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We reveal that even weak inherent discreteness of a nonlinear model can lead to instabilities of the
localized modes it supports. We present the first example of an oscillatory instability of dark solitons,
and analyze how it may occur for dark solitons of the discrete nonlinear Schrödinger and generalized
Ablowitz-Ladik equations. [S0031-9007(98)08088-0]
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Wave instabilities are probably the most remarkab
nonlinear phenomena that may occur in nature [1]. O
of the first instabilities discovered for nonlinear mode
was the modulational instability, which is known to b
an effective physical mechanism in fluids [2] and optic
[3] for breakup of continuous modes into solitary wave
Also, the solitary waves themselves may become unstab
and the analysis of their instabilities is an importan
problem of nonlinear physics. Instabilities are known
occur for both bright [4] and dark [5] solitary waves o
differentnonintegrablenonlinear models.

Recently, a new type of solitary-wave instability,os-
cillatory instability, has been found to occur for brigh
Bragg gap solitons in the generalized Thirring model [6
Such an instability is characterized by complex eigenva
ues, and its scenario is associated with a resonance
tween the long-wavelength radiation and soliton intern
modes which appear in the soliton spectrum when t
model becomes nonintegrable [7]. In spite of the fact th
oscillatory instabilities appear often in dissipative mode
[8], their manifestation in continuous Hamiltonian mode
is rare [9], and so farno example has been known for os
cillatory instability of dark solitons.

The aim of this Letter is twofold. First, we analyze
what we believe to be the first examples of oscillato
instabilities of dark solitons, by considering the impor
tant cases of the discrete nonlinear Schrödinger (DNL
and generalized Ablowitz-Ladik (AL-DNLS) models. We
revealtwo different scenariosfor the dark-soliton oscilla-
tory instability, which may occur due to either a resonan
between radiation modes and the soliton internal mode,
a resonance between two soliton internal modes. Seco
we demonstrate that even a weak inherent discreten
may drastically modify the dynamics of a nonlinear sy
tem leading to instabilities which have no analog in th
continuum limit.

First, we consider the well-known DNLS equation,

i Ùcn 1 Cscn11 1 cn21d 1 jcnj2cn ­ 0 , (1)

where the dot stands for the derivative in time. Stationa
localized solutions of Eq. (1) in the formcnstd ­ fneiLt,
whereL ­ 2C cosk 1 sfs0dd2, may exist as dark-soliton
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modes with the nonvanishing boundary conditionsfn !
6fs0deikn (n ! 6`), provided the background wave is
modulationally stable, i.e., forC cosk , 0 [10]. Without
loss of generality, we can put the background intensity
unity, fs0d ­ 1.

The structure of the dark-soliton modes of Eq. (1) h
been discussed earlier [11,12]. Here, we consider
caseC . 0, in which the background wave hask ­ p

and is “staggered,” as shown in Figs. 1(a) and 1(b). T
transformationcn ! s21dncn immediately yields the cor-
responding “unstaggered” modes (k ­ 0) for negativeC.

The dark-soliton modes presented in Figs. 1(a) a
1(b) describe two types of stationary “black” soliton
[5] in a discrete lattice, the on-site mode (A mode)
centered with zero intensity at a lattice site, and t
intersite mode (B mode) centered between two site
These two modes can be uniquely followed from th
continuous limit (C ! `) to the “anticontinuous” limit
(C ­ 0). At C ­ 0, the A mode takes the formfn ­
s. . . , 21, 11, 21, 0, 11, 21, 11, . . .d, and it describes a
single “hole” in a background wave with constant am
plitude and ap phase shift across the hole. Similarly, th
B mode takes the formfn ­ s. . . , 21, 11, 21, 21, 11,
21, . . .d, and it describes the lattice oscillation mod
with a p phase shift between two neighboring sites a
no hole.

