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Abstract. The discretization by finite elements of a model variational prob- 
lem for a clamped loaded beam is studied with emphasis on the effect of 
the beam thickness, which appears as a parameter  in the problem, on the 
accuracy. It is shown that the approximation achieved by a standard finite 
element method degenerates for thin beams. In contrast a large family of 
mixed finite element methods are shown to yield quasioptimal approxima- 
tion independent of the thickness parameter. The most useful of these 
methods may be realized by replacing the integrals appearing in the stiff- 
ness matrix of the standard method by Gauss quadratures. 

Subject Classifications: AMS(MOS):  65N30; CR: 5.17. 

1. Introduction 

In this paper we examine the finite element discretization of a model vari- 
ational problem in which the dependent variables represent the vertical 
displacement and the rotation of the vertical fibers of a clamped loaded beam. 
The thickness of the beam appears parametrically in this model and we set as 
a goal to approximate the solution as accurately as possible for all values of 
this parameter. 

In Sect. 2 some notations are collected and the beam model is presented in 
Sect. 3. In the following section we consider discretization by direct application 
of Galerkin's method with continuous piecewise polynomial subspaces of equal 
degree for the two variables. Although this standard finite element method 
produces quasioptimal approximation in H ~ and optimal order approximation 
in L 2, the approximation degenerates as the thickness of the beam decreases, 
resulting in a reduced uniform order of convergence in some norms, or, in the 
case of linear elements, in divergence. Thus the standard finite element method 
fails to achieve the goal set out above. 

By introducing the shear stress as a third dependent variable one arrives at 
an equivalent variational formulation of the beam model. The discretization of 
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this second variational principle, which is mixed in the sense that now both 
displacements and stresses are present, is the subject of Sect. 5. Specifically we 
show that for (almost) any choice of finite element spaces for the original 
displacement variables, there is a finite element space in which to approximate 
the shear stress variable such that the resulting mixed finite element method is 
stable, with stability constant independent of the beam thickness. Consequently 
quasioptimal estimates hold (for the triple of variables) without the degeneracy 
mentioned above. The proof of this result relies on an abstract stability 
theorem whose proof is deferred until Sect. 7 of the paper. 

The additional stress variable introduced in the mixed formulation can be 
eliminated analytically after discretization, giving rise to what may be called an 
indirect displacement method. This method involves only the two original 
variables. When these are sought in continuous piecewise polynomial spaces of 
the same degree this indirect method achieves our goal of optimal order 
accuracy for thick and thin beams, and is thus superior to the direct displace- 
ment method. Moreover, in this case the indirect displacement method admits 
an interesting and convenient interpretation. As is shown in Sect. 6, it differs 
from the direct method only in that certain integrals are computed using a 
Gaussian quadrature rule rather than exactly. Thus it is an example of a 
reduced integration finite element method. 

Reduced integration - the artifice of lowering the order of the integration 
rule used to compute certain contributions to the stiffness matrix in order to 
achieve better approximation - has received much attention in the engineering 
literature over the past decade [5-10,12,13]. Its principle success has 
been in thin plate problems (the two dimensional analogue of the problem 
considered here) and in modelling nearly incompressible materials. Numerous 
heuristic reasons for its success have been advanced, but no complete mathe- 
matical analysis exists. Bercovier [2] justifies one reduced integration tri- 
angular element for incompressible elasticity, although that approximation 
method does not converge with optimal order for the degree employed. The 
simpler one dimensional problem considered here allows a complete expla- 
nation. 

In the final section of the paper some numerical results are presented 
comparing the error in the standard and reduced integration finite element 
approximations of the beam model. These decisively substantiate the theory 
presented. 

2. Notations 

All function spaces shall be formed with respect to the unit interval I. The L z 
inner product of two functions f and g is denoted ( f ,  g). The associated norm 
of the function f is written lifII, while I[f[Ir denotes the norm in the Sobolev 
space Hr: 

llfll 2 = Ilft12 + IIf'll2 + ... + t] f(~ 2. 
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On I 2 l l = { f e H  1 l f ( 0 ) = f ( 1 ) = 0 }  the no rm f - -* l l f ' l ]  is equivalent  to the H 1 
norm. For  g e H -  ~, the space dual to /~1 ,  we thus set 

Ilgll_ , =  sup ( f ,  g)/ l l f ' l l .  
fsfi~ 

Finally, we denote  by V the space /~1 x/_)l and use the norm fl~0, collv=(ll~o*ll 2 
+ Ilco'll2) ~ 

For  0 < d <  1 we introduce the inner product  Bd(-, .) on V defined by 

Bd(~O, CO; 0,  U) = ((p', ~p') + d -  2 (,p-co, O-v') 

for (q), co), (~, u)cV, and denote the associated norm 

Ill(p, collld = [Bd(~Po cog ~o, co)]L 

Note  that  by the triangle inequality and Poincar6's  inequality, IIco'll < II(p-co'It 
+ ][(p'l[ for all ((p, co)eV, so that  

