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Abstract Quantitative attributes are usually discretized in Naive-Bayes learning. We estab-

lish simple conditions under which discretization is equivalent to use of the true probability

density function during naive-Bayes learning. The use of different discretization techniques

can be expected to affect the classification bias and variance of generated naive-Bayes classi-

fiers, effects we name discretization bias and variance. We argue that by properly managing

discretization bias and variance, we can effectively reduce naive-Bayes classification error.

In particular, we supply insights into managing discretization bias and variance by adjusting

the number of intervals and the number of training instances contained in each interval. We

accordingly propose proportional discretization and fixed frequency discretization, two effi-

cient unsupervised discretization methods that are able to effectively manage discretization

bias and variance. We evaluate our new techniques against four key discretization meth-

ods for naive-Bayes classifiers. The experimental results support our theoretical analyses

by showing that with statistically significant frequency, naive-Bayes classifiers trained on

data discretized by our new methods are able to achieve lower classification error than those

trained on data discretized by current established discretization methods.

Keywords Discretization · Naive-Bayes Learning · Bias · Variance

1 Introduction

When classifying an instance, naive-Bayes classifiers assume attributes conditionally in-

dependent of one another given the class; and then apply Bayes theorem to estimate
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the probability of each class given the instance. The class with the highest probability

estimate is chosen as the class for the instance. Naive-Bayes classifiers are simple, ef-

fective, efficient and robust, as well as support incremental training. These merits have

seen them deployed in numerous classification tasks. They have long been a core tech-

nique in information retrieval (Maron and Kuhns 1960; Mitchell 1997; Lewis 1998).

They were first introduced into machine learning as a straw man, against which new

algorithms were compared and evaluated (Cestnik et al. 1987; Clark and Niblett 1989;

Cestnik 1990). But it was soon realized that their classification performance was surprisingly

good compared with other more complex classification algorithms (Kononenko, Langley et

al. 1990, 1992; Domingos and Pazzani 1996, 1997). In consequence, naive-Bayes classifiers

have widespread deployment in applications including medical diagnosis (Lavrac 1998;

Lavrac et al. 2000; Kononenko 2001), email filtering (Androutsopoulos et al. 2000;

Crawford et al. 2002), and recommender systems (Starr et al. 1996; Miyahara and Paz-

zani 2000; Mooney and Roy 2000). There has also been considerable interest in devel-

oping variants of naive-Bayes learning that weaken the attribute independence assump-

tion (Langley and Sage 1994; Sahami 1996; Singh and Provan 1996; Friedman et al. 1997;

Keogh and Pazzani 1999; Zheng and Webb 2000; Webb et al. 2005; Acid et al. 2005;

Cerquides and Mántaras 2005) .

Classification tasks often involve quantitative attributes. For naive-Bayes classifiers,

quantitative attributes are usually processed by discretization. This is because experience

has shown that classification performance tends to be better when quantitative attributes

are discretized than when their probabilities are estimated by making unsafe assumptions

about the forms of the underlying probability density functions from which the quantita-

tive attribute values are drawn. For instance, a conventional approach is to assume that a

quantitative attribute’s probability within a class has a normal distribution (Langley 1993;

Langley and Sage 1994; Pazzani et al. 1994; Mitchell 1997). However, Pazzani (1995) ar-

gued that in many real-world applications the attribute data did not follow a normal distri-

bution; and as a result, the probability estimation of naive-Bayes classifiers was not reli-

able and could lead to inferior classification performance. This argument was supported by

Dougherty et al. (1995) who presented experimental results showing that naive-Bayes with

discretization attained a large average increase in accuracy compared with naive-Bayes with

normal distribution assumption. In contrast, discretization creates a qualitative attribute X∗
i

from a quantitative attribute Xi . Each value of X∗
i corresponds to an interval of values of

Xi . X∗
i is used instead of Xi for training a classifier. In contrast to parametric techniques

for inference from quantitative attributes, such as probability density estimation, discretiza-

tion avoids the need to assume the form of an attribute’s underlying distribution. However,

because qualitative data have a lower level of measurement than quantitative data (Samuels

and Witmer 1999), discretization might suffer information loss. This information loss will

affect the classification bias and variance of generated naive-Bayes classifiers. Such effects

are hereafter named discretization bias and variance. We believe that study of discretization

bias and variance is illuminating. We investigate the impact of discretization bias and vari-

ance on the classification performance of naive-Bayes classifiers. We analyze the factors that

can affect discretization bias and variance. The resulting insights motivate the development

of two new heuristic discretization methods, proportional discretization and fixed frequency

discretization. Our goals are to improve both the classification efficacy and efficiency of

naive-Bayes classifiers. These dual goals are of particular significance given naive-Bayes

classifiers’ widespread deployment, and in particular their deployment in time-sensitive in-

teractive applications.