Linear stability of theA mode for small enoughC
follows from Aubry’s theorem (Theorem 9 in Ref. [13]

φn

|φn|2

(a)

φn

|φn|2

(b)

FIG. 1. (a), (b) Two types of “staggered” dark-soliton mode
in a lattice. Shown are the oscillation amplitude at each s
(upper row) and the valuejcnj2 (lower row).
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relating the linear stability of multibreathers to the extrem
of the effective actionwhich is a function of the relative
phasesan of the single breathers. For the DNLS equation
(1) with a positive nonlinearity,local minimaof the effec-
tive action correspond to stable solutions. A perturbativ
expression of the effective action to orderC2 was obtained
in Eq. (A10) in [14]. For smallC, it is enough to consider
the phase interactions between nearest and next-nea
neighboring sites. Then, the lowest order contribu
tion to the effective action from neighboring excited
sites is

P
nf2CjLj cossan11 2 and 2 C2 cos2san11 2

andg, while the contribution from the next-nearest-
neighbor interaction is2C2

P
nfin0

cossan11 2 an21d 1

2C2 cossan011 2 an021d, where n0 is the site with
the “hole.” For the A mode, an11 2 an ­ p,
an11 2 an21 ­ 0, n fi n0, an011 2 an021 ­ p, so
that the effective action has a local minimum and th
mode is stable for smallC.

For theB mode, there are two neighboring sites havin
the same phase at the center, which suggests that
corresponding extremum of the effective action is a sadd
Numerical investigation of the eigenvalue problem als
shows that theB mode is unstable for allC.

Let us consider the linear stability of the dark-soliton
modes for nonvanishingC. Assumingcnstd ­ ffn 1

enstdgeiLt, we obtain the linearized equations foren

i Ùen 1 Csen11 1 en21d 1 2jfnj2en

1 f2
nep

n 2 Len ­ 0 .

Writing en ­ jn 1 ihn for realfn yields

d
dt

µ
jn

hn

∂
­

µ
0 H1

2H2 0

∂ µ
jn

hn

∂
; M̂

µ
jn

hn

∂
,

where for a system ofN sitesM̂ is a2N 3 2N matrix and
H1 and H2 are N 3 N matrices with time-independent
coefficients, H6

ij ­ fL 2 s2 7 1df2
i gdi,j 2 Csdi,j11 1

di,j21d (boundary conditions not explicitly taken into
account). Linear stability is then equivalent to the matri
M̂ having all its eigenvalues on the imaginary axis.

When C ­ 0, all eigenvalues ofM̂ lie at zero except,
for the A mode, one complex conjugated pair at6i cor-
responding to a mode localized on the hole. WhenC is
increased, the eigenvalues at zero spread on the imagin
axis creatinga phonon band of extended states,which cor-
responds to a continuous spectrum for largeN . Assuming
en ­ aeiskn2vtd 1 be2iskn2vtd yields the dispersion re-
lation, v ­ 6

p
16C2 cos4sky2d 1 8C cos2sky2d, so that

the eigenvalues corresponding to the continuous band
between 0 (atk ­ p) and 6i

p
16C2 1 8C (at k ­ 0).

On the other hand, the pair of eigenvalues at6i will move
towards zero on the imaginary axis asC is increased. For
small C, we can assume that the corresponding eige
mode is almost completely localized at the hole, so th
en011 ø en021 ø 0. Sincefn0 ­ 0, we obtain that this
mode oscillates with frequencyL ­ 1 2 2C, so that the
corresponding eigenvalues are6is1 2 2Cd, to the low-
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est order inC. Then, equating this result with the ex
pression above for the edge of the continuous band giv
an estimate to the value ofC where these two eigenval-
ues coincide:C ­ 1y

p
3 2 1y2 ø 0.07735. This agrees

quite well with the exact, numerically obtained valu
C ; Ccr ø 0.07647. At C ­ Ccr , a Hopf-type bifurca-
tion occurs, as two complex conjugated pairs of eigenv
ues leave the imaginary axis and go out in the compl
plane (see Fig. 2). Thus,an oscillatory instabilityoccurs
for theA mode whenC . Ccr , with the instability growth
rate l given by the real part of the unstable eigenvalu
(see Fig. 2). For theB mode, all eigenvalues lie at zero
when C ­ 0. As soon asC is increased, one pair goes
out on the real axis and stays there for allC . 0. Thus,
theB mode is always unstable.