Ilqo, coil2 ~ 311lq~, colll2 ~ (3  + 6d-2)II~p, coil 2 

For  the purposes  of discretization we shall use finite element spaces defined 
with reference to part i t ions of  I. If d = { X o ,  X ~ . . . .  ,x,} is a par t i t ion of I (0 
= X o < . . . < x  =1  ), the m a x i m u m  subinterval  length is denoted h a = m a x ( x ~  
-x~_  1). We shall deal only with quasiuniform partitions. Tha t  is, the phrase 
" for  all A", explicit or  implied, refers to all part i t ions d satisfying 

m i n ( x i -  x i_  1)>hA 

with ct being a fixed constant.  
For  r > 0  and a par t i t ion A, ,////r _ _ ~(A) denotes the space of functions on I 

which restrict to polynomial  functions of  degree at mos t  r on each subinterval  
(x~ 1, x~). The  subscript  - 1  refers to the lack of continuity constraint .  For  
k > 0  we let o/r r ~ ( A ) m C k ( I )  and ~ _ r - _ ~g[k(A)-oJPt~(A)c~I2l 1. Finally we define 

o r 

The letter C is used to denote  a generic constant  independent  of  de(O, 1] 
and the part i t ion A. 

3. The  B e a m  M o d e l  

The model  var ia t ional  p rob lem we consider is 

find (q~,l, c~ V such that  

(q;d, ~ ' )  + a l d - 2  ( P d -  co~, 0 -  v ' )  = a2(g,  ~)) for all (0, v)eV. 
(s~) 

Here  a 1 and a 2 a r e  positive constants.  For  convenience and without  loss of  
generali ty we shall assume that  a t = a 2 =  1 so the quant i ty  appear ing  on the left 
hand side is simply Bd(q) ~, cod; ~,, v). The  boundary  value p rob lem associated 
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with (Sa) states that 

-(p'~+d-Z((pa-~o'a)=O on I, 

d -  2((pa- co~)' = g on I, 

,pe(0) = r = toe(0) = ~o~(1) = 0. 

This system, which was studied by Timoshenko [-11], may be derived from the 
classical theory of plane linear elasticity by dimensional reduction. Briefly, we 
suppose that the undisplaced beam occupies the region ! x I - d / 2 ,  d/2] in the 
(x,y)-plane and is subject to a vertical body force -dZg(x )  which is inde- 
pendent of y. (The factor d 2 assures that the energy has a finite, non-zero limit 
as d--*0.) Letting u and v denote the horizontal and vertical displacements, the 
energy of the beam is 

d 
1 

E 1 2 2 = ~  ~ {2(ux+Vy)2 + Zl~[ux +vy +(uy+vx)Z/2]- ZdZgv} dydx, 
0 d 

- 2  

where 2 and/~ are the Lain6 coefficients. This quantity is to be minimized over 
the set of displacements satisfying u = v = 0  when xe{0, 1}. Prior to minimi- 
zation, however, we impose Mindlin's hypotheses: 

1) the vertical displacement is independent of y; 
2) the midline y = 0  is not displaced horizontally; 
3) the vertical fibers x = constant remain linear after displacement. 

Mathematically this requires that u and y have the special form 

u(x, y ) =  - y,p~(x). 

v(x, y) =,.~(x), 

where ~o d, e0de/~l; although using symmetry one can show that the formally 
weaker assumption that u and v are linear in y leads to the same conclusion. 
By minimizing E over all such (u, v) we arrive at problem (Sa) (with a 2 = 12/(2 
+ 2/1), a 1 =a2kt ). 

When d ~ l  one often assumes in addition to Mindlin's hypotheses the 
Kirchoff hypothesis that the vertical fibers remain normal, i.e., that ~oa=co ~. 
Energy minimization then leads to a one dimensional biharmonic problem for 
the vertical displacement. The model considered here is often viewed as a 
penalty procedure for that problem. However, since the Timoshenko model is 
less restrictive our concern is the direct approximation of (Sa) for de(0, 1]. 

Before considering discretization we prove a theorem asserting the well- 
posedness and regularity of solutions for a slightly more general problem than 
(s~). 

Theorem 3.1. Let f, g~H-1, 0 <d< 1. Then there exists a unique pair of functions 
(p, #)e V such that 

Ba(p,#;O,v)=(f ,O)+(g,v ) forall (tp, v)eV. (3.1) 
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Moreover ,  Jor p = O, 1, . . . ,  there is a constant C depending only on p such that 

Ilpllp+ 1 -~- II~Np+ 1 + d -  2 lip - ~']lp~ C ( l l f  llp_ 1 + Ilgtlp_ 1). (3.2) 

Proof. The existence of a unique solution is guaranteed by the Riesz repre- 
sentation theorem. Setting (~k, v)=(0,/~) in (3.1) we see that 

[1~'1[ <= [Ip{I +d  2 IlgH_ i. 

