectly cognized feature

Totalnumber of features
(30)

Precision =
TPR

TPR FPR+
(31)

where TPR = True positive recognition and FPR = False positive recognition.

Further the analysis has to be done for the recognition of behavioral traits with two target

classes (normal and abnormal). It can be further illustrated that AHGM has various states,

each of which corresponds to a segmental feature vector. In one state, the segmental feature

vector is characterized by eleven parameters. Considering only three parameters: the

step_length: distance, mean, and the standard deviation, the AHGM is composed of the fol‐
lowing parameters

{ }11 1 1,AHGM = ,s s sD m s (32)
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 means the mean and σ
 be the two target classes representing normal foot and abnormal foot respec‐

probabilities of the classes, such that, i = 1,2,….M also let p(β/w
density. Assume an unknown gait image represented by the features, β. So, the conditional

/β), which belongs to j

( /w
P w /

b

b
b

So, for the class j = 1 to 2, the probability density function p(β), yields,

( / )P ( = )b b

quite logical to classify the signal, β, as follows,

/ β) > P(w / β), then the decision yields β Є
β Є w / β) = P(w / β),





Thus the weight matrix for the hetero-associative memory neural network has to be calculat‐










 

The output vector ‘y’ gives the pattern associated with the input vector ‘x’. The other activa‐
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Considering two measures, Accuracy and Precision has been derived to access the perform‐

step_length: distance, mean, and the standard deviation, the AHGM is composed of the fol‐

m s

where AHGM1 means an artificial human-gait model of the first feature vector, Ds1 means the

distance, μs1 means the mean and σs1 means the standard deviation based on step_length. Let

wnorm and wabnorm be the two target classes representing normal foot and abnormal foot respec‐
tively. The clusters of features have been estimated by taking the probability distribution of

these features. This has been achieved by employing Bayes decision theory. Let P(wi) be the

probabilities of the classes, such that, i = 1,2,….M also let p(β/wi) be the conditional probability

density. Assume an unknown gait image represented by the features, β. So, the conditional
probability p(wj/β), which belongs to jth class, is given by Bayes rule as,
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(

( )
=
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p

b

b
b (33)

So, for the class j = 1 to 2, the probability density function p(β), yields,

( )
2

1

( / )P ( = )j j
j

p w P wb b
=

 (34)

Equation (33) gives a posteriori probability in terms of a priori probability P(wj). Hence it is
quite logical to classify the signal, β, as follows,

If P(wnorm/ β) > P(wabnorm/ β), then the decision yields β Є wnorm means ‘normal behaviour’
else the decision yields β Є wabnorm means ‘abnormal behaviour’. If P(wnorm/ β) = P(wabnorm/ β),
then it remains undecided or there may be 50% chance of being right decision making. The
solution methodology with developed algorithm has been given below for the complete
analysis through human-gait, made so far in the present chapter of the book.

Algorithm 1. NGBBCR {Neuri-Genetic Based Behavioral Characteristics Recognition}
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Next for the formation of an artificial human-face model (AHFM) the illustration has been

thoroughly done in the next subsequent section of this chapter of the book.

2.2. Illustration of an Artificial Human-Face Model (AHFM)

In the recent times, frontal portion of the human-face images have been used for the biomet‐
rical authentication. The present section of the chapter incorporates the frontal-human-face

images only for the formation of corpus. But for the recognition of physiological and behav‐
ioural traits of the subject (human-being), side-view of the human-face has to be analysed

using hybrid approach, which means the combination of artificial neural network (ANN)

and genetic algorithm (GA). The work has to be carried out in two stages. In the first stage,

formation of the AHFM, as a corpus using frontal-human-face images of the different sub‐
jects have to be done. In the second stage, the model or the corpus has to be utilized at the

back-end for the recognition of physiological and behavioural traits of the subject. An algo‐
rithm has to be developed that performs the above specified objective using neuro-genetic

approach. The algorithm will be also helpful for the biometrical authentication. The algo‐
rithm has been called as HABBCR (Hybrid Approach Based Behavioural Characteristics

Recognition). The recognition process has to be carried out with the help of test image of hu‐
man-face captured at an angle of ninety-degree, such that the human-face is parallel to the

surface of the image. Hence relevant geometrical features with reducing orientation in im‐
age from ninety-degree to lower degree with five-degree change have to be matched with

the features stored in a database. The classification process of acceptance and rejection has to

be done after best-fit matching process. The developed algorithm has to be tested with 100

subjects of varying age groups. The result has been found very satisfactory with the data

sets and will be helpful in bridging the gap between computer and authorized subject for

more system security. More illustrations through human-face are explained in the next sub‐
section of this chapter of the book.

2.2.1. Mathematical formulation for extraction of physiological traits from human-face

The relevant physiological traits have to be extracted from the frontal-human-face images

and the template matching has to be employed for the recognition of behavioural traits of

the subject. Little work has been done in the area of human-face recognition by extracting

features from the side-view of the human-face. When frontal images are tested for its recog‐
nition with minimum orientation in the face or the image boundaries, the performance of

the recognition system degrades. In the present chapter, side-view of the face has to be con‐
sidered with 90-degree orientation. After enhancement and segmentation of the image rele‐
vant physiological features have to be extracted. These features have to be matched using an

evolutionary algorithm called genetic algorithm. Many researchers like Zhao and Chellappa,

in the year 2000, proposed a shape from shading (SFS) method for pre-processing of 2D im‐
ages. In the same year, that is, 2000, Hu et al. have modified the same work by proposing 3D

model approach and creating synthetic images under different poses. In the same year, Lee

et al. also has proposed a similar idea and given a method where edge model and colour

region are combined for face recognition after synthetic image were created by a deformable
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face, considering four zones of human-face for the recognition of physiological characteris‐

face recognition using ANN and GA (Hybrid approach). For the above discussion the math‐
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In the recent times, frontal portion of the human-face images have been used for the biomet‐

images only for the formation of corpus. But for the recognition of physiological and behav‐

formation of the AHFM, as a corpus using frontal-human-face images of the different sub‐

back-end for the recognition of physiological and behavioural traits of the subject. An algo‐

approach. The algorithm will be also helpful for the biometrical authentication. The algo‐

Recognition). The recognition process has to be carried out with the help of test image of hu‐

surface of the image. Hence relevant geometrical features with reducing orientation in im‐

more system security. More illustrations through human-face are explained in the next sub‐

features from the side-view of the human-face. When frontal images are tested for its recog‐

the recognition system degrades. In the present chapter, side-view of the face has to be con‐
sidered with 90-degree orientation. After enhancement and segmentation of the image rele‐

in the year 2000, proposed a shape from shading (SFS) method for pre-processing of 2D im‐

3D model. In the year 2004, Xu et al. proposed a surface based approach that uses Gaussian

moments. A new strategy has been proposed (Chua et al. 1997 and Chua et al. 2000), with

two zones of the frontal-face. They are forehead portion, nose and eyes portion. In the

present work, the training of the system has to be carried out using frontal portion of the

face, considering four zones of human-face for the recognition of physiological characteris‐
tics or traits or features. They are:

First head portion, second fore-head portion, third eyes and nose portion and fourth mouth

and chin portion. From the literature survey it has been observed that still there is a scope in

face recognition using ANN and GA (Hybrid approach). For the above discussion the math‐
ematical formulation is same as done for the human-gait analysis.

2.2.2. Mathematical formulation for extraction of behavioral traits from human-face

A path between pixels ‘pix1’ and ‘pixn’ is a sequence of pixels pix1, pix2, pix3,…..,pixn-1,pixn,

such that pixk is adjacent to pk+1, for 1 ≤ k < n. Thus connected component is defined, which

has to be obtained from the path defined from a set of pixels and which in return depends

upon the adjacency position of the pixel in that path. In order to compute the orientation

using reducing strategy, phase-angle must be calculated first for an original image. Hence

considering equation (12), it yields, to considerable mathematical modelling.

Let Ik be the side-view of an image with orientation ‘k’. If k = 90, then I90 is the image with

actual side-view.If the real and imaginary component of this oriented image is Rk and Ak.

For k = 90 degree orientation,

2 2 1/2[R A ]k k kI =  (35)

For k = 900, orientation,

2 2 1/52
90 90 90[R A ]I =  (36)

Thus phase angle of image with k = 90 orientations is

1tan k
k

k

A

R
  é ù

= ê ú
ê úë û

(37)

If k = k-5, (applying reducing strategy), equation (37) yields,

φk −5 =tan−1
Ak −5

Rk −5
 
k −5

(38)
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From equation (37) and (38) there will be lot of variation in the output. Hence it has to be

normalized, by imposing logarithmic to both equations (37) and (38)

( )( )5log 1normalize k kj j j  = (39)

Taking the covariance of (39), it yields to perfect orientation between two side-view of the

images, that is, I
90

 and I85

( )I Covperfect orientation normalizej = (40)

The distances between the connected-components have to be computed using Euclidean dis‐
tance method. A perfect matching has to be done with the corpus with best-fit measures us‐
ing genetic algorithm. If the matching fails, then the orientation is to be reduced further by

50, that is k = k-5 and the process is repeated till k = 450.

The developed algorithm for the recognition of behavioural traits through human-face has

been postulated below.

Algorithm 2. HABBCR {Hybrid Approach Based Bihevioral Characteristics Recognition}

The understanding of the two formed models with mathematical analysis has been illustrat‐
ed in the subsequent sections of this chapter of the book.

2.3. Understanding of AHGM and AHFM with mathematical analysis

The recognition of physiological and behavioral traits of the subject (human-being), a test

image has to be fed as input. This has been shown in figure 3 below.

From figure 3, first the test image has to be captured and hence to be filtered using DCT af‐
ter proper conversion of original image to grayscale image. Later on it has to be segmented
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features have to be extracted and proper matching has to be done using the developed algo‐

Simply a test image in an open-air space (either a human-gait or human-face) has to be cap‐

(OOI). Hence a segmentation process has to be completed. Sufficient number of physiologi‐
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The distances between the connected-components have to be computed using Euclidean dis‐
tance method. A perfect matching has to be done with the corpus with best-fit measures us‐

The understanding of the two formed models with mathematical analysis has been illustrat‐

From figure 3, first the test image has to be captured and hence to be filtered using DCT af‐

for further processing and hence to be normalized. Relevant physiological and behavioral

features have to be extracted and proper matching has to be done using the developed algo‐
rithms named as NGBBCR and HABBCR. In the present chapter two environments: open-air

space and under-water space have been considered.

Figure 3. General outline for the understanding of AHGM and AHFM models

2.3.1. How open-air space environment has been considered for recognition?

Simply a test image in an open-air space (either a human-gait or human-face) has to be cap‐
tured. It has to be converted into a grayscale image. Later on it has to be filtered using DCT.

Hence normalized and then localized for the region of interests (ROI) with object of interests

(OOI). Hence a segmentation process has to be completed. Sufficient number of physiologi‐
cal and behavioral traits or features or characteristics has to be extracted from the test image

and a template (say OATEMPLATE has to be formed. Using Euclidean distance measures,

the differences have to be calculated from that stored in the corpus (AHGM and AHFM).

This has to be carried out using lifting-scheme of wavelet transform (LSWT). The details can

be explained through the figure 4, as shown below.

- 

x(m, n) 

d(m, n) 

c(m, n) 

Split P 
U 

+ 

Figure 4. Lifting-scheme of wavelet transforms

Modelling and Simulation for the Recognition of Physiological and Behavioural Traits Through Human...

http://dx.doi.org/10.5772/52565

109



Figure 4, shows that the enhanced and segmented part of the test image, x(m, n) has to be

split into two components: detail component and coarser component. Considering both the

obtained components, additional parameters have to be computed using mathematical ap‐
proximations. These parameters (referred as prediction (P) and updation(U) coefficients)

have to be used for an optimal and robust recognition process.

With reference to figure 4, first the enhanced and segmented part of the test image x(m, n),

has to be separated into disjoint subsets f sample, say xe(m, n) and xo(m, n). From these the

detail value, d(m, n), has to be generated along with a prediction operator, P. Similarly, the

coarser value, c(m, n), has also to be generated along with an updation operator, U, which

has to be multiplied with the detail signal and added with the even components of the en‐
hanced and segmented part of the test image. These lifting-scheme parameters have to be

computed using Polar method or Box-Muller method.

Let us assume X(m, n) be the digitized speech signal after enhancement. Split this speech

signal into two disjoint subsets of samples. Thus dividing the signal into even and odd com‐
ponent: Xe(m, n) and Xo(m, n) respectively. It simplifies to Xe(m, n) = X(2m, 2n) and Xo(m, n)

= X(2m+1, 2n+1). From this simplification two new values have to be generated called detail

value d(m, n) and coarser value c(m, n).

The detail value d(m, n) has to be generated using the prediction operator P, as depicted in

figure 4. Thus it yields,

( ) ( ) ( )( )o ed m, n  = X m, n  – P X m, n (41)

Similarly, the coarser value c(m, n) has to be generated using the updation operator U and

hence applied to d(m, n) and adding the result to Xe(m, n), it yields,

( ) ( ) ( )( )ec m, n  = X m, n  + U d m, n (42)

After substituting equation (41) in equation (42), it yields,

( ) ( ) ( ) ( )( )e o ec m, n  = X m, n  + U X m, n  – UP X m, n (43)

The lifting – scheme parameters, P and U, has to be computed initially using simple iterative

method of numerical computation, but it took lot of time to display the result. Hence to

overcome such difficulty polar method or Box-Muller method has to be applied. The algo‐
rithm 3 has been depicted below for such computations.
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expressed as follows: let Q be an un-standardized variable or parameter and Q’ be its stand‐
μ)/σ relation rescales the un-standardized parameters to stand‐

ardized form Q = σ Q’ + μ, where μ is the mean and σ is the standard deviation.

values of lifting scheme parameters. Later the resultant form has to be merged and the out‐



obtained components, additional parameters have to be computed using mathematical ap‐

has to be multiplied with the detail signal and added with the even components of the en‐

signal into two disjoint subsets of samples. Thus dividing the signal into even and odd com‐

overcome such difficulty polar method or Box-Muller method has to be applied. The algo‐

Algorithm 3. Computation of U and P values

As per the polar or Box-Muller method, rescaling of the un-standardized random variables

can be standardized using the mean and variance of the test image. This can be more clearly

expressed as follows: let Q be an un-standardized variable or parameter and Q’ be its stand‐
ardized form. Thus Q’ = (Q – μ)/σ relation rescales the un-standardized parameters to stand‐
ardized form Q = σ Q’ + μ, where μ is the mean and σ is the standard deviation.

Further the computed values of U and P has to be utilized for the application of inverse

mechanism of lifting scheme of wavelet transform. Further for crosschecking the computed

values of the lifting scheme parameters, inverse mechanism of lifting-scheme of wavelet

transform (IALS-WT) has to be employed, that has been depicted in figure 5.

d(m,n) 

y(m, n) 

c(m, n) 

Merge 

U P 

   - 

 + 

Figure 5. Inverse-lifting-scheme of wavelet transforms

With reference to figure 5, the coarser and detail values have to be utilized along with the

values of lifting scheme parameters. Later the resultant form has to be merged and the out‐
put, y(m, n) has to be obtained. Further a comparison has to be made with the output y(m,

n) and the enhanced and segmented part of the image x(m, n). If this gets unmatched then

using feedback mechanism the lifting – scheme parameters have to be calibrated and again

the whole scenario has to be repeated till the values of x(m, n) and y(m, n) are matched or

close-to-matching scores are generated.

From figure 5, further analysis has to be carried out by merging or adding the two signals c”

(m, n) and d”(m, n) for the output signal Y(m, n). Thus it yields,
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( ) ( ) ( )Y m, n  = c” m, n  + d” m, n (44)

where c”(m, n) is the inverse of the coarser value c(m, n), and d”(m, n) is the inverse of the

detail value d(m, n).From figure 5, it yields:

( ) ( ) ( )c” m, n  = c m, n  – U d m, n (45)

and

( ) ( ) ( )d” m, n  = d m, n  + P c” m, n (46)

On substituting equation (45) in equation (46), it gives:

( ) ( ) ( ) ( )d” m, n  = 1 – UP d m, n  + P c m, n (47)

On adding equations (46) and (47), it yields,

( ) ( ) ( ) ( ) ( )Y m, n  = 1 + P  c m, n  + 1 – U – UP  d m, n (48)

To form a robust pattern matching model, assume the inputs to the node are the values x1,

x2,…,xn, which typically takes the values of –1, 0, 1 or real values within the range (-1, 1). The

weights w1, w2,…,wn, correspond to the synaptic strengths of the neuron. They serve to in‐
crease or decrease the effects of the corresponding ‘xi’ input values. The sum of the products

xi * wi, i = 1 to n, serve as the total combined input to the node. So to perform the computa‐
tion of the weights, assume the training input vector be ‘Gi’ and the testing vector be ‘Hi’ for

i = 1 to n. The weights of the network have to be re-calculated iteratively comparing both the

training and testing data sets so that the error is minimized.

If there results to zero errors a robust pattern matching model is formed. The process for the

formation of this model is given in algorithm-4.

Algorithm 4. Robust pattern matching model
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Depending upon the distances, the best test-matching scores are mapped using unidirec‐
tional-temporary associated memory of artificial neural network (UTAM). The term unidir‐
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best-match codeword. If the unknown vector is far from the other vectors, then it is very dif‐





, correspond to the synaptic strengths of the neuron. They serve to in‐

, i = 1 to n, serve as the total combined input to the node. So to perform the computa‐

Depending upon the distances, the best test-matching scores are mapped using unidirec‐
tional-temporary associated memory of artificial neural network (UTAM). The term unidir‐
ectional has to be used because each input component is mapped with the output

component forming one-to-one relationship. Each component has to be designated with a

unique codeword. The set of codewords is called a codebook. The concept of UTAM has to

be employed in the present work, as mapping-function for two different cases:

1. Distortion measure between unknown and known images

2. Locating codeword between unknown and known image feature

To illustrate these cases mathematically, Let Kin = {I1,I2,….,In} and Kout = {O1,O2,……,Om} con‐
sisting of ‘n’ and ‘m’ input and output codeword respectively. The values of ‘n’ and ‘m’ are

the maximum size of the corpus. In the recognition stage, a test image, represented by a se‐
quence of feature vector, U = {U1,U2,….,Uu}, has to be compared with a trained image stored

in the form of model (AHGM and AHFM), represented by a sequence of feature vector,

Kdatabase = {K1,K2,….,Kq}. Hence to satisfy the unidirectional associatively condition, that is,

Kout = Kin, AHGM and AHFM has to be utilized for proper matching of features. The match‐
ing of features, have to be performed on computing the distortion measure. The value with

lowest distortion has to be chosen. This yield to, the relation,

{ }
1

arg min ( , )found u q
q n

C S U K
<= <=

= (49)

The distortion measure has to be computed by taking the average of the Euclidean distance

,
min

1

1
( , ) ( , )

Q
i q

i i
i

S U K d u C
Q =

=  (50)

where Cmin
i ,q  denotes the nearest value in the template or AHGM or AHFM and d(.) is the Eu‐

clidean distance. Thus, each feature vector in the sequence ‘U’ has to be compared with the

codeword in AHGM and AHFM, and the minimum average distance has to be chosen as the

best-match codeword. If the unknown vector is far from the other vectors, then it is very dif‐
ficult to find the codeword from the AHGM and AHFM, resulting to out-of-corpus (OOC)

problem. Assigning weights to all the codeword’s in the database (called weighting method)

has eliminated the OOC problem. So instead of using a distortion measure a similarity

measure that should be maximized are considered. Thus it yields,

,
min,

1 min

1 1
( , ) ( )

( , )

Q
i q

w i i q
i i

S U K w C
Q d u C=

=  (51)
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Dividing equation (50) by equation (51), it yields,

( , )
γ= recognition r

( , )
ate = i

w i

S U K unweighted

S U K weighted
= (52)

The procedure for computing the weights, has been depicted in an algorithm – 5 below:

Next for locating the codeword, hybrid approach of soft computing has to be applied in
the well-defined way in the present chapter.The hybrid approach of soft computing tech‐
niques utilizes some bit  of concepts from forward-backward dynamic programming and
some bit of neural-networks. From the literature it has been observed that, for an optimal
solution, genetic algorithm is the best search algorithm based on the mechanics of natural
selection, crossover, mutation and reproduction. It combines survival of the fittest among
string structures with a structured yet randomized information exchange. In every genera‐
tion, new sets of artificial strings are created and hence tried for a new measure. It  effi‐
ciently  exploits  historical  information  to  speculate  on  new  search  points  with  expected
improved performance. In other words genetic algorithms are theoretically and computa‐
tionally simple and thus provide robust and optimized search methods in complex spaces.
The selection operation has to be performed by selecting the physiological and behavioral
features of the human-gait and face images, as chromosomes from the population with re‐
spect to some probability distribution based on fitness values. The crossover operation has
to be performed by combining the information of the selected chromosomes (human-gait
and human-face image) and generates the offspring. The mutation operation has to be uti‐
lized by modifying the offspring values after selection and crossover for the optimal solu‐
tion. Here in the present chapter, a robust pattern matching model signifies the population
of genes or physiological and behavioral features. Using neuro-genetic approach a similar
type of work has been done by TilendraShishir Sinha et al.  (2010) for the recognition of
anomalous in foot using a proposed algorithm NGBAFR (neuro-genetic  based abnormal
foot recognition). The methodology adopted was different in classification and recognition
process and the work has been further modified by them and has been highlighted in the
present part of the book using soft computing techniques of genetic and artificial neural
network. Hence the classification and decision process are to be carried as per the algo‐
rithm discussed earlier in this chapter of the book.

