
Article

Volume 12, Number 7

8 July 2011

Q07004, doi:10.1029/2011GC003567

ISSN: 1525‐2027

Discretization errors and free surface stabilization in the finite
difference and marker‐in‐cell method for applied
geodynamics: A numerical study

T. Duretz, D. A. May, T. V. Gerya, and P. J. Tackley
Institute of Geophysics, Department of Earth Sciences, ETH Zürich, Zurich CH‐8093, Switzerland
(thibault.duretz@erdw.ethz.ch)

[1] The finite difference–marker‐in‐cell (FD‐MIC)method is a popularmethod in thermomechanical modeling
in geodynamics. Although no systematic study has investigated the numerical properties of the method,
numerous applications have shown its robustness and flexibility for the study of large viscous deformations.
The model setups used in geodynamics often involve large smooth variations of viscosity (e.g., temperature‐
dependent viscosity) as well large discontinuous variations in material properties (e.g., material interfaces).
Establishing the numerical properties of the FD‐MIC and showing that the scheme is convergent adds rele-
vance to the applications studies that employ this method. In this study, we numerically investigate the dis-
cretization errors and order of accuracy of the velocity and pressure solution obtained from the FD‐MIC
scheme using two‐dimensional analytic solutions. We show that, depending on which type of boundary con-
dition is used, the FD‐MIC scheme is a second‐order accurate in space as long as the viscosity field is constant
or smooth (i.e., continuous). With the introduction of a discontinuous viscosity field characterized by a vis-
cosity jump (h*) within the control volume, the scheme becomes first‐order accurate. We observed that the
transition from second‐order to first‐order accuracy will occur with only a small increase in the viscosity con-
trast (h* ≈ 5). We have employed two methods for projecting the material properties from the Lagrangian
markers onto the Eulerian nodes. The methods are based on the size of the interpolation volume (4‐cell,
1‐cell). The use of a more local interpolation scheme (1‐cell) decreases the absolute velocity and pres-
sure discretization errors. We also introduce a stabilization algorithm that damps the potential oscillations
that may arise from quasi free surface calculations in numerical codes that employ the strong form of the
Stokes equations. This correction term is of particular interest for topographic modeling, since the surface of
the Earth is generally represented by a free surface. Including the stabilization enables physically meaningful
solutions to be obtained from our simulations, even in cases where the time step value exceeds the isostatic
relaxation time. We show that including the stabilization algorithm in our FD stencil does not affect the con-
vergence properties of our scheme. In order to verify our approach, we performed time‐dependent simulations
of free surface Rayleigh‐Taylor instability.
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1. Introduction

1.1. Background

[2] Unravelling the deformation history from the
present‐day geological record is a challenging prob-
lem. To complement field data and traditional inter-
pretation based geodynamic modeling approaches,
mathematical models are often employed to develop
our understanding of geological processes. The use
of thermomechanical models which solve the equa-
tions of conservation ofmomentum,mass and energy
has a long history in geodynamics.

[3] In these models one prescribes (1) a set of
mathematically permissible boundary conditions,
(2) the geometry of the model domain, and (3) the
geometry and rheology (or lithology) of the rocks
to be modeled. Using such an approach to simulate
geologically realistic scenarios is complicated by
several attributes which we discuss in more detail.
At a given length scale, rocks can be extremely
heterogenous. Here, the heterogeneities may con-
sist of differing lithology, or in simply the contrast
of effective material properties (viscosity, shear
modulus, etc). Furthermore, the contrast of effective
material propertiesmay be extremely large, and occur
over a very small length scale. The geometry of the
heterogeneities is also a complex issue to treat in
thermomechanical models as coherent structures
(e.g., layering) may need to be represented. Over
geological time scales, rocks are subjected to enor-
mous strains, i.e., large deformation. Given that
rocks possess characteristics of both ductile and
brittle materials (over a certain time scale), during
their deformation they will yield. In contrast to
many engineering applications, geologists are inter-
ested in the deformation modes both prefailure and
postfailure.

[4] This set of physical attributes associated with
geological processes has motivated numerous dif-
ferent modeling approaches. Rather than describe
all the methods in detail, we instead provide a brief
historical overview of the approaches and highlight
the merits and shortcomings with regards to the
physical attributes identified above. Two broad cat-
egories of methods can be defined: (a) those which
explicitly models interfaces from which a material
domain (volume) is inferred or (b) those which
explicitly model volumes.

[5] We refer to van Keken et al. [1997], Popov and
Sobolev [2008], Zlotnik et al. [2007], Braun et al.
[2008], Samuel and Evonuk [2010], Schmalzl and

Loddoch [2003], and Lin and van Keken [2006]
as examples of methods from category (a). While
many methods to represent interfaces exist, devel-
oping robust schemes with low numerical diffusion,
and which are capable to representing complex
structures required by geodynamic models is non-
trivial. With the advent of affordable, distributed
memory computer clusters, it is also an important
consideration whether a given method can be
implemented in 3‐D and whether the algorithm is
suitable to be implemented in a distributed memory
environment.

[6] For geological applications, the geometric com-
plexity of the structure needing to be represented,
combined with algorithmic difficulties associated
with implementing interface based models, has
motivated the use of “particle based” methods
(category (b)). The term “particles” is deliberately
used vaguely as different methods may regard
“particles” in different ways. In general, particles
are used to represent a given lithology (i.e., material
properties) and as such represent volumetric quan-
tities. The huge advantage afforded by particle
methods is that they are completely unstructured,
and do not posses any connectivity associated with
neighboring particles. The use of particles to track
complex flow features (e.g., free surface evolution)
dates back to the pioneering marker‐and‐cell (MAC)
method [Harlow and Welch, 1965; Pracht, 1971].
Here, the particles (or markers) were Lagrangian
quantities and were used to represent (discretize) the
volume of the fluid. The fluid equations for con-
servation of mass and momentum were solved via
a staggered grid, finite difference method. The
markers were used to indicate which cells in the
grid were completely filled with fluid, and which
contained the free surface, and hence where the free
surface boundary condition should be applied. The
MAC methodology has been extensively developed
in the geodynamics community [Weinberg and
Schmeling, 1992; Poliakov and Podladchikov,
1992; Zaleski and Julien, 1992; Fullsack, 1995;
Tackley, 1998;Babeyko et al., 2002;Gerya and Yuen,
2003, 2007;Moresi et al., 2003, 2007]. These authors
follow the underlying concept introduced in the
MAC scheme. Namely, the conservation equations
are solved on a grid, while complex geometric fea-
tures are represented with markers. In the geo-
dynamic applications, the markers are not used
simply to identify regions of free surface/fluid/air,
rather they typically represent different lithologies
to which material parameters and a constitutive
law is attributed. Other Lagrangian particle based
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methods used in geodynamics include Poliakov
et al. [1993], Braun and Sambridge [1994, 1995],
Hansen [2003], and Schwaiger [2007]. While dif-
ferent in their methodology, they embody Harlow’s
original concept.

[7] The idea of representing complex geometric
structures via Lagrangian markers is very appeal-
ing, and consequently gained widespread usage in
computational geodynamics for a number of rea-
sons: it is very simple to associate lithology and
material properties to markers; the numerical imple-
mentation of marker fields is algorithmically straight
forward; three‐dimensional implementations of
marker methods are not significantly more complex
than its 2‐D counterpart; the approach is amenable
to distributed memory environments.

1.2. Present Work

[8] To obtain reliable results from numerical
models, one has to ensure that a sufficiently high
“numerical resolution” is used to guarantee that
the physics is captured. Depending on the method,
numerical resolution might be related to the size
of grid cell used in a mesh, or the number of markers
used to represent a volume of fluid. Furthermore,
one has to establish that the numerical error associ-
ated with the method used actually decreases if the
resolution is increased. That is, the convergence of
the method must be established. Understanding the
convergence properties of a method provides some
insight into the resolution required to resolve a cer-
tain flow feature (for example) and furthermore, it
also indicates how rapidly the error is reduced as a
function of increasing numerical resolution.

[9] Despite the widespread usage and acceptance
of thermomechanical modeling as a viable tool to
study geology, few studies focus on the accuracy
of the numerical methods being employed. In gen-
eral, it is often regarded that it is difficult to perform
a formal error analysis on marker based methods
due to their inherent unstructured nature. Further-
more, geological applications often utilize discon-
tinuous material properties (e.g., viscosity). The use
of spatially variable coefficients also make formal
error analysis more complicated. While the marker‐
grid methods lack a formal error analysis, numerous
numerical studies have been performed. Numerical
studies consist of either output comparison between
different codes or laboratory experiments (a.k.a.
benchmark studies) [Blankenbach et al., 1989; Travis
et al., 1990; van Keken et al., 1997; Tackley and
King, 2003; Buiter et al., 2006; Schmeling et al.,

2008; OzBench et al., 2008; van Keken et al.,
2008], or solution comparison between an analytic
solution and the model output [Moresi et al., 1996;
Deubelbeiss and Kaus, 2008; Popov and Sobolev,
2008; Zhong et al., 2008].