The choice (~,, v)= (p, 0) then gives 

IIp'll < II/ll_ 1 + tlgll_ 1, 
and so 

II#'ll < Ilfll __x +(1 +d  2) Ilgl1-1. 

Next take (~, v) = +_ ((x - x2)/2, ( - 2 x 3 + 3 x2 _ x)/12). It follows that 

I(p, 1)l<=Cda(llflL l+llgll_O. 
x 

Finally, setting @=0, v ( x ) = # ( x ) - ~ [ p - ( p ,  1)], we get 
0 

Ilp-#'Jl2 = (p ,  1)2 +d2(g ,  v) 

~ ( p ,  1) 2 + d2 ligll__, [llp-,u'll + I(p, 1)13, 

and hence 
lip -~'11 < Cdg( i l f I I_  ~ + Ilgll_ 1). 

This proves (3.2) when p=0.  The estimate for p > l  follows by differentiating 
the differential equations satisfied by p and /~ and employing a simple in- 
duction. [] 

4. The Standard Finite Element Method 

Let r > l  and let A be a partition. An obvious discretization of (Se) results 
from employing Galerkin's method with the subspace Vr(A) of V. 

Find ((Ped, COeA)CVr(A) such that 
(S~) 

Bd((PdA, (Odd ; @, V)=(g, D) for all (0, v)eVr(A)  . 

It is easy to prove that for fixed d, ~dd and toed converge to q~d and ~o d in both 
L 2 and H 1 at the approximation theoretic optimal rate with respect to h d. Such 
convergence however is not uniform with respect to the thickness d. The 
following theorem gives the rates of convergence which hold both for constant 
d and uniform in d. 

Theorem 4.1. Le t  ((Pd, COd)eV and (q)dd, 03dA) eVr(d) solve (Sa) and (Sad) respec- 
tively. Denote  by O'dd:q)d--q)dd and f laa:(oa--e)dd the errors. Then there exis ts  a 
constant C independent o f  dc(0, 1], g c H  ~ - i, and the partit ion d such that 
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< ~ C  min(d -  2 h 2, 1)Ilgll 

llTeal[ = ( C  min(d -1 h '+ ~, h ~) IlglI~_ ~ 

Ill'all < C min(d -~ h ~, h ~- i)Ilgll~_ ~, 

C m i n ( d - 2 h  2, 1)llgll if r = l ,  
I[fleat[ < C r a i n ( d -  1 h,+ 1, h')]lgl]~_ 1 if r >  1, 

< ~ C m a x [ h ,  min(d-2h2,1)]llg]l if r = l ,  
Jlfl'eall = ( C h  r Ilgll~_ ~ if r >  1. 

Proof We first establish the auxilliary estimate 

IIIc~ea, &allle < C min(d -  1 h', h" 1)Ilgll~_ l" 

Since (Pea, coea) is determined by projection in a Hitbert space, 

[llc~ea, Gallle= inf IIIq~e-~o, coe-coG. 
(r co)eVqa) 

Consequently 

if r = l ,  
if r > l ,  

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Illc~ea, G~llle ~ Cd-1 inf IlrPe- q~, co,~-~][v 

< Cd-  ~ h~(ll~o~ll~+ ~ + II~ell ,+ x) 
< C d -  i h r Ilgllr._ ~. 

Since IIIc~ea, flealll~ is clearly bounded independent of d and A, this proves (4.5) 
in case r =  1. If r >  1, let (pc.//C~-l(A) satisfy I1%-'#111 < Ch "-1 Ilgllr_~ and (~o e 
- q ~ , l ) = O .  Set p=qo-q~e+co ~. Then (p, 1)=O,  so there exists v~./ / / ;- l(A) 
such that (v ,  1 ) = 0  and 

IIv -p l l  < Chr IIp~r~ll = Chr I1(~0~-coJ~ql < Cdh~ IIgL_ ~. 

Here p~  denotes the rth derivative of p taken piecewise. The former condition 
assures that v is the derivative of a function co in//2f(A), and then 

Ill cqa, flea II12 <-- Itt,ae - q', coe - '# 1112 
= I}(pS--(p'lI 2 -}-d - 2  j lv-pll2 < C h  2 r - 2  Itgll2_ 1. 

This completes the proof of (4.5), The estimate (4.2) is an immediate con- 
sequence. 

To prove (4.1) we use a duality argument.  Define (p,/z)cV by the equations 

Ba(~,v;p, /x)=(~b,  cqa ) for all (~h, v)e V. 