Algorithm 5. Procedure to compute weight (S)
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number of physiological and behavioral traits or features or characteristics has to be extract‐
ed from the test image and a template (say UWTEMPLATE) has to be formed. Using Eucli‐

has to be enhanced. Later on it is compressed for distortion removal with loss less informa‐
tion. Next it has to be segmented for contour detection and the relevant physiological fea‐

physiological and behavioural features. By using the computer algorithm’s(depicted in algo‐

verified from the trained-data-set. Using genetic algorithm the best-fit scores have been ach‐
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The procedure for computing the weights, has been depicted in an algorithm – 5 below:

Next for locating the codeword, hybrid approach of soft computing has to be applied in
the well-defined way in the present chapter.The hybrid approach of soft computing tech‐
niques utilizes some bit  of concepts from forward-backward dynamic programming and
some bit of neural-networks. From the literature it has been observed that, for an optimal
solution, genetic algorithm is the best search algorithm based on the mechanics of natural
selection, crossover, mutation and reproduction. It combines survival of the fittest among
string structures with a structured yet randomized information exchange. In every genera‐
tion, new sets of artificial strings are created and hence tried for a new measure. It  effi‐
ciently  exploits  historical  information  to  speculate  on  new  search  points  with  expected
improved performance. In other words genetic algorithms are theoretically and computa‐
tionally simple and thus provide robust and optimized search methods in complex spaces.
The selection operation has to be performed by selecting the physiological and behavioral
features of the human-gait and face images, as chromosomes from the population with re‐
spect to some probability distribution based on fitness values. The crossover operation has
to be performed by combining the information of the selected chromosomes (human-gait
and human-face image) and generates the offspring. The mutation operation has to be uti‐
lized by modifying the offspring values after selection and crossover for the optimal solu‐
tion. Here in the present chapter, a robust pattern matching model signifies the population
of genes or physiological and behavioral features. Using neuro-genetic approach a similar
type of work has been done by TilendraShishir Sinha et al.  (2010) for the recognition of
anomalous in foot using a proposed algorithm NGBAFR (neuro-genetic  based abnormal
foot recognition). The methodology adopted was different in classification and recognition
process and the work has been further modified by them and has been highlighted in the
present part of the book using soft computing techniques of genetic and artificial neural
network. Hence the classification and decision process are to be carried as per the algo‐
rithm discussed earlier in this chapter of the book.

2.3.2. How an underwater space environment has to be considered for recognition?

Simply a test image of a subject (either walking or swimming in water), has to be captured,

keeping the camera in an open-air space at a ninety-degree angle to the surface of the water.

It has to be converted into a grayscale image. Later on it has to be filtered using DCT. Hence

normalized and then localized for the region of interests (ROI) with object of interests (OOI).

Later on segmentation process has to be done using structural analysis method. Sufficient

number of physiological and behavioral traits or features or characteristics has to be extract‐
ed from the test image and a template (say UWTEMPLATE) has to be formed. Using Eucli‐
dean distance measures, the differences between the test-data-set and the trained-data-set

has to be calculated. Depending upon the distances obtained, the best test-matching scores

are generated using genetic algorithm for an optimal classification process and finally the

decision process are to be carried out.

2.4. Experimental results and discussions through case studies

In the present chapter, human-gait and human-face have been captured in an open-air

space. The testing of the physiological and behavioural characteristics or features or traits of

the subject is not only done in an open-air space but also in under-water space.

2.4.1. Case study: In an open-air space

In an open-air space, first a human-gait image has to be captured and fed as input. Next it

has to be enhanced. Later on it is compressed for distortion removal with loss less informa‐
tion. Next it has to be segmented for contour detection and the relevant physiological fea‐
tures have to be extracted. All the features of the human-gait image are stored in a corpus

called AHGM. Similarly, in an open-air space, human-face image has also to be captured

and fed as input. Next it is enhanced, compressed, segmented and relevant physiological

features are extracted. The extracted physiological features are stored in a corpus called

AHFM. For the recognition of physiological and behavioural traits, test images of human-

gait and human-face (from side-view) are fed as input. Both the images are enhanced and

compressed for distortion removal. Then both are segmented for the extraction of relevant

physiological and behavioural features. By using the computer algorithm’s(depicted in algo‐
rithm-2 and algorithm-3) the extracted features have to be compared with that stored in the

corpus (AHGM and AHFM). Depending upon the result of comparison the classification has

to be made. Relevant testing with necessary test data considering 10 frames of 100 different

subjects of varying ages proves the developed algorithm. The efficiency of recognizing the

physiological and behavioural traits have been kept at a threshold range of 90% to 100% and

verified from the trained-data-set. Using genetic algorithm the best-fit scores have been ach‐
ieved. Figure 6, shows the original image of one subject along with the segmented portion of

the human-gait in standing mode.
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Figure 6. Segmented image in standing mode of human-gait

 
(a) (b) (c) 

(d) (e) 

Figure 7. a) Original Gait Image (b) ROI Foot Image (c) ROI Shank Image (d) ROI Leg Image (e) ROI Swing Foot Image

Figure 8. Physiological feature of human-gait in walking mode of subject #1 with right leg at the front
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After segmentation of human-gait image in walking mode, extraction of physiological fea‐

subject #1 with right leg at the front have been shown in figure 8. Similarly, distance meas‐

As per the developed algorithm called NGBBCR, for most of the test cases, ‘NORMAL BE‐



After segmentation of human-gait image in walking mode, extraction of physiological fea‐
tures using relevant mathematical analysis has to be done. Some of the distance measures of

subject #1 with right leg at the front have been shown in figure 8. Similarly, distance meas‐
ures of subject #1 with left leg at the front have been shown in figure 9.

Figure 9. Physiological feature of human-gait in walking mode of subject #1 with left leg at the front

Figure 10. Step-length and Knee-to-ankle measure in walking mode of the subject

The relevant physiological feature, that is, step-length and knee-to-ankle distance has been

also extracted that has been shown in figure 11.

As per the developed algorithm called NGBBCR, for most of the test cases, ‘NORMAL BE‐
HAVIOUR’ has been achieved. Very few test cases for ‘ABNORMAL BEHAVIOUR’ have

been achieved. Table 1, depicted below describes the physiological features extracted in

standing and walking mode of subject #1.
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Table 1. Physiological features extracted in standing and walking mode of subject #1

From table 1, it has been observed that minimum variations have been found from one

frame to other. This has been plotted in figure 11, below, for the graphical analysis. The ex‐
tracted parameters with respect to physiological features that have been verified for best-fit

scores using NGBBCR has been shown in table 2a and in table 2b. The graphical representa‐
tion of table 2a and table 2b has been depicted in figure 12.

Figure 11. Graphical representation of physiological features extracted in standing and walking mode of subject #1
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frame to other. This has been plotted in figure 11, below, for the graphical analysis. The ex‐

b. The graphical representa‐

2a

Image Files Gait Characteristics Mean LB UB SD Auto Corr.

IMG1 Standing

(Left Leg facing towards

Camera)

10.152 -269.408 2620.94 156.513 30050

IMG2 Standing

(Right Leg facing towards

Camera)

10.2679 -242.651 2584.98 156.12 28665.2

IMG3 Walking

(Left Leg Movement)

9.10686 -290.723 2637.0 151.059 36575.5

IMG4 Walking

(Right Leg Movement)

9.04764 -430.713 2548.37 148.452 41360

IMG5 Walking

(Left Leg Movement)

9.2831 -412.108 2658.3 152.113 43500.5

IMG6 Walking

(Right Leg Movement)

9.07875 -365.896 2650.96 150.842 41360

IMG7 Walking

(Left Leg Movement)

9.67294 -384.685 2544.82 149.573 36796.7

IMG8 Walking

(Right Leg Movement)

9.67004 -376.443 2612.81 152.036 39045

IMG9 Walking

(Left Leg Movement)

9.83117 -423.315 2702.1 155.715 41125.5

IMG10 Walking

(Right Leg Movement)

9.8643 -349.463 2486.73 147.951 35262.5

2b

Image Files Gait Characteristics Psd Approx.

Coeff.

Detail Coeff. Eigen Vector Eigen Value

IMG1 Standing

(Left Leg facing

towards Camera)

6.1983e+008 28.974 -3.99699 0.000427322 130.005

IMG2 Standing

(Right Leg facing

towards Camera)

6.1983e+008 15.9459 9.62817 0.00041897 127.639

IMG3 Walking

(Left Leg Movement)

6.1983e+008 14.5305 3.19103 0.000178086 69.244

IMG4 Walking

(Right Leg

Movement)

6.1983e+008 25.63 -8.18713 0.000171731 62.8614
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IMG5 Walking

(Left Leg Movement)

6.1983e+008 14.3655 3.43852 0.000154456 64.3655

IMG6 Walking

(Right Leg

Movement)

6.1983e+008 24.8326 -8.01451 0.000174672 64.7545

IMG7 Walking

(Left Leg Movement)

6.1983e+008 27.8642 -9.02633 0.000184038 67.9991

IMG8 Walking

(Right Leg

Movement)

6.1983e+008 26.4634 -8.32745 0.000172107 67.8427

IMG9 Walking

(Left Leg Movement)

6.1983e+008 14.376 3.38278 0.000160546 69.2694

IMG10 Walking

(Right Leg

Movement)

6.1983e+008 13.9372 3.50317 0.000197328 67.6806

Table 2. 2a. The extracted parameters with respect to gait features of subject # 1; 2b. The extracted parameters with

respect to gait features of subject # 1

Figure 12. Graphical representation of physiological features of subject #1

From figure 12, it has been observed that the energy values (on Y-axis) are lying in between

-10 to +15, for all the parameters. The parameters power spectral density (psd) and standard
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deviation (SD) have been found constant for any frame of the subject. The eigenvector and

eigenvalues are also satisfying their mathematical properties. For the rest of the extracted

parameters in the work, minimum variations have been observed.

Next the frontal part of human-face has been captured, with four zones that have been de‐
picted in figure 13, below.

Figure 13. a) Original image (b) ROI Eye Image (c) ROI Nose Image(d) ROI Forehead Image (e) ROI Lips Image (f) ROI

Chin Image

The relevant physiological features measured from side-view have been shown in table 3

below.

Table 3. Physiological features of human-face from side-view of subject #1
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2.4.2. Case study: In under-water space

In under-water space, first a human-gait image has to be captured and fed as input. Next it

has to be enhanced. Later on it is compressed for distortion removal with loss less informa‐
tion. Next it has to be segmented for contour detection and the relevant physiological fea‐
tures have to be extracted. All the features of the human-gait image are stored in a corpus

called UWHGM (under water human-gait model). Similarly, in under-water space, human-

face image has also to be captured and fed as input. Next it is enhanced, compressed, seg‐
mented and relevant physiological features are extracted. The extracted physiological

features are stored in a corpus called UWHFM (under water human-face model). For the

recognition of physiological and behavioural traits, test images of human-gait and human-

face are fed as input. Both the images are enhanced and compressed for distortion removal.

Then both are segmented for the extraction of relevant physiological and behavioural fea‐
tures. By using the computer algorithm’s(depicted in algorithm-2 and algorithm-3) the ex‐
tracted features have to be compared with that stored in the corpus (AHGM and AHFM).

Depending upon the result of comparison the classification has to be made. Relevant testing

with necessary test data considering 10 frames of 100 different subjects of varying ages

proves the developed algorithm. The efficiency of recognizing the physiological and behav‐
ioural traits have been kept at a threshold range of 90% to 100% and verified from the

trained-data-set. Using genetic algorithm the best-fit scores have been achieved. Figure 14,

shows the original image of one subject along with the segmented portion of the human-gait

in walking-mode in under-water space.

Testing of under-water human-gait Image Enhancement Segmentation

Zero degree Orientation 45 degree Orientation 90 degree Orientation

Efficiency of Matching in Percentage

92

Behavioural traits of the Subject

Normal Behaviour

Figure 14. Testing of under-water human-gait image for subject #1
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Human-face analysis also will help in medical field to treat various diseases like squint, fa‐

great help in fields of environmental-biology, geology, defence, oceanography and agricul‐
ture. Understanding the life and possible dangers of deep water animals, tracking submar‐



has to be enhanced. Later on it is compressed for distortion removal with loss less informa‐
tion. Next it has to be segmented for contour detection and the relevant physiological fea‐

face image has also to be captured and fed as input. Next it is enhanced, compressed, seg‐

Then both are segmented for the extraction of relevant physiological and behavioural fea‐
tures. By using the computer algorithm’s(depicted in algorithm-2 and algorithm-3) the ex‐

proves the developed algorithm. The efficiency of recognizing the physiological and behav‐

3. Conclusion and further scope

This chapter includes in-depth discussion of an algorithm developed for the formation of a

noise-free AHGM and AHFM using relevant physiological and behavioural features or

traits or characteristics of the subject using human-gait and human-face image. The algo‐
rithm has been named NGBBCR and HABBCR. It may be noted that the algorithms have

been tested on a vast amount of data and have been found subject independent and environ‐
ment independent. The algorithms have been tested not only in an open-air space but also in

under-water space. A thorough case study has been also done. The trained-data set is

matched with the test-data set for the best fit and this involves the application of artificial

neural network, fuzzy set rules and genetic algorithm (GA). At every step in the chapter

thorough mathematical formulations and derivations have been explained.

Human-gait analysis may be of immense use in medical field for recognition of anomalies

and also to track the prosodic features like mood, age, gender of the subject. It may also be

used to track the recovery of a patient from injury and operation. Further it will prove to be

handy to spot and track individuals in a crowd and hence help investigation department.

Human-face analysis also will help in medical field to treat various diseases like squint, fa‐
cial distortions and other problems which show their symptoms through facial anomalies. It

will be of great help for plastic surgeons to rectify features and enhance the beauty of the

subjects.

Underwater object recognition itself is a vast and challenging area and is proving to be of

great help in fields of environmental-biology, geology, defence, oceanography and agricul‐
ture. Understanding the life and possible dangers of deep water animals, tracking submar‐
ines and destructive materials like explosives and harmful wastes are some areas of interest

in this field.
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Chapter 6

Density Estimation and Wavelet Thresholding via

Bayesian Methods: A Wavelet Probability Band and

Related Metrics Approach to Assess Agitation and

Sedation in ICU Patients

In Kang, Irene Hudson, Andrew Rudge and

J. Geoffrey Chase

Additional information is available at the end of the chapter
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1. Introduction

A wave is usually defined as an oscillating function that is localized in both time and frequency.

A wavelet is a “small wave”, which has its energy concentrated in time providing a tool for

the analysis of transient, non-stationary, or time-varying phenomena [1, 2]. Wavelets have the

ability to allow simultaneous time and frequency analysis via a flexible mathematical foun‐
dation. Wavelets are well suited to the analysis of transient signals in particular. The localizing

property of wavelets allows a wavelet expansion of a transient component on an orthogonal

basis to be modelled using a small number of wavelet coefficients using a low pass filter [3].

This wavelet paradigm has been applied in a wide range of fields, such as signal processing,

data compression and image analysis [4 -10].

Typically agitation-sedation cycling in critically ill patients involves oscillations between states

of agitation and over-sedation, which is detrimental to patient health, and increases hospital

length of stay [11-14]. The goal of the research specifically in reference [14] was to develop a

physiologically representative model that captures the fundamental dynamics of the agitation-

sedation system. The resulting model can serve as a platform to develop and test semi-

automated sedation management controllers that offer the potential of improved agitation

management and reduce length of stay in the intensive care unit (ICU). A minimal differential

equation model to predict or simulate each patient’s agitation-sedation status over time was

presented in [14] for 37 ICU patients, and was shown to capture patient A-S dynamics. Current

© 2013 Kang et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
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agitation management methods rely on subjective agitation assessment and an appropriate

sedation input response from recorded at bedside agitation scales [15, - 19]. The carers then

select an appropriate infusion rate based upon their evaluation of these scales, their experience

and intuition [20]. This process is depicted in Figure 1 (see [14]). Recently a more refined A-S

model, which utilised kernel regression with an Epanechnikov kernel and better captured the

fundamental agitation-sedation (A-S) dynamics was formulated [12, 13].

A secondary aim of this chapter is to test the feasibility of wavelet statistics to help distinguish

between patients whose simulated A-S profiles were “close” to their mean profile versus those

for whom this was not the case (i.e. their simulated profiles are not “close” to their actual

recorded profiles). This chapter builds on a preliminary study [21] to assess wavelet signatures

for modelling ICU agitation-sedation profiles, so as to, as in this chapter, evaluate “closeness”

or “discrimination” of simulated versus actual A-S profiles with respect to wavelet scales - as

recently analysed using DWT and wavelet correlation methods in [29] (see also [22]-[24]). The

recent work of Kang et al. [29] investigated the use of DWT signatures and statistics on the

simulated profiles derived in [12] and [13], to test for commonality across patients, in terms of

wavelet (cross) correlations. Another earlier application of this approach was the study of

historical Australian flowering time series [22], where it was established that wavelets add

credibility to the use of phenological records to detect climate change. This study was also

recently expanded and reported by Hudson et al. [23, 24] (see also references [25-28]).

Figure 1. Diagram of the feedback loop employing nursing staff’s feedback of subjectively assessed patient agitation

through the infusion controller (diagram is sourced from [14]).

The density function is very important in statistics and data analysis. A variety of approaches

to density estimation exist. Indeed the density estimation problem has a long history and many

solutions [30, 31, 32]. A large body of existing literature on nonparametric statistics is devoted

to the theory and practice of density estimation [32-36]. The local character of wavelet functions

is the basis for their inherent advantage over projection estimators – specifically that wavelets
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are straightforward and well localized in both space and frequency. The relevant estimation

methods belong to the class of so-called projection estimators, as introduced by [36] or their

non-linear modifications. Section 3 traces, in brief, the development of some basic methods

used in density estimation. We then link these and apply wavelet methods for (density)

function estimation to the ICU data of [29].

In this chapter the density is estimated using wavelet shrinkage methods, as based on Bayesian

methods. Specifically the minimax estimator is used to obtain a patient specific wavelet

tracking coverage index (WTCI). All values of the WTCI are obtained using Bayesian wavelet

thresholding, and are shown to differentiate between poor versus good tracking. A Bayesian

approach is also suggested in this chapter by which to assess a parametric A-S model – this by

constructing a wavelet probability band (WPB) for the proposed model and then checking how

much the nonparametric regression curve lies within the band. The wavelet probability band

(WPB) is shown to provide a useful tool to measure the comparability between the patient’s

simulated and recorded profiles. Moreover, the density profile is then successfully used to

define and compute two numerical measures, namely the average normalized wavelet density

(ANWD) and relative average normalized wavelet density (RANWD) – both measures of

agreement between the recorded infusion rate and simulated infusion rate. Our WPB method

is shown to be a good tool for detecting regions where the simulated infusion rate (model)

performs poorly, thus providing ways to help improve and distil the deterministic A-S model.

The so-called Wavelet Time Coverage Index (WTCI) developed is analogous to the metrics

based on a kernel based probability band of [13, 14]. The research in [29] and that formulated

in this chapter have successfully developed novel quantitative measures based on wavelets

for the analysis of A-S dynamics.

2. Density estimation using wavelet smoothing

In order to apply wavelets to various function estimation problems, it is useful to examine

some of the existing techniques in use. This provides a useful lead in to a discussion of wavelet

methods for (density) function estimation, since typical techniques can be modified in a

straightforward manner for use in a wavelets approach and for a subsequent wavelets based

analysis.

In exploratory data analysis it is important to have an idea of the shape of the data distribution,

whereby interesting features become evident. For example, in describing the shape of the data,

by a histogram, we easily obtain an overall feel for the data. Specialised versions of histograms

that can be constructed using the Haar wavelet basis are now discussed in brief. Important

theoretical properties of this estimator are discussed further in [37]. The Haar wavelet

approach and histogram leads naturally to density estimators with smoother wavelet bases

and lend themselves to histogram estimators, as we require.

Given the Haar scaling function, as on the left hand side of Equation (1), and then applying

the usual dilation and translation gives,
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This estimator can be regarded as being the best estimator of the density f on the approximation

space VJ, where VJ is defined as length N/2J vector scaling coefficients associated with averages

on a scale of length 2J = 2λJ. Construction of histograms using the Haar basis, then leads to more

general wavelet density estimators. The decomposition algorithm can be applied to Equation

(1) and the resultant histogram can be written in terms of the Haar wavelets as follows:
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The Haar-based histograms are given in Figure 2 (for level 1, 2, 3, and 4) for Patient 12 and

Patient 18, with the simulated infusion rate (light) and the recorded infusion rate (dark) shown.

Figure 2 shows a similar distribution between each patient’s recorded and simulated infusion

rates - skewed right for both patients (P12 and P18). Correspondingly Figure 3 presents the

simulated data and recorded A-S data of Patient 2 and Patient 27. Each patient’s simulated and

recorded series are clearly from a differing distribution type to each other for these poor

trackers (P2 and P27) (Figure 3). Figures 2-3 are clearly more informative than the histogram
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where the former density estimates are based on the Haar wavelet basis. These graphical

comparisons allow us to visualize differences in the distribution between the poor and good

tracking patients in ICU.

Estimating density functions using smooth wavelets can be performed in the same way for

any orthogonal series. This estimation procedure, which is a natural application of wavelets,

results from a straightforward extension of the Haar-based histogram approach [30]. The same

approach used to estimate a density in terms of the Haar basis above can thus also be used

with smooth wavelet bases, as we now illustrate.

Let ϕ and ψ be an orthogonal scaling function and mother wavelet pair that generates a series

of approximating spaces {V j} j∈ℤ., then f (x), which is a square integrable density function, is

( ) ( ) ( )
0 0

0

, , , , ,j k j k j k j k
k j j k

f x c x d x y
>

= +  (6)

where j0 represents a coarse level of approximation. Haar coefficients are estimated using
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n
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From Equations (7) and (8) above, the wavelet estimator for f at level J ≥ j0 is given by

( ) ( ) ( )
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(9)

The smoothing parameter in Equation (9) is the index J of the highest level considered. Smooth

wavelet-based density estimates are plotted in Figure 4 for levels 4, 6, and 8, using Patient 4’s

simulated infusion and recorded infusion rate data (via Daub (4) which denotes the Daubechies

wavelet filter of length 4). We sampled 2048 (=210) data points without loss of any generality

from the original data of Patient 4.

Figure 5 shows Patient 29’s smooth wavelet-based density estimates (using Daub (4)). Figures

4 and 5 indicate that Patent 4 (P4) is potentially a poor tracker and Patient 29 (P29) a good

tracker, given that the original and wavelet smooth densities are similar in P29, but not for P4.

Note that when level J is increased, abrupt jumps disappear but can also lead to over-smooth‐
ing and loss of information.
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Figure 2. Haar-based histogram of the simulated series (light) and recorded empirical A-S series (dark) for varying res‐
olution levels for two “good trackers”: Patient 12 (left side, 4 plots) and Patient 18 (right side, 4 plots).