[10] Given the number of practitioners now
employing marker grid style thermomechanical
numerical models, it is important to thoroughly
address the order of convergence of these methods,
either through carefully designed numerical experi-
ments or analytical approaches [Nicolaides, 1992;
Nicolaides and Wu, 1996]. In this work, we con-
sider one such representative marker grid based
approach [Gerya and Yuen, 2003, 2007] and
numerically examine the convergence properties
of the method. This is achieved by using three
different analytic solutions for a Stokes flow prob-
lem with continuous and discontinuous viscosity
structures. Although idealized, these solutions have
sufficient complexity in terms of their lithology and
geometry to be regarded as representative of a typ-
ically geodynamic application. Using the analytic
solutions, the true discretization error can be mea-
sured. While using analytic solutions to measure
errors and determine the order of convergence is
by no means exhaustive (in a mathematical sense),
in the absence of formal convergence proof, the
approach is justified if the analytic solutions possess
sufficient complexity compared to the intended
application of interest. Given the interest in re-
presenting free surfaces for modeling topography
and the difficulties that are related to the intro-
duction of this surface [Kaus et al., 2010], we adopt
a strong form variant of the stabilization technique
described by Kaus et al. [2010] for a finite dif-
ference scheme. To verify that the use of this algo-
rithm does not affect the convergence properties
of our finite difference–marker‐in‐cell scheme
(FD‐MIC), we again utilize analytic solutions.

[11] The outline of this paper is as follows. In the
first section we introduce the physical problem of
interest along with the numerical method that we
employ. In section 3 we describe the sources of
errors and the methodology we employ to analyze
the discretization error of our numerical method.
The models used in the convergence study and the
results obtained using the convergence properties
of the FD‐MIC method are described in the
section 4. Section 5 provides an application of our
method to solve a time‐dependent free surface
problem. In section 6 we discuss some future
directions and perspectives beyond examining dis-
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cretization errors within numerical schemes. Lastly,
concluding remarks are provided in section 7.

2. Physical Problem and Numerical
Method

2.1. Governing Equations

[12] Traditionally, the flow of geomaterials over
geological timescales is calculated by solving the
momentum equations neglecting inertial terms
(Stokes equations)

@�ij

@xj
¼ ��gi: ð1Þ

This equation describes the balance between the
viscous force and the body forces for an infini-
tesimal volume of fluid. The viscous force is for-
mulated as the gradient of the stress tensor (sij)
and the body force is written as the product of the
fluid density (r) and the gravitational acceleration
vector (gi). Moreover, in the absence of melting
and phase transitions, geodynamic flows are con-
sidered as incompressible. Incompressibility is
enforced by coupling the aforementioned equations
with the continuity equation

@vi

@xi
¼ 0; ð2Þ

where vi is the velocity and xi is the spatial coordi-
nate. Equations (1) and (2) are valid over the model
domain which we denote by W. To close the system
the equations for the conservation of momentum and
mass are supplemented with two boundary condi-
tions. Decomposing the boundary of W into two,
nonoverlapping regions denoted by ∂WN and ∂WD,
the boundary conditions are written as

�ijnj ¼ ai; x 2 @WN ð3Þ

and

vi ¼ bi; x 2 @WD: ð4Þ

Here nj is the outward point normal to the boundary
of W, ai is an applied traction and bi is a prescribed
velocity.

[13] The mechanical behavior of the material is
defined by a constitutive relationship. We relate the
stress tensor sij to the strain rate tensor _�ij, using a
linear, isotropic viscous rheology given by

�ij ¼ �p�ij þ 2� _�ij; ð5Þ

where p is the pressure, h is the viscosity and the
strain rate is given by

_�ij ¼
1

2

@vi

@xj
þ

@vj

@xi

� �
: ð6Þ

[14] The model domain contains several different
material compositions, or lithologies which we
denote by C(x). The compositional field C does
not possess any physical diffusion, and evolves
according to

@C

@t
þ vi

@C

@xi
¼ 0: ð7Þ

[15] Prior to any discretization, the equations above
are nondimensionalized by means of dynamic
scaling. This scaling is achieved by first defining a
set of characteristic units such as a characteristic
length (e.g., domain size), a characteristic time
(e.g., diffusion time, inverse background strain rate),
a characteristic viscosity (e.g., minimum viscosity
in the domain) and secondly deriving all the related
characteristic units (mass, stress, force..). In section 4,
we employ characteristic units that are equal to 1.
The results are not scaled back to dimensional units
and therefore the velocity errors and pressure are
dimensionless. The experiment described in
section 5 involves processes occurring at Earth‐
like dimensions and thus the characteristic units
differ from 1, the corresponding results are scaled
back to dimensional units.

2.2. Numerical Method

2.2.1. Spatial Discretisation

[16] We solve equations (1) and (2) for the primi-
tive variables vi and p. The discrete solution of the
two field formulation is defined by a grid based
conservative finite difference scheme. The con-
straint imposed by incompressibility condition is
effectively treated using the classical staggered grid
arrangement of the primitive variables [Harlow
and Welch, 1965]. In the staggered formulation
used here, we solve for pressure which is defined
at cell centers and for the component of velocity
normal to the cell face Figure 1). The velocity
component is located at the centroid of each cell
face. For flow problems possessing a spatially var-
iable viscosity, the viscosity is required to be
defined at both the vertices, and the center of each
control volume, in order for the discrete equations
to conserve stress between neighboring control
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volumes [Patankar, 1980]. This particular staggered
grid difference scheme has been demonstrated to be
robust in solving variable viscosity problems in
mantle convection by numerous authors [Ogawa
et al., 1991; Tackley, 1993; Ratcliff et al., 1995;
Harder and Hansen, 2005; Trompert and Hansen,
1996; Stemmer et al., 2006; Tackley, 2008] and in
lithospheric dynamics [Zaleski and Julien, 1992;
Gerya and Yuen, 2003, 2007; Katz et al., 2007].

[17] The material properties viscosity and density
are discretized in space via a set of markers, or
particles. For a given property � represented via the
marker field, we adopt the following interpolant
defined on the markers

� xð Þ � �m xð Þ ¼
XNm

p¼1

� x� xp
� �

�m
p ; ð8Þ

where �p
m is the value of property � (viscosity or

density) defined at marker p, Nm is the number of
markers, d(x − xp) denotes the standard Kronecker
delta function and the marker coordinate is xp. For
simplicity we express equation (8) via

�m xð Þ ¼ QT xð ÞFm; ð9Þ

where Fm is the vector of all marker values used to
represent the field � and QT is a row vector with
each entry defining the Kronecker delta function
for each marker p.

[18] To evaluate the finite difference stencil, we are
required to interpolate the marker values for vis-
cosity and density onto the relevant locations (cell
vertex or centroid) within the FD grid. Here we
derive the “marker‐to‐node” interpolation scheme
defined by Gerya and Yuen [2003] by regarding the
operation as an L2 projection (least squares mini-
mization) of the marker properties onto the vertices
of a structured grid. To derive the interpolant in the
study by Gerya and Yuen [2003], we first define
grid based representation of the field �. The grid is
constructed from vertices of the cells defining each
pressure control volume. Over each cell, the grid
representation of field, which we denote by �g(x),
is assumed to vary according to a bilinear function.
Denoting the bilinear interpolant at node i by Ni(x),
we have the following approximation for � over the
grid

� xð Þ � �g xð Þ ¼
XNn

i¼1

Ni xð Þ�g
i

¼ NT xð ÞFg;

ð10Þ

Figure 1. Spatial distribution of the primitive variables (u, v, p) and material properties (h, r) for a two‐dimensional
staggered grid and example of boundary conditions discretizations (case of the u momentum equation). The black
symbols represent the nodes that are part of the stencil for the boundary equation discretization. The gray symbols
represent the neighboring nodes that are not taken into account in the stencil. (a) The extrapolated boundary condition
is formulated as a linear combination of two internal u nodes. (b) The fictitious node boundary condition implemen-
tation is achieved by discretizing the equations along the domain boundary. The dashed symbol represent the fictive
point used for the formulation of this boundary equation.
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where Nn is the number of vertices in the mesh, Fg

is the vector of all nodal values used to represent
the field � and NT is a row vector with each entry
defining the interpolation function Ni(x) for node i.
The interpolating functions Ni have a compact
support bW, implying the functions are only nonzero
over a subset of the entire domain W. In this work,
the compact support of each interpolant Ni, is bW ≡

2Dx × 2Dy, where Dx, Dy are the cell dimensions
in the x and y direction, respectively. Furthermore,
the grid interpolants Ni are a partition of unity, that

is
PNn

i¼1

Ni(x) = 1. In Figure 2a we depict the compact

support for a node i (denoted by the gray region)

and the shape of the bilinear interpolation function
Ni. Outside of the gray region, Ni(x) = 0.