In the rest of this paper, Sect. 2 prepares necessary background knowledge including ter-

minology and naive Bayes learning. Section 3 defines discretization in naive-Bayes learning.
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Section 4 discusses why discretization can be effective for naive-Bayes learning. In partic-

ular, it establishes specific conditions under which discretization will result in naive-Bayes

classifiers delivering the same probability estimates as would be obtained if the true prob-

ability density function for each quantitative attribute were employed. Section 5 presents

an analysis of the factors that can affect the effectiveness of discretization when learning

from multiple attributes. It also introduces the bias-variance analysis of discretization out-

comes. Much of this material has previously been covered in an earlier paper (Yang and

Webb 2003), but it is included for completeness and ease of reference. Section 6 provides

a review of previous key discretization methods for naive-Bayes learning with a focus on

their discretization bias and variance profiles. To our knowledge, this is the first compre-

hensive review of this specialized field of research. Section 7 proposes our new heuristic

discretization techniques, designed to manage discretization bias and variance. While much

of the material in Sect. 7.1 has previously been covered in Yang and Webb (2001), it also is

included here for completeness and ease of reference. Section 8 describes experimental eval-

uation. To our knowledge, this is the first extensive experimental comparison of techniques

for this purpose. Section 9 presents conclusions.

2 Background knowledge

2.1 Terminology

There is an extensive literature addressing discretization, within which there is considerable

variation in the terminology used to describe which type of data is transformed to which type

of data by discretization, including ‘quantitative’ vs. ‘qualitative’, ‘continuous’ vs. ‘discrete’,

‘ordinal’ vs. ‘nominal’, or ‘numeric’ vs. ‘categorical’. Turning to the authority of introduc-

tory statistical textbooks (Bluman 1992; Samuels and Witmer 1999), we believe that the

‘quantitative’ vs. ‘qualitative’ distinction is most applicable in the context of discretization,

and hence choose them for use hereafter.

Qualitative attributes, also often called categorical attributes, are attributes that can be

placed into distinct categories, according to some characteristics. Some can be arrayed in a

meaningful rank order. But no arithmetic operations can be applied to them. Examples are

blood type of a person: A, B, AB, O; and tenderness of beef: very tender, tender, slightly

tough, tough. Quantitative attributes are numerical in nature. They can be ranked in order.

They also can be subjected to meaningful arithmetic operations. Quantitative attributes can

be further classified into two groups, discrete or continuous. A discrete quantitative attribute

assumes values that can be counted. The attribute cannot assume all values on the number

line within its value range. An example is number of children in a family. A continuous

quantitative attribute can assume all values on the number line within the value range. The

values are obtained by measuring rather than counting. An example is the Fahrenheit tem-

perature scale.

2.2 Naive-Bayes classifiers

In naive-Bayes learning, we define:

• C as a random variable denoting the class of an instance,

• X 〈X1,X2, . . . ,Xk〉 as a vector of random variables denoting the observed attribute values

(an instance),

• c as a particular class label,
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• x 〈x1, x2, . . . , xk〉 as a particular observed attribute value vector (a particular instance),

• X = x as shorthand for X1=x1 ∧ X2=x2 ∧ · · · ∧ Xk=xk .