Figure 3. Haar-based histogram of the simulated series (light) and recorded series (dark) for varying resolution levels

for two “poor trackers”: Patients 27 (right side, 4 plots) and 2 (left side, 4 plots).

To quantify the relationship between the two variables (xi,  yi), we can employ the standard

regression model as follows,

( ) ,  1,..., ,i i if x i ne= + =y (10)
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Haar-based histogram of the simulated series (light) and recorded empirical A-S series (dark) for varying res‐

e

where the εi’s are independent and identically distributed N(0,  σ 2) random variables. It will

be assumed that the design points (x1, ..., xn) are equally spaced, and, without further loss of

generality, that they lie on the unit interval: xi =1 /n,  i =1, ..., n. Our approach constitutes

projecting the raw estimator f onto the approximating space VJ, for any choice of the smoothing

parameter J, which represents a linear estimation approach. In contrast to this, the approach

reference [38] offers a non-linear wavelet based approach to this problem of nonparametric

regression. The approach in [38] begins with computing the DWT of the data yi,  by generating

a new data set of empirical wavelet coefficients with which to represent the underlying

regression function f.

The estimation procedure in [38] has three main steps as follows: First, transform the data yi

to the wavelet domain by applying a DWT. If d is the DWT of f, and d ′ = c ′
0,0, d

′
0,0, ..., d ′

J −1,2 J −1

T

the vector of empirical coefficients, we then have a sequence of wavelet coefficients d ′ =d+ε ′,

where ε ′ is a vector of n independent N(0, σ 2). In the second step, the true coefficients d are

estimated by applying the thresholding rule to the empirical coefficients d ′ to obtain estimates,

d̃ . Finally, the sampled function values f are estimated by applying the inverse DWT (IDWT)

to obtain f̃ =W T d̃ , where W T  is the transpose of an orthonormal n×n matrix. We can then

represent the DWT as the sum

( ) ( ) ( )
2 1

0,0 , ,
0 0

jJ

j k j k
j k

f x c x d x y


= =

= +% %% (11)

Figure 4. Smooth wavelet-based density estimates for P4’s recorded data (light) and simulated data (dark) using the

Daubechies wavelet (Daub4) with sub- sample N=2048 and for different choices of J.
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Figure 5. Smooth wavelet-based density estimates for P29’s recorded (light) and simulated data (dark) using the Dau‐
bechies wavelet (Daub4) with N=2048 and for different choices of J.

This procedure, as formulated in [38], is schematised below:

Data: 
iy

DWT 

Shrinkage 

(threshold) IDWT 

Wavelet Estimate:  

( )  
J

f x f

Scheme 1. Schema of DWT procedural steps.

A technique for selective wavelet reconstruction similar to this general approach was proposed

in [39] in a study to remove random noise from magnetic resonance images. The technique is

further developed from a statistical point of view in [38] by framing selective wavelet recon‐
struction as a problem in multivariate normal decision theory. From [38] estimating an

unknown function involves including only coefficients larger than some specific threshold

value. A large coefficient is taken to mean that it is large in absolute value. Choosing an

excessively large threshold will make it difficult for a coefficient to be judged significant and

be included in the reconstruction, resulting in over smoothing. On the other hand, a very small

threshold allows many coefficients to be included in the reconstruction, resulting in under-

smoothed estimates.

Two methods of global wavelet thresholding were proposed in [38], namely the universal

threshold and the minimax threshold method. The wavelet assumption of a dyadic length of

the time series is not always true. A natural approach would then be to pre-condition the

original data set, so as to obtain a set of values of length 2J for some positive integer J. The

resulting pre-conditioned data is then plugged directly into any standard DWT. We observed

that most of the 37 ICU patient data is not to the power of two. One obvious remedy was to
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Smooth wavelet-based density estimates for P29’s recorded (light) and simulated data (dark) using the Dau‐



] by framing selective wavelet recon‐

pad the series with values and increase its length to the next power of two. There are several

choices for the value of these padded coefficients. The approach adopted in this chapter was

to pad with zeros so as to increase the size of the data set to the next larger power of two, or

some other higher composite number, and then apply the DWT. The minimax estimator

approach with soft thresholding, as applied to the simulated infusion profile of Patient 2, for

example, yielded the profile in Figure 6.

3. New non Bayesian wavelet based metrics for tracking (WTCI, ANWD,

RANWD)

Based on the development of density estimation via wavelet smoothing discussed in section

2, specifically equations (9) to (11), we now derive three new wavelet based, but non Bayesian

metrics for tracking, namely the Wavelet Time Coverage Index (WTCI) (section 3.1), the

Average Normalized Wavelet Density (ANWD) and the Relative Average Normalized

Wavelet Density (RANWD) (section 3.2).

3.1. Numerical approach 1: Wavelet Time Coverage Index (WTCI)

The most commonly used criterion to obtain a successful wavelet estimator of the signal ỹ in

estimating y is the mean square error (MSE) [40]. In this chapter we devise a variant based on

the development of the smoothed recorded infusion. This then lays the foundation for the

development of our Wavelet Time Coverage Index (WTCI). The WTCI is a quantitative

parameter indicating how well the patient’s simulated infusion represents their average

recorded infusion profile over the entire time series. Our approach uses wavelet coefficients

on a scale by scale basis.

The WTCI is defined as follows:

, ,,

,,

WTCI 1 100
j k j kj k

j kj k

d d

d

 ü =  ´ ý
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%

% (12)

where d̃ j ,k  is given in Equation (11) and d j ,k  is the DWT of f in Equation (10). A WTCI of 100%

represents perfect tracking, which arises when the DE simulated infusion profile is identical

to that of the wavelet smoothed infusion profile.

Figure 7 presents the box and whisker plot for values of the WTCI from bootstrap [56]

realizations (per patient). Each box and whisker [57] in Figure 7 displays two main components

of information. First, the median represents a measure of how well the agitation-sedation

simulation models the recorded infusion profile on average. Second, the spread of the box and

whisper provides an indication of how reliable that particular WTCI median is per patient.

Further details regarding interpretation of the WTCI are given in section 5.1.

Density Estimation and Wavelet Thresholding via Bayesian Methods: A Wavelet Probability Band and Related…

http://dx.doi.org/10.5772/52434

135



3.2. Numerical approach 2: Average Normalized Wavelet Density (ANWD) and the Relative
Average Normalized Wavelet Density (RANWD)

We now propose wavelet analogues of the AND and RAND diagnostics developed in [12] and

[13]. The density profile is used to compute the numerical measures of ANWD and RANWD,

so that objective comparisons of model performance can be made across different patients. The

ANWD value for the simulated infusion rates is the average of these normalized density values

over all time points for a given patient. Similarly, the RANWD value for the smoothed infusion

rate is obtained by superimposing the smoothed values by using the first cumulant from a

normal posterior distribution onto the same density profile, after which RANWD can be

readily computed.

Let yt = {y1,y2, ..., yn} be the output data produced by a proposed model. These are often called

the simulated data. Define the average normalized wavelet density (ANWD) of yt  as

( )
( )

( )1

1
ANWD

max

n
t t

t
t t

f

n f=

= 
%

%
y

y (13)

where max( f̃ t)denotes the maximum value of the wavelet density function f̃ t , which is

estimated by wavelet smoothing via Equation (9) at time t. Thus, ANWD is an average of

Figure 6. Minimax estimator applied to Patient 2’s simulated profile. The thick line represents the wavelet threshold

estimator of the simulated infusion rate and the thin line that of the recorded infusion data. A soft thresholding rule

was used to obtain all estimates.
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normalized densities, where each component in the sum is the value of f̃ t  at yt  normalized by

max( f̃ t). At time t the normalized wavelet density equals 1 when X t  coincides with the point

where f̃ t  is maximum. An infusion profile that coincides with the maximum wavelet density

at every time point would therefore have ANWD equal to 1. Whereas the value of ANWD for

an infusion profile distant from the high-density regions would approach 0. Finally, ANWD

(y) is calibrated using the ANWD from the wavelet smoothed recorded infusion data, denoted

by ỹ giving the relative average normalized wavelet density (RANWD):

( )
( )

ANWD
RANWD

ANWD
=

%
y

y
(14)

RANWD indicates the value of ANWD (y) relative to a typical realisation in the form of ỹ from

the density profile. Therefore, the RANWD statistic estimates how probabilistically alike the

model outputs are to the smoothed data, and hence the degree of comparability between the

model (simulated) and the actual (recorded) data. A RANWD of 0.6 implies that the model

outputs are 60% similar, on average, to the wavelet smoothed data. Greater similarity means

higher values of RANWD for the given patient under investigation.

4. Wavelet thresholding via Bayesian methods

Bayesian wavelet shrinkage methods are discussed in section 4.1, and are subsequently used

to develop a novel 90% wavelet probability band (WPB 90%) per patient (section 4.2). A 90%

wavelet probability band is constructed for each of the 37 patient profiles, and the time and

Figure 7. Box and whisker plot of the WTCI index for each of the 37 patients.
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duration of any deviations from the wavelet probability band is recorded. A WPB 90% value

of 70% implies that for at least 70% (time under ICU observation), the estimated mean value

of the recorded infusion rate, for a given patient, lies within the 90% confidence interval of its

wavelet probability band. For illustration, we refer the reader to Figure 8 which shows the

WPB 90% curves for 4 patients: two good trackers (Patients 8 and 25) and two poor trackers

(Patients 9 and 34).

4.1. Brief mathematical background

Recall the regression equation (Equation (10)) for an observed data vector y1, y2,...,yn satisfying

yi = f (xi) + εi, i =1, ..., n,

where the εi’s are independent and identically distributed N(0, σ 2) random variables, assum‐
ing that (x1, ..., xn) are fixed points.

We now consider a method to approximate the posterior distribution of each f (xi), using the

same prior utilised by the BayesThresh method of [41] and [42]. Posterior probability intervals

of any nominal coverage probability can be calculated accordingly. For Haar wavelets, the scaling

function and mother wavelet are ϕ(t)= I (0≤ t <1) and ψ(t)= I (0≤ t <1 / 2)− I (1 / 2≤ t <1), respec‐
tively, where I (⋅ ) is the indicator function. Clearly the square of the Haar wavelet is just the Haar

scaling function, ψ j ,k
2 (t)=2 j/2ϕ j ,k

(t),  ψ j ,k
3 (t)=2 jψ j ,k

(t); ψ 3(t)=ψ(t) and ψ 2(t)=ψ 4(t)=ϕ(t) and

ψ j ,k
4 (t)=23 j/2ϕ j ,k

(t). All these terms can be included in a modified version of the IDWT algo‐
rithm which incorporates scaling function coefficients. By the development in [43] we approxi‐
mate a general wavelet ψ j0,0

r , (0≤ j0 ≤ J −m), by

( )
0 0 0,0 , ,~r
j j m l j m l

t

e ty   (15)

for r = 2, 3, 4, where m is a positive integer. The choice of m follows below, since scaling functions

(instead of wavelets), as the span of the set of scaling functions at a given level j, are the same

as that of the sum of ϕ(t) and the wavelets at levels 0, 1,…, j-1. Moreover, if scaling functions

ϕ j ,k
(t)are used to approximate some function h(t), and both ϕ and h have at least ν derivatives,

then the mean squared error in the approximation is bounded by C2−νj, where C is some

positive constant, (see, for example reference [44]).

To approximate ψ j0,k
r (t) for some fixed j0, we simply compute y j0,0

r (t) using the pyramid

algorithm [45], then take the DWT and set the coefficients em0,l
 to be equal to the scaling function

coefficients em0,k
 at level m0, where m0 = j0 +m. Recall that the wavelets at level j are simply shifts

of each other y j ,k (t)= y j ,0(t −2− jk ),  hence
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Figure 8. Wavelet Probability Bands (WPB 90%’s) (thin lines) with simulated infusion profile (thick line) for Patients 8,

25 (P8, P25: good trackers, LHS) and Patients 9, 34 (P9, P34: poor trackers, RHS).

As we are assuming periodic boundary conditions, the em0,l
 can be cycled periodically. Given

the localised nature of wavelets, the coefficients em0+1,l  employed to approximate ψ j0−1,0
r (t) can

be found by inserting 2
m0 zeros into the vector of em0,l
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The approximation in Equation (15) cannot be employed for wavelets at the m finest levels

J −m, ..., J −1. These wavelets are however, written in terms of both scaling functions and

wavelets at the finest level of detail, level J-1, via the block-shifting method as delineated above.

From Equation (11) we have that f i | y  is the convolution of the posteriors of the wavelet

coefficients and the scaling coefficient given by,

( ) ( )0,0 0,0 , , ,| | |  .                i j k j k j k i
j k

f c c t d d t yé ù é ù¢¢ ¢¢= é ùë û ë û ë ûy (18)
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If X and Y are independent random variables and a and b are real constants, then

( )
( )

( )
1 ,  1

 ,  2,3,
r r

r

a X b r
aX b

a X r

k
k

k

 + =
+ = 

= L
(19)

and we have by the additivity property

( ) ( ) ( ) ,  .r r rX Y X Y rk k k =  Î¢ (20)

for all r. Applying Equations (19) and (20) to Equation (17) shows f i | y  (where f i = f (xi)) can

be estimated from its cumulants as

( ) ( ) ( ) ( ) ( )0,0 0,0 , , , ,| | |  .    r r
r i r j k i r j k j k j k i

j k

f c c t d d tk k  k y¢¢ ¢¢= +y (21)

The first cumulant κ1
(y),  is the mean of y, the second cumulant, κ2

(y),  is the variance of y,

κ3
(y) / κ2

3/2(y) is the skewness, and κ4
(y) / κ2

2(y) + 3 is the kurtosis. Note that the third cumulant

κ3
(y) and the fourth cumulant κ4

(y) are zero if y is Gaussian. From Equations (16) and (21),

we can now re-write the fourth cumulant as follows,
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for κr(y) the rth cumulant of y, and for suitable coefficients, ρ j ,k  acquired via the IDWT

algorithm which incorporates scaling function coefficients to assess this sum [41, 42, 46].

Bayesian wavelet regression estimates have thus been developed including priors on the

wavelet coefficients d j ,k ,  which are updated by the observed coefficients d ″
j ,k  to obtain

posterior distributions d j ,k | j ,k
 (refer to Equation (18)). The d̃ j ,k  (point estimates) can then be

computed from such posterior distributions and the Inverse Discrete Wavelet Transform

(IDWT) used to estimate f (xi).

The Bayesian wavelet shrinkage rules discussed in this section have used mixture distributions

as priors on the coefficients to model a small proportion of the coefficients which contain

substantial signal [41]. Indeed the BayesThresh method of [41] assumes independent priors on

the coefficients,
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where 0≤γj ≤1.0,  δ(0) is a point mass at zero and d j ,k  are independent. The hyper-parameters

are assumed to be of the form τj
2 =C12

−αj, γj =min(1, C22
−βj) for non-negative constants C1 and

C2 chosen empirically from the data and the α and β’s are selected by the user. The choice of α
and β corresponds to choosing priors in certain Besov spaces [41] and incorporating prior

knowledge about the smoothness of f (xi) into the prior. See reference [55].

4.2. New Bayesian 90% wavelet probability band metric for tracking (WPB 90%)

Bayesian wavelet shrinkage methods as discussed in section 4.1 can be used to create a wave‐
let probability band (WPB). A 90% wavelet probability band (WPB 90%) is constructed for each

of the 37 patient profiles, and the time and duration of any significant deviations from the wavelet

probability band is recorded. A WPB 90% value of 70% implies that for at least 70% of the time

(of the time in ICU observation), the estimated mean value of the recorded infusion rate for a

given patient lies within its 90% confidence interval of its wavelet probability band. Figure 8

shows the WPB for 4 patients: two good trackers (Patients 8 and 25) and two poor trackers (Patients

9 and 34). The circle symbol represents the hourly recorded infusion rate, the thin line repre‐
sents the 90% WPB curve and the solid thick line represents the simulated profile (Figure 8). Brief

spikes which may occur in the WPB bands are typical of wavelet regression methods. These

spikes can be smoothed out by using different values for α and β, but this risks over-smooth‐
ing the data due to loss of information. According to [41], setting α=0.5 and β=1 is the best practical

approach for Bayesian smoothing. Therefore we set α=0.5 and β=1 and employ Daubeches’ least
asymmetric wavelet with eight vanishing moments, namely LaDaub (8), as this is a widely used
wavelet and is applicable to a broad variety of data types.

While our WPB approach is graphically very useful (Figure 8), it is however useful to marry

this with an objective numerical measure of how close the simulated infusion profile is to the

empirical, recorded data. The percentage WPB cannot serve this purpose of objective quanti‐
fication, because it quantifies visual proximity, by means of artificial hard boundaries, and

ignores the fact that the in-band region does not have the same probabilistic significance

everywhere. Thus wavelet density numerical metrics, namely ANWD and RANWD, compar‐
ing the model outputs to the recorded data were also developed using the posterior densities

determined from the smoothed recorded data. The density profile is considered to be infor‐
mative as unlike the wavelet probability band (WPB) it does discriminate between regions of

high or low probability within a band.

5. WTCI based results

5.1. Choice of Wavelet filter and Bootstrap: WTCI

In order to judge the reliability of the wavelet time coverage index (WTCI) for a given patient’s
infusion profile, the moving blocks bootstrap was utilized [56]. A total of 1000 bootstrap
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realizations were generated for each patient’s recorded infusion profiles.  A wavelet time

coverage index (WTCI), as defined in Equation (12), can then be evaluated for each boot‐
strap realization, providing a collection of 1000 values of the WTCI. The median WTCI and

its standard error, SE, can then be reported for each patient using [57] (see Table 1, where a

bold Patient no. indicates a poor tracker by the DWT, WCORR and WCCORR diagnostics in

[29]). When the DWT is implemented via the pyramid algorithm [58], an important feature

when analysing a given time, is the need to choose the appropriate wavelet filter (basis). The

choice of a wavelet basis function is crucial for two reasons. First,  the length of a DWT

determines how well it approximates an ideal band-pass filter, which in turn dictates how

well the filter is able to isolate features to specific frequency intervals. Secondly, as illustrat‐
ed in the MODWT MRAs shown in [29], the wavelet basis function is being used to represent

information contained in the time series of interest and should thus imitate its underlying

features. A reasonable overall strategy is to use the shortest width of wavelet filters L= 4, 8

and longer wavelet filters L = 10, 12, as both choices give reasonable results in this ICU A-

S application.

Patient no. Data size

(Min)

Median

WTCI

SE

1 3601 78.55 0.538

2 6421 87.14 0.294

3 6541 87.85 0.106

4 4921 87.94 0.076

5 2941 88.89 0.103

6 5701 88.73 0.104

7 3901 84.78 0.324

8 10561 93.61 0.037

9 8581 93.28 0.046

10 20701 88.46 0.053

11 6721 92.46 0.085

12 8521 91.15 0.323

13 5161 91.37 0.091

14 3001 82.09 0.449

15 4981 92.09 0.072

16 13621 94.57 0.073

17 5941 90.27 0.086

18 4681 93.83 0.036

19 7921 96.34 0.012
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coverage index (WTCI), as defined in Equation (12), can then be evaluated for each boot‐

well the filter is able to isolate features to specific frequency intervals. Secondly, as illustrat‐

Patient no. Data size

(Min)

Median

WTCI

SE

20 9661 90.49 0.088

21 3721 83.07 0.685

22 9661 91.85 0.056

23 3481 85.07 0.300

24 8461 92.41 0.058

25 3841 93.44 0.082

26 3901 85.49 0.275

27 13441 93.66 0.039

28 12241 89.47 0.051

29 3241 89.3 0.262

30 3661 85.81 0.092

31 18301 94.34 0.022

32 15181 95.82 0.020

33 25261 95.63 0.036

34 8101 93.77 0.070

35 12721 87.64 0.018

36 3481 92.17 0.059

37 7501 90.79 0.079

Median 90.790 0.079

95%CI (88.75, 92.39) (0.058, 0.092)

Table 1. Wavelet Time Coverage Index (WTCI) per patient. Data size (column 2) indicates the length of the patient’s A-

S series. A bolded /shaded Patient indicates a poor tracker by the criteria in [29].

Table 1 presents the data size (time series length) and median bootstrapped WTCI and its

standard error (SE) for each of the 37 patients studied. The poor trackers, as classified by the

criteria in [29], are bolded in the first column. From Table 1, we note that some poor trackers

(Patients 9, 11, 22, 27, 32, 34) have relatively high values of median WTCI and some good

trackers (Patients 1, 14) have a low WTCI. The reason for this is padding, used as a reasonable

solution to produce data of the size power of two, but this dilutes the signal near the end of

the original data set, since the filters are not applied evenly. Hence multiplying by a signal

element, constrained to have magnitude zero, is equivalent to omitting the filter coefficient,

and then the orthogonality of the transform is not strictly maintained. To overcome this

problem we change the current minutes driven length of the A-S data set to an hourly meta-

meter, and then apply Bayesian wavelet shrinkage using a universal threshold as developed

in section 5.2.
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5.2. Alternative WTCI measure via Bayesian Wavelet Thresholding

In Section 5.1 the minimax estimator [59] was used to obtain patient specific WTCI measures

(see also section 4.1). In this section we calculate an alternative WTCI using Bayesian wavelet

thresholding [53, 44, 50, 41, 42]. Table 2 reports the WTCI measures, which are obtained by

employing a Bayesian wavelet thresholding as computed by the WaveThresh software

package in R [42] (adopting a LaDaub (8) filter).

The relative total dose, defined as the total drug dose delivered by the simulation (as a

percentage of the total recorded drug dose) is also presented for each patient in Table 2. From

Table 2 high values of median WTCI clearly indicate the validity of the A-S simulation for a

given patient. The median WTCI value (across all patients) is 79.8% with a 95% interpolated

confidence interval (CI) of (77.57%, 83.23%) and a range [71.9% to 88.9%]. This indicates some

significant merit of the mathematical model of [14] and its physiological validity (Table 2).

Furthermore, the overall patient median relative total dose is 89.1% with a range [77.0% to

95.0%] indicating that the simulated and recorded total drug doses are similar, with the

simulator consistently administering slightly less than 100% of the recorded actual sedative

dose (Table 2). Slightly decreased levels as such are linked with the sudden-response nature

of the recorded infusion profiles, in contrast to the consistent, smooth quality of the simulated

infusion. These features are chiefly the result of the consistency of the computer implemented

simulation in contrast to the inherent variation between different nurses’ assessment of patient

agitation and appropriate feedback of sedation [14, 11, 12, 13].