Then, by Theorem 3.1, llP"ll+tl~"ll<CIIc~eall and clearly p - # '  is constant. 
Now 

Ilc(aall 2 = B e(~ flea; P, 12) 

=Be(c~ea, flea; P - 0 ,  # - v )  

tic'Sail ItP'-- (~'tl + d -  2 Nc(d a _ fl;ail tip - 0  -~t '  +fill  
for all (0, u)eVr(A) . (4.6) 
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Let tpe,/#~(A) be chosen such that I1~' II =< CIlp' II, lip' - ~"11 _-< Ch Iip"11 < Ch IIc~aAI, 
and ( P - 0 ,  1 ) = 0 .  Then p-t~-,u'cja/~(A) and (p-tP-ta ' ,  1 ) = 0 .  In the case of 
linear elements let coe,/C/~ interpolate p - g J - / s  at the midpoints  of each 

x 

subinterval of A. Then u(x)=5co determines a function in J///I(A) and 
0 

l i p - ~ , - ~ '  + UII _-< Ch II(p -g , -~ ' ) '11 = Ch II ~/11 

< Ch llP'tl-< Ch lie, ca II. 

Therefore, from (4.6) 

ll~aall2- -< Ch(llc~'eall +d--2 IIc~aa-/~a II)II~aall 
< Chd 1 [llc~aa,/3aallta II~aall, 

and so 

II~aall ~ Chd x IIIc~ea, &~llle~ Cd-2h2 Ilgll, 

by (4.5). Since also II~e~ll ~ IIc~'eall = C, (4.1) is established when r =  1. 
x 

If r > 1, we simply let v(x)= 5 (p -O-y ' ) .  Then v e ~ 2 ( A ) .  Applying (4.6) and 
(4.2) we get 0 

II~dall = Ch IIc~2,a II ~ C min(d 1 h ~+ 1, h ~) IIgL__ x- 

We proceed next to the proof  of (4.4). For  all ve.J/{(~(A) the pair (0, - flea + c~ 
-v)cVr(A) and so the inner product  (%a- f i ' e~ , - [Yaa+~~  =0" It follows 
that 

i1135all 2 <(ll%all + II05-v'll)llPS~ll + II~aall 11o~5- v'll, 

and hence that 

il/3'eall ~ C(li%all + inf IIc4-o'lI) 
,)~.d;(zl) 

< C(llc~aal] + hr Ilgllr i). 

Combining this estimate with (4.1) gives (4.4). 
Finally we prove (4.3), again employing a duality argument.  In this case, 

(p, y)e  V is defined by 

Ba(~,,v;p,l~)=(v, fia~) for all (O,v)eVr(A). 

For  r =  1, we let (Pa, Ya)eVl(A) be the projection of (p, y) with respect to the 
inner product  B e . Then 

11/3dell 2 = Ba(~aa, l~aa; P,/~) 

= Ba(~ flea; P -Pa, Y-lie) 

< IIIC~da,/~e~llla IIIp --Pa,/~--  ~llle 

< C min (d -  2 h 2, 1)IIgll Ilflaall, 

where we have employed (4.5) twice. 



412 D.N. Arno ld  

For elements of higher order, we let (P4, I~A) be the Bd-projection of (p, p) 
o n  V z ( A ) .  Then similar reasoning gives 

II/~a4 II z < [ll~d4,/~a~llla I[Ip- p4, ~ -  ~4111a 
< C min (d- 1 h r, h r-  1)Ilgllr ~ min (d- i h 2, h)1l/~4 II ~, 

which combined with (4.4) implies (4.3). []  

The following table summarizes the rates of convergence guaranteed by 
Theorem 4.1. 

Table  1. L 2 rates of convergence  

r = I F ixed  d 2 1 2 1 
Uni fo rm in d 0 0 0 0 

r > l  Fixed d r + l  r r + l  r 
Uni fo rm in d r r - 1  r r 

Thus none of the quantities II~d411, 11~41I, and IlfldAll is shown to converge to 
zero at the optimal rate uniformly in d, and, in the case r =  1, neither is Ilfl;All- 
We now prove that the uniform rates listed in the table are in fact sharp in 
each case, with one exception. Although numerical experiments such as those 
presented below in Sect. 8 support  the claim that 11/3d411 =O(h~) uniformly in d 
when r > 1, the author does not know how to prove that it is no smaller. 

The following theorem states that uniform convergence of q)d4 in either L 2 
or H ~ at a rate faster than predicted is impossible except in the trivial case 
when the solution functions are polynomials in the finite element space. The 
notation is as in Theorem 4.1. 

Theorem 4.2. Suppose that either 

II~d411 =o(h~) uniformly in d, (4.7) 
o r  

liT'd411 =o(h~- 1) uniformly in d. (4.8) 

Then q)d and co d are polynomials of degree at most r. 