The learner is asked to predict a test instance x’s class according to the evidence pro-

vided by the training data. Expected classification error can be minimized by choosing

argmaxc(p(C=c |X=x)) for each x (Duda and Hart 1973). Bayes theorem can be used

to calculate:

p(C=c |X=x) =
p(C=c)p(X=x |C=c)

p(X=x)
. (1)

Since the denominator in (1) is invariant across classes, it does not affect the final choice

and can be dropped:

p(C=c |X=x) ∝ p(C=c)p(X=x |C=c). (2)

Probabilities p(C=c) and p(X=x |C=c) need to be estimated from the training data. Un-

fortunately, since x is usually a previously unseen instance that does not appear in the train-

ing data, it may not be possible to directly estimate p(X=x |C=c). So a simplification is

made: if attributes X1,X2, . . . ,Xk are conditionally independent of each other given the

class, then:

p(X=x |C=c) = p(∧k
i=1Xi=xi |C=c)

=

k∏

i=1

p(Xi=xi |C=c). (3)

Combining (2) and (3), one can further estimate the most probable class by using:

p(C=c |X=x) ∝ p(C=c)

k∏

i=1

p(Xi=xi |C=c). (4)

Classifiers using (4) are naive-Bayes classifiers. The assumption embodied in (3) is the

attribute independence assumption. The probability p(C=c |X=x) denotes the conditional

probability of a class c given an instance x. The probability p(C=c) denotes the prior prob-

ability of a particular class c. The probability p(Xi=xi |C=c) denotes the conditional prob-

ability that an attribute Xi takes a particular value xi given the class c.

3 The nature of discretization

For naive-Bayes learning, the class C is qualitative, and an attribute Xi can be either qual-

itative or quantitative. Since quantitative data have characteristics different from qualitative

data, the practice of estimating probabilities in (4) when involving qualitative data is differ-

ent from that when involving quantitative data.

Qualitative attributes, including the class, usually take a small number of values (Bluman

1992; Samuels and Witmer 1999). Thus there are usually many instances of each value in

the training data. The probability p(C=c) can be estimated from the frequency of instances

with C=c. The probability p(Xi=xi |C=c), when Xi is qualitative, can be estimated from

the frequency of instances with C=c and the frequency of instances with Xi=xi ∧ C=c.
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These estimates are strong consistent estimates according to the strong law of large num-

bers (Casella and Berger 1990; John and Langley 1995).

When it is quantitative, Xi often has a large or even an infinite number of values (Bluman

1992; Samuels and Witmer 1999). Thus the probability of a particular value xi given

the class c, p(Xi=xi |C=c) can be infinitely small. Accordingly, there usually are very

few training instances for any one value. Hence it is unlikely that reliable estimation of

p(Xi=xi |C=c) can be derived from the observed frequency. Discretization can circumvent

this problem. Under discretization, a qualitative attribute X∗
i is formed for Xi . Each value x∗

i

of X∗
i corresponds to an interval (ai, bi] of Xi . Any original quantitative value xi ∈ (ai, bi]

is replaced by x∗
i . All relevant probabilities are estimated with respect to x∗

i . So long as

there are sufficient training instances, probabilities of X∗
i can be reliably estimated from

corresponding frequencies. However, because discretization loses the ability to differentiate

between values within each interval, it might suffer information loss.

Two important concepts involved in our study of discretization are interval frequency

and interval number. Interval frequency is the frequency of training instances in an in-

terval formed by discretization. Interval number is the total number of intervals formed by

discretization.

4 Why discretization can be effective

Dougherty et al. (1995) found empirical evidence that naive-Bayes classifiers using dis-

cretization achieved lower classification error than those using unsafe probability density

assumptions. They suggested that discretization could be effective because it did not make

assumptions about the form of the probability distribution from which the quantitative at-

tribute values were drawn. Hsu et al. (2000, 2003) proposed a further analysis of this issue,

based on an assumption that each X∗
i has a Dirichlet prior. Their analysis focused on the

density function f , and suggested that discretization would achieve optimal effectiveness

by forming x∗
i for xi such that p(X∗

i =x∗
i |C=c) simulated the role of f (Xi=xi |C=c) by

distinguishing the class that gives xi high density from the class that gives xi low density. In

contrast, as we will prove in Theorem 1, we believe that discretization for naive-Bayes learn-

ing should focus on the accuracy of p(C=c |X∗
i =x∗

i ) as an estimate of p(C=c |Xi=xi);

and that discretization can be effective to the degree that p(C=c |X∗=x∗) is an accurate es-

timate of p(C=c |X=x), where instance x∗ is the discretized version of instance x. Such an

analysis was first proposed by Kononenko (1992). However, Kononenko’s analysis required

that the attributes be assumed unconditionally independent of each other, which entitles∏k

i=1 p(Xi=xi) = p(X=x). This assumption is much stronger than the naive-Bayes condi-

tional attribute independence assumption embodied in (3). Thus we present the following

theorem that we suggest more accurately captures the mechanism by which discretization

works in naive-Bayes learning than do previous theoretical analyses.