Overall from Table 2 the values of the WTCI from the bootstrap realizations (per patient) have

high median WTCI and a low spread per patient, indicating high reliability of the median

WTCI and in turn of the A-S simulation. Larger spread indicates poor reliability, which may

be caused by insufficient data, and also by the choice of wavelet filters, the chosen thresholding

method, or by the model simulation method itself.

Patient no. Median WTCI SE Relative total Dose (%)

1 74.0 0.378 87.8

2 77.4 0.461 85.9

3 76.6 0.264 86.1

4 79.2 0.650 86.6

5 79.3 0.324 90.3

6 84.6 0.697 87.5

7 75.5 0.083 81.0

8 84.3 0.381 92.1

9 88.1 0.359 89.1

10 74.9 0.175 90.2
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Patient no. Median WTCI SE Relative total Dose (%)

11 72.0 0.395 87.8

12 83.8 0.261 86.5

13 82.8 0.166 90.2

14 76.6 0.248 88.5

15 86.3 0.145 90.7

16 84.8 0.431 90.4

17 83.3 0.430 85.2

18 84.2 0.161 95.0

19 86.5 0.341 91.0

20 80.5 0.303 90.4

21 72.1 0.498 87.8

22 77.5 0.171 89.5

23 79.8 0.673 91.7

24 85.1 0.127 89.9

25 88.9 0.075 91.2

26 82.8 0.061 88.5

27 75.7 0.663 87.5

28 75.0 0.202 90.6

29 73.4 0.442 77.0

30 83.3 0.224 94.5

31 82.6 0.146 90.0

32 82.6 0.271 91.2

33 78.5 0.430 90.4

34 85.9 0.193 89.0

35 74.1 0.361 88.1

36 79.1 0.293 81.6

37 78.6 0.283 88.9

75th percentile 84.3 0.43 90.4

Median 79.8 0.293 89.1

95% CI: Median (77.57, 83.23)

25th percentile 76.14 0.173 87.5

Table 2. Alternative Wavelet Time Coverage Index (WTCI) summary for the 37 patients. A bolded/shaded patient

indicates a poor tracker by the DWT WCORR and WCCORR threshold criteria in [29].
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6. Bayesian WPB results

6.1. Wavelet probability band metric for tracking (WPB 90%)

Table 3 presents the time per patient that the simulated infusion rate lies within the 90%

wavelet probability band (WPB 90%). Generally high values of WPB 90% are evident across

most of the 37 patients (second column of Table 3). With the exception of thirteen (13) patients

(Patients 2, 4, 7, 9, 10, 11, 21, 22, 27, 28, 32, 33, 34), all simulated infusion profiles lie within

the wavelet probability band at least 75% of the time. These 13 patients were also all deemed

to be “poor trackers” according to the WCORR and WCCORR diagnostics developed in [29].

The main reason for the reduced total time within the WPB for these 13 poor trackers seems

to be their poor performance throughout the total length of the patient’s simulation. This

feature is observed in Figure 8 for patient 9 and for patient 34, and indicates that the simulated

infusion profile deviates from the recorded profile over some particular period, and takes

some time before tending towards the recorded infusion rate again (see Patients 9 and 34 in

Figure 8).

6.2. Comparison of WPB 90% with WTCI measures

Patients 25 and 34 will now be used to illustrate some of the concepts linking and differentiating

the different wavelet measures in Table 2 and Table 3. Note that Patient 25 has the maximum

WTCI of 88.9% with a high value of relative total dose of 91.2% (Table 2), and patient 25 exhibits

low spread in the bootstrapped realization in Figure 7. Table 3 similarly shows that Patient

25’s simulated infusion rate lies within the 90% WPB for 89.06% of the time, indicative of good

performance (or tracking), as is evident in the WPB plot (Figure 8). By contrast, Patient 34 has

a high WTCI of 85.9%, a relative total dose of 89.0% (Table 2), and exhibits low spread in the

bootstrapped realizations, but by contrast Patient 34 has a very low WPB 90% value of 48.44%

(Table 3 and Figure 8).

Recall from [29] that Patient 25 is deemed to be a good tracker and Patient 34 a poor tracker

by earlier DWT WCORR criteria. Hence whilst the WTCI values of Patient 25 and Patient

34 are both high, 88.9% and 85.9%, respectively; it is only the WPB 90% measure, and not

the WTCI measure, that distinguishes between the tracking performance of Patient 25 (WPB

90% = 89.06%) and Patient 34 (WPB 90% = 48.44%). Patient 34’s simulation infusion rate is

outside the WPB band for 51.56% of the time indicating that a large maximum departure

time between the patient’s recorded and simulated infusion rate occurs in the ICU observa‐
tion period (see [29]).

6.3. Comparison of WPB 90% with ANWD and RANWD measures

The higher the percentage that the simulated infusion profile lies within the wavelet proba‐
bility band, for a given patient, the better the simulation model captures the specific dynamics

of the agitation-sedation system for that patient. Patient-specific WPB 90% values are reported

in Table 3. Columns 3 and 4 in Table 3 present the two novel and alternative performance

measures of ANWD and RANWD per patient. Recall that the posterior distribution of the
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time between the patient’s recorded and simulated infusion rate occurs in the ICU observa‐

The higher the percentage that the simulated infusion profile lies within the wavelet proba‐

regression curve is used as the density for all patients as described in reference [14]. RANWD

thus measures how probabilistically similar the model outputs are to the smoothed observed

data, and hence is a measure of the degree of comparability between the simulated and the

empirical A-S data. The density profile is used to compute the numerical measures of ANWD

and RANWD, so that objective comparisons of model performance can be made across

different patients. The ANWD value for the simulated infusion rates is the average of these

normalized density values over all time points for a given patient. Similarly, the RANWD value

for the smoothed infusion rate is obtained by superimposing the smoothed values by using

the first cumulant from a normal posterior distribution onto the same density profile, after

which RANWD can be readily computed.

Patient no. WPB 90% ANWD RANWD

1 95.31 0.537 0.553

2 64.06 0.431 0.499

3 96.88 0.632 0.737

4 59.38 0.338 0.475

5 93.75 0.495 0.504

6 95.31 0.659 0.980

7 67.19 0.417 0.455

8 87.50 0.567 0.688

9 57.81 0.343 0.412

10 66.80 0.300 0.388

11 74.34 0.423 0.434

12 84.38 0.622 0.662

13 73.44 0.442 0.504

14 96.88 0.449 0.476

15 89.06 0.702 0.761

16 82.81 0.596 0.770

17 85.94 0.506 0.566

18 93.75 0.548 0.558

19 74.22 0.759 0.780

20 96.88 0.487 0.581

21 65.62 0.407 0.413

22 65.62 0.422 0.455

23 92.19 0.288 0.341

24 71.00 0.655 0.635
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Patient no. WPB 90% ANWD RANWD

25 89.06 0.635 0.670

26 96.88 0.600 0.601

27 47.27 0.368 0.608

28 50.78 0.501 0.540

29 82.81 0.343 0.394

30 96.88 0.554 0.597

31 87.50 0.562 0.669

32 68.36 0.326 0.362

33 58.79 0.373 0.499

34 48.44 0.505 0.551

35 96.10 0.371 0.533

36 75.00 0.573 0.763

37 79.69 0.448 0.607

Min 47.27 0.288 0.341

Median 82.81 0.495 0.552

Max 96.88 0.759 0.981

Table 3. Wavelet probability band (WPB 90%), ANWD and RANWD measures per patient. A bold patient no. indicates

a poor tracker by the RANWD and WPB criteria (developed in section 6.4). (The 13 poor trackers are P2, P4, P7, P9, P10,

P11, P21, P22, P27, P28, P32, P33 and P34).

An overall median RANWD of 0.552 (Table 3) with range [0.341 to 0.981] is an objective

measure that supports the WPB 90% measures and visual clue of closeness based on the WPB

(see Figure 8). It should be noted that as the model is deterministic, its outputs do not belong

to the same probabilistic mechanism that generated the data, hence RANWD is an extremely

stringent measure.

6.4. WPB 90% and RANWD criteria for poor tracking

Given the conservative nature of the RANWD metric, consistently high RANWD values close

to 1.00 are not expected, even for a good simulation model. A reasonable and practical

threshold for adequate model performance is RANWD ≥ 0.5, which suggests that the model

outputs are more alike than not to the smoothed data. Justification for our 0.5 threshold for

RANWD is given in this section, as is a threshold for WPB 90%. Poor trackers according to the

metrics developed in this chapter are assumed to satisfy the following:

RANWD≤0.5 and/or a WPB 90% ≤70%.

Thirteen (13) patients have a low RANWD (deemed below the threshold, RANWD ≤ 0.50),

namely Patients 2, 4, 7, 9, 10, 11, 14, 21, 22, 23, 29, 32 and 33 (Table 4). Specifically 9 of these
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patients have RANWD values from 0.412 to 0.499, and 4 have RANWD values between 0.341

and 0.394. Furthermore 11 patients have a WPB 90% value less or equal to 70% (Patients 2, 4,

7, 9, 10, 11, 27, 28, 32, 33, 34). Whilst Patients 14 and 23 have low RANWD values they exhibit

very high WPB 90% (> 92%) values (like P29) (Table 3). Note that these 3 patients (P14, P23,

P29) were also classified as good trackers according to the criteria developed earlier in [13],

[14] and [29]; and as such, given their high WPB 90%, values, will be classified as good trackers

in this chapter. Clearly the WBP 90% measure can help find patients (good trackers, say) who

have elevated percentage time in the WPB ( (range 83% - 97%) for these 3 patients (P14, P23,

P29) even though they exhibit relatively low RANWD values (range 0.34-0.47) (see column 3

Table 6).

Thirteen patients which satisfy our criterion for poor tracking (RANWD ≤ 0.5, and/or a WPB

90% ≤  70%) are P2, P4, P7, P9, P10, P11, P21, P22, P27, P28, P32, P33 and P34 - all of whom,

were also identified as poor trackers by the WCORR and WCCORR DWT diagnostics of

[29]. Of these 13 poor trackers 8 have both lower than threshold WPB 90% and low RANWD,

3 exhibit low WPB 90% but above threshold RANWD > 0.5, and 2 exhibit low RANWD

but above threshold WPB 90% (see Table 6).  This indicates a significant and high agree‐
ment  between  the  WPB  and  the  RANWD  (dichotomized)  criteria  (kappa  =  0.6679);  P

(estimated kappa ≤ 0.40) = 0.025).

The resultant, RANWD and WPB 90% thresholds also provide very strong support for the

DWT wavelet diagnostics derived in reference [29], in that of the 15 DWT based poor trackers

identified in [29] (see Table 6), 13 of these also exhibit a low WPB (WPB 90% < 70%) and/or a

low wavelet density based RANWD (RANWD ≤ 0.5). Statistically speaking the wavelet

probability band and density diagnostics developed in this chapter mirror the DWT based

poor versus good classification of [29] (kappa = 0.87, p = 0.0001).

Our 13 poor trackers have WPB and density profiles (not all reported here) which have specific

regions where the patient’s DE model did not appear to capture the observed A-S dynamics.

In some scenarios, this may occur in the absence of a stimulus or when low drug concentrations

coincide with an agitation level that is decreasing (but not close to zero), thus causing the

patient’s agitation to remain at a constant non-zero level, despite their recorded infusion rate

dropping to near zero.

6.5. Comparison of WPB 90% with Rudge’s physiological model [13] (AND, RAND
measures)

The non-wavelets based and earlier performance metrics of AND and of RAND per patient

are also given in Table 4. Table 4 thus provides a comparison between the WPB 90%, ANWD

and RANWD and TIB, AND and RAND measures from Rudge’s Physiological Model [12,

13]. A highlighted patient is a poor tracker by the WCORR/WCCORR criteria in [29]. Table

4 along with Table 3, allows comparison between Rudge’s [13] values of AND and RAND,

with our WPB model diagnostics (WPB) and our wavelet-based estimates of ANWD and

RANWD. An underlined patient indicates a poor tracker by our RANWD and WPB criteria

(see also Table 6).
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Patient no. WPB model Rudge’s Physiological Model

WPB 90% ANWD RANWD TIB 90% AND RAND

1 95.31 0.537 0.553 96 0.51 0.62

2 64.06 0.431 0.499 90 0.53 0.66

3 96.88 0.632 0.737 97 0.70 0.83

4 59.38 0.338 0.475 93 0.56 0.62

5 93.75 0.495 0.504 97 0.60 0.80

6 95.31 0.659 0.980 95 0.70 0.84

7 67.19 0.417 0.455 67 0.33 0.43

8 87.50 0.567 0.688 90 0.45 0.59

9 57.81 0.343 0.412 89 0.49 0.62

10 66.80 0.300 0.388 53 0.27 0.34

11 77.34 0.423 0.434 59 0.31 0.38

12 84.38 0.622 0.662 96 0.61 0.77

13 73.44 0.442 0.504 85 0.37 0.45

14 96.88 0.449 0.476 95 0.48 0.56

15 89.06 0.702 0.761 95 0.45 0.60

16 82.81 0.596 0.770 91 0.44 0.57

17 85.94 0.506 0.566 91 0.61 0.72

18 93.75 0.548 0.558 92 0.55 0.68

19 74.22 0.759 0.780 90 0.50 0.66

20 96.88 0.487 0.581 91 0.53 0.65

21 65.62 0.407 0.413 95 0.53 0.72

22 65.62 0.422 0.455 83 0.35 0.45

23 92.19 0.288 0.341 95 0.72 0.85

24 71.10 0.655 0.635 91 0.43 0.54

25 89.06 0.635 0.670 86 0.50 0.66

26 96.88 0.600 0.601 92 0.68 0.88

27 47.27 0.368 0.608 84 0.39 0.49

28 50.78 0.501 0.540 76 0.34 0.44

29 82.81 0.343 0.394 90 0.38 0.45

30 96.88 0.554 0.597 97 0.63 0.82

31 87.50 0.562 0.669 74 0.40 0.51

32 68.36 0.326 0.362 74 0.38 0.50
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Patient no. WPB model Rudge’s Physiological Model

WPB 90% ANWD RANWD TIB 90% AND RAND

33 58.79 0.373 0.499 67 0.28 0.36

34 48.44 0.505 0.551 84 0.43 0.55

35 96.10 0.371 0.533 70 0.38 0.46

36 75.00 0.573 0.763 83 0.52 0.64

37 79.69 0.448 0.607 92 0.53 0.59

Min 47.27 0.288 0.341 53 0.27 0.34

Median 82.81 0.495 0.552 90 0.49 0.60

Table 4. Comparison between the WPB, ANWD and RANWD and TIB, AND and RAND from Rudge’s Physiological Model

[12, 13]. A boxed patient is a poor tracker by the WCORR /WCCORR criteria in [29]. A shaded patient indicates a poor

tracker by our RANWD and WPB criteria (13 patients: P2, P4, P7, P9, P10, P11, P21, P22, P27, P28, P32, P33 and P34).

6.6. Comparison of WPB, WTCI, ANWD and RANWD across poor versus good tracking

groups

Table 5 gives summary statistics of the wavelet density based metrics (WPB, WTCI, ANWD

and RANWD) for the poor versus good trackers (classified using the threshold criterion for

WPB 90% ≤  70% and RANWD≤ 0.50). The poor trackers have significantly lower median

values of WPB 90% (64.84% versus 87.50%) (p ≤ 0.001); a significantly lower median value of

WTCI (76.56% versus 82.79%) (p ≤ 0.041); a significantly lower median value of ANWD (0.41

versus 0.55) (p ≤ 0.001) and a significantly lower median value for RANWD (0.46 versus 0.59)

(p ≤ 0.001) compared to the good tracking group.

WPB 90% WTCI ANWD RANWD

Poor trackers

Min 47.27 71.95 0.03 0.36

Max 77.34 88.05 0.50 0.61

Range 30.07 16.01 0.21 0.25

Mean 61.56 77.97 0.39 0.47

95% CI of Mean (65.79, 67.32) (74.72, 81.22) (0.36, 0.44) (0.42, 0.51)

Median 64.84 76.56 0.41 0.46

95% CI of Median (52.63, 67.09) (74.89, 81.69) (0.34, 0.43) (0.41, 0.53)

Good trackers

Min 58.79 73.37 0.29 0.34

Max 96.88 88.94 0.76 0.98
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WPB 90% WTCI ANWD RANWD

Range 38.09 15.57 0.47 0.64

Mean 85.31 81.36 0.53 0.60

95% CI of Mean (80.85, 89.77) (76.62, 83.09) (0.48, 0.57) (0.55, 0.66)

Median 87.50 82.79 0.55 0.59

95% CI of Median (82.72, 93.79) (79.13, 84.09) (0.45, 0.60) (0.53, 0.67)

Kruskal-Wallis

test

P value

0.001 0.041 0.001 0.001

Table 5. Summary of the wavelet based performance metrics: poor versus good trackers.

6.7. Poor trackers compared across 3 studies (references [29], [14] and [13])

Table 6 summarises the patient numbers of the poor trackers according to the criteria of four

studies, including the research described in this chapter (i.e. Kang’s WPB diagnostics, see column

1). The four studies reported across columns 1, 4-6 in Table 6 are Kang’s WPB, WCORR diagnostics

[29], Chase diagnostics [14] and the earlier Rudge diagnostics [13].

Kang WPB

diagnostics (this

chapter)

WPB ≤

70%
RANWD≤ 0.50

Kang WCORR

diagnostics [29]

Chase et al. [14]

diagnostics

Rudge el al. [13]

diagnostics

- - - -

2 2 2 2 - -

- - - - - -

4 4 4 4 - -

- - - - - -

- - - - 6 -

7 7 7 7 7 7

- - - - - -

9 9 9 9 9 -

10 10 10 10 - 10

11 11 11 11 - 11

- - - - 12 -

- - - - - 13
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WPB ≤
≤

Kang WPB

diagnostics (this

chapter)

WPB ≤

70%
RANWD≤ 0.50

Kang WCORR

diagnostics [29]

Chase et al. [14]

diagnostics

Rudge el al. [13]

diagnostics

14Φ - - -

- - - - - -

- - - - - -

- - - - 17 -

- - - - - -

- - - - - -

- - - - - -

21 21 21 21 -

22 - 22 22 - 22

23Φ - - -

- - - - - -

- - - - - -

- - - - - -

27 27 27 27 27

28 28 28 - 28

- - 29Φ 29 - 29

- - - - - -

- - - - - -

32 32 32 32 - -

33 33 33 33 - 33

34 34 - 34 34 -

- - - 35 - 35

- - - - - -

- - - - - -

Total: N1= 13 Total: N2=15 Total: N3=8 Total: N4=10

Table 6. Patient numbers of the poor trackers according to the criteria of 4 studies. Φ P14 and P23 have low RANWD

values but high WPB 90% (> 92%) (like P29). P14, P23, P29 were classified as good trackers according to the criteria

developed earlier in [13], [14] and [29], and as such, and given their high WPB 90%, are classified as good trackers by

our Kang WPB diagnostics.
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The resultant ANWD, RANWD, WTCI and WPB 90% thresholds also provide very strong

support for the DWT wavelet diagnostics derived in reference [29], in that of the 15 DWT based

poor trackers identified in [29], 13 also exhibit a low WPB (WPB 90% < 70%) and/or a low

wavelet density based RANWD measure (RANWD ≤ 0.5), and are likewise deemed to be poor

trackers (Table 6). Statistically speaking the wavelet probability band and density diagnostics

developed in this chapter mirror the DWT based criterion of [29] (kappa = 0.87, p = 0.0001).

Indeed of the 13 patients assessed by our WPB and RANWD criteria to be poor trackers, all

were likewise judged to be poor trackers by the earlier DWT WCORR and WCCORR criteria

developed in reference [29] (see Table 6 and also see Tables 4-5 of [29]). This indicates perfect

agreement between the RANWD threshold developed in this chapter and the earlier DWT

WCORR and WCCORR based criteria for poor tracking in [29] (kappa = 1.00, p = 0.0000).

The performance metrics of AND and RAND and their patient specific values are given in

Table 4, which along with Table 3 also allows comparison between Rudge’s [13] (AND and

RAND) values with our WPB model diagnostics (WPB, ANWD, RANWD). Rudge’s Physio‐
logical Model [12, 13] found 10 of the 37 patients (27%) have values of RAND ≤  0.5, with 5

patients with 0.43< RAND<0.49, and 3 with 0.34 < RAND <0.38 (Tables 4 - 5). The model in [63]

likewise found that 27 patients (73%) have RAND values greater than 0.57, with 10 poor

trackers, with 6 RAND values ranging from 0.43 to 0.49, and with 3 patients exhibiting RAND

values between 0.34 and 0.38. The main reason for the reduced total time within the WPB (and

the non-significant WCORRs) for this minority group of 10 - 13 poor trackers (of the total 37

patients), is the consistently poor performance of the DE model throughout their total length

of the A-S simulation. Of the 13 patients assessed by our RANWD and WPB criteria to be poor

trackers, 7 patients (P7, P10, P11, P22, P27, P28, P33) were likewise judged to be poor trackers

by the earlier Physiological Model of Rudge [13] (kappa = 0.30, p = 0.03). This shows significant

agreement between the physiological Model [13] based criteria for poor tracking and the

RANWD and WPB 90% thresholds formulated in this chapter (Table 6).

7. Discussion and conclusions

Agitation management via effective sedation management is an important and fundamen‐
tal activity in the ICU. However, in clinical practice a lack of understanding of the underly‐
ing dynamics,  combined with a lack of  subjective assessment tools,  makes effective and

consistent clinical agitation management difficult [14, 12, 13]. The main goal of ICU seda‐
tion is to control agitation, while preventing over-sedation and over-use of drugs. Current

clinical practice employs subjective agitation and sedation assessment scales, combined with

medical staff experience and intuition, to deliver appropriate sedation. This approach usually

leads  to  the  administration  of  largely  continuous  infusions  which  lack  a  bolus-focused

approach, and commonly results in either over sedation, or insufficient sedation [12, 13].