[19] The projection operator P can be defined as

P : �m xð Þ ! �g xð Þ:

Given that the number of markers and vertices in
the mesh is not equal, a natural choice to define P
is to use the L2 projection of �m onto �g. The least
squares minimization leads us to seek a solution of
the following:

min
1

2

Z

W

�g xð Þ � �m xð Þð Þ2dV

� �
¼ min J½ �; ð11Þ

Figure 2. The “4‐cell” and “1‐cell” schemes for projecting properties defined on the markers (denoted by stars) onto
a node (denoted by the solid circle). (a) The 4‐cell scheme. The support of the interpolating function Ni associated
with node i is indicated by the shaded region. Only markers within the support of node i contribute to the projection
operation used to define the nodal value at i. The shape of the bilinear interpolation function for node i is indicated in
the lower frame. (b) The 1‐cell scheme. The thick lines in the lower frame indicate the grid used to discretize the
Stokes equations, while the thin lines indicate the grid onto which marker properties are projected. The 1‐cell scheme
utilizes a compact support of size Dx × Dy. The support for nodes r, s, t are indicated by the shaded regions. Only
markers within the nodal support contribute to the projection operation for that node. The vertex and cell centered
values on the grid used to discrete Stokes equations (points r and s, respectively) are directly obtained from the local
projection scheme.
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where W is the model domain. Substituting
equations (9) and (10) into equation (11) and
computing ∂J/∂Fg = 0 we obtain

Z

W

N xð ÞNT xð ÞdV

� �
F

g ¼

Z

W

N xð ÞQT xð ÞFmdV ; ð12Þ

and inserting equation (8) yields

Z

W

N xð ÞNT xð ÞdV

� �
F

g ¼
XNm

p¼1

N xp
� �

�m
p : ð13Þ

[20] The “marker‐to‐node” interpolation of Gerya
and Yuen [2003] is obtained from equation (13)
by making the following approximations; (1) repla-
cing the matrix on the left hand side by a diagonal
matrix defined by summing the entries in each
row, i.e.,

Ni xð ÞNj xð Þ � Ni xð Þ
XNn

k¼1

Nk xð Þ

 !

�ij

¼ Ni xð Þ�ij;

ð14Þ

where the summation in brackets was eliminated
since Ni form a partition of unity and (2) evaluating
the integrals using a numerical quadrature defined
by the markers within the compact support of each
Ni. ApproximatingNNT by a diagonal matrix makes
the projection operation completely local to each
node i in the mesh. This choice is predominately
made to reduce the computational cost by eliminat-
ing the need to solve a matrix problem. Neverthe-
less, it is usually more desirable to utilize a local L2
approximation, as global L2 tend to produce overly
smooth fields. Given that the interpolant used for the
marker fields are Kronecker delta functions (see
equation (9)), the most natural quadrature scheme to
use is a Monte Carlo method in which the markers
coordinates define the abscissa of the quadrature
scheme and every quadrature point is assigned the
same quadrature weight, with the only constraint that
the sum of the weights should equal the volume of the
integration domain. Incorporating the above two as-
sumptions, and invoking equation (9) reduces
equation (12) to the following:

�
g
i ¼

PNm

p¼1

Ni xp
� �

�m
p

PNm

p¼1

Ni xp
� � : ð15Þ

[21] We note that the L2 interpolant defined in
equation (12) wasO(h2) accurate, where h represents
the grid spacing, as the function space onto which
we projected the marker field was bilinear. How-
ever, the approximated interpolant in equation (15)
possesses a reduced rate due to the choice of quad-
rature scheme utilized. In the worst case, classical
Monte Carlo quadrature with random abscissa
converges like O(n−1/2), where n is the number of
points, while quasi Monte Carlo methods using
pseudo random abscissa can converge as fast as
O(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log nð Þ

p
/n). The abscissa used in our quad-

rature scheme are determined via the coordinates of
the markers, which are inherently nondeterministic
and are the result of the solution to Stokes flow.
Consequently, we anticipate that the quadrature rule
employed here will tend toward the classical Monte
Carlo limit and thus the expected order is O(H1/2),
where H is the average spacing of the markers. In
this work, the projection depicted in Figure 2a
will be referred to as the “4‐cell” scheme.

[22] In the study by Gerya and Yuen [2007], a
“local” variant of the projection operator in
equation (12) was proposed. This local marker‐to‐
node projection is depicted in Figure 2b. The
principal difference is that the marker properties are
projected onto a grid of finer resolution (thin lines,
bottom frame) than the grid used to discretize
Stokes equations (thick lines, bottom frame), thus
the compact support of each interpolant Ni is nowbW ≡ Dx × Dy. While developed heuristically,
numerical experiments revealed that this local pro-
jection method yielded more accurate results [Gerya
and Yuen, 2007]. Given that we have shown that the
interpolant used by Gerya and coworkers is an
approximate L2 projection, it is apparent why the
local variant yields more accurate results. Specifi-
cally, we note that while the order of the local L2
projection is the same variant depicted in Figure 2a,
the discretization parameter h has been reduced by
a factor of two, which thus also reduces the error.
In the local projection scheme, vertex values and
cell center values (denoted by r and s, respectively,
in Figure 2b) are obtained from application of
equation (15) on the finer grid. Note that the
midside values (denoted by t) are not required by
the finite difference stencil. The projection depicted
in Figure 2b will be referred to as the “1‐cell”
scheme.

2.2.2. Temporal Discretisation

[23] The Lagrangian markers are used to discretize
each composition field C. In the Lagrangian frame
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of reference, the solution of equation (7) can be
obtained by solving the following two equations:

DCp

Dt
¼ 0;

dxp

dt
¼ vp; ð16Þ

where Cp, xp, vp are the composition, coordinate
and velocity vector of marker p, respectively. The
solution of DCp/Dt = 0 is trivially obtained with the
marker representation. The kinematic equation is
solved using a fourth‐order Runge‐Kutta (RK4)
time stepping scheme applied to each marker p. We
do not reevaluate the flow field during the appli-
cation of RK4, thus the method is fourth‐order
accurate in space only. The velocity field at the
marker vp, is obtained by interpolating the flow
field computed on the finite difference grid to the
marker coordinate xp. After the markers have been
advected, the material properties are interpolated
from the new marker positions to the Eulerian grid
using either the 4‐cell or 1‐cell projection defined
by equation (15). Alternatively, higher‐order time
integrators such as the predictor‐corrector method
are employed in the community [Weinberg and
Schmeling, 1992; Schmeling et al., 2008], this
method achieves second‐order (in time) accuracy
but requires to solve the discrete Stokes equations
twice per time integration.

2.2.3. Boundary Condition Implementation

[24] We have used two different techniques to
impose boundary conditions (BC) on the non–
boundary matching nodes of the staggered grid.
The first method (extrapolated boundary condition)
enables to describe the stress or velocity value at
the boundary by setting a condition on two nodes
inside the domain (extrapolation). A linear combi-
nation of the velocities at those two nodes defines a
velocity gradient, the value of the velocity at the
boundary is therefore set by the value of the gra-
dient. For instance the u component of a free slip
boundary condition at the top of the domain
(assuming zero normal velocity) is expressed as

@u

@y

				
top

¼ 0¼) uC � uS ¼ 0; ð17Þ

where the node labeling is depicted in Figure 1. For
the no slip case, we extrapolate to the boundary, thus

ujtop¼ 0¼) uC �
1

3
uS ¼ 0: ð18Þ

[25] The stencil corresponding to this boundary
equation only contains two points and additional

constraints are needed while solving for pressure.
This condition is usually fulfilled by setting addi-
tional pressure constrain such as zero horizontal
pressure flux in the corners of the domain [Gerya,
2010]. Given the fact that the boundary condition is
defined via extrapolation, we expect this imple-
mentation to be first order in space. A second
method (fictitious node method) is derived by
discretizing the momentum equations along the
domain boundaries. The usual stencil is modified to
account for “virtual nodes” outside of the domain.
These virtual nodes are used to define the velocity
flux at the boundary of the domain, they are not
explicitly included into the system of equations.
The isoviscous u momentum equation stencil at the
top of the domain is written as

@�xx

@x
þ �

uF þ uS � 2uC

Dy2

� �
þ �

@2v

@y@x
�
@p

@x
¼ ��gx; ð19Þ

with

uF ¼ uC ; ð20Þ

for a free slip case and

uF ¼ �uC ; ð21Þ

for a no slip case.