Theorem 1 Assume the first l of k attributes are quantitative and the remaining attributes

are qualitative.1 Suppose instance X∗=x∗ is the discretized version of instance X=x, re-

sulting from substituting qualitative attribute X∗
i for quantitative attribute Xi (1≤i≤l). If

∀l
i=1(p(C=c |Xi=xi) = p(C=c |X∗

i =x∗
i )), and the naive-Bayes attribute independence as-

sumption (3) holds, we have p(C=c |X=x) = p(C=c |X∗=x∗).

1In naive-Bayes learning, the order of attributes does not matter. We make this assumption only to simplify

the expression of our proof. This does not at all affect the theoretical analysis.
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Proof According to Bayes theorem, we have:

p(C=c |X=x) = p(C=c)
p(X=x |C=c)

p(X=x)
;

since the naive-Bayes attribute independence assumption (3) holds, we continue:

=
p(C=c)

p(X=x)

k∏

i=1

p(Xi=xi |C=c);

using Bayes theorem:

=
p(C=c)

p(X=x)

k∏

i=1

p(Xi=xi)p(C=c |Xi=xi)

p(C=c)

=
p(C=c)

p(C=c)k

∏k

i=1 p(Xi=xi)

p(X=x)

k∏

i=1

p(C=c |Xi=xi);

since the factor
∏k

i=1 p(Xi=xi )

p(X=x)
is invariant across classes:

∝ p(C=c)1−k

k∏

i=1

p(C=c |Xi=xi)

= p(C=c)1−k

l∏

i=1

p(C=c |Xi=xi)

k∏

j=l+1

p(C=c |Xj=xj );

since ∀l
i=1(p(C=c |Xi=xi)=p(C=c |X∗

i =x∗
i )):

= p(C=c)1−k

l∏

i=1

p(C=c |X∗
i =x∗

i )

k∏

j=l+1

p(C=c |Xj=xj );

using Bayes theorem again:

= p(C=c)1−k

l∏

i=1

p(C=c)p(X∗
i =x∗

i |C=c)

p(X∗
i =x∗

i )

k∏

j=l+1

p(C=c)p(Xj=xj |C=c)

p(Xj=xj )

= p(C=c)

∏l

i=1 p(X∗
i =x∗

i |C=c)
∏k

j=l+1 p(Xj=xj |C=c)
∏l

i=1 p(X∗
i =x∗

i )
∏k

j=l+1 p(Xj=xj )
;

since the denominator
∏l

i=1 p(X∗
i =x∗

i )
∏k

j=l+1 p(Xj=xj ) is invariant across classes:

∝ p(C=c)

l∏

i=1

p(X∗
i =x∗

i |C=c)

k∏

j=l+1

p(Xj=xj |C=c);

since the naive-Bayes attribute independence assumption (3) holds:

= p(C=c)p(X∗=x∗ |C=c)

= p(C=c |X∗=x∗)p(X∗=x∗);
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since p(X∗=x∗) is invariant across classes:

∝ p(C=c |X∗=x∗);

because we are talking about probability distributions, we can normalize p(C |X∗=x∗) and

obtain:

= p(C=c |X∗=x∗). �

Theorem 1 assures us that so long as the attribute independence assumption holds, and

discretization forms a qualitative X∗
i for each quantitative Xi such that p(C=c |X∗

i =x∗
i ) =

p(C=c |Xi=xi), discretization will result in naive-Bayes classifiers delivering the same

probability estimates as would be obtained if the correct probability density function were

employed. Theorem 1 suggests that the most important factor to influence the accuracy of

the probability estimates will be the accuracy with which p(C=c |X∗
i =x∗

i ) serves as an

estimate of p(C=c |Xi=xi). This leads us to the following section.