Proof By applying an inverse property one may deduce from either (4.7) or 
(4.8) that 

l[q~ r~- ~'~fl=o(1) uniformly in d (4.9) t/~d4 I I  

where ,,(r) denotes the piecewise rth derivative of q)dzl" We shall infer the tl,-'dA 
conclusion of the theorem from (4.9). 

By Theorem 3.1, co a is bounded in H ~ independent of d and so 

II~oa~- 0954112__< d 2 IIIq~a4, coa41llff < d 2 IIl~od, ~oal[l~ 

---- d2  ( g ,  COd) ~ C d  2, (4.10) 
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where the constant C depends only on g. Now since (PeA is a piecewise 
polynomial of degree r and CO~A is a piecewise polynomial of degree r - 1 ,  it 
follows that 

09aAN ~h  A II(P~II[ 2, C I l ( P e ~ -  ' 2 zr 

C depending only on r. Thus H(P~l]<=Cdh2 ~ and consequently II(P~II--,0 for 
any sequence of pairs (d,d) satisfying d + h A + d h j ' ~ O .  Combining this with 
(4.9) shows that II(P~ll ~ 0  also. If r < 3  this implies that g = 0  since g=(P~". For 
r > 3  we get at least that g~-31=0, and so g is a polynomial of degree at most r 
- 4 .  It follows that (Pd and COd are polynomials of degree at most r - 1  and r 
respectively. [] 

In the case of linear elements the above proof shows that if d tends to zero 
faster than h~, then (Pa~ converges to zero in H ~. In light of (4.10) O)d~ also 
converges to zero. Thus it is impossible that either (Pd~ converges to (Pa in L z 
uniformly in d or that e)d~ converges to me in L z uniformly in d, except in the 
trivial case when (Pd~=C%A =0. 

5. A Mixed Variational Principle 

Let ~d=d-2((pa--ofd). Then, by Theorem 3.1, (deL 2 and II~ell =< c Ilgil_ 1 with C 
independent of d. The standard variational problem (Sa) of Sect. 3 (with a I = a  2 
= 1) is equivalent to the mixed variational system 

find ((Pa, COd, ~e) e V x  L2 such that 

((pS, t)') +(~d,t/J--v') = (g, 1)) for all (tp, u)eV, (Me) 

((pd--CO•, /7) -d2(~a, /7)  =0  for all r/eL 2. 

If d is set to zero this system becomes of the form studied by Brezzi [3], Falk 
and Osborn [4], and others. For positive d, (Me) is of the general form 
considered by Bercovier [2], but his results concern the approximation of the 
limiting problem (d=0) and so cannot be used to derive the uniform approxi- 
mation results we desire. We shall instead employ the following abstract 
stability theorem which will be proved in Sect. 7. 

Theorem 5.1. Let ~K and ~ be Hilbert spaces, a: ~ x ~t/'~IR and b: ~IF x~ig'~lR 
bounded bilinear forms, and de[0, 1]. Suppose that the following conditions are 
fulfilled: 

1) a is symmetric and positive semidefinite ; 
2) there exists C1>0  such that for all z e L r = { v e ~ l b ( v ,  w)=O for all we 

~ } '  C 1 a(z, z)> Jlzll~; 

3) there exists C 2 > 0  such that for all we~lg" there exists ve~U with 

C 2 b(v, w)>= [l vile Ilwll~. 

Then, for each pair (f, g ) e ~  x ~f" there exists a unique pair (v, w ) e ~  x ~/K such 
that 

a(v, u)+b(u, w ) = ( f ,  u)~ for all u e ~  
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and 
b ( v , y ) - d 2 ( w , y ) ~ c = ( g , y ) ~  for all y6~q#. 

Moreover  Ilvll~-t-l[wll~C(llfll~+llgll~), the constant  C depending on C1, 
C 2, and the norms of the bilinear forms a and b, but  not  on d. 

We now show that the variat ional system (Me) fulfills the hypotheses of 
Theorem 5.1. Here  "V'= V, ~/U=L 2, 

and 
a((p, co; 0, v) =(q) ' ,  ~ ' ) ,  

b(q), co; ( ) =  (q) -co ' ,  ~), 

for (~o, co), (~, v)eV, ~eL 2. Indeed a is clearly semidefinite over ~.  In this case 
the kernal space ~q= {(q~, co)[ coe/i  2, ~o =co'}. Hence, for (~o, co)e~,  

a(q~,cogq~,co) IIqr x , = )=~(11~ 112+ Ilco'll 2), 

which verifies the second hypothesis. To  verify the third, we may set, for given 
~GL 2, qo(x)= 6(~, 1)(x--x 2) and define coeH 1 by co '=q ) -~ .  