[26] This method do not require any additional
pressure constrains, thus no boundary conditions are
required while solving for pressure. With this dis-
cretization of the boundary condition, each partial
derivative is approximated bymeans of central finite
differences and we therefore expect this method to
be second‐order accurate in space.

2.2.4. Free Surface Treatment

[27] As shown byKaus et al. [2010], the introduction
of a free surface boundary condition in geodynamic
simulations can induce artificial numerical oscilla-
tions in the free surface. This phenomena was coined
the “drunken seaman” instability. The free surface in
these models represents an interface between air and
rock, and this is characterized by a sharp jump in
density (∼103 kg.m−3). A large displacement of this
interface within a single time step can therefore give
rise to severe “out‐of‐balanceness” [Kaus et al.,
2010]. Physically, this imbalance may occur when
the employed time step exceeds the isostatic relax-
ation time [Fuchs et al., 2011]. Such a situation is
likely to occur when an explicit advection scheme is
used, since the nonlinear residual associated with the
advected coordinates (at time t + Dt), and the eval-
uation of the force term and stresses (at time t) is not
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guaranteed to be small. The “drunken seaman”
instability can occur when the free surface is explic-
itly tracked, such as in a body fitted Lagrangian finite
element method, or when the free surface boundary
condition is approximated via the “sticky air”
approach [Schmeling et al., 2008], which is com-
monly used in Eulerian‐Lagrangian finite difference
methods in which explicit meshing of the interface
is not possible. Several methods can be used to
stabilize the evolution of the free surface, which
either involve solving the nonlinearity related to
advection or introducing higher‐order terms arising
from a Taylor series expansion of the momentum
balance equation. Here we focus on the second
approach applied to our staggered grid finite differ-
ence discretization.

[28] Kaus et al. [2010] showed that a higher‐order
Taylor series expansion of the weak formulation
of the momentum balance equation leads to an
expression of a correction term which has the form
of a boundary traction. This correction term is then
discretized and added to the original Stokes stiff-
ness matrix. Following this methodology, we
derive a similar correction term for the strong form
of the Stokes equations (such as used with the
finite difference method) by performing a Taylor
series expansion of equation (1) about the point
x + �Dtv, whereDt is the time step and 0 < � < 1 is
an arbitrary parameter used to limit the size of the
displacement increment. The expansion of the stress
tensor sij, is given by

�ij xþ �Dtvð Þ � �ij xð Þ þ �Dt vk �ij xð Þ

 �

;k
þO Dt2ð Þ; ð22Þ

where the subscript , k denotes a partial derivative
with respect to xk. The gradient of the stress tensor
sij,j, is then

�ij;j xþ �Dtvð Þ � �ij;j xð Þ þ �Dt vk �ij xð Þ

 �

;jk

þ �Dt vk;j �ij xð Þ

 �

;k
þO Dt2

� �
: ð23Þ

Assuming that g is constant, we expand the density
as

� xþ �Dtvð Þ � � xð Þ þ �Dt vk � xð Þ½ �;kþO Dt2ð Þ: ð24Þ

Inserting equations (23) and (24) into equation (1)
and keeping only the terms which are linear in vk
and those of O(Dt), we obtain the perturbed
momentum balance equation

�ij;j xð Þ þ �Dt � xð Þ;kvk gi ¼ �� xð Þgi: ð25Þ

Here, the term �Dt r(x),k vk represents a higher‐
order correction which is a function of the velocity

field, vk. We denote the discrete representation of the
momentum equation in equation (25) via

Kuþ LuþGp ¼ f ; ð26Þ

whereKu is discrete gradient of the stress tensor,Gp
is the discrete pressure gradient, f is the discrete
body force and Lu is the stabilization term. The
construction of L requires the current time step Dt
and the evaluation of the density gradient at each of
the u, v nodes. In our FD‐MIC formulation, this is
achieved by central finite differences. We evaluate
@�
@x
≈

D�
Dx

and @�
@y
≈

D�
Dy

at the u and v nodes, respectively.

The first‐order derivatives are computed using
values of density defined at the cell center (i.e., at
the pressure node). The density at the cell center
is interpolated from the marker density field, or
averaged from a density field defined on the
vertices of the grid.

3. Discretization Errors
and Convergence

3.1. Errors in Approximate Solutions
of PDEs

[29] Errors in the approximate solution of partial
differential equations (PDEs) arise from four main
sources.

[30] 1. The discretization error (or truncation error),
which is defined as the difference between a given
mathematical model (analytic solution) and its dis-
cretized expression. In the case of the finite difference
method, the derivative of a function is numerically
estimated by first assuming that the function is con-
tinuous, and then by replacing the continuous deriv-
ative with a truncated Taylor series about a point.
The discretization error is therefore generated by the
truncation of the Taylor expansion and is propor-
tional to the remainder (O(hn)). This type of dis-
cretization error is termed a locally generated error
by Roy [2010].

[31] 2. An additional discretization error may occur
in the definition of the coefficients within the PDE.
Coefficients may consist of terms on the right side
of the equation (e.g., density), or terms within the
differential operator itself (e.g., viscosity). Coeffi-
cients will possess a discretization error if they are
obtained by interpolation (e.g., projection of markers
properties to nodes), or if they are a function of
variables which were discretized. Typical examples
of the latter include temperature or strain rate–
dependent viscosity where temperature (or velocity)
are discretized over a grid, and the viscosity is
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required at a location which doesn’t coincide with a
discretization point in the grid.

[32] 3. Roundoff errors arising from the numerical
representation of real, continuous numbers, with a
finite precision representation. This error therefore
depends on the precision (number of digits) which
is employed to represent floating point numbers in
a numerical scheme.

[33] 4. The error resulting from the solution of
systems of linear equations.
The use of direct solvers (such as LU, Cholesky
decomposition) can minimize this type error, at least
to the extent possible with finite precision arithmetic
(see item 3 above). However, if iterative methods are
used, the error induced is a result of stopping con-
dition used to terminate the iterative cycle. Robust
stopping conditions should monitor the residual
associated with the system and the current estimate
of the solution. However, one still needs to specify a
measure of when the residual is “small enough” to
conclude that the iterative method has converged.

[34] We here focus on the evaluation of the dis-
cretization error of the FD‐MIC scheme. Our spe-
cific interest is to determine the convergence of the
method in the case where viscosity jumps (discon-
tinuous coefficients) occur at a subgrid level. The
discretization error of the FD‐MIC scheme can be
seen as the combination of the truncation error of
the staggered grid (including boundary condition
discretization) and the error related to the projec-
tion of material properties onto the nodes. In this
study, the discrete system of equations describing
Stokes flow was solved using a direct factorization
technique, thus eliminating any error associated with
using an iterative method. All calculations were
performed using double precision arithmetic.

3.2. Measuring Convergence
of the Discretization: Methodology

[35] Several methods are available in order to study
the discretization error of numerical schemes
[Roache, 1997; Roy, 2010]. We here focus on
measuring the order of convergence of the primitive
variables of our discrete Stokes problem. To do so,
we employed two‐dimensional analytic solutions
which can be utilized to determine the exact velocity
and pressure values at each node of our grids. In
order to compute the discretization error, we utilize
the L1 norm, which for a scalar quantity �, is defined
as follows:

k�k1¼

Z

W

�j jdV ; ð27Þ

where W is the model domain. For a vector quantity
w = (s, t) we have

kwk1 ¼ ksk1 þ ktk1¼

Z

W

sj j þ tj jð ÞdV : ð28Þ

We define the pressure error as

kepk1 :¼ kp� pexactk1; ð29Þ

where pexact is the exact value of the pressure. The L1
error for the velocity u = (u, v), is defined via

keuk1 :¼ keuk1 þ kevk1 ¼ ku� uexactk1 þ kv� vexactk1;