Several recent studies have emphasised the cost and health-care advantages of drug delivery

protocols based on assessment scales of agitation and sedation. Table 7 gives an overview of

recent  ICU  agitation  studies,  and  provides  a  brief  overview  of  the  equations  used  for

simulations of a patient’s A-S status and also of the methods derived in this chapter (and by
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other studies) with the aim of establishing the validity of the models in reflecting a pa‐

A-S data per patient. Our new wavelet regression diagnostics identified 13 ICU patients (pa‐

A-S profiles were poor indicators of their true A-S status, the remaining patients tracked ex‐

determin‐
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RAND) values with our WPB model diagnostics (WPB, ANWD, RANWD). Rudge’s Physio‐
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Agitation management via effective sedation management is an important and fundamen‐
tal activity in the ICU. However, in clinical practice a lack of understanding of the underly‐

consistent clinical agitation management difficult [14, 12, 13]. The main goal of ICU seda‐

other studies) with the aim of establishing the validity of the models in reflecting a pa‐
tient’s true A-S status.

In this chapter, we successfully developed a density estimation approach via wavelet

smoothing to assess the validity of deterministic dynamic A-S models. This wavelet density

approach provided graphical assessment and numerical metrics (WTCI and WPB 90%,

ANWD and RANWD) to assess the comparability between the modelled and the recorded

A-S data per patient. Our new wavelet regression diagnostics identified 13 ICU patients (pa‐
tients 2, 4, 7, 9, 10, 11, 21, 22, 27, 28, 32, 33 and 34) (out of 37 analysed) [29], whose simulated

A-S profiles were poor indicators of their true A-S status, the remaining patients tracked ex‐
ceptionally well.

All of these 13 poor trackers were also identified as poor trackers by the DWT measures

derived in [29]. The WTCI and WPB 90% metrics derived in this chapter thus give strong

support for the datawork in [29] and vice versa. Our wavelet regression diagnostics (WTCI,

ANWD, RANWD, and WPB 90%) are thus valid for assessing control, as were the wavelet

DWT, wavelet correlation (WCORR) and cross-correlation (WCCORR) measures derived in

[29]. We have thus successfully assessed the patients A-S by the RANWD cut-point and also

distinguished poor trackers, likewise identified by the DWT criteria of [29]. Ten of our 13 so-

called poor trackers were also identified as poor trackers by either the kernel smoothing,

tracking index and probability band approach of  [14]  and [13],  respectively.  Overall  the

various diagnostics strongly agree and confirm the value of A-S modelling in ICU. Our WPB

method is  also shown to be an excellent  tool  for detecting regions where the simulated

infusion rate performs poorly, thus providing ways to help improve and distil the determin‐
istic A-S model. The main reason for the reduced total time within the WPB for a minority

group, of 13 (of 37) i.e. the poor trackers, is the consistently poor performance of the DE

model throughout the total length of the simulation.

Wavelet modelling in this chapter and the earlier work of Kang [29] thereby demonstrate that

the models of the recent A-S studies of [14, 11, 12, 13, 63] and of [64], are suitable for developing

more advanced optimal infusion controllers. These offer significant clinical potential of

improved agitation management and reduced length of stay in critical care. Further details are

available in the recent PhD dissertation of Kang (circa 2012) [67]. The A-S time series profiles

studied in this chapter are of disparate lengths (with a wide range [3,001 - 25,261] time points

in minutes). Our approach is thus generalisable to any study which investigates the similarity

or closeness of bivariate time series of, say, a large number of units (patients, households) and

of time series of varying lengths and of possibly long length. This chapter demonstrates the

value of wavelets for assessing ICU agitation-sedation deterministic models, and suggests new

wavelet probability band and coverage diagnostics by which to mathematically assess A-S

models. Future work will involve creation of singular spectrum analysis (SSA) based similarity

indices following the development of Hudson and Keatley in [68]; and comparing results with

the wavelet density-based indices developed in this chapter with the DWT metrics in [29] and

in references [69] - [70].
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Authors Equations and Model used  Methods Aims of the study and the performance indicators   derived

Kang et al. 

(this chapter) 

See the schema of the approach developed in this chapter below: 

Wavelet shrinkage (threshold) procedure 

  

     
0 0

0

, , , ,

Data Threshold     
DWT IDWT

(minimax) (wavelet estimate)  

                                                         

:a square intergrable density function

:orthog

J

t

j k j k j k j k

k j j k

f x f

X

f x c x d x y





   

=  

         

    

0
0

0

, ,, ,

, ,, ,

1

onal scaling function, :mother wavelet

: wavelet estimator for  at  level

1 1
,

j k j kj k j kJ

k j j k

n n

j k j kj k t j k t

t i t

f x c x d x f x J

c X d X
n n

y

 y

 y



= =

= 

= =

 

 





 

Density estimation 

([30], [42]) 

Wavelet thresholding 

via BayesThresh 

methods 

 ([41], [42]) 

Wavelet shrinkage 

(threshold)  

( [60], [30], [42]) 

Dvelop a density estimation approach via wavelet smoothing for 

assessing the validity of the deterministic dynamic models (simulated 

profiles) against the empirical / recorded data.  

Construct a wavelet probability band (WPB).  

Provide graphical assessment and   numerical metrics of the 

compatibility between the model and the recorded agitation-sedation 

data. 

Develop performance measures as follows: 

1. Average normalized wavelet density (ANWD).  

2. Relative average normalized wavelet density (RANWD). 

3. Median of the Wavelet Time Coverage Index (WTCI). 

Kang et al. [29] See equations in the Chase et al. [14] and the  row below, and  schema in 

Kang et al. [29]  

 DWT analysis and synthesis equations 

X= [X1, X2,…, XN], N=2J , DWT analysis equation W= X,  W= discrete 

wavelet coefficients, = N x N orthonormal matrix 
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Maximal Overlap 

Discrete Wavelet 

(MODWT) [62] 

Multiresolution 

analysis (MRA)  

 [62] 

DWT-MRA, 

MODWT-MRA 

Wavelet  shrinkage 

([60], [30]) 

Develop a wavelet correlation (WCORR) and wavelet cross-correlation 

(WCCORR) approach for assessing the validity of the deterministic 

dynamic models against the empirical agitation-sedation data per 

patient. 

Provide graphical assessment tools and wavelet based numerical metrics 

of  the compatibility between the simulated model and the recorded data 

via the discrete wavelet transform (DWT), partial DWT (PDWT), 

maximal overlap DWT (MODWT) and via Multiresolution analysis 

(MRA). 

Investigate the lag/lead relationship between the simulated and recorded 

infusion series on a scale by scale basis via wavelet cross-correlation 

(WCCORR). 

Develop performance measures as follows: 

1. Modulus of the wavelet correlation at wavelet scale 1,   l1. 

2. Count the number (out of 8) of non-significant wavelet correlations at 

scales lj  (j = 1,2,…,8). 

3. Median and 95% CI of the first 5 wavelet correlations at scales lj   

(j  = 1,2,…,5). 

Test poor versus good tracker groups via the Kruskal Wallis test on 1, 2 

and 3 above.  

Rudge et al. [13]  
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Kernel smoothing:  

Chebychev’s 

inequality for the 

probability band  [14] 

Relative average 

normalised density 

(RAND) 

Average normalised 

density (AND) 

Develop a physiologically representative model that incorporates 

endogenous agitation reduction (EAR). 

Use performance measures as follows: 

1. RTD: relative total dose (RTD) expresses the total dose administered in 

the simulation as a percentage of the actual total recorded dose. 

2. Relative average normalised density (RAND) measures how 

probabilistically similar the model outputs are to the smoothed data, and 

hence the degree of comparability between the model and the empirical 

data. 

3. Percentage time in band (TIB). 

Rudge et al. [11] The agitation-sedation system model: 

Phamarcokinetic model adding patient agitation as a third state variable 
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Infinite Impulse 

Response (IIR) filter  

Proportional 

Derivative (PD) 

control with respect to 

agitation for infusion 

rate (U) 

Moving blocks 

bootstrap [56] 

Tracking Index (TI) 

Develop a control model to capture the essential dynamics of the 

agitation-sedation system. 

Use performance measures as follows: 

1. 
p dU K A K A=   for the infusion rate. 

2. Tracking Index (TI): Quantitative parameter to indicate how well the 

simulated infusion rate profile represents the average recorded infusion 

profile over the entire time series. 

Lee et al. [64] 
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Kernel regression [65]

Kernel density 

estimation:  

marginal density 

function of the 

regression function 

estimate 

Nonparametric 

regression:  

Chebychev’s 

inequality for the 

probability band [14] 

Develop a nonparametric approach for assessing the validity of 

deterministic dynamics models against empirical data. 

Use performance measures as follows: 

1. Kernel regression and density estimation to yield visual graphical 

display of  data. 

2. Construct a probability band for the nonparametric regression curve 

and check whether the proposed model lies within the band. 

3. Average normalised density (AND) to measure how well the 

simulated values coincide with the maximum density at every time 

point and relative average normalised density (RAND). 
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Chase et al [14]  The agitation-sedation Phamarcokinetic model adding patient agitation as 

a third state variable 
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Uniform kernel with bandwidth  h  [65] 
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Infinite Impluse

Response (IIR) filter  

Proportional-

Derivative (PD) 

control with agitation 

for infusion rate (U) 

Tracking Index (TI) 

Chebychev’s 

inequality for 

probability band 

[14]  

Develop a mathematical model to capture the essential dynamics of the 

agitation-sedation system and test for statistical validity using the 

recorded infusion data for the 37 ICU patients. 

Use performance measures as follows: 

1. Kernel smoothing using the uniform kernel.  

2. Tracking Index (TI). 

3. Moving blocks bootstrap to gain an understanding of the reliability of 

the TI for a given patient’s infusion profile 

4. 90% Probability Band - by definition the range within at least 90% of 

the time, the estimated mean value of the recorded infusion rate lies 

within the band.  

 

Cc, Cp and Ce are, respectively, the drug concentrations (mg L−1) in the central, peripheral and effect compartments;, U is

the intravenous infusion rate; Vd, Vc, Vp and Ve, respectively, the volume of distribution, the distribution volumes (L) of

the central, peripheral and effect compartments; A is an agitation index, S is the stimulus invoking agitation; K1–K3 are

parameters relating to drug elimination and transport and Kij the transfer rate (L min−1) from compartment i to

compartment j; KCL the drug clearance (L min−1); KT the effect, and w1 and w2 are relative weighting coefficients of the

stimulus and drug effect, respectively. Time is represented by t, and τ is the variable of integration in the convolution

integral Vc, Vp and Ve, respectively, the distribution volumes (L) of the central, peripheral and effect compartments; U the

intravenous infusion rate (mL min−1); A an agitation index; S the stimulus invoking agitation; Kij the transfer rate (L min
−1) from compartment i to compartment j; KCL the drug clearance (L min−1); KT the effect time constant (min−1); Po and Ps

are the concentrations of morphine and midazolam, respectively (mgmL−1), where terms with superscript ‘o’ relate to

the opioid morphine, and terms with superscript ‘s’ relate to the sedative midazolam. Time is represented by t (min), the

variable of integration, and the terms w1 and w2 are the relative weights of stimulus and cumulative effect, representing

the patient sensitivity. Finally, Ecomb is the combined pharmacodynamic effect of the individual effect site drug

concentrations of morphine and midazolam determined using response surface modeling as defined in [66].

Table 7. Overview of Studies on ICU
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1. Introduction

Recently, the wind generation systems are attracting attention as a clean and safe renewable

energy source. Induction machines have many advantageous characteristics such as high ro‐
bustness, reliability and low cost. Therefore, induction machines are used in high-perform‐
ance applications, which require independent torque and flux control. The induction

machines may be used as a motor or a generator. Self-excited induction generators (SEIG)

are good candidates for wind-power electricity generation especially in remote areas, be‐
cause they do not need an external power supplies to produce the excitation magnetic fields

in [1–3]. The excitation can be provided by a capacitor bank connected to the stator wind‐
ings of the induction generator. Magnetizing inductance is the main factor for voltage build-

up of the IG. The minimum and maximum values of capacitance required for self-excitation

have been analyzed previously in [4–7].

The three phase current regulated pulse-width modulation (CRPWM) AC/DC/AC convert‐
ers have been increasingly used for wind energy system applications. Their attractive fea‐
tures include: regulated DC-link voltage, low harmonic distortion of the induction generator

currents and controllable power factor and efficiency in [8–9]. The current regulation of a

SEIG in the synchronous frame has the advantages of fast dynamic current response, good

accuracy, constant switching frequency and less sensitivity to parameter variations. In wind

generation systems, a variable speed generation system is more attractive than a fixed speed

one because of the improvement in the wind energy production. In a variable speed system,

wind turbine can be operated to produce its maximum power at every wind speed by ad‐
justing the shaft speed optimally. In order to achieve the maximum power point tracking
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(MPPT) control, some control schemes have been studied. For example, a search-based or

perturbation-based strategy in [10–11], a fuzzy- logic based control in [12], a wind speed-es‐
timation-based algorithm has been applied. Since the squirrel-cage IGs have robust con‐
struction, lower initial, run-time and maintenance cost, squirrel-cage IGs are suitable for

grid-connected as well as isolated power sources in small hydroelectric and wind-energy

applications. Therefore an IG system using radial basis function network (RBFN) was pro‐
posed to yield maximum power output through the DC-link power control in [13-14].

In the past several years, much research has been carried out in neural network control. It has

proven that an artificial neural network can approximate a wide range of nonlinear functions

to any desired degree of accuracy under certain conditions. In the conventional gradient de‐
scent method of weight adaptation, the sensitivity of the controlled system is required in the

on-line training process. However, it is difficult to acquire sensitivity information for un‐
known or highly non-linear dynamics. Wavelets have been combined with the neural network

to create wavelet–neural–networks (WNNs). It combine the capability of artificial neural net‐
works for learning from process and the capability of wavelet decomposition for identification

and control of dynamic systems. The training algorithms for WNN typically converge in a

smaller number of iterations than the conventional neural networks. Unlike the sigmoid func‐
tions used in the conventional neural networks, the second layer of WNN is a wavelet form, in

which the translation and dilation parameters are included. Thus, WNN has been proved to be

better than the other neural networks in that the structure can provide more potential to enrich

the mapping relationship between inputs and outputs in [15-23].

Particle swarm optimization (PSO),  first  introduced by Kennedy and Eberhart in [24],  is

one of the modern heuristic algorithm. It was developed through simulation of a simpli‐
fied social system and has been found to be robust in solving continuous nonlinear opti‐
mization  problem  in  [25-29].  The  PSO  technique  can  generate  a  high  quality  solution

within shorter calculation time and stable convergence characteristics than other stochas‐
tic methods in [30-34]. Much research is still in progress for proving the potential of the

PSO in solving complex dynamical systems.

The recent evolution of power-electronics technologies has aided the advancement of varia‐
ble-speed wind-turbine generation systems in [35–39]. In spite of the additional cost of pow‐
er electronics and control circuits, the total energy captured in a variable-speed wind-

turbine system is more than the conventional one. Thus, the variable-speed wind-turbine

system has lower life-cycle cost. Moreover, the PWM converters not only can be used as a

variable capacitor but also can supply the needed reactive power to load and to minimize

the harmonic current and imbalance in the generator current. On the other hand, the varia‐
ble speed wind turbine driven SEIG systems display highly resonant, nonlinear, and time-

varying dynamics subject to wind turbulence and operating temperature of the SEIG.

Furthermore, there is an appreciable amount of fluctuation in the magnitude and frequency

of the generator terminal voltage owing to a varying rotor speed governed by the wind ve‐
locity and the pulsating input torque from the wind turbine. The phenomena of fluctuation

are objectionable to some sensitive loads. Therefore, the employment of PWM converters

with advanced control methodologies to control the wind turbine driven SEIG systems is
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applications. Therefore an IG system using radial basis function network (RBFN) was pro‐

to any desired degree of accuracy under certain conditions. In the conventional gradient de‐

on-line training process. However, it is difficult to acquire sensitivity information for un‐

to create wavelet–neural–networks (WNNs). It combine the capability of artificial neural net‐

smaller number of iterations than the conventional neural networks. Unlike the sigmoid func‐

one of the modern heuristic algorithm. It was developed through simulation of a simpli‐
fied social system and has been found to be robust in solving continuous nonlinear opti‐

within shorter calculation time and stable convergence characteristics than other stochas‐

The recent evolution of power-electronics technologies has aided the advancement of varia‐
]. In spite of the additional cost of pow‐

the harmonic current and imbalance in the generator current. On the other hand, the varia‐

of the generator terminal voltage owing to a varying rotor speed governed by the wind ve‐

necessary in [36–38]. In addition, for the research of wind energy conversion systems, the

developments of wind turbine emulators are also necessary in [43, 44]. However, the fuzzy

logic controller, the sliding-mode controller, and the PI controller adopted in [40–48] may

not guarantee the robustness when parameter variations or external disturbance occurred in

the control system in practical applications due to the lack of online learning ability.

This Chapter is organized as follows. Section 2 presents the variable speed wind generation

system description. In this section the analysis of the wind turbine is carried out and the

maximum power point tracking analysis is also introduced. In Section 3, the dynamic model

of the self-excited induction generator is introduced to analyze all its characteristics. Section

4 provides the indirect field-orientation control (IFOC) dynamics for the IG (torque, slip an‐
gular frequency and voltage commands) which are derived from the dynamic model of

SEIG. The d-q axes current control according to the IG rotor speed gives the maximum me‐
chanical power from the wind turbine and the losses of the IG are minimized. In Section 5,

the dynamic equations of the CRPWM converter in the synchronous reference frame are car‐
ried out based on the IFOC dynamics of the IG. The dynamic equations of the grid-side

CRPWM voltage source inverter connected to the grid are given in Section 6. By using vec‐
tor control technique, the currents of the CRPWM inverter are controlled with very high

bandwidth. The vector control approach is used, with a reference frame oriented along the

grid voltage vector position. This allows independent control of the active and reactive pow‐
er. Section 7 considers the design procedures for the PID voltage controller of the IG-side

CRPWM voltage source converter, the PID active power and reactive power controllers for

the grid-side CRPWM inverter. In Section 8, an intelligent maximization hybrid control sys‐
tem based on the WNN with IPSO is proposed in order to control the DC-link voltage of the

IG-side CRPWM voltage source converter, active power and reactive power of the grid-side

CRPWM voltage source inverter effectively based on the MPPT from the wind driven SEIG

system. Finally, to testify the design of the proposed hybrid control system and MPPT con‐
trol scheme, the variable speed wind generation system is simulated in Section 9. The dy‐
namic performance of the system has been studied under different wind velocities. The

simulation results are provided to demonstrate the effectiveness of the proposed hybrid

control for variable speed wind generation system.

2. Variable Speed Wind Generation System Description

The proposed wind generation system is shown in Figure 1. The wind turbine is coupled to

the shaft of a SEIG. The output of the SEIG is connected to a double-sided CRPWM voltage

source converter connected to a utility grid.

2.1. Double-Sided Converter System

The voltage-fed double-sided converter scheme used in the proposed wind energy conver‐
sion system is shown in Figure 1. The variable frequency variable voltage power genertated

is rectified by a PWM converter. The PWM inverter topology is identical to that of the PWM

Wavelet–Neural–Network Control for Maximization of Energy Capture in Grid Connected Variable Speed Wind Driven
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converter and it supplies the generated power to the utility grid. The converter consists of

six switches with their anti-parallel diodes that are switched using space vector pulse width

modulation (SVPWM) pattern. The switching functions of the top and bottom devices are

defined S a, S b and S c; and S a 
', S b 

' and S c 
' respectively. The switching function has a value

of one when the switch is turned on and it is zero when it is turned off. The voltage equa‐
tions for the converter in the stationary reference frame can be expressed in terms of the

switching functions as given by (1-3).

V a =
1
3 Vdc 2Sa −Sb −Sc

(1)

V b =
1
3 Vdc −Sa + 2Sb −Sc

(2)

V c =
1
3 Vdc −Sa −Sb + 2Sc

(3)

2.2. Analysis of Wind Turbine

The wind turbine  driven SEIG system has  the  following parameters.  The Wind turbine

parameters are P  m=1.5 kW at V  ω=16m/s, turbine radius R  T=0.7m and λ  opt=6.5 while the

IG parameters are P e=1.5 kW, V=380 V, I s=4 A, number of poles P=4, f=50 Hz, R s =6.29Ω,
R  r  =  3.59Ω, L  s  =L  r  =480 mH,  L  m  =464 mH and the total moment of inertia of the wind

turbine and the IG J=2 kg. m2.

The wind turbine is characterized by the non-dimensional curve of coefficient of perform‐
ance as a function of tip-speed ratio λ. The mechanical input power P m of a fixed-pitch wind

turbine as a function of the effective wind velocity V ω through the blades, the air density, ρ,

the blades radius R T and the power coefficient C P is given in [9, 12]:

PmT =
1
2 ρπRT

2Vω
3CP(λ) (4)

Considering the rotational speed of the wind turbine ω t and the torque coefficient C T(λ),

the wind turbine mechanical torque is given by:

TmT =
1
2 ρπRT

3Vω
2CT (λ) (5)

CP(λ)=λCT (λ) (6)

where C P(λ) is the turbine power coefficient, C T(λ) is the turbine torque coefficient, V ω is

the wind velocity (in m/s), ρ is the air density (typically 1.25 kg/m3), R T is the blades radius

(in m) and λ is tip-speed ratio and is defined as:
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where ω T is the wind turbine rotational speed (rad/s).
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Figure 1. Intelligent maximization control of a variable speed wind driven self-excited induction generator system

connected to a utility grid.

The turbine  power coefficient  C  P(λ)  and the  turbine  torque coefficient  C  T(λ)  are  func‐

tions of the tip-speed ratio of the blades if  the pitch angle of the blade is constant.  The

turbine  power  coefficient  is  represented  by  various  approximation  expressions.  In  this

Chapter, C P (λ) and C T(λ) are approximated by a fifth-order polynomial curve fit given

by (8-9) and are shown in Figures (2 and 3). The power and torque versus speed curves

of  wind  turbine  can  be  calculated  by  (4)-(7)  at  various  wind  velocities.  The  optimum

point corresponds to the condition where the power coefficient C P(λ) becomes the maxi‐

mum. The maximum C P is 0.37 when λ=6.7.