5 What affects discretization effectiveness

When we talk about the effectiveness of a discretization method in naive-Bayes learning, we

mean the classification performance of naive-Bayes classifiers that are trained on data pre-

processed by this discretization method. There are numerous metrics on which classification

performance might be assessed. In the current paper we focus on zero-one loss classification

error.

Two influential factors with respect to performing discretization so as to minimize clas-

sification error are decision boundaries and the error tolerance of probability estimation.

How discretization deals with these factors can affect the classification bias and variance of

generated classifiers, effects we name discretization bias and discretization variance. Ac-

cording to (4), the prior probability of each class p(C=c) also affects the final choice of the

class. To simplify our analysis, here we assume that each class has the same prior probability.

Thus we can cancel the effect of p(C=c). However, our analysis extends straightforwardly

to non-uniform cases.

5.1 Classification bias and variance

The performance of naive-Bayes classifiers discussed in our study is measured by their

classification error. The error can be decomposed into a bias term, a variance term and

an irreducible term (Kong and Dietterich 1995; Breiman 1996; Kohavi and Wolpert 1996;

Friedman 1997; Webb 2000). Bias describes the component of error that results from sys-

tematic error of the learning algorithm. Variance describes the component of error that re-

sults from random variation in the training data and from random behavior in the learning

algorithm, and thus measures how sensitive an algorithm is to changes in the training data.

As the algorithm becomes more sensitive, the variance increases. Irreducible error describes

the error of an optimal algorithm (the level of noise in the data). Consider a classifica-

tion learning algorithm A applied to a set S of training instances to produce a classifier to

classify an instance x. Suppose we could draw a sequence of training sets S1, S2, . . . , Sl ,

each of size m, and apply A to construct classifiers. The error of A at x can be defined as:

Error(A,m,x) = Bias(A,m,x) + Variance(A,m,x) + Irreducible(A,m,x). There is often
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Fig. 1 Bias and variance in shooting arrows at a target. Bias means that the archer systematically misses in

the same direction. Variance means that the arrows are scattered (Moore and McCabe 2002)

a ‘bias and variance trade-off’ (Kohavi and Wolpert 1996). All other things being equal, as

one modifies some aspect of the learning algorithm, it will have opposite effects on bias and

variance.

Moore and McCabe (2002) illustrated bias and variance through shooting arrows at a

target, as reproduced in Fig. 1. We can think of the perfect model as the bull’s-eye on a

target, and the algorithm learning from some set of training data as an arrow fired at the

bull’s-eye. Bias and variance describe what happens when an archer fires many arrows at the

target. Bias means that the aim is off and the arrows land consistently off the bull’s-eye in

the same direction. The learned model does not center on the perfect model. Large variance

means that repeated shots are widely scattered on the target. They do not give similar results

but differ widely among themselves. A good learning scheme, like a good archer, must have

both low bias and low variance.

The use of different discretization techniques can be expected to affect the classification

bias and variance of generated naive-Bayes classifiers. We name the effects discretization

bias and variance.

5.2 Decision boundaries

Hsu et al. (2000, 2003) provided an interesting analysis of the discretization problem utiliz-

ing the notion of a decision boundary, relative to a probability density function f (Xi |C=c)

of a quantitative attribute Xi given each class c. They defined decision boundaries of Xi

as intersection points of the curves of f (Xi |C), where ties occurred among the largest

conditional densities. They suggested that the optimal classification for an instance with

Xi=xi was to pick the class c such that f (Xi=xi |C=c) was the largest, and observed that

this class was different when xi was on different sides of a decision boundary. Hsu et al.’s

analysis only addressed one-attribute classification problems, and only suggested that the

analysis could be extended to multi-attribute applications without indicating how this might

be so.

In our analysis we employ a different definition of a decision boundary to that of Hsu et

al.’s because:

1. Given Theorem 1, we believe that better insights are obtained by focusing on the values

of Xi at which the class that maximizes p(C=c | Xi=xi) changes rather than those that

maximize f (Xi=xi |C=c).