ð30Þ

where uexact and vexact are the exact values of the u,
v velocity components. For numerical computations
we approximate the above integrals via a one point
quadrature rule, i.e.,

k�k1 � k�kh1 :¼
X

e

� xeð Þj j Ve; ð31Þ

where Ve is the representative volume for the
point xe. For FD schemes, the appropriate volume
to use in equation (31) is the control volume asso-
ciated with each node. Within staggered grid FD
schemes, the control volume associated with the p
and u, v degrees of freedom are different. In our
results, we utilize two‐dimensional meshes contain-
ingM ×M elements. As a result, we have (M + 1) ×M
nodes for u, M × (M + 1) nodes for v, and M × M
nodes for pressure. From this, we define the follow-
ing discrete L1 norm for pressure as

kpk1 �
XM

I¼1

XM

J¼1

pI ;J
		 		DxDy; ð32Þ

where DxDy is the cell volume For the velocity
components we have

kuk1 �
1

2

XM

J¼1

u1;J
		 		DxDyþ

XM

I¼2

XM

J¼1

uI ;J
		 		DxDy

þ
1

2

XM

J¼1

u Mþ1ð Þ;J

		 		DxDy; ð33Þ

kvk1 �
1

2

XM

I¼1

vI ;1
		 		DxDyþ

XM

I¼1

XM

J¼2

vI ;J
		 		DxDy

þ
1

2

XM

I¼1

vI ; Mþ1ð Þ

		 		DxDy: ð34Þ

[36] The order of convergence of the discretization
is determined by computing the numerical solution
defined on a sequence of uniformly refined grids,
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and computing the L1 norm of eu and ep on each
grid. Following this, a least squares regression is
performed on the log10 of the error norm and the
cell size h. We relate the convergence rate of the L1
norms for velocity and pressure errors to the order
of convergence via

keuk1 � Chru ; kepk1 � Chrp ; ð35Þ

where h is the mesh size, C is a constant inde-
pendent of the grid resolution h, and ru, rp are the
order of convergence for velocity and pressure
fields, respectively. In all our experiments, the grid
possesses the same number of vertices N in each
direction. We define our grid sequence using N =
{41, 81, 101, 201, 301, 401, 501, 601, 701, 801,
901, 1001}.

4. Numerical Experiments

4.1. Idealized Models Used
in the Convergence Study

[37] To study the error distributions and conver-
gence properties of our numerical scheme, we car-
ried out two sets of experiments. Each of these tests
is aimed at studying the effect of a spatially variable
coefficient (viscosity) on the discretization. We
define a global measure of the viscosity contrast
over the entire domain W via h* = max(h(x))/min
(h(x)). The first test focuses on the buoyancy‐driven
flow in a box containing a one‐dimensional vis-
cosity structure. The second test addresses the
influence of a large but smooth variation of viscosity
within a box where the flow is driven by buoyancy.
The third test investigates a pure shear deformation
field, which is perturbed by the presence of a two‐
dimensional, circular, highly viscous inclusion.

4.1.1. One‐Dimensional Viscosity Structure:
SolCx

[38] The first series of convergence test were per-
formed using a two‐dimensional analytical solution
of a variable viscous Stokes flow problem which
we identify as SolCx. The model domain is defined
as W ≡ [0, 1] × [0, 1]. The boundary conditions on
all sides of the domain are prescribed to be free
slip, implying that the normal velocity to each wall
is zero, and the tangential stress along the wall
vanishes. Internal to the domain, fluid flow is
driven by a sinusoidal force given by

F ¼ 0;� sin 	yð Þ cos 	xð Þð ÞT : ð36Þ

In practice this force is imposed by setting a con-
stant gravity acceleration (x component equal to 0
and y component equal to 1) and the allowing the
density field to vary in space according to

� x; yð Þ ¼ sin 	yð Þ cos 	xð Þ: ð37Þ

Experiments were carried out for both isoviscous
and variable viscosity case, in the latter case the
viscosity field is discontinuous and is given by

� x; yð Þ ¼
1; if 0 � x � 0:5

106; if 0:5 < x � 1:

8
<

: ð38Þ

This setup allows for sharp viscosity jumps of large
magnitude which is a typical requirement for geo-
dynamic applications (see Figure 3). Furthermore,
the discontinuous viscosity structure provides a
more challenging test of both the discretization and
the solver in comparison to solutions with contin-
uous viscosity structures. A complete description of
the analytic solution is provided by Zhong [1996].
The source code used in our study to evaluate the
analytic solution is available from the open source
package Underworld [Moresi et al., 2007]. Since the
flow is driven by the density gradients, we will again
use this test to analyze the influence of the free
surface stabilization scheme on the convergence of
the FD‐MAC method.

4.1.2. Smooth Viscosity Variation in One
Dimension: SolKz

[39] In order to investigate the effect of a large and
smooth viscosity variation on our discretization, we
utilized the analytic solution from Revenaugh and
Parsons [1987], which here we have termed
SolKz. This solution allows for a exponential vari-
ation of viscosity from the bottom to the top of the
model domain which is defined asW ≡ [0, 1] × [0, 1].
All the boundaries are free slip and the flow is driven
by a smooth density distribution, the forcing term
is expressed as

F ¼ 0;� sin 2yð Þ cos 3	xð Þð ÞT : ð39Þ

and the viscosity increases from the bottom to the
top of the box according to

� yð Þ ¼ exp 2Byð Þ ð40Þ

with the parameter B controlling the magnitude of
the overall viscosity variation. Here we choose B
such that over the vertical extend of the domain we
have viscosity contrast of Dh* = 106. The density,
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viscosity distribution and the resulting flow field
are depicted in Figure 4. Similarly to the SolCx
test, the source code used to evaluate the analytical
solution is part of the open source package
Underworld.

4.1.3. Two‐Dimensional Viscosity Structure:
Pure Shear Inclusion Test

[40] The third series of convergence test were carried
out using the analytical solution for an inclusion in a

Figure 4. Density (r), viscosity (h), and flow pattern (u, v, p) for the analytic solution SolKz.

Figure 3. Material properties and the analytic solution for SolCx. The r and h are the density and viscosity distribu-
tions, u, v are the analytic x, y components of velocity, respectively, and p is the analytic pressure field. The vertical
component of gravity acceleration is 1.
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weak matrix undergoing pure shear. The derivation
as well as the scripts that can be used to compute
the analytic are available in the study by Schmid
[2002] and Schmid and Podladchikov [2003]. For
this problem, the model domain is defined as W ≡

[−1, 1] × [−1, 1] and contains a circular shaped
inclusion at the origin. The inclusion has a radius,
Rinc of 10% the length of the domain. The viscosity
field is given by

� x; yð Þ ¼
1; if x2 þ y2 > Rinc

2

103; if x2 þ y2 � Rinc
2;

8
<

: ð41Þ

as used by Deubelbeiss and Kaus [2008]. The flow
is driven by a pure shear strain rate boundary con-

dition and the force vector, rgi is zero (Figure 5).
In this test, the circular shape of the inclusion
ensures that the viscosity jump is never aligned
with cartesian coordinate system, and thus is never
aligned via the finite difference stencil. Conse-
quently, this test is particularly relevant since
bodies of arbitrary shape (e.g., plumes, slabs)
typically develop during the evolution of geody-
namic simulations.

4.2. Staggered Grid Discretization

[41] In the first set of experiments, we used the ana-
lytical solution SolCx to examine the convergence
properties of the staggered grid finite difference

Figure 5. Viscosity structure (h) and analytic solution for velocity (u, v) and pressure (p), for the pure shear inclusion
test [Schmid and Podladchikov, 2003]. For this setup, the flow is driven by a strain rate boundary condition ( _� = 1),
and the buoyancy forcing term is 0 (e.g., r = 0 or gy = 0).
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discretization These experiments do not employ
markers to represent the material properties h, r.
The finite difference stencil was thus defined
by directly evaluating equations (36) and (38).
Experiments were performed using the two differ-
ent boundary condition implementations described
in section 2.2.3.

4.2.1. SolCx: Isoviscous

[42] Here we consider a spatially constant viscosity
field, i.e., h(x, y) = 1. These tests were performed in
order to measure convergence of the method for an
optimal case, and to assess the error associated with
the different boundary condition implementations.
In Figure 6, the error distribution for a 101 × 101
grid resolution is shown. A clear influence of the
type of boundary condition can be observed. With
both implementations, the maximum error for all
fields is confined along the boundary of the domain.
However, the error obtained using the extrapolated
BC approach is significantly larger. At this resolu-
tion, we observe that the velocity and pressure errors
are approximately 2 orders of magnitude smaller
when the fictitious node BC implementation is
used. The L1 errors for a sequence of grid resolu-
tions is shown in Figure 7a, and the computed rates
are provided in Table 1. As we expected, the

velocity and pressure obtained using extrapolated
BC discretization converge to the analytical solu-
tion with a rate of ∼1. The fictitious node boundary
condition implementation yields u, p fields which
both converge at a rate of ∼2. From Figure 7a, it is
apparent that the absolute value of the velocity and
pressure errors in L1 are much lower (for all grid
resolutions) when the fictitious node BC is used.
Given these results, we will refer to extrapolated
BC method and the fictitious node BC imple-
mentation as the “first‐order” and “second‐order”
BC methods in the following sections.