C
P

(λ)=0.0084948 + 0.05186λ −0.022818λ 2

+0.01191λ 3 −0.0017641λ 4 + 7.484x10−5λ 5
(8)
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CT (λ)=0.00066294 + 0.0091889λ −0.0026952λ 2

+0.001688λ 3 −0.00028374λ 4 + 1.3269x10−5λ 5
(9)

2.3. Maximum Power Point Tracking Analysis

When the tip speed ratio is controlled by the optimum value regardless of the wind speed,

the maximum mechanical power is obtained from the wind turbine. The optimum speed of

the IG for maximum power of the wind turbine is given by (10) and the maximum mechani‐
cal power and the optimal torque are given by (11) and (12).

opt optK V  = (10)

3

max max

V

Tm pP K V = (11)

2V

Tm opt T optT K V = (12)

2

max ,max

1

2

V

p T pK R Crp = (13)

KT −opt
V =

1
2 ρπRT

3Cp,max / λopt (14)

Kω−opt =λopt /RT (15)

K p−max
ω =K p−max

V / (Kω−opt)
3 (16)

KT −opt
ω =KT −opt

V / (Kω−opt)
2 (17)

PTm−max =K p−max
ω ωopt

3 (18)

TTm−opt =KT −opt
ω ωopt

2 (19)

When the IG speed is always controlled at the optimum speed given in (10), the tip-speed

ratio remains the optimum value and the maximum power point can be achieved. At any

wind speed, we can calculate the optimum rotational speed of the IG from (10), and then the

maximum mechanical power is calculated from (11). The maximum power is used as the

reference power to the CRPWM converter in order to get the maximum load current.
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From (10)-(17), the maximum power and optimal torque as function of the optimum rota‐

tional IG speed are calculated and given by (18)-(19). From Figure 4, it is clear that the maxi‐

mum power can be achieved when the IG torque is controlled on the optimal torque curve

according to the IG rotor speed.

T IG−opt = −KT −opt
ω−IGωr

2 (20)

KT −opt
ω−IG =KT −opt

V /G.(Kω−opt)
2 (21)

3. Dynamic Model of the Self-Excited Induction Generator

The dynamic model of the IG is helpful to analyze all its characteristics. The d-q model in the

arbitrary reference frame provides the complete solution for dynamic analysis and control in

[2-4]. The dynamic model is given by (22-24, 25).

0

0

0

0

=

(Rs + L sσ
d
dt

) ωL sσ
L m
L r

d
dt

L m
L r

ω

−ωL sσ (Rs + L sσ
d
dt

) −ω
L m
L r

L m
L r

d
dt

−
L m
L r
Rr 0 (Rr / L r +

d
dt

) (ω −ωr)

0 −
L m
L r
Rr

− (ω −ωr) (Rr / L r +
d
dt

)

iqs

ids

λqr
λdr

+

V qs

Vds

V qr

Vdr

(22)

V qs =
1
C ∫iqsdt + V cq |

t=0
(23)

Vds =
1
C ∫idsdt + V cd |

t=0
(24)

Te = −
3
2
P
2

L m
L r

(λdriqs −λqrids) (25)

where, V qs, V ds, i qs, and i ds are the stator voltages and currents, respectively. v qr and v dr are

the rotor voltages. λ qr and λ dr are the rotor fluxes. R s, L s, R r and L r are the resistance and

the self inductance of the stator and the rotor, respectively. L m is the mutual inductance.

Wavelet–Neural–Network Control for Maximization of Energy Capture in Grid Connected Variable Speed Wind Driven

http://dx.doi.org/10.5772/51253

169



Figure 2. Power coefficient versus tip speed ratio.

Figure 3. Torque coefficient versus tip speed ratio.

The relation between the wind turbine output torque and the electromagnetic torque of the

IG is given by (26).

TTm= J
d

dt
ωm + βωm + Te (26)

From (22-26), the state equations of the SEIG and wind turbine can be accomplished as in

(27) and (28).

d

dt
ωm=

1
J
TTm−

β
J

ωm−
1
J
Te (27)
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Figure 4. Characteristics of wind turbine at various wind speeds.
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(28)

where ω m, J and β are the mechanical angular speeds of the wind turbine, the effective iner‐
tia of the wind turbine, the induction generator and the friction coefficient, respectively.
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In order to model the induction machine when used for motoring application, it is impor‐
tant to determine the magnetizing inductance at rated voltage. In the SEIG, the variation of

magnetizing inductance L m is the main factor in the dynamics of voltage buildup and stabi‐
lization. In this investigation, the magnetizing inductance is calculated by driving the induc‐
tion machine at synchronous speed and taking measurements when the applied voltage was

varied from zero to 100% of the rated voltage. The magnetizing inductance used in this ex‐
perimental setup is given as shown in Figure 5. The test results are based on the rated fre‐
quency (50 Hz) of the IG while the dots are experimental results and the curve is a fifth-

order curve fit given by

L m= −1.023×10-11V ph
5 + 6.162×10-9V ph

4 −1.25×10-6V ph
3

+8.267×10-5V ph
2 −3.843×10−5V ph + 0.1985

where V ph is the phase voltage.

Figure 5. Magnetic curve of the SEIG.

4. Optimal IFOC of the Induction Generator

The IFOC dynamics for the IG can be derived from (22-25), respectively at λ qr=0, dλ qr /dt=0,

dλ dr /dt=0, and ω=ω e. The torque and slip angular frequency for rotor field orientation are

given in (26-27) while the voltage commands of the IFOC are given by (29-31) in [11, 12].

Te = −Kt .ids
e*iqs
e* = −KT −opt

ω−IGωr
2 (29)
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By controlling the d-q axes currents utilizing (34)-(35) according to the IG rotor speed, the max‐
imum mechanical power is obtained from the wind turbine and the losses of the IG are mini‐

the d-axis current is kept constant and thus he IG power is almost proportional to q-axis cur‐
rent. Therefore, the control of generated power becomes possible by adjusting the q-axis cur‐

IFOC-SEIG is shown in Figure 8. It is well known that the IFOC of induction machines al‐
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varied from zero to 100% of the rated voltage. The magnetizing inductance used in this ex‐
perimental setup is given as shown in Figure 5. The test results are based on the rated fre‐

− −

− −

λ dλ
dλ ω=ω
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ω− ω

ωsl =
1
τr

.
iqs
e*

ids
e*

(30)

V qs
e*

Vds
e*

=
eqs
e

eds
e

−
Rs + σL s

d
dt

ωeσL s

−ωeσL s Rs + σL s
d
dt

iqs
e

ids
e

(31)

where K t=(3/2)(P/2)(L m)2/L r is the torque constant, e e qs and ee ds are the back EMFs of the IG.

T e, τ r, ω sl, and ω e are the electromagnetic torque, the rotor time constant, the slip angular

frequency, and the angular frequency of the synchronous reference frame, respectively.

eqs
e

eds
e

=
ωeλdr

e
L m
L r

0

(32)

In the previous analysis, the IG torque is given by (29) as a function of the rotor speed.

Therefore, the d-axes current becomes a function only of the rotor speed. The optimal d-q

axes currents i ds and i qs can be derived from (22) and (29) and are plotted as given in Figure

6. These plots show the relation of the optimal currents as function of the IG rotor speed and

can be approximated by a third-order polynomials given by (34, 35).

ids
e (ωr)iqs

e (ωr)= (KT −opt
ω / Kt)ωr2 (33)

ids
e−opt(ωr)=Kd3ωr

3 + Kd2ωr
2 + Kd1ωr + Kd0 (34)

iqs
e−opt(ωr)=Kq3ωr

3 + Kq2ωr
2 + Kq1ωr + Kq0 (35)

By controlling the d-q axes currents utilizing (34)-(35) according to the IG rotor speed, the max‐
imum mechanical power is obtained from the wind turbine and the losses of the IG are mini‐
mized. Also, from (29), it is clear that the IG torque is proportional to the q-axis current when

the d-axis current is kept constant and thus he IG power is almost proportional to q-axis cur‐
rent. Therefore, the control of generated power becomes possible by adjusting the q-axis cur‐
rent according to the required generated power, where the d-axis current is given by (34).

5. Dynamic Model of the IG-Side CRPWM Voltage Source Converter

The block diagram of the CRPWM voltage source converter control system based on the

IFOC-SEIG is shown in Figure 8. It is well known that the IFOC of induction machines al‐
lows for the independent control of two input variables, stator q-axis current i e qs and stator
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d-axis current i e ds. This suggests that it is possible to control the output voltage and power

factor and/or efficiency by controlling the two components of the stator currents. The dy‐
namic equations of the CRPWM converter are based on the IFOC dynamics of the IG in

[12-14] and are given by (36, 37).

eqs
e −V qs

ec =Rsiqs
ec + σL s

d
dt
iqs
ec +  ωeσL sids

ec (36)

eds
e −Vds

ec =Rsids
ec + σL s

d
dt
ids
ec −  ωeσL siqs

ec (37)

By considering the converter as an ideal current regulated source, the energy is transferred

between the IG and the DC-link. As a consequence, the instantaneous power of both the

converter’s AC-side and DC-side is the same.

Vdcidc =
3
2

(V qse iqse + Vds
e ids
e ) (38)

From (38), the relation between the DC-link current i dc and the d-q axis currents i e qs and i e ds

is as follows.

idc =
3
2

( V qse
Vdc

iqs
e +
Vds
e

Vdc
ids
e ) (39)

At FOC V e ds ≅  0, therefore, there is a direct relation between the DC-link current and the q-

axis current of the IG.

iqs
e =

2
3

Vdc

V qs
e idc (40)

The dynamics of the DC-link is given by (41-43).

Cdc
d
dt
Vdc + iL = idc (41)

Cdc
d
dt
Vdc +

1
RL

Vdc = idc (42)

idc =
3
2

V qs
e

Vdc
iqs
e (43)
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factor and/or efficiency by controlling the two components of the stator currents. The dy‐

− σ ω σ

− σ − ω σ

≅

where, C dc is the DC-link capacitor, i L is the load current and i dc is the DC-link current. The

state equations of the CRPWM converter and DC-link are derived from (36-43) and are giv‐
en in (44-45).

d
dt
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1
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−
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RL Cdc
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Figure 6. Optimal d-q axes currents as a function of IG rotor speed.

From (45), the current in q-axis iqs
e  can be estimated as:

iqs
e =An

−1 V̇ dc −BniL −C En qds
e (46)

where, An = Kdc
q + Kdc

d / τr .ωsl  , Bn = −1 /Cdc  , Cn = 1 /Cdc  and Eqds
e = eqs

e* −V qs
e* eds

e* −Vds
e*  .
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At the steady state, the load current i L is approximately equals to the DC-link current i dc.

Therefore, the optimal load current can be approximated by (47). Figure 7 shows the opti‐
mal  load  current  corresponding  to  the  maximum  mechanical  power  obtained  from  the

wind turbine.

iL
opt(ωr)=KL 3ωr

3 + KL 2ωr
2 + KL 1ωr + KL 0 (47)

Figure 7. Optimal load current as a function of IG rotor speed.

6. Dynamic Model of the Grid-Side CRPWM Voltage Source Inverter

The grid-side CRPWM voltage source inverter is connected to the grid through three single-

phase coils (control windings). With this configuration it is possible to operate using boost

mode and have attractive features as constant DC–link voltage, low harmonic distortion of

grid current, bidirectional power flow and adjustable power factor. The aim of the control of

the grid-side CRPWM voltage source converter is to impose a current to the control winding

and to control independently the active and reactive power to be injected to the grid. By us‐
ing vector control technique, the currents of the CRPWM inverter are controlled with very

high bandwidth. The vector control approach is used, with a reference frame oriented along

the grid voltage vector position, such that V qg =V mg and V dg =0. This allows independent

control of the active and reactive power through currents i qg and i dg respectively. Usually,

the reactive power component current is set to zero for unity power factor operation. The

primary aim of this control scheme is to modulate the inverter to regulate the magnitude

and the phase angle of the grid supply current, so that the active and reactive power enter‐
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based on the virtual-flux orientation control (VFOC) technique. The grid-side converter con‐
trol, shown in Figure 9, is based on the d–q voltage equations of the grid-reactance-convert‐
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Therefore, the optimal load current can be approximated by (47). Figure 7 shows the opti‐

ω ω ω ω

and to control independently the active and reactive power to be injected to the grid. By us‐

and the phase angle of the grid supply current, so that the active and reactive power enter‐

ing the network can be controlled. The procedure for modeling the CRPWM inverter is

based on the virtual-flux orientation control (VFOC) technique. The grid-side converter con‐
trol, shown in Figure 9, is based on the d–q voltage equations of the grid-reactance-convert‐
er system according to following equations:

V q
eg*

Vd
eg*

=
eq
eg

ed
eg

+
Rg + L g p ωegL g

−ωegL g Rg + L g p

iq
eg

id
eg

(48)

P

Q
=

3
2 .
V q
eg Vd

eg

Vd
eg −V q

eg

iq
eg

id
eg

(49)

The vector control of the grid-side CRPWM inverter is represented in the block diagram il‐
lustrated in Figure 9. The control of the reactive power is realized by acting over the control

winding current, i ds. The reference current is obtained by a PI current controller that adjusts

the reactive power to a desired amount. Similarly, the control of the active power is realized

by acting over the control winding current i qs and the reference current is given by a PI cur‐
rent controller. The possible situation for defining the current references is to track the maxi‐
mum turbine power for each wind speed.

At VFOC, V dg =0. Therefore, there are a direct relations between the active power, P and q–

axis current and the reactive power, Q and d–axis current of the control windings. This al‐
lows independent control of the active and reactive power through currents i qg and i dg re‐
spectively according to following equations:

P

Q
=

3
2 .

+V q
eg 0

0 −V q
eg

iq
eg

id
eg

(50)

The d-q current commands of the inverter are expressed as:

iq
eg*

id
eg*

=
2
3

 +
P *

V q
eg*

−
Q *

V q
eg*

(51)

where, P * and Q * denote the required maximum active and reactive power. To achieve the

unity power factor operation, Q * must be zero. From (50), it is obvious that the current com‐
mand of the d–axis must be zero for unity power factor operation and the current command

of the q–axis can be evaluated from the required active power. It is seen from (47) that cou‐
pling terms exist in the d-q current control loops. The d–q voltage decouplers are designed

to decouple the current control loops. Suitable feed-forward control components of grid vol‐
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tages are also added to speed up current responses. The d-q current control loops of the

CRPWM inverter in the proposed control system are shown in Figure 9.

7. Design of the PID Controllers for Double-Sided CRPWM AC/DC/AC

Voltage Source Converters

This section considers the design procedures for the PID voltage controller of the IG-Side

CRPWM voltage source converter, the PID active power and reactive power controllers for

the grid-side CRPWM inverter. The design procedures are based on the integral time abso‐
lute error (ITAE) performance index response method to obtain the desired control perform‐
ance in the nominal condition of command tracking.

7.1. PID Voltage Controller Design for IG-Side CRPWM Voltage Source Converter

A systematic design procedure for the PI current controllers capable of satisfying the desired

specifications is given in [12]. The gains of the PI d-q axis current controllers have been de‐
termined using the ITAE performance index response method and are given by (51-52).

From the block diagram shown in Figure 8, a back EMF estimator is adopted to q-axis cur‐
rent loop for voltage feed-forward control. The q-axis stator current of the IG is selected as

the variable to be changed to regulate the DC-link voltage. The voltage control is carried out

through a voltage control loop using a PID voltage controller and is designed to stabilize the

voltage control loop. The gains of the PID controller have been determined using the ITAE

performance index response method. By exercising the decoupling control, the dynamic

model including the CRPWM converter and the IG can be simplified and the closed loop

transfer function is given by (53) from Figure 7.

Ki
cq =ωn

2σL s
Kp
cq =(1.4ωnσL s −Rs −Tq)

(52)

K i
cd =ωn

2σL s
Kp
cd =(1.4ωnσL s −Rs −Td )

(53)

Vdc(s)

Vdc
* (s)

|
iL =0

=
a3s

3 + a2s
2 + a1s + a0

s 4 + b3s
3 + b2s

2 + b1s + b0

≅
ωn

4

s 4 + 2.1ωns
3 + 3.4ωn

2s 2 + 2.7ωn
3s + ωn

4

(54)

The PID voltage controller parameters are given by (54-56).
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the grid-side CRPWM inverter. The design procedures are based on the integral time abso‐
lute error (ITAE) performance index response method to obtain the desired control perform‐

]. The gains of the PI d-q axis current controllers have been de‐

From the block diagram shown in Figure 8, a back EMF estimator is adopted to q-axis cur‐

ω σ
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ω σ

ω σ − −
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KP
v =

1
Kdc

.
σL s
K i
cq (2.7ωn

3 −
Kp
cq

K i
cq .ωn

4) (55)

K i
v =

1
Kdc

.
σL s
K i
cq .ωn

4 (56)

Kd
v =

1
Kdc

.
σL s
K i
cq .(ωn4. Kp

cq

K i
cq −2.7ωn

3.
Kp
cq

K i
cq + 3.4ωn

2 −
K i
cq

σL s
) (57)

7.2. PID Active Power Controller Design for Grid-Side CRPWM Voltage Source Inverter

A systematic design procedure for the PI current controllers is given in [12]. These control‐
lers are designed based on the control windings dynamic model at VFOC. The gains of the

PI d-q axis current controllers have been determined and are given by (57-58). The q-axis

current of the control winding is selected as the variable to be changed to regulate the active

power, P. The active power control is carried out through a power control loop using a PID

controller and is designed to stabilize the active power control loop. The gains of the PID

controller have been determined using the ITAE method. The block diagram of the active

power control loop is shown in Figure 9. The closed loop transfer function of the active pow‐
er control loop is given by (59).

Ki
gq =ωn

2L g

Kp
gq =(1.4ωnL g −Rg)

(58)

K i
gd =ωn

2L g

Kp
gd =(1.4ωnL g −Rg)

(59)

Pq
eg(s)

Pmax
T * (s)

|
VFOC

=
c3
Ps 3 + c2

Ps 2 + c1
Ps + c0

P

s 3 + d2
Ps 2 + d1

Ps + d0
P  ≅

ωn
3

s 3 + 1.75ωns
2 + 2.15ωn

2s + ωn
3

(60)

The PID controller parameters are given by (60-62).

Kd
P =

(1.75ωnL gK i
qg −RgK i

qg −2.15ωn
2L gKp

qg)
(KqPK i2qg + 2.15ωn

2Kq
PKp

2qg −1.75ωnKq
PKp

qg)
(61)

Kp
P = ( 2.15ωn

2L g

Kq
PK i

qg )−
1

Kq
P + (2.15ωn

2
Kp
qg

K i
qg ).KdP (62)
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K i
P = ( ωn

3L g

Kq
PK i

qg ) + ( Kpqg
K i
qg ).KdP (63)

7.3. PID Reactive Power Controller Design for Grid-Side CRPWM Voltage Source
Inverter

Similarly, the PID reactive power controller is designed and analyzed. The d-axis current of

the control winding is selected as the variable to be used to regulate the reactive power, Q.

The block diagram of the reactive power control loop is shown in Figure 9. The closed loop

transfer function of the reactive power control loop is given by:

Qd
eg(s)

Qmax
T * (s)

|
VOC

=
c3
Qs 3 + c2

Qs 2 + c1
Qs + c0

Q

s 3 + d2
Qs 2 + d1

Qs + d0
Q  ≅

ωn
3

s 3 + 1.75ωns
2 + 2.15ωn

2s + ωn
3

(64)

The PID controller parameters are given by (64-66).

Kd
Q =

(1.75ωnL gK i
dg −RgK i

dg −2.15ωn
2L gKp

qg)
(KqQK i2dg + 2.15ωn

2Kq
QKp

2dg −1.75ωnKq
QKp

dg)
(65)

Kp
Q = ( 2.15ωn

2L g

Kq
QK i

dg )−
1

Kq
Q + (2.15ωn

2
Kp
dg

K i
dg ).KdQ (66)

K i
Q = ( ωn

3L g

Kq
QK i

dg ) + ( Kpdg
K i
dg ).KdQ (67)

8. Intelligent Maximization Control for Double-Sided CRPWM

AC/DC/AC Voltage Source Converters

8.1. Configuration of the Proposed Intelligent Maximization Control System

In order to control the DC-link voltage of the IG-side CRPWM voltage source converter, ac‐
tive power and reactive power of the grid-side CRPWM voltage source inverter effectively,

an intelligent maximization hybrid control system is proposed. The configuration of the pro‐
posed hybrid control system, which combines an on-line trained wavelet-neural-network

controller (WNNC) with IPSO and a PID compensator, for wind turbine generation system

is illustrated in Figures (8 and 9). It basically consists of an PI current controllers in the d-q

axis, a three PID controllers and three on-line trained WNNCs with IPSO in parallel with the

three PID controllers for voltage control of the DC-link side of the CRPWM converter, active

power and reactive power of the grid connected CRPWM inverter. Although the desired

tracking and regulation characteristics for DC-link voltage, active power and reactive power
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In order to control the DC-link voltage of the IG-side CRPWM voltage source converter, ac‐

an intelligent maximization hybrid control system is proposed. The configuration of the pro‐

can be obtained using the PID controllers with nominal parameters, the performance of the

system is still sensitive to parameter variations. To solve this problem, a hybrid controller

combining the PID controller and the WNNC with IPSO is proposed for the DC-link volt‐
age, active power and reactive power for the double-sided CRPWM AC/DC/AC converters.

The control law and error signals are designed as:

Uqs
* =Uqs

*WNNC +Uqs
*PID (68)

iqs
e* =δiqs

e*WNNC + iqs
e*PID (69)

ids
e* =δids

e*WNNC + ids
e*PID (70)

ev =(Vdc
* −Vdc)

V̇ dc =kvdVdc / dt
(71)

eP =(P * −P)

Ṗ =kPdP / dt
(72)

eQ =(Q * −Q)

Q̇ =kQdQ / dt
(73)

where iqs
e*PID is the q-axis current command generated from the PID controller and δiqs

e*WNNC

is produced by the proposed WNNC with IPSO to automatically compensate for perform‐
ance degradation.

iqs
e*PID = iqs

eg*PID for CRPWM inverter, iqs
e*PID = iqs

e*PID for CRPWM converter, ids
e*PID = ids

eg*PID for

CRPWM inverter, δiqs
e*WNNC =δiqs

eg*WNNC  for CRPWM inverter, δiqs
e*WNNC =δiqs

e*WNNC  for

CRPWM converter, ids
e*WNNC = ids

eg*WNNC  for CRPWM inverter, P * =Pmax
T *  for CRPWM inverter,

Q * =Qmax
T *  for CRPWM inverter.