2. The condition that ties occur among the largest conditional probabilities is neither nec-

essary nor sufficient for a decision boundary to occur. For example, suppose that we
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Fig. 2 A tie in conditional

probabilities is not a necessary

condition for a decision boundary

to exist

Fig. 3 A tie in conditional

probabilities is not a sufficient

condition for a decision boundary

to exist

have probability distributions as plotted in Fig. 2 that depicts a domain with two classes

(positive vs. negative) and one attribute X1. We have p(positive |X1)=1.0 (if X1 ≥ d);

or 0.0 otherwise. X1=d should be a decision boundary since the most probable class

changes from negative to positive when Xi crosses the value d . However, there is no

value of X1 at which the probabilities of the two classes are equal. Thus the condition

requiring ties is not necessary. Consider a second example as plotted in Fig. 3. The condi-

tional probabilities for c1 and c2 are equal at X1=d . However, d is not a decision bound-

ary because c2 is the most probable class on both sides of X1=d . Thus the condition is

not sufficient either.

3. It is possible that a decision boundary is not a single value, but a region of values. For

example as plotted in Fig. 4, the two classes c1 and c2 are both most probable through

the region [d, e]. In addition, the region’s width can be zero, as illustrated in Fig. 2.

4. To extend the notion of decision boundaries to the case of multiple attributes, it is nec-

essary to allow the decision boundaries of a given attribute Xi to vary from test instance

to test instance, depending on the precise values of other attributes presented in the test

instance, as we will explain later in this section. However, Hsu et al. defined the decision

boundaries of a quantitative attribute in such a way that they were independent of other

attributes.

In view of these issues we propose a new definition for decision boundaries. This new de-

finition is central to our study of discretization effectiveness in naive-Bayes learning. As we

have explained, motivated by Theorem 1, we focus on the probability p(C=c |Xi) of each

class c given a quantitative attribute Xi rather than on the density function f (Xi=xi |C=c).

To define a decision boundary of a quantitative attribute Xi , we first define a most prob-

able class. When classifying an instance x, a most probable class cm given x is the class that



48 Mach Learn (2009) 74: 39–74

Fig. 4 Decision boundaries may

be regions rather than points

satisfies ∀c ∈ C,P (c |x) ≤ P (cm |x). Note that there may be multiple most probable classes

for a single x if the probabilities of those classes are equally the largest. In consequence,

we define a set of most probable classes, mpc(x), whose elements are all the most probable

classes for a given instance x. As a matter of notational convenience we define x\Xi=v to

represent an instance x′ that is identical to x except that Xi=v for x′.

A decision boundary of a quantitative attribute Xi given an instance x in our analysis is

an interval (l, r) of Xi (that may be of zero width) such that

∀(w ∈ [l, r), u ∈ (l, r]),¬(w=l ∧ u=r) ⇒ mpc(x\Xi=w) ∩ mpc(x\Xi=u) �= ∅

∧

mpc(x\Xi=l) ∩ mpc(x\Xi=r) = ∅.

That is, a decision boundary is a range of values of an attribute throughout which the sets

of most probable classes for every pair of values has one or more values in common and on

either side of which the sets of most probable classes share no values in common.

5.3 How decision boundaries affect discretization bias and variance

When analyzing how decision boundaries affect discretization effectiveness, we suggest that

the analysis involving only one attribute differs from that involving multiple attributes, since

the final choice of the class is decided by the product of each attribute’s probability in the

later situation. Consider a simple learning task with one quantitative attribute X1 and two

classes c1 and c2. Suppose X1 ∈ [0,2], and suppose that the probability distribution function

for each class is p(C=c1 |X1) = 1 − (X1 − 1)2 and p(C=c2 |X1) = (X1 − 1)2 respectively

as plotted in Fig. 5.

The consequent decision boundaries are labeled DB1 and DB2 respectively in Fig. 5.

The most probable class for an instance x=〈x1〉 changes each time x1’s location crosses a

decision boundary. Assume a discretization method to create intervals Ii (i=1, . . . ,5) as in

Fig. 5. I2 and I4 contain decision boundaries while the remaining intervals do not. For any

two values in I2 (or I4) but on different sides of a decision boundary, the optimal naive-

Bayes learner under zero-one loss should select a different class for each value.2 But under

discretization, all the values in the same interval cannot be differentiated and we will have

2Please note that some instances may be misclassified even when optimal classification is performed. An

optimal classifier minimizes classification error under zero-one loss. Hence even though it is optimal, it may

still misclassify instances on both sides of a decision boundary.
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Fig. 5 Probability distribution in

one-attribute problem

the same class probability estimate for all of them. Consequently, naive-Bayes classifiers

with discretization will assign the same class to all of them, and thus values at one of the two

sides of the decision boundary will be misclassified. The larger the interval frequency, the

more likely that the value range of the interval is larger, thus the more likely that the interval

contains a decision boundary. The larger the interval containing a decision boundary, the

more instances to be misclassified, thus the higher the discretization bias.