4.2.2. SolCx: 106 Viscosity Jump

[43] In this second test, a large discontinuous jump
in viscosity (106 Pa.s) was introduced. The dis-
cretization error for a 101 × 101 grid resolution is
shown Figure 8. In comparison with the isoviscous
results (Figure 6), the location of the maximum
error is no longer only confined along the boundary
of the domain. Rather, we now observe that max-
imum errors in u, v occur within the low‐viscosity
region, and share a similar spatial correlation with
the isoviscous case if we consider only the low‐
viscosity domain (x < 1

2
). For the v velocity com-

ponent, the maximum absolute error is located at
the jump, with a magnitude of ∣ev∣ ≈ 10−4 for both

Figure 6. Spatial distribution of the absolute value of the discretization error (eu, ev, ep) for the variables u, v, and p.
Comparison between extrapolated and fictitious node boundary condition implementations. Maximum errors are
located at the domain boundaries. The error pattern and magnitudes between the two methods are notably different.
The test was carried out using the isoviscous SolCx setup with a grid resolution of 101 × 101 nodes.
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boundary condition implementations. The effect of
the BC implementation remains visible for both u
and v, at the boundaries second‐order BC produces
errors which are approximately 1 order of magni-
tude smaller than for the first‐order case. Pressure
errors are distributed at the jump and close to the
boundaries. In contrast with the isoviscous case, the
pressure errors are much larger than the velocity
errors (≈10–100 times) and significantly larger
(≈100–1000 times) than in the isoviscous case. The
discontinuous variation of the viscosity not only
has a strong influence on the spatial distribution of
errors, but also on the order of convergence of
the computed velocity and pressure fields. The L1
errors for the variable viscosity case are shown in
Figure 7b, and the computed rates are provided
in Table 1. The most noticeable feature is that the
choice of boundary condition implementation is
much less critical. This is apparent as we observe
that the convergence of the velocity and pressure
errors in L1, for both boundary condition im-
plementations, are approximately first order. The
magnitudes of the L1 error for velocity and pressure
error are lower when using second‐order boundary
conditions, however the difference is less than 0.25
of an order of magnitude. For this particular test, we
observed different results if an even grid sequence
was employed. The even grid sequence corresponds
to a situation where the central pressures nodes are
located directly on the viscosity jump. Using an even

grid sequence with second‐order boundary condi-
tions lead to an improvement of the velocity and
pressure errors in L1, with orders of convergence of
ru = 2.0 and rp = 1.0, respectively. Due to the super
convergent nature of these rates, we regard meshes
with viscosity jumps aligned with pressure nodes as
a special case. While it is of interest to understand
the reason for the apparent super convergent
behavior, in practice we rarely ever encounter
material property contrast which can be aligned with
the grid, thus we do not study this special case any
further here.

4.3. Staggered Grid and Marker‐in‐Cell
Discretization

[44] In the second set of experiments, we defined
the material properties (h, r) via markers, therefore
both viscosity and density fields were projected

Figure 7. Velocity and pressure L1 error norms with increasing resolution for the SolCx test. Viscosity and density
are directly sampled, and therefore no interpolation is used. (a) First‐order convergence is achieved while using
extrapolated boundary conditions. Second‐order convergence is obtained with fictitious node boundary conditions.
(b) As soon as a jump in viscosity is introduced, both extrapolated and fictitious node boundary conditions converge
at a first‐order rate.

Table 1. Order of Convergence of the L1 Error Norm

Between Analytics and Numerics Without Using Interpolationa

BC (First Order) BC (Second Order)

h* (1) h* (106) h* (1) h* (106)

ru 1.0648 1.0052 2.0276 1.0064
rp 1.0416 1.0026 2.0297 1.0114

aResults are produced using the analytical solution SolCx.
Comparison between two boundary condition implementations.
Results are calculated for two different fluid viscosity contrasts.
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from the markers onto the grid. The values of
material properties at the cell center and cell vertices
are calculated using the interpolation described by
equation (10). We tested both the 1‐cell and 4‐cell
interpolation schemes presented in section 2.2.1.
In the following tests, we used an average of
64 markers per cell and we only considered using
arithmetic viscosity averaging. In order to mimic the
geometrically disturbed nature of an advected
marker field, themarkers were initially laid regularly
throughout the grid and then perturbed such that
each marker position xp was randomly displaced
(from the uniform distribution) by 1% of the grid
spacing. The order of convergence in L1 for velocity
and pressure are reported in Table 2. Further tests
(not shown here) indicated that these results are not

sensitive to the perturbation applied to the markers’
coordinates.

4.3.1. SolCx: Isoviscous

[45] The order of convergence for u, p in L1 using
different interpolation methods and the two bound-
ary condition schemes are reported in Table 2. We
note that both the 1‐cell and 4‐cell interpolation
methods maintain the order of convergence in L1
of the staggered grid discretization measured in
section 4.2. In these isoviscous models, the style of
boundary condition implementation influences the
order of convergence of both the u and p fields. As in
section 4.2, second‐order boundary conditions show
superiority by providing second‐order convergence.
While both marker interpolation methods provide

Figure 8. Absolute value of the discretization error for the primitive variables u, v, and p. Results are produced with
the analytical solution SolCx with a viscosity jump of 106 and a grid resolution of 101 × 101 nodes. Extrapolated and
fictitious node boundary condition implementations produce a similar velocity error pattern. The pressure error is
dominant at the location of the viscosity jump.

Table 2. Order of Convergence for the Coupled Staggered Grid and Marker‐in‐Cell Scheme Using an Arithmetic Viscosity

Averaging and 64 Markers Per Cella

I (1‐Cell) I (4‐Cell)

BC (First Order) BC (Second Order) BC (First Order) BC (Second Order)

h* (1) h* (106) h* (1) h* (106) h* (1) h* (106) h* (1) h* (106)

ru 1.0309 1.0016 2.0115 1.0046 1.0344 1.0025 2.0122 1.0059
rp 1.0323 1.0175 1.9875 1.009 1.0348 0.99797 2.0124 0.96827

aThe results are produced using the analytical solution SolCx. They represent the rate at which the L1 error norm decreases with increasing
resolution. Comparison between two interpolation scheme (I ), two boundary condition implementations, and two different fluid viscosity
contrasts (h*).
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similar rates of convergence, 1‐cell interpolation is
more accurate than 4‐cell for a given number of
marker per interpolation volume (Figure 9a). In this
test, the viscosity field is spatially constant, thus the
difference in error is therefore related to the inter-
polation of density (a smooth field in this model)
required to assemble the force vector. The offsets
between the velocity and pressure solutions with and
without introducing marker‐to‐node interpolation is
∼0.5 an order of magnitude.

4.3.2. SolCx: 106 Viscosity Jump

[46] In Figure 9b the errors for a sequence of grid
resolutions used to solve the variable viscosity case
are provided. Similarly to the test in section 4.2.2
in which no marker‐to‐node interpolation was
employed, all the simulations converged with a
rate of first order for velocity and pressure, regard-
less of the type of interpolation used. The choice of
using either 1‐cell or 4‐cell interpolation method for
interpolating the viscosity jump and the smoothly
varying density field only appeared to affect the
accuracy of the pressure field.

4.3.3. SolKz: 106 Smooth Viscosity Variation

[47] We have run the test SolKz to test the effect of
a large continuous variation of viscosity through

the domain. We have used second‐order boundary
conditions and two interpolation methods. Second‐
order L1 velocity and pressure convergence were
obtained while using 1‐cell interpolation. 4‐cell
interpolation provided second‐order velocity con-
vergence and a pressure convergence order rp,
slightly less than 2. For this particular test, the
absolute velocity and pressure error are approxi-
mately half an order of magnitude more accurate
when the 1‐cell method is utilized (Figure 10).

4.3.4. Inclusion Test: 103 Viscosity Jump

[48] This analytical solution requires a strain rate
boundary condition (e.g., pure shear) to be applied
far away from the center of the domain where the
inclusion is located. In order to avoid any problems
related to the treatment of this particular boundary
condition, each boundary was treated as a Dirichlet
boundary. The analytical solution was evaluated
and imposed on the boundaries of our model
domain. This approach also has the effect of
removing the truncation error introduced while
discretizing the strain rate boundary condition.