8.2. Wavelet–Neural–Network Controller with IPSO

Since the squirrel-cage IGs have robust construction and lower initial, run time and mainte‐
nance cost squirrel-cage IGs are suitable for grid-connected in wind-energy applications.

Therefore, a WNNC with IPSO is proposed to control a SEIG system for grid-connected

wind-energy power application. The on-line trained WNNC with IPSO combines the capa‐
bility of artificial neural-network for learning ability and the capability of wavelet decompo‐
sition for identification ability. Three on-line trained WNNCs with IPSO are introduced as

the regulating controllers for both the DC-link voltage of the CRPWM AC/DC converter, ac‐
tive and reactive power of the CRPWM DC/AC grid-connected inverter. In addition, the on-
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line training algorithm based on the backpropagation is derived to train the connective

weights, translations and dilations in the WNNs on-line. Furthermore, an IPSO is adopted to

optimize the learning rates to further improve the on-line learning capability of the WNN

and hence the improvement of the control performance can be obtained.

8.3. Wavelet–Neural–Network Structure

The architecture of the proposed four-layers WNN in [15-23] is shown in Figure 10, which

comprises an input layer (the i layer), a mother wavelet layer (the j layer), a wavelet layer

(the k layer) and an output layer (the o layer), is adopted to implement the WNNC. The sig‐
nal propagation and the basic function in each layer are introduced as follows.

1. Layer 1: Input Layer

The nodes in layer 1 transmit the input signals to the next layer. The input variables are the

error signal, e(t) , and the rate of change of the DC-link voltage, active power and reactive

power. For every node i in the input layer, the input and the output of the WNN can be rep‐
resented as:

neti
1 = xi

1, yi
1 = f i

1(neti
1) =neti

1  i =1, 2 (74)

x1
1 = e(t)and x2

1 =ψ(t) (75)

where e(t)= ev(t)= (Vdc
* −Vdc) for the CRPWM converter, e(t)= eP(t)= (P * − P) ,

e(t)= eQ(t)= (Q * −Q) , ψ(t)= V̇ dc , ψ(t)= Ṗ  , for the CRPWM inverter.

2. Layer 2: Mother Wavelet Layer

A family of wavelets is constructed by translations and dilations performed on the mother

wavelet. In the mother wavelet layer each node performs a wavelet ϕ j that is derived from

its mother wavelet. There are many kind of wavelets that can be used in WNN. In this Chap‐
ter, the first derivative of the Gaussian wavelet function φ(x)= − xexp(− x 2 / 2) , is adopted as

a mother wavelet. For the jth node

netj
2 = − (xi

2 −μij) / σij, yj
2 = f j

2(netj
2) =φj(netj

2) j =1, ..., n (76)

where μ ij and σ ij are the translation and dilations in the jth term of the ith input xi
2 to the

node of mother wavelet layer and n is the total number of the wavelets with respect to the

input nodes.

3. Layer 3: Wavelet Layer

Each node k in layer 3 (wavelet layer) is denoted by ∏  , which multiplies the incoming sig‐
nal and outputs the result of the product. For the kth nodes:
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ψ

− −

− ψ ˙ ψ ˙
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its mother wavelet. There are many kind of wavelets that can be used in WNN. In this Chap‐

φ − −

− − σ φ

σ

∏  , which multiplies the incoming sig‐

netk
3 =∏

j

ϖ jk
3 xj

3, yk
3 = f k

3(netk
3) =netk

3 k =1, ......., m (77)

Figure 8. Integrated block diagram of the generator-side IFOC CRPWM voltage source converter using WNNC with

IPSO control system.

where xj
3 represents the jth input to the node of the wavelet layer (layer 3), ϖ jk

3  is the

weights between the mother wavelet layer and the wavelet layer. These weights are also as‐
sumed to be unity; and m =(n / i) is the number of wavelets if each input node has the same

mother wavelet nodes.

4. Layer 4: Output Layer

The single node o in the output layer is denoted by ∑  , which computes the overall output

as the summation of all incoming signals to obtain the final results.

neto
4 =∑

k

m

ϖko
4 xk

4, yo
4 = f o

4(neto
4) =neto

4 o =1 (78)

yo
4 =Uqs

*WNNC(t)=δiqs
e*WNNC(t) (79)

where the connecting weight ϖko
4  is the output action strength of the oth output associated with

the kth wavelet and xk
4 represents the kth input to the node of output layer. The control problem

is to design the WNNC to improve the convergence of the tracking error for the wind system.
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Figure 9. Integrated block diagram of the grid-side VFOC CRPWM voltage source inverter intelligent control system.

8.4. On-Line Training Algorithm Signal Analysis for WNNC

The essential part of the learning algorithm for an WNN concerns how to obtain a gradient

vector in which each element in the learning algorithm is defined as the derivative of the

energy function with respect to a parameter of the network using the chain rule. Since the

gradient vector is calculated in the direction opposite to the flow of the output of each node,

the method is generally referred to back-propagation learning rule in [15-23]. To describe

the on-line learning algorithm of the WNNC using the supervised gradient descent method,

the energy function is chosen as:

2(1/ 2)( )E e= (80)

In the output layer (layer 4), the error term to be propagated is calculated as:
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Figure 10. Four-layer wavelet–neural–network (WNN) structure.

The weight is updated by the amount:

Δϖko
4 = −ηv

∂E
∂ϖko

4  = −ηv
∂E
∂ yo

4 .
∂ yo

4

∂neto
4 .

∂neto
4

∂ϖko
4  =ηvδo

4xk
4 (82)

where η v is the learning rate parameter of the connecting weights of the output layer of the

WNNC and will be optimized by the IPSO.

The weights of the output layer (layer 4) are updated according to the following equation.

ϖko
4 (N + 1)=ϖko

4 (N ) + Δϖko
4 =ϖko

4 (N ) + ηvδo
4xk

4 (83)

where N denotes the number of iterations.
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In wavelet layer (layer 3), only the error term needs to be computed and propagated because

the weights in this layer are unity.

δk
3 = −

∂E
∂netk

3 = (−
∂E
∂ yo

4 .
∂ yo

4

∂neto
4 ).( ∂neto

4

∂ yk
3 .

∂ yk
3

∂netk
3 )=δo

4ϖko
4 (84)

In the mother wavelet layer (layer 2), the multiplication operation is done. The error term is

calculated as follows:

δj
2 = −

∂E
∂netj

2  = (−
∂E
∂ yo

4 .
∂ yo

4

∂neto
4 .

∂neto
4

∂ yk
3 .

∂ yk
3

∂netk
3 ).( ∂netk

3

∂ yj
2 .

∂ yj
2

∂netj
2 )=∑

k

δk
3yk

3 (85)

The update law of μ ij is given by:

Δμij = −ημ
∂Ev
∂μij

 = −ημ
∂E
∂ yj

2 .
∂ yj

2

∂netj
2 .

∂netj
2

∂μij
 =ημδj

2
2(xi2 −μij)2

(σij)2
(86)

The update law of σ ij is given by:

Δσij = −ησ
∂Ev
∂μij

 = −ησ
∂E
∂ yj

2 .
∂ yj

2

∂netj
2 .

∂netj
2

∂σij
 =ησδj

2
2(xi2 −μij)2

(σij)2
(87)

where η μ and η σ are the learning rate parameters of the translation and dilation of the moth‐
er wavelet which will be optimized by the IPSO. The translation and dilation of the mother

wavelet are updated as follows:

μij(N + 1)=μij(N ) + Δμij (88)

σij(N + 1)=σij(N ) + Δσij (89)

To overcome the problem of uncertainties of the wind generation system due to parameter

variations and to increase the on-line learning rate of the network parameters, a control law

is proposed as follows.

δo
4 = e + kψ (90)

Moreover, the selection of the values for the learning rates η v, η μ and η σ has a significant

effect on the network performance. In order to train the WNN effectively, three varied learn‐
ing rates, which guarantee convergence of the tracking error based on the analyses of a dis‐
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effect on the network performance. In order to train the WNN effectively, three varied learn‐
ing rates, which guarantee convergence of the tracking error based on the analyses of a dis‐

crete-type Lyapunov function, are adopted. The convergence analyses of the learning rates

for assuring convergence of the tracking error is similar to [14] and is omitted here.

8.5. Improved Particle Swarm Optimization (IPSO)

In the PSO system, each particle adjusts its position according to its own experience and the

experiences of neighbors, including the current velocity, position, and the best previous po‐
sition experienced by itself and its neighbors. However, the efficiency of the PSO algorithm

is affected by the randomly generated initial state. Therefore, the inertia weight Θ is adopted
in the IPSO to balance between the local search ability and global search ability. Moreover,

the inclusion of the worst experience component in the behavior of the particle in the IPSO

gives additional exploration capacity to the swarm. Since the particle is made to remember

its worst experience, it can explore the search space effectively to identify the promising sol‐
ution region in [24]. Thus, the algorithm of the IPSO is derived as follows:

vi
d (k + 1)=Θvi

d (k ) + c1 × r1 ×(Pbesti
d − xi

d (k ))

+c2 × r2 ×(Gbesti
d − xi

d (k )) + c3 × r3 ×(Pworsti
d − xi

d (k ))
(91)

xi
d (k + 1)= xi

d (k ) + vi
d (k + 1) (92)

where vi
d (k ) is the current velocity of ith particle, i = 1,..., P, in which P is the population size;

the superscript d is the dimension of the particle; Pbesti
d  is the best previous position of the

ith particle; Pworsti
d  is the worst previous position of the ith particle; Gbesti

d  is the best pre‐

vious position among all the particles in the swarm; xi
d (k ) is the current position of the ith

particle; c 1, c 2, and c 3 are the acceleration factors; and r 1, r 2 and r 3 represent the uniform

random numbers between zero and one. In addition, the inertia weight Θ is set according to

the following equation in [27]:

Θ =Θmax −
Θmax −Θmin

kmax
×kn

(93)

where k max is the maximum number of iterations and k n is the current number of iteration.

Equation (92) restricts the value Θ to the range [Θmax, Θmin]. In this Chapter, the maximum

and minimum values of the inertia weights are Θmax = 0.7 and Θmin = 0.4, respectively.

8.6. WNN Learning Rates Tuning Using IPSO

To further improve the online learning capability of the proposed WNN, the IPSO algorithm

is adopted in this Chapter to adapt the learning rates ηv
v , ημ

v , ησ
v , ηv

P  , ημ
P  , ησ

P  , ηv
Q , ημ

Q and

ησ
Q in the backpropagation learning methodology of the WNN. Moreover, the procedure of

the IPSO algorithm is shown in Figure 11 and is described as follows.
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Figure 11. Flowchart implementation of the IPSO algorithm.

1) Initialization: Randomly generate the initial trial vectors xi
d (k ) , which indicate the possible

solutions for the learning rates. Moreover, the population size is set to P = 15, and the di‐
mension of the particle is set to d = 9 in this Chapter. This step is accomplished by setting

xi
d = xi

0, xi
1, xi

2, xi
3, xi

4, xi
5, xi

6, xi
7, xi

8  represent the desired values of the learning rates ηv
v ,
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 = 15, and the di‐

η

ημ
v , ησ

v , ηv
P  , ημ

P  , ησ
P  , ηv

Q , ημ
Q and ησ

Q , respectively. Furthermore, the elements in vector xi
d

are randomly generated as follows:

xi
d ~U ηmin

d , ηmax
d (94)

where U ηmin
d , ηmax

d  designates the outcome of a uniformly distributed random variable

ranging over the given lower- and upper-bounded values η min and η max of the learning rate.

2) Determination of fitness function: For each trial vector xi
d  , a fitness value should be as‐

signed and evaluated. In this project, a suitable fitness function is selected to calculate the

fitness value and defined as

FFIT =
1

0.1 + abs(Vdc
* −Vdc) + abs(P * − P) + abs(Q * −Q)

(95)

where F FIT is the fitness value and abs() is the absolute function; 0.1 is added in the dominant

part to avoid the fitness value approaching infinite when the error of the DC-link voltage

approaches zero.

3) Selection and memorization: Each particle xi
d  memorizes its own fitness value and chooses

the maximum one that is the best so far as Pbesti
d  , and the maximum vector in the popula‐

tion Pbest = Pbset1
d , Pbest2

d , …, Pbestp
d  is obtained. Moreover, each particle xi

d  is set direct‐

ly to Pbesti
d  in the first iteration, and the particle with the best fitness value among Pbest  is

set to be the global best Gbest d  .

4) Modification of velocity and position: The modification of each particle is based on (90, 91).

5) Stopping rule: Repeat steps (1)–(4) until the best fitness value for Gbest  is obviously im‐
proved or a set count of the generation is reached. The solution with the highest fitness val‐
ue is chosen as the best learning rates of the WNN. By using the online tuning learning rates

based on IPSO, the WNNC can regulate the DC-link voltage of the CRPWM AC/DC convert‐
er, active and reactive power of the CRPWM DC/AC inverter effectively.

In the IPSO, since the global best Gbest d  has higher priority than the local best Pbesti
d  and

local worst in the optimal algorithm, the acceleration factors are chosen to be c 1 = c 2 = 0.6

and c 3 = 3.10. Moreover, to achieve better global search ability for the IPSO, larger move‐
ment is required for the particle with the chosen larger inertia weight w in the beginning of

the optimization process. Then, a smaller inertia weight Θ is required to improve the search‐
ing accuracy after several times of optimization. Furthermore, the inertia weight Θ must be

less than one to avoid the divergence of the particle. Therefore, the maximum and minimum

values of the inertia weights are chosen to be Θmax = 0.7 and Θmin = 0.4, respectively.
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9. Numerical Simulation Results

In this section, a computer simulation results for the proposed wind generation system are

provided to demonstrate the effectiveness of the proposed control schemes. The wind tur‐
bine SEIG system simulation is carried out using MATLAB/SIMULINK package. Since this

Chapter is dealing with an isolated wind energy conversion system with maximum power

control, the more realistic approach for an isolated wind power control system is to choose

the DC-link voltage, active power and reactive power as the controlled variables.

Wind Speed
Tip Speed

Ratio λ

Power

Coefficient CP

Reference

Rotor Speed

of WTE

Wind Turbine

Output Power Pm

(W)

IG Output

Power PIG

(W)

DC-Link

Power PDC

(W)

Vw=16 m/sec 6.7 0.37 ≈ 296 rad/sec ≈ 1580 ≈ 1500 ≈ 1400

Vw=14 m/sec 6.7 0.37 ≈ 259 rad/sec ≈ 1086 ≈ 1030 ≈ 965

Vw=12 m/sec 6.7 0.37 ≈ 222 rad/sec ≈ 705 ≈ 670 ≈ 637

Vw=10 m/sec 6.7 0.37 ≈ 185 rad/sec ≈ 422 ≈ 400 ≈ 392

Vw=8 m/sec 6.7 0.37 ≈ 148 rad/sec ≈235 ≈ 223 ≈ 212

Vw=6 m/sec 6.7 0.37 ≈ 111 rad/sec ≈ 110 ≈ 104 ≈ 95

Table 1. Parameters of the wind turbine emulator (WTE) at various wind speeds.

Therefore, the DC-link voltage control, active power control and reactive power control us‐
ing the PID controllers and WNNCs with IPSO are carried out for comparison. The dynamic

performance of the wind generation system using double-sided CRPWM AC/DC/AC power

converter system connected to utility grid subjected to three different wind speed variation

profiles are shown in Figures (12-16). The first wind speed variation profile is the stepwise,

the second is the sinusoidal variation profile and the last is the trapezoidal variation profile

as given in the following section. The performance of the whole system at six operating con‐
ditions of wind speeds 6, 8, 10, 12, 14 and 16 m/sec is studied as shown in Table 1. The corre‐
sponding reference rotor speeds of the IG are 111, 148, 185, 222, 259 and 296 rad/sec,

respectively. The respective wind turbine output power, DC-link power commands and IG

output power are also shown in Table 1.

9.1. Wind Generation System Performance with CRPWM AC/DC/AC Converters Using
Stepwise Wind Speed Profile

The dynamic response of the wind generation system feeding the double-sided CRPWM

AC/DC/AC power converter connected to utility grid based on the maximum power point

tracking (MPPT) control scheme using stepwise profile for wind speed variations of 10 m/s,

12 m/s, 14 m/s and 16 m/s are shown in Figures 12 and 13 utilizing both PID controller and

WNNC with IPSO. These responses are the wind speed, rotor speed of the IG, the q-axis tor‐
que control current of the IG, the DC-link voltage V dc, the DC-link power P dc and the DC-
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maximum active and reactive power injected to the grid at unity power factor, d-q axis cur‐

the PID controller owing to the weak robustness of the linear controller. Moreover, approxi‐
mately 2 sec is required for the PID-controlled SEIG system to generate the maximum out‐

the proposed hybrid control system using the WNNC with IPSO at different operating con‐

Figure 12-Xb. As a result, comparing the results of PID controller with the WNNC, the pro‐

to track the maximum power. In addition, from the simulation results, fast dynamic re‐



provided to demonstrate the effectiveness of the proposed control schemes. The wind tur‐

Ratio λ

≈ 296 rad/sec ≈ 1580 ≈ 1500 ≈ 1400

=14 m/sec ≈ 259 rad/sec ≈ 1086 ≈ 1030 ≈ 965

=12 m/sec ≈ 222 rad/sec ≈ 705 ≈ 670 ≈ 637

≈ 185 rad/sec ≈ 422 ≈ 400 ≈ 392

=8 m/sec ≈ 148 rad/sec ≈235 ≈ 223 ≈ 212

≈ 111 rad/sec ≈ 110 ≈ 104 ≈ 95

Parameters of the wind turbine emulator (WTE) at various wind speeds.

Therefore, the DC-link voltage control, active power control and reactive power control us‐

as given in the following section. The performance of the whole system at six operating con‐
Table 1. The corre‐

WNNC with IPSO. These responses are the wind speed, rotor speed of the IG, the q-axis tor‐
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link current i dc, respectively, for the CRPWM converter fed from the SEIG. Furthermore, the

maximum active and reactive power injected to the grid at unity power factor, d-q axis cur‐
rents, the phase voltage and currents, respectively, at the AC side of the CRPWM inverter

connected to the utility grid. The dynamic responses of the wind speed, rotor speed of the

IG, the q-axis torque control current of the IG, the DC-link voltage V dc, the DC-link power P

dc and the DC-link current i dc, respectively, are shown in Figure (12-X) for both PID and

WNNC with IPSO controllers for the CRPWM converter fed from the IG. In this simulation,

the wind speed is changed from 10 m/s to 12 m/s, then changed back from 12 m/s to 10 m/s

and the reference voltage for the DC-link is changed from 0 to 539 V. From the simulation

results shown in Figure 12-Xa, sluggish DC-link voltage tracking response is obtained for

the PID controller owing to the weak robustness of the linear controller. Moreover, approxi‐
mately 2 sec is required for the PID-controlled SEIG system to generate the maximum out‐
put power. In addition, from the simulation results, fast dynamic response for the DC-link

voltage can be obtained for the hybrid control of the SEIG wind generation system owing to

the on-line training of the WNNC with IPSO. Moreover, the robust control performance of

the proposed hybrid control system using the WNNC with IPSO at different operating con‐
ditions is obvious. Furthermore, approximately 1 sec is required for the SEIG to generate the

maximum output power. In addition, the dynamic response of the wind generation system

using the hybrid control scheme with the WNNC using IPSO is much better as shown in

Figure 12-Xb. As a result, comparing the results of PID controller with the WNNC, the pro‐
posed hybrid voltage controller is more suitable to control the DC-link voltage of the

CRPWM converter-based SEIG wind generation system under the possible occurrence of

load disturbance and parameter variations.

The output voltage of the DC-link is fed to the CRPWM inverter connected to the utility

grid. The dynamic response of the CRPWM inverter system feeding the utility grid using

PID controllers and WNNC with IPSO for active and reactive power control at the same

condition of wind speed variations and the DC-link voltage command is shown in Figure

12-Y with MPPT control scheme. These responses are the maximum active and reactive

power, d-q axis currents of the CRPWM inverter, the grid voltages and currents at the AC

side of the CRPWM inverter, respectively. It is obvious that zero reactive power and zero d-

axis current which confirms unity power factor operation at different wind speeds. At the

same time the q-axis current and the active power follow their references to give the MPPT.

From the simulation results shown in Figure 12-Ya, sluggish active power tracking response

is obtained for the PID controller owing to the weak robustness of the linear controller.

Moreover, approximately 1.6 sec is required for the PID-controlled CRPWM inverter system

to track the maximum power. In addition, from the simulation results, fast dynamic re‐
sponse for the active power can be obtained for the hybrid control of the CRPWM inverter

system owing to the on-line training of the WNNC with IPSO. Moreover, the robust control

performance of the proposed hybrid control system using the WNNC with IPSO at different

operating conditions is obvious. Furthermore, approximately 0.8 sec is required for the

CRPWM inverter system to track the maximum power. In addition, the dynamic response of

the CRPWM inverter system connected to the utility grid using the hybrid control scheme

with the WNNC with IPSO is much better as shown in Figure 12-Yb. As a result, comparing
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the results of PID with the WNNC-based IPSO, the proposed hybrid active and reactive

power controllers are more suitable to control the power of the CRPWM converter/inverter

system connected to the utility grid under the possible occurrence of parameter variations.

Additionally, from these figures, it is evident that a unity power factor operation is achieved

at different wind speeds. Furthermore, it is obvious that the proposed control scheme illus‐
trates satisfactory performance and good tracking characteristics.

To confirm the effectiveness of the proposed control schemes, the wind speed is changed

from 14 m/s to 16 m/s, then changed back from 16 m/s to 14 m/s. The dynamic response of

the wind generation system using double-sided CRPWM AC/DC/AC power converters is

shown in Figure 13. As result, comparing the results of PID controllers and the WNNCs

with IPSO, the proposed hybrid controller gives robust performance for both the DC-link

voltage, active and reactive power of the AC/DC/AC CRPWM converter considering the ex‐
istence of parameter variations and load disturbances for the wind generation system.