For C . Ccr , the imaginary part of the unstable eigen
value moves towards zero (i.e., the oscillation frequen
decreases) asC is increased. The real part of the
eigenvalue vsC is shown in Fig. 2 for two differ-
ent system sizes, and compared with estimations of
maximum growth rate from direct numerical integratio
of the DNLS model for chains large enough to elimina
the influence of the boundaries. In all cases the instab
ity is largest forC ø 0.32 wherel ø 0.120. For larger
C, there appear stable “windows” for the finite system
where the mode is stabilized by the boundaries. The
cation of these windows depends critically on the size
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FIG. 2. Real part of the unstable eigenvalues as a funct
of C in the model (1) forN ­ 61 (dotted) andN ­ 121
(dashed) sites, and the growth rate (solid) for an infinite syste
calculated for lattices of up to 15 000 sites. Inset: Asymptot
fit of the growth rate (points) with stretched exponential (line
(see text). Below: Instability scenario shown as the evolutio
of the eigenvalues of̂M for N ­ 121 sites.
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the system and the boundary conditions (in Fig. 2, pe
odic boundary conditionscN11 ­ c1 are used).

Similar “reentrant instabilities” have been found fo
discrete breathers of the finite-width Klein-Gordon chain
[15]. Qualitatively, the explanation is that for small sys
tems, the eigenvalues corresponding to the “continuou
spectrum are rather sparsely distributed, and the cor
sponding eigenvectors are localized over the size of t
system. Thus, as the eigenvalue corresponding to the
stable mode approaches the imaginary axis when incre
ing C, it may find a hole in the spectrum and join the
imaginary axis for a while. Then, a further increase o
C causes a collision with the next imaginary eigenvalu
and a new instability occurs. This procedure repeats its
until the eigenvalue has passed the phonon band eig
value which is closest to zero. After this the state
stable for all larger values ofC (e.g., in Fig. 2 the state
is stable for all C . 1.11 when N ­ 61, and for all
C . 1.38 when N ­ 121). Increasing the system size
implies that the eigenvalue distribution on the imaginar
axis will be more dense, so that the stable windows w
be smaller andcompletely disappear in the limit of the
infinite system, where the unstable eigenvalue never join
the imaginary axis.

For an infinite DNLS chain, the instability growth rate
decreases in an exponential-like way to zero for largeC,
and thus indicates that the dark mode is unstable for
C . Ccr . A quite good asymptotic fit is obtained with
a stretched exponential,l , exps2bCgd, with g ø 0.7
(see inset in Fig. 2). We also investigated the case
varyingfs0d to keep thecomplementary norm[5] constant
when varyingC. In that case, we found the asymptotic
decay of the instability growth rate withC to be faster
than purely exponential.

Figure 3 shows the time evolution for two differ-
ent values ofC when the initial state is a slightly per-
turbed darkA mode. A small perturbation has been
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FIG. 3. Time evolution ofjcnj2 with slightly perturbed dark
A modes as initial conditions forC ­ 0.30 (left) andC ­ 0.75
(right). Lower figures show the detailed dynamics for a few
sites around the center.
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chosen to be approximately in the direction of th
unstable eigenvector. If instead a random perturbatio
chosen, the qualitative behavior is the same, except
there will be an initial small amount of radiation befor
the unstable internal eigenmode gets excited. The
stable eigenvector is always spatially symmetric arou
the central site, and therefore antisymmetric with resp
to the dark mode itself, since the latter is antisymmetr
Thus, the main effect of the instability is a transition fro
a black (zero intensity at the middle) to grey (nonze
intensity at the middle) soliton, as can be clearly iden
fied at least forC . 0.3. This is similar to the instabil-
ity scenario of dark solitons in some continuous mod
[5], except the oscillatory dynamics. The direction

the resulting grey soliton is determined by the sign of t
perturbation projected on the unstable eigenmode.
large C, the grey soliton is almost black, moves slowl
and the radiation is small, while for smallerC the mini-
mum value of the soliton intensity increases as well as
velocity and the amount of radiation. For small and i
termediate values of the coupling parameterC, the result-
ing grey soliton decays continuously into radiation (s
Fig. 3).