Now let d{ and ~Ar denote  finite dimensional  subspaces of /~1 and consider 
the approximat ion  of  (Me) via Galerkin 's  method  using W = ~ x sf" to approx- 
imate V and 

~qF = {co' + c I coe~,, ce le}  

to approximate  L 2. We assume that ~ contains elements of  non-zero mean 
value (which is certainly necessary if Jd  is to approx imate /~1  well), and set C o 
= inf { II q~' II ] r edg,  (q), 1) = 1}. (For  common  finite element spaces C o < 6.) With 
this choice of spaces we verify that the hypotheses of Theorem 5.1 remain 
valid. The first hypothesis is again obvious. For  the second we identify 
={(q~,co)eY/~]co'=z,v.q~} where ~, ,  is the L 2 projection onto  YIC. Therefore if 
(q~,co)e~ e, a(fp, co;cp, co)~l(ll(p']]2+][co'[]2). Finally we verify the third hy- 
pothesis of  the theorem. Fix 9)oeJg with ((Po, 1 ) = 1  and II~oo[l< C o. Given ( e  

set ~o=(~, 1)q) o. Then ~z~c~p-(e~r and ( x ~ ( p - ~ ,  1 ) = 0 ,  so there exists 
c o e ~  satisfying co'=1t~r Moreover ,  II~o'll = Co II~ll, Ilco'[I <(1 + Co)II~ll, and 
b(q), co; ( ) =  ][(]t 2, yielding hypothesis 3) with C 2 depending only on C o. F rom 
the theorem we conclude that  the mapping from f "  x ~ to itself associated 
with the Galerkin  equat ions is an isomorphism. It follows in a s tandard way 
[1] that the Galerkin  solution is quasioptimal.  This is summarized in the 
following theorems. 

Theorem 5.2. Let J/d and sV" be finite dimensional subspaces of 121 ~ and assume 
that there exists q)~d/l with ( q), 1)=1 and Ilq)'t[ <Co. Set ~#/~= {co' 
+c]coc~,  c~IR}. Then for de[0 ,  1] there exists a unique triple 

((Pa~, COax, ~a~) ~d/[ x JV" • ~ such that 

( q ~ ,  ~ ' )  + (~a~, ~ -  v') = (g, v) for all (~9, v)~//r • ~ ,  

((Pa~--CO'a~, q) -d2(~a~, q) =0 for all t/~'/r 
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Moreover there exists a constant C independent of d and depending on ~ and 
jg" only through C O such that 

=< C inf{llq/a-~o'll + lice'a-~/ll + lICe-CII t(~o, a), C)s~ '  • Y • ~ }  

Note that if d+0 ,  then 

~.~ = d -  ~ ~ ( ~ o ~ . ~  - c o ~ ) .  ( 5 . 1 )  

Hence, the pair (~oa, ~, coa~.)e~////x ~ satisfies 

(q)'~.~, I[1')-kd-2(rc.w(fpa./a-(.o'a.,r 11/- ,)'> = (g ,  u) 

for all (~, v)e./a: x ./vq (5.2) 

6. Mixed Finite Elements and Reduced Integration 

In this section we consider the special case of the discretization considered in 
the previous section in which, as in Sect. 4, q0 a and e)e are approximated in 
o~;(A). Thus we take J d = , , f  =,/~;(A) and ~#: = jr - I(A). Let 
((oa~,r ~ed)e,~r x j V" x~#/ denote the Galerkin solution, the existence of 
which is guaranteed by Theorem 5.2. 

Let 0 < ~ 1 < ~2 <-- .  < ~r < 1 and w~, w z, ..., w denote respectively the points 
and weights of the r point Gauss quadrature rule on [0, 1]. Define the approxi- 
mate L z inner product 

(q~, ~,)~= (x,-x, i) ~ wj.(q)O)[~,_ ~ +(x,-x,_ l)~j]. 
i_1 j=l 

for q~, ~,e ,~2  ~(A). (Recall that 0 = x 0 < x  I < . . .  < x , = l  denote the knots of the 
partition A.) A reduced integration finite element method is given by 

find ((Pa~, &aa) e W(A) such that 

(~o'e~,O')+d 2(~octzl-~'azi,@-t)')a=(g,~)) foral l  (~,~))eV~(A). (RaA) 

It is easy to see that the problem (Re: 1) has a unique solution. The key 
observation of this section is that 

((PeA, cSa~)=((Pea, co,~) and (da=d-~.~,:-,~<~(~%A--~'~)" 

This is an example of a more general equivalence between certain mixed 
methods and particular reduced integration schemes [8], but we shall give the 
elementary proof here. 

Comparing with (5.1) and (5.2) we see that to establish this claim it suffices 
to show that 

(rc/a%~cA)p,#)=(p, lt),~ for p,t~e~{~l(A). 

