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Discreteness-Induced Oscillatory Instabilities of Dark Solitons
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We reveal that even weak inherent discreteness of a nonlinear model can lead to instabilities of the
localized modes it supports. We present the first example of an oscillatory instability of dark solitons,
and analyze how it may occur for dark solitons of the discrete nonlinear Schrodinger and generalized
Ablowitz-Ladik equations. [S0031-9007(98)08088-0]
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Wave instabilities are probably the most remarkablemodes with the nonvanishing boundary conditighs—
nonlinear phenomena that may occur in nature [1]. Onet¢©@e*" (n — +o), provided the background wave is
of the first instabilities discovered for nonlinear modelsmodulationally stable, i.e., faf cosk < 0 [10]. Without
was the modulational instability, which is known to be loss of generality, we can put the background intensity to
an effective physical mechanism in fluids [2] and opticsunity, ¢© = 1.

[3] for breakup of continuous modes into solitary waves. The structure of the dark-soliton modes of Eq. (1) has
Also, the solitary waves themselves may become unstabléegen discussed earlier [11,12]. Here, we consider the
and the analysis of their instabilities is an importantcaseC > 0, in which the background wave has= =
problem of nonlinear physics. Instabilities are known toand is “staggered,” as shown in Figs. 1(a) and 1(b). The
occur for both bright [4] and dark [5] solitary waves of transformationy, — (—1)", immediately yields the cor-
differentnonintegrablenonlinear models. responding “unstaggered” modés € 0) for negativeC.

Recently, a new type of solitary-wave instabilitys- The dark-soliton modes presented in Figs. 1(a) and
cillatory instability, has been found to occur for bright 1(b) describe two types of stationary “black” solitons
Bragg gap solitons in the generalized Thirring model [6].[5] in a discrete lattice, the on-site modé (mode)
Such an instability is characterized by complex eigenvalcentered with zero intensity at a lattice site, and the
ues, and its scenario is associated with a resonance bietersite mode B mode) centered between two sites.
tween the long-wavelength radiation and soliton internalThese two modes can be uniquely followed from the
modes which appear in the soliton spectrum when theontinuous limit C — «) to the “anticontinuous” limit
model becomes nonintegrable [7]. In spite of the fact tha{C = 0). At C = 0, the A mode takes the forng, =
oscillatory instabilities appear often in dissipative models(...,—1,+1,—1,0,+1,—1,+1,...), and it describes a
[8], their manifestation in continuous Hamiltonian modelssingle “hole” in a background wave with constant am-
is rare [9], and so fano example has been known for os- plitude and ar phase shift across the hole. Similarly, the
cillatory instability of dark solitons B mode takes the formng, = (..., —1,+1,—1,—1,+1,

The aim of this Letter is twofold. First, we analyze —1,...), and it describes the lattice oscillation mode
what we believe to be the first examples of oscillatorywith a 7= phase shift between two neighboring sites and
instabilities of dark solitons, by considering the impor-no hole.
tant cases of the discrete nonlinear Schrodinger (DNLS) Linear stability of theA mode for small enoughC
and generalized Ablowitz-Ladik (AL-DNLS) models. We follows from Aubry’s theorem (Theorem 9 in Ref. [13])
revealtwo different scenariofor the dark-soliton oscilla-
tory instability, which may occur due to either a resonance
between radiation modes and the soliton internal mode, or
a resonance between two soliton internal modes. Second T o
we demonstrate that even a weak inherent discreteness l l l J l l l l l J
may drastically modify the dynamics of a nonlinear sys-

] ]}
tem leading to instabilities which have no analog in the l l J J J> J> l l J J

continuum limit.
First, we consider the well-known DNLS equation, lenl? lonl? A

i + Cuer + ut) + gl =0, (1) @ .
where the dot stands for the derivative in time. Stationary:lG_ 1. (a),(b) Two types of “staggered” dark-soliton modes
localized solutions of Eq. (1) in the forg, (1) = ¢,e™,  in a lattice. Shown are the oscillation amplitude at each site

whereA = 2C cosk + ()2, may exist as dark-soliton (upper row) and the valukl,|? (lower row).
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relating the linear stability of multibreathers to the extremaest order inC. Then, equating this result with the ex-
of the effective actiorwhich is a function of the relative pression above for the edge of the continuous band gives
phasesy, of the single breathers. For the DNLS equationan estimate to the value @ where these two eigenval-
(1) with a positive nonlinearityipcal minimaof the effec-  ues coincideC = 1/+/3 — 1/2 = 0.07735. This agrees
tive action correspond to stable solutions. A perturbativeguite well with the exact, numerically obtained value
expression of the effective action to ordet was obtained C = C., = 0.07647. At C = C,,, a Hopf-type bifurca-

in Eq. (A10) in [14]. For smalC, it is enough to consider tion occurs, as two complex conjugated pairs of eigenval-
the phase interactions between nearest and next-nearests leave the imaginary axis and go out in the complex
neighboring sites. Then, the lowest order contribu-plane (see Fig. 2). Thusn oscillatory instabilityoccurs
tion to the effective action from neighboring excited for the A mode wherC > C.,, with the instability growth
sites is > ,[2C|A|coda,+1 — a,) — C?>coS(a,+1 — rate A given by the real part of the unstable eigenvalue
a,)], while the contribution from the next-nearest- (see Fig. 2). For thé&8 mode, all eigenvalues lie at zero
neighbor interaction is-C*3, ., coSa,+1 — a,—1) + whenC = 0. As soon a< is increased, one pair goes
2C?coqa,,+1 — an—1), Where ny is the site with out on the real axis and stays there for@l> 0. Thus,
the “hole.” For the A mode, a,+1 — a, = T, the B mode is always unstable.