[49] The tests were run for an inclusion/bulk vis-
cosity contrast of 103, using both the first‐order and
second‐order boundary condition implementations.
Nodal material properties were evaluated from the

Figure 9. Velocity and pressure L1 norms for SolCx test. Comparison of different material properties interpolations
schemes (4‐cell, 1‐cell). Results are obtained using 64 markers per interpolation area. For this specific test, we used
second‐order BC. (a) With an isoviscous problem, velocity and pressure errors converge at second order. The offsets
between the different lines are a result of the density interpolation. For similar marker density per interpolation vol-
ume, local interpolation provides more accurate results. (b) When a viscosity jump is introduced, all solutions con-
verge at a first‐order rate. The influence of the interpolation scheme is only noticeable on the pressure error.
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marker field using 1‐cell and 4‐cell interpolations
and both interpolations were carried out using an
average of 64 markers per interpolation volume.
Given the sharp, two‐dimensional viscosity struc-
ture (circular), this setup provides a tough test for
both the discretization and the interpolation
scheme. For all our cases, we obtained first‐order
convergence in L1 for the velocity and pressure
fields (Table 3).

4.3.5. Free Surface Stabilization

[50] In this section, we investigate the influence
that the free surface stabilization scheme described
in section 2.2.4 has on the order of convergence of
the staggered grid discretization. For this purpose,
we used the test SolCx described in section 4.1.1.
This test does not include a free surface, but since
the flow is driven by density gradients, the contri-

bution of the stabilizing terms in the discretization
is therefore nonzero. In order to choose the value of
the time step, here we evaluate the time step using a
Courant criteria (with � = 0.5) computed from the
grid spacing and the maximum velocities given
by the analytical solution. In practice, for time‐
dependent problems, the value of the time step used
would be that computed from the flow field and
mesh configuration from the previous time step.

[51] We ran a convergence test using the second‐
order boundary condition implementation and 1‐cell
interpolation (64 markers per interpolation volume)
with a viscosity jump of 106. The stabilization
affects the spatial distribution of error (compare
Figure 11a with Figure 8). This affect is related to
the proportionality between the magnitude of the
correction term and the density gradients. With
decreasing grid spacing, the numerical scheme with
stabilization conserves its first‐order convergence

Figure 10. Dependance of L1 velocity and pressure error norms on the grid spacing (h) for the SolKz test. We tested
two different material properties interpolation (4‐cell, 1‐cell) with a fixed number of markers per interpolation volume
(64). Second‐order BC discretization were employed.

Table 3. Order of Convergence for Velocity and Pressure for the Inclusion Test (h* = 103), Using the Staggered Grid and

Marker‐in‐Cell Scheme Employing an Arithmetic Viscosity Averaging and 64 Markers Per Cella

I (1‐Cell) I (4‐Cell)

BC (First Order) BC (Second Order) BC (First Order) BC (Second Order)

ru 1.025 0.94897 1.0634 1.0043
rp 0.98051 0.94107 0.99427 0.94204

aThe order of convergence are observed to be independent of the type of marker‐to‐node interpolation and the style of boundary condition
implementation.
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in L1 for both velocity and pressure, although a
slight offset in pressure convergence was observed
between simulations including or not the stabili-
zation (dashed lines Figure 11b). Therefore the
stabilization term does not noticeably modify the
flow discretization, nor the overall convergence of
the method.

5. Application to a Rayleigh‐Taylor
Instability With a Free Surface

[52] In section 4.3.5, we applied the free surface
stabilization algorithm to the model setup of SolCx
and observed that the order of convergence was
unaltered by the introduction of the stabilization.
We considered this test as being suitable for a
convergence test, even though the problem does
not include a free surface, as the flow is driven by

buoyancy, thus possesses spatial variations in den-
sity. In order to test the robustness of the free surface
stabilization scheme presented in section 2.2.4, we
ran several simulations of a Rayleigh‐Taylor insta-
bility with a free surface. This setup was used by
Kaus et al. [2010] and was shown to produce the
“drunken seaman” instability with a finite element
code which explicitly tracked the free surface. With
our Eulerian‐Lagrangian approach, we approximate
the free surface by using “sticky air”, i.e., we
introduce a layer of zero density, low‐viscosity
incompressible material [Schmeling et al., 2008].
The pseudo free surface is then defined as the
interface between the crust and the “sticky air”,
which is free to deform. The setup of the exper-
iment consists of a domain W ≡ [−250, 250] ×
[−600, 0] km, with a resolution of 502 cells (Dx =
10 km, Dy = 12 km). The box is filled with a
400 km thick asthenosphere, a 100 km thick layer

Figure 11. (a) Spatial distribution of the absolute value of the discretization error including the stabilization algo-
rithm. (b) Influence of the stabilization algorithm on the convergence of the staggered grid and marker‐in‐cell discre-
tization. The results were produced using the second‐order BC and 1‐cell interpolation (64 markers per cell); the setup
includes a viscosity jump of 106. Dashed and solid lines are pressure and velocity L1 convergence, respectively.
Crosses represent the results obtained with the stabilization; squares are the reference results without stabilization.
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of lithosphere, and an additional 100 km thick
layer of “sticky air” (Figure 12a). The lithosphere/
asthenosphere interface is offset by a 5 km sinu-
soidal perturbation which is therefore a subgrid
feature. The boundary conditions used are free slip
at the top, left and right side of the domain, the
bottom of the box is a no slip boundary. Omitting
the stabilization scheme leads to the development
of a surface instability from the very beginning of
the experiment. The magnitude of the topography
produced during the instability is unrealistically
large and its polarity oscillates through time
(Figure 12b). Including the stabilization enables
the development of a stable topographic signal,
characterized by a sinusoidal shape (Figure 12c).
Following Kaus et al. [2010], we monitored the
depth of the lithosphere/asthenosphere interface
with time. In order to do so, we explicitly tracked
the left most marker located on this interface, the
results are reported in Figure 13. We tested the
two different boundary condition implementations
described in section 2.2.3. The results show that
using the second‐order boundary condition imple-
mentation enables our model to better reproduce
the results of Kaus et al. [2010]. We suspect that

the deviation observed using first‐order boundary
conditions witnesses of an accumulated (transport)
error resulting from the nature of the BC imple-
mentation, affecting therefore the solution in the
vicinity of the domain boundaries. In summary, the
stabilization algorithm appears to effectively damp
the oscillations that frequently arise when solving
time‐dependent problems which contain a strong
density contrast. Despite the apparent stability of
the algorithm when time steps defined by the
classical Courant criterion are used, we note that,
according to the timescale of interest, accurate
topographic modeling may require the use of time
steps which are much smaller than those predicted
by the Courant criterion.

6. Perspectives

6.1. Improving Convergence Properties

[53] Throughout sections 4.2 and 4.3 we have
observed the degradation of the order of convergence
of the staggered grid solution when discontinuous
viscosity structures were introduced. Figure 14
exhibits the decay of the L1 velocity and pressure

Figure 12. (a) Setup of the Rayleigh‐Taylor instability with a free surface text (not to scale). (b) Example of early
development of topography without stabilization with a Courant number equal to 0.5. Labels 1, 2, and 3 indicate topo-
graphic profiles at times 100, 167, and 171 kyr, respectively. The “drunken seaman” instability produces topography
of very large amplitude that is not stable during time stepping. (c) Early development of topography with stabilization
and Courant criteria equal to 0.5. The topographic signal is composed of a single positive topographic bulge in the
center of the domain. Labels 1, 2, and 3 indicate topographic profiles at time 100, 200, and 300 kyr, respectively.

Geochemistry
Geophysics
Geosystems G

3
G

3 DURETZ ET AL.: FD‐MIC SCHEME DISCRETIZATION ERRORS 10.1029/2011GC003567

20 of 26



convergence order with increasing viscosity con-
trast. Here we observe a reduction of the conver-
gence, from second order to first order, when the
viscosity contrast is increased from one (isoviscous)
to ten. These results were obtained using the analytic
solution SolCx. While these results are representa-
tive of a one‐dimensional viscosity structure, this
type of behavior is commonly observed when
solving problems involving large discontinuities in
coefficients [Das et al., 1994], or waves such as
those occurring in shock dynamics [Banks et al.,
2008], where shocks behaves as discontinuities
and locally reduce the order of convergence of the
numerical scheme. Restoring the optimal conver-
gence properties of numerical method, prior to the
introduction of the discontinuities is appealing. Here
we briefly describe some efforts toward this.

[54] In section 4.2.2 we noted that under a specific
alignment of our finite difference grid with the one‐
dimensional discontinuous viscosity structure, the
optimal order of convergence for our method was
observed. While this was regarded as a “special”
case, it does raise the question, under what con-
ditions is the viscosity jump correctly captured by
our FD stencil? It has been proposed that differ-
ent averaging methods (harmonic, geometric) of
material properties can lead to improved numerical
results [MacKinnon and Carey, 1988; Das et al.,
1994]. Examples of using such methods for vis-
cous flow problems are available in the literature
[Das et al., 1994; Deubelbeiss and Kaus, 2008;
Schmeling et al., 2008], however, determining

which averaging scheme is appropriate remains
unsolved. The conclusions to this questions differ
with the various model setup (boundary driven
flow, buoyancy driven flow, viscosity contrast) and
with the structure of the discontinuity (1‐D versus
2‐D versus 3‐D geometries). While such averaging
is completely justified in 1‐D problems, it does not
naturally generalize to higher dimensions and
consequently is not robust enough for general use.
Additionally, the aforementioned averaging meth-
ods only consider scalar quantities, or isotropic
constitutive tensors. The extension of the approach
to tensorial quantities, which may be required for
obtaining an effective stress, or an effective or-
thotropic constitutive tensor is nontrivial. We refer
to Cowin and Yang [1997] for further details on
this topic.