For p c ~ 2 t ( A )  let IApeJg~] ~ interpolate p at the Gauss points. Then, for 

(X~p, ~ ) = O ~ p ,  ,7>~ = (p,  ,7>~ = <p, ~>, 
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so l ~p=~za ,~  tslP" Hence, for ~te~'" ~(A), 

(~z,,~ i , (A~ P" t~) = ( I ~ p, p )  = ( I ~ p, P)  A = (P,  /~) ~, 

which establishes the claim. 
The problem (ReA) appears to be a minor modification of problem (Sun). 

However, comparison of the following theorem with Theorem 4.1 shows that 
this modification has an extremely beneficial effect on the accuracy of approxi- 
mation for small d. 

Theorem 6.1. Let  ((pa, co~)eV and (Oa~,~a~)~V~(A) solve (S~) and (Ra~) re- 
spectively. Denote by ~YaA=qoa--~paa and ~aa=coa--(haA the errors. Then there 
exists  a constant C independent o f  d~(O, 1], g6H ~ a, and the partition A such 
that 

II~-~AII + I I /~  II + hdl~;~ll + 11~5~11) < Ch ~+ ' Ilgll~_ ,. 

Proo f  Note that 

inf I Id,-dl l<Ch~llC~ll <=Ch~llgllr , 

by standard approximation theory and a regularity result from Theorem 3.1. 
Hence the estimates on ~'a~ and /Tea follow directly from Theorem 5.2. Indeed 
this theorem gives us more. Putting (a~=d 2~z~%,l~)(OeA--Ofe~ ) and ?a,--~a 
-(aa, the estimate 

117~ II < Ch" [Igll,_, (6.1) 
also holds. 

To establish the L z estimates we use duality. Define (p , /0eV by 

B~(q),co; p , / ~ ) = ( q ~ , ~ ) + ( c o ,  f i~)  for all (q~,co)eK (6.2) 

and set ~ = d - 2 ( p - p ' ) .  By Theorem 3.1, 

Ilpl12 + IIs~l12 + Ildli, ~ C( l t~ l l  + II/~11). 

Setting q)=8a~, ~O=/~eA in (6.2) and using the definition of ~d and the mixed 
finite element equations satisfied by (0,a, o5~, ~eA), we have 

- !  

= ( c ~ a , j , p ' ) + ( 7 - a ~ , p _ # '  ) - -, _ d  2 _ -' + ( ~ - [ S ~  ,/.~, ~)  

= inf(a'aA, P'-- r  + (~aA, P -- 0 - -p '  + V') +(aa~ -/3;~ - d 2  7a~, ~ - r / )  

where the infimum is over all (0, u)eVr(A) and r/cJgL-~l(A). Thus 

h - - t  

_-< Ch ~+ ~ Ilgli~_, ( ] la~ ij + II/~il), 
as claimed. []  
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7. Proof of  an Abstract Stability Theorem 

In this section we give the deferred proof of Theorem 5.1. Recalling the 
notation of that theorem, let also ~)' denote the orthogonal complement of Y" 
in "f: We define the following linear operators: 

A: Y'-- ,~,  
Q: ~ - - ,~ ,  

R : r ~,~/, 

B: ~-> #~ 

( A z  1 , z 2 ) , f , . ~ - a ( 2 1  , 7-2), 

(Oz,, y,),o=a(z,, y,), 
( R y:, y2) ,.=a(y:, Y2), 
(Bylo w),~ =b(y 1, w). 

Here z~,z2e~,  y~,y2e(?/, and w~/~: Identifying *" with ~ x r 1 6 2  we also define 
a linear operator He: Y/ x # ' - -* ' / '  x # by 

He(z, y, w)= R B* (7.1) 
B - d  

for all z e ~ ,  y e ~ ,  wef t :  
Using this notation we reinterpret the hypotheses and conclusion of Theo- 

rem 5.1. Hypothesis 2) is equivalent to the assertion that 

C:(Az ,  z),~llz]l~ for all z c ~ .  

This implies that A is invertible and I IA-~I I~ . j )  < C : -  Let P = R  
- Q A - 1 Q , :  ~/__+~. Then 

<Py, y ) ~ = a ( y - A  I Q * y , y - A ~ Q * y )  thrall  yG'?r 

so the first hypothesis assures that P is positive semidefinite. The third hy- 
pothesis is equivalent to the invertibility of B with lIB tll~(~.~vl<C2 �9 Letting 
N e=B*B+d 2P it then follows that N e is positive definite and 

II+o~ ,?~< C 2. 
The assertion of the theorem is that He is invertible and 

}lll;~}b.~(r~.~• with C dependent only on C l, C 2, and the norms of 
the linear operators A, Q, R, and B. We establish the theorem by exhibiting 
/-/~ 1. 