apr1 — ap-1 =0, n# ny, ay+1 — ap-1 =7, SO For C > C., the imaginary part of the unstable eigen-
that the effective action has a local minimum and thevalue moves towards zero (i.e., the oscillation frequency
mode is stable for smadl'. decreases) a¥" is increased. The real part of the

For theB mode, there are two neighboring sites havingeigenvalue vsC is shown in Fig. 2 for two differ-
the same phase at the center, which suggests that tleat system sizes, and compared with estimations of the
corresponding extremum of the effective action is a saddlenaximum growth rate from direct numerical integration
Numerical investigation of the eigenvalue problem alsocof the DNLS model for chains large enough to eliminate
shows that thés mode is unstable for all". the influence of the boundaries. In all cases the instabil-

Let us consider the linear stability of the dark-solitonity is largest forC =~ 0.32 whereA = 0.120. For larger
modes for nonvanishing. Assuming, (1) = [¢, + C, there appear stable “windows” for the finite systems,
€,(1)]e’™, we obtain the linearized equations fgr where the mode is stabilized by the boundaries. The lo-

i€, + Clensy + €no1) + 2ldbnl2en cation of these windows depends critically on the size of

+ ¢l — Ae, = 0.
Writing €, = &, + in, for real ¢, yields 012 1

oY= (5 AN (E) = m( &), ol

where for a system a¥ sitesi/ is a2N X 2N matrix and
H* andH~ areN X N matrices with time-independent
coefficients, H;j = [A — 2 F 1)$;/16;; — C(8;j+1 + 004 |
6;j—1) (boundary conditions not explicitly taken into
account). Linear stability is then equivalent to the matrix
M having all its eigenvalues on the imaginary axis. 0 ,
When C = 0, all eigenvalues of/ lie at zero except, L P -
for the A mode, one complex conjugated pair-at cor-
responding to a mode localized on the hole. WIdeis
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increased, the eigenvalues at zero spread on the imaginary 4| , c=005| 1] c=0076] 1. €=0.077

axis creatinga phonon band of extended statesjch cor- o5 o5 sl * ¢

responds to a continuous spectrum for lakgeAssuming 3

€n = ae'kn=o) 4 pe~ilkn—wi) yvie|ds the dispersion re- ] ‘ ] ]

lation, ® = *+,/16C2 cos(k/2) + 8C co(k/2), so that 0.5 0.5 0.5

the eigenvalues corresponding to the continuous band lie -1 ° 11 14 ° ¢

between 0 (atx = 7) and +=iv/16C% + 8C (at k = 0). 0001 0 0001 -0.001 Ff) A().()‘01 0001 0 0001
e

On the other hand, the pair of eigenvaluesatwill move
towards zero on the imaginary axis@ss increased. For FIG. 2. Real part of the unstable eigenvalues as a function

small C, we can assume that the corresponding eigeng Ch "(',)th-f mOdg'ﬂgl) fo\s\ﬁhzfl((d?g)e?) andl\f{%t 121 .
: - ashed) sites, and the growth rate (solid) for an infinite system,
models aImo% comSI?Ieter Io?hzed at éhe_ hokl]e, Sﬁ. thacalculated for lattices of up to 15000 sites. Inset: Asymptotic
€ny+1 = €gp—1 = 0. SINC€¢p,, = 0, we obtain that this it of the growth rate (points) with stretched exponential (line)
mode oscillates with frequency = 1 — 2C, so that the (see text). Below: Instability scenario shown as the evolution