It is important to study the oscillatory instability of dar
solitons for other types of nonlinear lattices. Here, we co
sider the AL-DNLS equationi Ùcn 1 Cscn11 1 cn21d 1

mjcnj2cn 1
1
2 sm 2 1d jcnj2scn11 1 cn21d ­ 0, where

0 # m # 1. The casem ­ 0 corresponds to the inte
grable AL model, whereas the casem ­ 1, to the DNLS
model analyzed above.

With the general formcnstd ­ fneiLt, and boundary
conditions fn ! 6fs0deikn (n ! 6`), the frequency
L is determined byL ­ 2C cosk 1 sfs0dd2fm 1 sm 2
1d coskg. In particular, for the black mode (k ­ p) the
relation becomesL ­ 22C 1 sfs0dd2, just as for the
DNLS model. As above, we putfs0d ­ 1 without loss
of generality.

In the AL-DNLS model, there is a lower limit ofC
for the existence of dark solitons, due to the instabil
of the background when the effective coupling chang
sign (see, e.g., Ref. [16]). This occurs whenC 1 sm 2

1d sfs0dd2y2 ­ 0, so that, whenfs0d ­ 1, the dark modes
exist only forC . s1 2 mdy2 (Fig. 4, dashed line).

Consideringcnstd ­ ffn 1 enstdgeiLt as above, we
obtain the linearized equations for the small perturb
tion en, and the dispersion relation for the continuo
spectrum (for the staggered mode with limjnj!` f2

n ­
1): v ­ 62

p
nskd f1 1 nskdg, where nskd ; s2C 1

m 2 1d cos2sky2d. Therefore, the eigenvalues corre
sponding to the continuous band lie between 0 (atk ­
p) and 6i2

p
s2C 1 m 2 1d s2C 1 md (at k ­ 0) for

C . s1 2 mdy2.
As above, an approximate expression for the onse

instability can be obtained by assuming that the int
nal mode is completely localized at the hole, so th
en011 ø en021 ø 0. Then, the corresponding eigenvalu
87
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FIG. 4. Solid line: Numerically obtained instability threshold
Ccr smd for the AL-DNLS model. Dashed line: Minimum value
of C for the existence of the dark localized modes. Inset
Examples of the eigenvalues atm ­ 0.2, below (A) and above
(B) the threshold curveCcr smd.

are 6is1 2 2Cd, to the lowest order inC. The col-
lision with the phonon band edge is then expected
occur for C ø s1 2 4mdy6 1

p
m2 1 m 1 1y3. Com-

paring this result with the numerically obtained values o
C for the bifurcation (see Fig. 4) shows that the insta
bility for smaller m occurs for smallerC than expected
from this analytical estimate. The reason why the b
furcation occurs earlier is that it in fact results not from
a collision with the band edge phonon, but with a sec
ond localized mode that has bifurcated from the ban
edge slightly before (see the insets in Fig. 4). As a ma
ter of fact, studying the bifurcation for the DNLS mode
very closely shows that also in this case the collisio
probably occurs with a second localized mode comin
from the phonon band. However, this localized mod
only occurs extremely close to the bifurcation whenm

is close to 1 (form ­ 1 we observe it forC . 0.076 464,
and the bifurcation occurs atC ­ 0.076 468 . . .). And
since it will be very weakly localized, we are not able
to say for sure whether it will be localized or not for the
infinite system. But for smallerm, this localized mode
undoubtedly exists, and has the same spatial symmetry
the hole mode. It describes an internal degree of freedo
of the dark soliton, i.e., itsinternal mode.

Otherwise, the qualitative scenario with stable an
unstable windows for finite systems and instability a
the way up to the continuum limit for the infinite system
remains the same for all AL-DNLS lattices with0 , m #

1. The exception is the limit of the AL model (m ­ 0)
which is known to beexactly integrable. At m ­ 0, dark
solitons are always stable for allC and their spectrum has
88
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a pair of eigenvalues exactly at zero corresponding to t
exact translational invariance.

In conclusion, we have described, for the first time
our knowledge, the oscillatory instability of dark solitons
This new type of dark-soliton instability appears due
inherent discreteness of a nonlinear lattice model, a
the universality of the instability scenario suggests th
it should be also observed in other nonlinear mode
supporting dark solitons. We remark that the instabili
observed here may be regarded as an extension of
instabilities existing for small lattices [17].
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