/-/d 1( z, Y, w) 

A - '  +d--2A--'Q*Ne ' Q A - '  
= -d2Ne-IQA - : 

-BN~ IOA--1 

d2Al   l 2, , 
B u ;  ~ - s u e  ' P 8  -~ J 

(7.2) 

To verify this formula one simply multiplies the matrices in (7.1) and (7.2) and 
performs some algebraic manipulation. [] 
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Fig. 1. Graphs  1-3: Standard finite element method. Graphs  4-6: Reduced integration finite 
element method. In Graphs  1 and 4, d = 1 0  - i ,  in Graphs  2 and 5, d=h~; in Graphs  3 and 6, 
d = 1 0  -3. 

Error  in linear finite element approximat ions  plotted as a function of h. 
�9 L 2 norm of error  in ~p~ 
A L z no rm of error in co d 
+ L 2 no rm of error in ~0' d 
c~ L ~ norm of error in o)~ 
Numbered  line segments are drawn at the marked slopes for compar ison  

R e m a r k .  Formula (7.2) is valid for d = 0  and may be used to compare 1 7 2 1  to 
17o I. One easily checks that IIH21 _ 17 o iH~ir • ~ , r x ~ ) < C d2 ,  which furnishes 
an elementary proof of the major theorem of [2] under slightly more general 
hypotheses. This justifies the use of the method (ReA) as a penalisation method 
for the biharmonic limiting problem. 
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Fig. 2. Graphs  7-9: Standard finite element method. Graphs  10-12: Reduced integration finite 
element method. In Graphs  7 and 10, d = 1 0  t; Graphs  8 and t l ,  d=hZ; in Graphs  9 and 12, 
d = 1 0  -3. 

Error  in quadratic finite element approximat ion  plotted as a function of h. 
�9 L 2 no rm of error in qb 
z~ I z no rm of error in ~o a 
+ L ~ n o r m  of error in ~P'a 
[] L 2 n o r m  of error in co~ 
Numbered  line segments  are drawn at the marked slopes for compar ison 

8. Numerica l  Results 

In this section we give the results of computations of the solutions to the 
standard finite element equations (Sd~) and the reduced integration equations 
(R~A). For simplicity the mesh A was taken to be uniform and the loading 
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function g to be identically one in all cases. All computations were performed 
on a UNIVAC 1108 computer using 60 bit double precision arithmetic. 

Two sets of computations are presented, each being exhibited in six graphs. 
The first set of computations were performed with linear finite elements, the 
second set with quadratics. 

In each graph the L 2 norm of the error in each of the four quantities ~o d, 
co d, ~o~, and co~ is graphed as a function of h. The values of h used were 2 -k 
with k = 2, 3 . . . . .  9 in the linear case, k = 2, 3 . . . . .  7 in the quadratic case. Both 
axes have been transformed logarithmically so that the slope of the error 
curves gives the apparent rate of convergence as h tends to zero. Absolute 
errors are shown. The exact solution depends on d, but for the computations 
here none of the quantities II~odlr, II~dll, I1~o'~11, Ilco'dll differs by more than a factor 
of 2 from its value when d=0.1.  These values are: 

IL~Oo.1 [I = 5 .8  x 1 0 -  3, 

Ilcoo.111 = 2 . 6 x  10 -3, 

[Iq)o.lll=N.Vx10 -2, 

Ncoolll=8.3x 10 3. 

The errors for the standard linear finite element method are shown in 
Graphs 1-3. For the first graph d=0.1 and convergence at the expected rates 
(ct: the first line of Table 1) is evident. In the second graph d varies with h (d 
=h-~) and the lack of any uniform approximation is clear. In fact the finite 
element solution does not converge to the true solution at all in this case, as 
was shown in the proof  of Theorem 4.2, and is clear from the graph. Possibly 
more surprising is the third graph in which d is held constant but small: d 
=0.001. Although the approximation is known to converge at the optimal rate 
asymptotically, no convergence is apparent until a very high level of discreti- 
zation is achieved. This highlights the importance of uniform approximation. 

Graphs 4-6 show the results of solving the same problems by linear finite 
elements with reduced integration. The uniformly optimal order convergence 
predicted by the theory is evident. Indeed the error in approximation is seen to 
be nearly independent of d. 

Graphs 7-9 pertain to the standard finite element method with quadratic 
elements in the cases d=0.1,  d = h  2, and d=0.001 respectively. The final three 
plots display the analagous information for the quadratic finite element meth- 
od with the integrations reduced to two point composite Gaussian quadratures 
as explained in Sect. 6. Again, that uniformly optimal order convergence is 
achieved by the latter method is apparent even for h quite large (h>0.1). On 
the other hand the suboptimal rates given in Table 1 are exhibited by the 
standard method in the eighth graph. Moreover the ninth graph indicates that 
when d is small but constant the behavior of the standard finite element 
solution is best described not by the ultimate asymptotic rates, but by the 
convergence rates which hold uniformly in d. 
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