9.2. Wind Generation System Performance with CRPWM AC/DC/AC Converters Using
Sinusoidal Wind Speed Profile

In order to investigate the effectiveness of the proposed control schemes, the sinusoidal pro‐
file for wind speed variations. The dynamic response of the wind generation system using

double-sided CRPWM AC/DC/AC power converters using both PID controllers and

WNNCs with IPSO technique for the DC-link voltage, active and reactive power is shown in

Figure 14. It is obvious from Figure 14 that good dynamic performance is achieved and the

DC-link actual voltage, actual active and reactive power follow their references. In addition,

the dynamic performance of the wind generation system using the hybrid control scheme

with the WNNCs utilizing IPSO is much better as shown in Figure 14 and provide robust

performance considering the existence of parameter variations and load disturbances for the

wind generation system.

9.3. Wind Generation System Performance with CRPWM AC/DC/AC Converters Using
Trapezoidal Wind Speed Profile

The wind generation system is re-subjected to trapezoidal profile for the wind speed varia‐
tions to study the effectiveness of the proposed control schemes. The dynamic response of

the wind generation system using double-sided CRPWM AC/DC/AC power converters us‐
ing both PID controllers and WNNCs with IPSO technique for the DC-link voltage, active

and reactive power is shown in Figure 15.

It is obvious that good dynamic performance is achieved and the DC-link actual voltage,

actual active and reactive power follow their references.  The line current and voltage at

the AC side of the CRPWM inverter at different wind speeds showing unity power factor

operation  are  shown in  Figure  16.  As  a  result,  comparing  the  results  of  PID controller

with the hybrid control  scheme with the WNNC-based IPSO, the proposed hybrid con‐
trollers  are  more  suitable  to  control  the  voltage  and  power  of  the  CRPWM  converter/

inverter system connected to the utility grid under the possible occurrence of parameters

variations. Additionally, it is evident that unity power factor operation is achieved at dif‐
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at different wind speeds. Furthermore, it is obvious that the proposed control scheme illus‐

voltage, active and reactive power of the AC/DC/AC CRPWM converter considering the ex‐

In order to investigate the effectiveness of the proposed control schemes, the sinusoidal pro‐

The wind generation system is re-subjected to trapezoidal profile for the wind speed varia‐

the wind generation system using double-sided CRPWM AC/DC/AC power converters us‐

with the hybrid control  scheme with the WNNC-based IPSO, the proposed hybrid con‐

variations. Additionally, it is evident that unity power factor operation is achieved at dif‐

ferent wind speed profiles. It is clear that the proposed control scheme illustrates satisfac‐
tory performance and good tracking characteristics.
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Figure 12. Dynamic performance of the wind generation system using stepwise profile wind speed changed from Vw

=10 m/sec to V w =12 m/sec to V w =10 m/sec. (a) Using PID controller (b) Using WNNC with IPSO.
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Figure 13. Dynamic performance of the wind generation system using stepwise profile wind speed changed from Vw

=14 m/sec to V w =16 m/sec to V w =14 m/sec. (a) Using PID controller (b) Using WNNC with IPSO.
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Figure 14. Dynamic performance of the wind generation system using sinusoidal profile wind speed variations. (a)

Using PID controller (b) Using WNNC with IPSO.
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Figure 15. Dynamic performance of the wind generation system using trapezoidal profile wind speed variations. (a)

Using PID controller (b) Using WNNC with IPSO.
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Figure 16. Line side voltage and current showing unity power factor operation at different wind speeds Vw  =10

m/sec,  V  w  =12 m/sec,  V  w  =14 m/sec and V  w  =16 m/sec from top to bottom (a)  Using PID controller (b)  Using

WNNC with IPSO
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10. Conclusion

This Chapter proposed a hybrid control scheme utilizing WNNCs with IPSO for the voltage
control of DC-link voltage, active power and reactive power of the CRPWM AC/DC/AC
power converter feeding from a wind turbine SEIG system. The double-sided AC/DC/AC
CRPWM converter is connected to the utility grid and operated under IFOC and VFOC
which guarantees the robustness in the presence of parameter uncertainties and load distur‐
bances. The IG is controlled by the maximum power point tracking (MPPT) control techni‐
que below the base speed and the maximum energy can be captured from the wind turbine.
The proposed hybrid controller consists of a three feed-back PID controller in addition to a
three on-line trained WNNC with IPSO. Also, this Chapter successfully demonstrated the
application of the PID control and WNN control systems to control the voltage of the DC-
link, active power and reactive power of the CRPWM AC/DC/AC power converter. There‐
fore, the DC-link voltage tracking response, active power and reactive power can be
controlled to follow the response of the reference commands under a wide range of operat‐
ing conditions. Simulation results have shown that the proposed hybrid control scheme us‐
ing the WNNC with IPSO grants robust tracking response and good regulation
characteristics in the presence of parameter uncertainties and external load disturbances.
Moreover, simulations were carried out at different wind speeds to testify the effectiveness
of the proposed hybrid controller. Finally, the main contributions of this Chapter are the
successful development of the hybrid control system, in which a WNNC with IPSO is utiliz‐
ed to compensate the uncertainty bound in the wind generation system on-line and the suc‐
cessful application of the proposed hybrid control scheme methodology to control the DC-
link voltage, active and reactive power of the AC/DC/AC CRPWM converter considering
the existence of parameters uncertainties and external load disturbances.
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1. Introduction

Free-space optical (FSO) communications links have the potential to deliver very high

bandwidth due to the high carrier frequency as compared with RF links. They have the

advantages of being rapidly deployable and less expensive to install than optical fiber systems.

The low divergence of laser beams means that FSO systems are intrinsically low in probability

of intercept in comparison to RF, and being ‘line-of-sight’ avoids wasteful use of both the

frequency domain (bandwidth allocation) and the spatial domain. Another advantage of FSO

communication links over RF communications is the large unregulated bandwidth as com‐
pared with the heavy traffic and expensive bandwidth allocations for RF links.

However, one of the main factors reducing SNR in FSO communications is scintillation noise

due to turbulence. Atmospheric turbulence produces temporary pockets of air with slightly

different temperatures and pressures, and therefore with slightly different indices of refrac‐
tion. These turbulence cells act as small, weak lenses that refract the light slightly and cause

distortions in the wave front as a laser beam propagates through the atmosphere. The resulting

variation in the arrival time of various components of the beam produces constructive and

destructive interference at the receiver, causing fluctuations in laser beam intensity. These

rapid fluctuations are known as scintillation and occur on a time scale comparable to the time

it takes these cells to move across the beam path due to the wind (typically on the order of a

millisecond). These intensity fluctuations become amplitude fluctuations in the case of analog

modulation of the laser beam. In addition, atmospheric turbulence can cause beam break-up

and beam wander which can cause very large swings in the average received power, on the
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order of tens of dB, on frequency scales from dc up to several kilohertz. This causes the average

received AC signal to not be clamped at zero due to inadequate AC coupling.

There are many applications in which data is collected from an analog sensor or system and

transmitted long distances to the end user. Typically the data would subsequently be digitized

and transmitted over an RF or fiber optic communication link. Problems occur if the platform

containing the sensor system is size, weight, or power (SWaP) constrained, since high speed

digitizers can greatly add to the SWaP burden. Also, if the data or required communication is

of a sensitive nature and secure communication links are not available, the user runs the risk

of having the communication detected and/or intercepted. In these cases, it would be of great

benefit to have the capability of transmitting unprocessed analog sensor data over a secure

channel. Free-space lasercomm using analog or RF modulation of the transmitted laser beam

can provide a method for transmitting un-digitized data over a high speed communication

link that has a very low probability of detection and intercept, as well as being highly resistant

to jamming efforts due to the relatively narrow field-of-view of the receivers. However,

atmospheric turbulence as discussed above makes this process problematic.

Methods to correct the aberrations caused by atmospheric turbulence and to thus enable

transmission of analog data over a FSO link are currently being explored. This work deals with

scenarios in which a frequency-modulated waveform is transmitted through an FSO channel.

Several applications of the DWT are employed in the receiver end to demodulate the trans‐
mitted data.

The chapter is organized as follows. Section 2 reviews recent advances in using analog FM to

transmit data over the free space channel. Section 3 describes the mathematical modeling of

the received FSO signal. Section 4 is dedicated to de-noising of the FSO signal using the DWT

and Section 5 is devoted to the simulation experiments. Finally, we present the summary and

conclusions in Section 6.

2. Applications

The transmission of RF modulated laser beams through optical fibers and the characterization

of the information transmitted have been the subject of research for many years [1-3]. More re‐
cently, however, the potential advantages of the free space channel have led to research into its

use as a medium for transmission of RF analog data. Refai et al. [4] undertook a comparative

study of fiber optic links and FSO links. They concluded that FSO is suitable for RF transmis‐
sions; that it can perform comparably with fiber-based links; and that FSO can be an attractive

substitute for fiber optic links when a clear line-of-sight is available. Bucholtz et al. [5] per‐
formed a statistical study of RF analog FSO links. In fiber-based systems, most of the significant

parameters such as RF gain, noise figures, and linearity can, in the absence of component degra‐
dation or change, be treated as constants. In FSO systems, on the other hand, these parameters

are not constant. In particular, the received power can vary by tens of decibels due to atmos‐
pheric turbulence. They reported that the link parameters of gain, noise factor and third-order

spurious free dynamic range depend entirely on the statistics of the received optical power.
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parameters such as RF gain, noise figures, and linearity can, in the absence of component degra‐

are not constant. In particular, the received power can vary by tens of decibels due to atmos‐

Since 2005, there have been several reports in the literature on demonstrations of FSO analog

links, with increasing range and performance. In a bench top demonstration, Refai et al. [6]

transmitted cable TV signals using wavelength division multiplexing. This was done with a

view to eventual deployment in “last mile” situations. Murphy et al. [7] described an optical

link using a modulating retro-reflector (MRR) [8]. The laser beam was encoded with a FM

signal of carrier frequency ~750 kHz, and successfully transmitted an audio signal over bench

top distances.

Analog modulation has been successfully applied to FSO transmission of video signals.

Baseband AM provides optimum use of bandwidth, and transmission of composite video has

been demonstrated using amplitude modulation [9], although this suffers from signal degra‐
dation due to atmospheric scintillation. A technique employing dual wavelengths has been

demonstrated to be effective in mitigating scintillation noise by using common mode rejection

to remove co-channel noise [10, 11], but the utility of this is limited by the complexity of the

system and linearity constraints in the amplitude domain. This constraint was removed by

using frequency modulation of a sub-carrier to transmit audio/video signals over a 1.5km

terrestrial path [12, 13]. This work has now been extended to include bidirectional audio

transmission, and has been demonstrated at ranges up to 3km in the maritime environment

using a modulating retro-reflector [14]. Burris et al. showed analog FM to be effective in long

range links, by transmitting audio/video signals over a folded 32 km maritime path [15].

3. Mathematical modeling of received FSO signal

The received FSO signal can be described as

( ) ( ) ( ) ( ) ( )FMr t x t t m t w ts= + + (1)

in which xFM (t) characterizes the frequency-modulated signal and σ(t) signifies the atmos‐
pheric scintillation noise. In addition, the model (1) assumes two types of additive noise. The

first noise component, m(t), is the relatively low-frequency fluctuations of the signal mean

value caused by insufficient AC-coupling. The second additive term w(t),  portrays the

additive white Gaussian noise (AWGN) with zero-mean. Furthermore the frequency-modu‐
lated waveform is formed as,

( ) cos[ d( ) ]
t

FM c fx t A t k d a a
¥

= + ò (2)

in which d (t) represents the information (analogue) data, A is a gain, kf  is the modulation index

and ωcis the carrier frequency [16].
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In the following section we use the Discrete Wavelet Transformation (DWT) to process r(t) for

noise reduction.

4. De-noising of FSO signal using discrete wavelet transform

This section deals with the application of the Discrete Wavelet Transformation (DWT) to the

de-noising of the received FSO waveform r(t) expressed in (1).

The DWT is a powerful iterative technique for decomposition of a signal into approximation

(low frequency) and detail (high frequency) waveforms [17]. The process begins by decom‐
posing the coefficients of the first level of decomposition of the signal into coefficients of

approximation, cA1, and coefficients of detail, cD1. Accordingly, the coefficients cA1 are further

decomposed into cA2 and cD2 to generate the second level of decomposition. The process can

continue for the ith level of decomposition for which cAi and cDi are evaluated from cAi-1. At

each level, the DWT coefficients can be used to reconstruct the approximation and the detail of

the original signal. Figure 1 illustrates three levels of decomposition of the DWT coefficients.

 

  

 

 

 

 

 

 

 

cD1 

cD2 

cD3 

Original 

Signal 

cA1 

cA2 

cA3 

Figure 1. A Three Level Decomposition of the DWT Coefficients

A specific strength of the DWT is its ability to decompose a signal into low-frequency and high-

frequency waveforms at any desired level. This property can be directly applied into the

received FSO waveform of (1) in order to identify and remove the unwanted low-frequency

signal m(t) and the undesirable low-frequency scintillation waveform σ(t). Moreover, the

energy of the high-frequency component of the white noise w(t) can be considerably reduced

using the decomposition property of the DWT.

The process of removing the low-frequency noise m(t) is performed in two consecutive steps.

We first find the approximation of r(t) in an appropriate level to obtain m̂(t). We consequently

form a subtraction process as follows:
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]. The process begins by decom‐

σ

^

1( ) ( ) ( )r t r t m t=  (3)

Hence, the received FSO signal (1) after cancellation of m(t) becomes

1 1( ) ( ) ( ) ( )FMr t x t t w ts= + (4)

where w1(t) is the noise term that includes w(t) as well as the error caused due to the deter‐
mination of m(t). The next step deals with the cancellation of the low frequency scintillation

noise σ(t). As an intermediate step, it is conceivable to form the square of the new signal shown

in (4); that is,

2 2 2 2
2 1 1 1( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )FM FMr t r t x t t w t w t x t ts s= = + + (5)

Application of (2) in (5) results in a low-frequency signal 
A 2σ 2(t)

2  plus a collection of high-

frequency signals shown by HF:

2 2

2

( )
( )

2

A t
r t HF

s
= + (6)

It is observed from (6) that the square process has enhanced the difference between the low

and high frequency components of the received signal; hence, it is more effective to use DWT

for signal separation. Subsequently, by finding the DWT approximations of r2(t) in an appro‐
priate level, σ̂(t) after a square root device, can be determined. To continue, multiply r1(t) in

(4) by the inverse of σ̂(t); hence,

1
3 3^

( )
( ) ( ) ( )

( )
FM

r t
r t x t w t

ts
= = + (7)

where in (7) it is assumed that w3(t)≜w1(t) / σ̂(t) + ε, ε is an error due to the approximation of

σ(t) and σ̂(t)≠0. The FM signal x̂FM (t)can be finally demodulated using any conventional FM

demodulator to provide the analog data d
^

(t). The noisy waveform d
^

(t)can be further de-noised

using an additional application of the DWT. This signal is denoted as d
^
DN (t). It is noticed that

we have de-noised d
^

(t) not r3(t). This is due to the fact that the demodulated message d
^

(t) is

characteristically a baseband waveform which can be de-noised more effectively than the

relatively high-frequency waveform r3(t). Figure 2 illustrates the entire process.
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Figure 2. Structure of the FM/FSO Receiver

5. Simulation experiments

This section presents the results of simulation experiments. We present the results in two sets

of experiments. Experiment I uses a 1-D time signal and deals with the sensitivity of the

algorithm to the variations of SNR and SV (defined below). This experiment is primarily

presented for quantitative evaluations of the method. Experiment II employs a 2-D single

image as the original data and is mainly focused on the qualitative assessment of the algorithm.

Experiment I

In this experiment the received waveform (1) was synthesized by generating an FM signal with

the carrier frequency ω
c
 = 2π ×(1.36 MHz). The assumed data d (t) was used as follows:

1 2 3( ) 0.2cos( / 16) 0.3sin( / 8) 0.1sin( ).
d d d

d t t t t p  p =      (8)

with ω
d1 =2π ×60000; ω

d2 =2π ×30000; ω
d3 =2π ×10000. The sampling radian frequency was

assumed to be 5× ω
c
. In addition, the noise signals σ(t) and m(t) were duplicated from a real

FSO channel and the AWGN noise w(t) was synthetically generated in MATLAB. The data
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was processed in one frame of 990,000 sample points. The low frequency noise m(t) was

extracted as shown in (3) using the DWT with the Daubechies 20 (db20) mother wavelet and

6 decomposition levels. Also the desired signal in (6) was separated using db20 mother wavelet

with 10 decomposition levels. In addition, the demodulated message d
^

(t) was de-noised using

DWT with db20 mother wavelet and 3 decomposition levels. The Signal-to-Noise Ratio (SNR)

was defined as

2

10 2
10log d

w

SNR
s

s

æ ö
ç ÷= ç ÷
è ø

(9)

where σ
d

2 is the variance of the data d (t) and σ
w

2 is the variance of w(t) in (1). To study the

sensitivity of the algorithm to the scintillation changes we define the Scintillation Variation

(SV) parameter as

max
10

min

(t)
SV = 20log

(t)

s
s
é ù
ê ú
ë û

(10)

This quantity is a measure of the abrupt variation of the scintillation noise σ(t).

Figures  3  through  9  represent  the  results  of  this  experiment.  Figure  3  illustrates  the

FM/FSO signal r(t)  represented by Equations (1) and (2).  Figure 4 highlights,  for SNR =

0  dB,  the  frequency  descriptions  of  the  transmitted  FM  signal,  the  received  FSO/FM

waveform, and the processed FM signal after removal of m(t)  and σ(t).  The middle fig‐
ure in this  set  indicates  that  the spectrum of  the FSO/FM waveform carries  a  relatively

large amount of low-frequency components. This is primarily due to the presence of the

slowly-varying terms m(t)  and σ(t).  It  is  shown in Figure 4  that  the DWT is  quite  suc‐
cessful  in  reshaping  the  spectrum of  the  FSO/FM signal  from the  middle  figure  to  the

one shown at the bottom figure. Figure 5 highlights, for SNR = 0 dB, the time history of

the  transmitted  FM  signal  and  the  processed  FM  signal  after  extracting  m(t)  and  σ(t).

Figure  6  displays  a  close-up  views  of  the  transmitted  message  d (t),  demodulated  mes‐
sage d

^
(t),  and de-noised demodulated message d

^
DN

(t)  for SNR = 0 dB. This figure indi‐
cates that the original data d (t) is closely extracted from the FSO/FM signal. Further, the

de-noising of  the demodulated data appears to be quite effective.  Figure 7 displays,  for

SNR  =  20  dB,  the  transmitted  FM  signal  and  the  processed  FM  signal  after  removing

m(t)  and  σ(t).  Figure  8  displays  a  close-up  views  of  the  transmitted  message  d (t),  de‐
modulated message d

^
(t),  and de-noised demodulated message d

^
DN

(t)  for  SNR = 20 dB.

Figure 9 shows Mean-Square Error for the message d (t)  versus SV for various levels  of

SNR. This figure highlights the important result that the performance of the algorithm is

nearly identical under various SV values and for fixed SNR. In other words, the method

tends to be insensitive to the variations of the scintillation noise, especially for large lev‐
els of SV.
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Experiment II

As a demonstration of the efficiency of this algorithm, we consider the situation in which the

transmitted message d (t) is the row-ordered vector of the still image shown in Figure 10. The

scintillation variation, SV, is fixed to 20 dB in this experiment. Similar to Experiment I, the data is

frequency modulated using ω
c
 = 2π ×(1.36 MHz). Figures 11, 12 and 13, respectively, highlight

the demodulated FM/FSO signal for SNR = 10 dB, and SNR = 20 dB and SNR = 50 dB. It is seen

from these figures that as the SNR improves, the performance consistently improve.

Figure 3. A Typical FM/FSO Signal.
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Figure 10. Transmitted Image

Figure 11. De-noised demodulated Image, SNR = 10 dB, SV = 20 dB
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Figure 12. De-noised demodulated Image, SNR = 20 dB, SV = 20 dB

Figure 13. De-noised demodulated Image, SNR = 50 dB, SV = 20 dB
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6. Summary and conclusions

Atmospheric noise signals are a fundamental limitation of free-space optical communications.

In this work we presented the limitations that this imposes, and investigated the use of the

discrete wavelet transformation (DWT) to overcome them. Simulation experiments were

performed to validate the use of the DWT in the demodulation of the FM data in the presence

of scintillation noise, noise due to insufficient AC-coupling, and AWGN. It was demonstrated

that the use of the DWT, as explained in the paper, is quite effective in reducing the joint effects

of the atmospheric as well as the additive white Gaussian noises.

Several concluding remarks are in order. It is noted that despite the fact that FM was the

modulation type presented in this paper, our algorithm can be extended to other constant-

envelope (digital or analog) modulation scheme. This stems from the fact that in constant-

envelope modulations, the message is solely modulating the phase of the carrier.

Consequently, any changes in the magnitude of the received FSO signal are exclusively due

to the noise terms, m(t), σ(t) and w(t), that are removed using the DWT scheme, as described

in Section 4.

Finally, the method presented in this paper is a post-processing of the received data to validate

the feasibility of the use of DWT in FM/FSO applications. The next phase of this work should

be an FPGA implementation of the algorithm for a real time execution of the whole system in

the receiver end.
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Discrete Wavelet Transform is a wavelet (DWT) transform that is widely used in 

numerical and functional analysis. Its key advantage over more traditional transforms, 

such as the Fourier transform, lies in its ability to o�er temporal resolution, i.e. it 

captures both frequency and location (or time) information. is book presents a 

succinct compendium of some of the more recent variants of DWTs and their use 

to come up with solutions to an array of problems transcending the traditional 

application areas of image/video processing and security to the relatively newer areas 

of medicine, artificial intelligence, power systems and telecommunications. e 

first of the two sections of this book contains three chapters devoted to traditional 

applications of DWTs in digital image compression, copyright protection and video 

resolution enhancement. e second section, comprising of five chapters, is devoted 

to variants of the DWT and their applications in humanoid-robot vision systems; 

modeling and simulation recognition of physiological and behavioral traits through 

human gait and facial images; assessment of agitation and sedation in intensive care 

patients; maximization of power control systems; and, finally, in demodulation of FM 

data in free-space optical control systems.
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