[55] In contrast to rudimentary averaging of mul-
tiscale behavior (or coefficients), homogenization
provides an alternative view by decomposing
phenomena into two scales: a macroscale (coarse
scale) and a microscale (fine scale). The essence of
this class of methods is to extract coarse scale
equations (or coefficients) which incorporate a
multitude of different scales. The idea of scale
separation can be naturally adopted to the FD‐MIC
scheme discussed here, in which we have a model
domain discretized via cells (coarse scale) and
within each cell we have numerous markers which
define variations of the viscosity and density,
thereby describing fine scale information. In clas-
sical homogenization theory [Bensoussan et al.,

Figure 13. Free surface evolution during the Rayleigh‐Taylor instability test as presented by Kaus et al. [2010]. We
monitor the vertical coordinate of a marker initially positioned on the lithosphere/asthenosphere boundary and next to
the left side of the box. Results are all computed for a Courant number equal to 0.5. Differences can been seen
between the first‐order and second‐order boundary condition implementations; the latter follows the results [Kaus
et al., 2010] more closely.
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1978; Murat, 1978], it is frequently required to
assume that the fine scale heterogeneity is periodic
in one direction, thus this approach may lack the
generality required. Nevertheless, further extensions
of classical homogenization are being developed for
nonperiodic heterogeneities [Capdeville et al.,
2010]. For a thorough review of homogenization
we refer to Hassani and Hinton [1998a, 1998b,
1998c]. Numerous alternatives to classical homog-
enization exist [see, e.g., Brewster and Beylkin,
1995; Abdulle and Weinan, 2003; Arbogast, 2002;
Jenny et al., 2003; Weinan and Engquist, 2003;
Kouznetsova et al., 2002]. These methods also
employ coarse and fine scale representation of the
problem, however they do not assume that the fine
structure is periodic. Many of these methods require
the solution of independent cell problems, where
local, fine scale solutions are subsequently coupled
to a coarse grid solution. Such approaches could
used in geodynamic models to resolve fine scale
structure defined via the markers, and may also
improve the convergence [Masud and Khurram,
2004; Liu and Li, 2006] of our scheme in the pres-
ence of discontinuous viscosity fields.

6.2. Input Data Uncertainty Estimation
and Model Parameter Sensitivity

[56] In the light of establishing that the numerical
scheme employed to solve a given set of equations,
which describes the geodynamic process of inter-

est, has been deemed to be sufficiently accurate and
robust, other challenges await. Geodynamic simu-
lations require prescription of the rheological
behavior and its associated parameters for each
lithology present in the system. In practice, these
parameters and flow laws are frequently derived
experimentally. The evaluation of flow parameters
at high pressure/temperature is a challenging task
and the behavior of crystals such as olivine at depth
still remains widely debated [Raterron et al., 2009;
Rozel et al., 2011]. Moreover, the extrapolation of
flow laws from laboratory time scales to geological
time scales give rise to additional uncertainties
[Paterson, 1987]. One interesting direction for
geodynamic modeling is the integration of the
material property uncertainties into the simulations,
as done in other communities [Laz et al., 2007;
Houtekamer et al., 1996; Rabier et al., 1996].

[57] Another avenue to explore could be to con-
sider the geodynamic model as an “optimal design”
problem [Hicks and Henne, 1978; Jameson, 1988,
1995; Giles and Pierce, 2000]. In such approaches,
one seeks to minimize (or maximize) a given
objective function F, subject to set of design vari-
ables U which define the model setup. For instance,
in the context of a viscous folding model, the
design parameters might be: size of the model
domain, rheological parameters (viscosity, den-
sity), rate of compression applied as a boundary
condition, and the objective function could be to
minimize the difference between the dominant

Figure 14. Measured convergence rate of the staggered grid with increasing viscosity contrast (h*). Solid and
dashed lines represent the convergence rate of the velocity and pressure measured in L1, respectively. The measure-
ments were carried out using the analytic solution SolCx and the second‐order BC implementation. Projection of
marker properties h, r was not used; these fields were evaluated on the FD stencil using equations (38) and (36).
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wavelength from the model and one observed from
field data. From such optimal design approaches,
one obtains the relativity sensitivity of F with
respect to each design parameter Ui, or phrased
another way, we can answer the question of what is
the perturbation in dominant wavelength due the
domain size, rheological parameters and boundary
condition. Both optimal design and the integration
of parameter uncertainties provide a means to
quantitatively characterize model parameter sensi-
tivities, thereby further developing our understand-
ing of the system of equations we choose to
represent our geological problem.

7. Conclusions

[58] Computational modeling in geology requires
numerical methods that are robust, reliable and
accurate when applied to study the deformation of
materials which possess discontinuities in their
properties. Such variations in material parameters
are likely to strongly influence the quality of the
solution. While theoretical analysis of such methods
is difficult due to the discontinuous nature of the
material properties, very few numerical studies
focussing specifically on the quality of discrete
solutions obtained from geodynamic models have
been performed. Quantifying the numerical accu-
racy for complex models that are relevant to geo-
dynamics is of vital importance if the solution are to
be used in any quantitative manner. In this study, we
address these issues by examining the discretization
errors and convergence characteristics of the dis-
crete solution obtained from the FD‐MIC scheme,
which is a widely utilized method in the geodynamic
community.

[59] The convergence study was carried out using
two‐dimensional analytical solutions which pos-
sess large continuous and discontinuous variations
in the viscosity field. Two different boundary
conditions implementations, namely extrapolated
BC and fictitious nodes methods were tested. If the
fluid was isoviscous, we found that the fictitious
node method provided second‐order accurate veloc-
ity and pressure fields and therefore showed supe-
riority over the extrapolated BC method, which
produced first‐order accurate fields. Smooth but
large variations of viscosity throughout the model
domain did not affect the second‐order behavior of
the FD‐MIC method. However, the introduction
of a viscosity jump in the model domain affected
the convergence properties of the fictitious node
method, resulting in first‐order velocity and pressure
fields. This drop in the order of convergence

occurred if the viscosity jump was larger than 5. An
essential component of our Eulerian‐Lagrangian
discretizations is the projection of marker properties
onto the finite difference grid. We tested two dif-
ferent marker‐to‐node projections which differ in
their domain of influence. Introducing these pro-
jections was not observed to modify the order of
convergence of the FD‐MIC method. The more
local 1‐cell interpolation was shown to be more
accurate than the 4‐cell interpolation. For the range
of problems considered, our results clearly estab-
lish that the FD‐MIC scheme converges. That is,
increases in the numerical resolution lead to a
reduction of the discretization error. Demonstrating
that the method is convergent adds robustness to
both previous and future geodynamic applications
which employ this particular numerical method.

[60] Additionally, we introduced a strong form
variant of the free surface stabilization algorithm
presented by Kaus et al. [2010]. This stabilization
method is suitable for finite difference discretiza-
tions. By the means of a convergence test, we
showed that the stabilization algorithm also does not
notably affect the convergence properties of our
numerical scheme. Further testing was carried out by
performing time‐dependent simulations and using a
setup which is prone to instability. This test dem-
onstrated that the stabilization suppresses the insta-
bility that may occur while running free surface
calculations. The stabilization permits larger time
steps to be used. Whilst this certainly does not
improve the temporal accuracy of the solution, its
inclusion is necessary to obtain physically mean-
ingful results from simulations which use a Courant
time step. The stabilization method is important for
any simulation that includes large density contrasts.
In our modeling, the surface of the Earth is a clas-
sical example of this type of interface. Thus, this
stabilization routine approach is particularly rele-
vant for modeling topography in regional and global
scale simulations over geological time periods.

[61] Lastly, we wish to remark that continued
research in understanding discretization errors and
convergence properties of the numerical tools used
to study geological processes is vitally important if
we wish to develop the level of reliability and
robustness in our modeling technology which exists
in the engineering community. However, equally as
important as the quality of our numerical solutions,
is our ability to understand the dynamics of the
system we use to describe geological processes, and
this entails understanding the sensitivity of the
model output to the underlying flow laws, material
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parameters and boundary conditions and other
input used to define our model.
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