corresponding eigenvalues arei(1 — 2C), to the low-  of the eigenvalues aff for N = 121 sites.
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the system and the boundary conditions (in Fig. 2, perichosen to be approximately in the direction of the
odic boundary conditiongy+; = ¥, are used). unstable eigenvector. If instead a random perturbation is
Similar “reentrant instabilities” have been found for chosen, the qualitative behavior is the same, except that
discrete breathers of the finite-width Klein-Gordon chainsthere will be an initial small amount of radiation before
[15]. Qualitatively, the explanation is that for small sys-the unstable internal eigenmode gets excited. The un-
tems, the eigenvalues corresponding to the “continuousstable eigenvector is always spatially symmetric around
spectrum are rather sparsely distributed, and the corréhe central site, and therefore antisymmetric with respect
sponding eigenvectors are localized over the size of tho the dark mode itself, since the latter is antisymmetric.
system. Thus, as the eigenvalue corresponding to the ufhus, the main effect of the instability is a transition from
stable mode approaches the imaginary axis when increas- black (zero intensity at the middle) to grey (nonzero
ing C, it may find a hole in the spectrum and join the intensity at the middle) soliton, as can be clearly identi-
imaginary axis for a while. Then, a further increase offied at least forC > 0.3. This is similar to the instabil-
C causes a collision with the next imaginary eigenvaluejty scenario of dark solitons in some continuous models
and a new instability occurs. This procedure repeats itself[5], except the oscillatory dynamics. The direction of
until the eigenvalue has passed the phonon band eigethe resulting grey soliton is determined by the sign of the
value which is closest to zero. After this the state isperturbation projected on the unstable eigenmode. For
stable for all larger values of (e.g., in Fig. 2 the state large C, the grey soliton is almost black, moves slowly,
is stable for allC > 1.11 when N = 61, and for all and the radiation is small, while for smallér the mini-
C > 1.38 when N = 121). Increasing the system size mum value of the soliton intensity increases as well as its
implies that the eigenvalue distribution on the imaginaryvelocity and the amount of radiation. For small and in-
axis will be more dense, so that the stable windows willtermediate values of the coupling paramefethe result-
be smaller anccompletely disappear in the limit of the ing grey soliton decays continuously into radiation (see
infinite systemwhere the unstable eigenvalue never joinsFig. 3).
the imaginary axis. It is important to study the oscillatory instability of dark
For an infinite DNLS chain, the instability growth rate solitons for other types of nonlinear lattices. Here, we con-
decreases in an exponential-like way to zero for lafge sider the AL-DNLS equationiy, + C(n+1 + ¢h,—1) +
and thus indicates that the dark mode is unstable for ajl|y, >y, + %(,u = D> (Pus1 + o—1) = 0, where
C > C.. A quite good asymptotic fit is obtained with 0 = u = 1. The caseu = 0 corresponds to the inte-
a stretched exponentiah, ~ exp(—bC?), with y = 0.7  grable AL model, whereas the cage= 1, to the DNLS
(see inset in Fig. 2). We also investigated the case afiodel analyzed above.
varying ¢© to keep thecomplementary norif5] constant With the general formy, (1) = ¢,e’™, and boundary
when varyingC. In that case, we found the asymptotic conditions ¢, — *¢@e*" (n — +x), the frequency
decay of the instability growth rate withi to be faster A is determined byA = 2C cosk + (¢ 0 [u + (u —
than purely exponential. 1) cosk]. In particular, for the black modek (= ) the
Figure 3 shows the time evolution for two differ- relation becomesA = —2C + (¢©)?, just as for the
ent values ofC when the initial state is a slightly per- DNLS model. As above, we pup© = 1 without loss
turbed darkA mode. A small perturbation has been of generality.
In the AL-DNLS model, there is a lower limit o€
for the existence of dark solitons, due to the instability
of the background when the effective coupling changes
sign (see, e.g., Ref. [16]). This occurs whént+ (u —
1) (¢©)2/2 = 0, so that, wherp© = 1, the dark modes
exist only forC > (1 — w)/2 (Fig. 4, dashed line).
Considering ,,(t) = [¢, + €,(1)]e’M as above, we
obtain the linearized equations for the small perturba-
tion €,, and the dispersion relation for the continuous

1lnors ] spectrum (for the staggered mode with |im. ¢2 =
Wnl2[ ng+2 i 1) o= *2v(k)[1 + v(x)], where v(k) = (2C +
054 w — 1)cog(x/2). Therefore, the eigenvalues corre-
fo+l sponding to the continuous band lie between O«at
‘ 0 Moy m) and *i2,/2C + u — 1)(2C + u) (at k = 0) for
0 50 100 0 100 200 300 400 C>(1— w2

FIG. 3. Time evolution ofl¢,|> with slightly perturbed dark . As E.jl.bove’ an approxlmate expression for the onset of

A modes as initial conditions faf = 0.30 (left) andC — 0.75  Instability can be obtained by assuming that the inter-

(right). Lower figures show the detailed dynamics for a fewnal mode is completely localized at the hole, so that

sites around the center. €n+1 = €,,—1 = 0. Then, the corresponding eigenvalues
0 0 p geg
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05 ; ; : : a pair of eigenvalues exactly at zero corresponding to the
0278 C=04013 exact translational invariance.
< In conclusion, we have described, for the first time to
o4r ~ E o] | our knowledge, the oscillatory instability of dark solitons.
This new type of dark-soliton instability appears due to
0l o o ) inherent discreteness of a nonlinear lattice model, and
002 0pgy 0.02 the universality of the instability scenario suggests that

027 reryeri RN it should be also observed in other nonlinear models
o2r . 1 supporting dark solitons. We remark that the instability
E ol observed here may be regarded as an extension of the
L | instabilities existing for small lattices [17].
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