In one-attribute problems, the locations of decision boundaries of the attribute X1 de-

pend on the distribution of p(C |X1) for each class. However, for a multi-attribute appli-

cation, the decision boundaries of an attribute Xi are not only decided by the distribution

of p(C |Xi), but also vary from test instance to test instance depending upon the precise

values of other attributes. Consider another learning task with two quantitative attributes X1

and X2, and two classes c1 and c2. The probability distribution of each class given each

attribute is depicted in Fig. 6, of which the probability distribution of each class given X1

is identical with that in the above one-attribute context. We assume that the attribute in-

dependence assumption holds. We analyze the decision boundaries of X1 for an example.

If X2 does not exist, X1 has decision boundaries as depicted in Fig. 5. However, because

of the existence of X2, those might not be decision boundaries any more. Consider a test

instance x with X2 = 0.2. Since p(C=c1 |X2=0.2)=0.8 > p(C=c2 |X2=0.2)=0.2, and

p(C=c |x) ∝
∏2

i=1 p(C=c |Xi=xi) for each class c according to Theorem 1, p(C=c1 |x)

does not equal p(C=c2 |x) when X1 falls on any of the single attribute decision bound-

aries as presented in Fig. 5. Instead X1’s decision boundaries change to be DB1 and DB4

as in Fig. 6. Now suppose another test instance with X2 = 0.7. By the same reasoning X1’s

decision boundaries change to be DB2 and DB3 as in Fig. 6.

When there are more than two attributes, each combination of values of the attributes

other than X1 will result in corresponding decision boundaries of X1. Thus in multi-attribute

applications, the decision boundaries of one attribute can only be identified with respect to

each specific combination of values of the other attributes. Increasing either the number of

attributes or the number of values of an attribute will increase the number of combinations

of attribute values, and thus the number of decision boundaries. In consequence, each at-

tribute may have a very large number of potential decision boundaries. Nevertheless, for the

same reason as we have discussed in the one-attribute context, intervals containing decision

boundaries have potential negative impact on discretization bias.

The above expectation has been verified on real-world data, taking the benchmark data

set ‘Balance-Scale’ from the UCI machine learning repository (Blake and Merz 1998) as an

example. We chose ‘Balance-Scale’ because it is a relatively large data set with the class and

quantitative attributes both having relatively few values. This is important in order to derive

clear plots of the probability density functions (pdf). The data have four attributes, ‘left
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Fig. 6 Probability distribution in

two-attribute problem

weight’, ‘left distance’, ‘right weight’, and ‘right distance’. If (left-distance × left-weight

> right-distance × right-weight), the class is ‘left’; if (left-distance × left-weight < right-

distance × right-weight), the class is ‘right’; otherwise the class is ‘balanced’. Hence given

a class label, there is strong interdependency among attributes. For example, Figs. 7a to 7c

illustrate how the decision boundaries of ‘left weight’ move depending on the values of ‘right

weight’. Figure 7a depicts the pdf of each class3 for the attribute ‘left weight’ according to

the whole data set. We then increasingly sort all instances by the attribute ‘right weight’,

and partition them into two equal-size sets. Figure 7b depicts the class pdf curves on the

attribute ‘left weight’ in the first half instances while Fig. 7c in the second half. It is clearly

shown that the decision boundary of ‘left weight’ changes its location among those three

figures.

According to the above understandings, discretization bias can be reduced by identifying

the decision boundaries and setting the interval boundaries close to them. However, identify-

ing the correct decision boundaries depends on finding the true form of p(C |X). Ironically,

if we have already found p(C |X), we can resolve the classification task directly; thus there

is no need to consider discretization at all. Without knowing p(C |X), an extreme solution

is to set each value as an interval. Although this most likely guarantees that no interval con-

tains a decision boundary, it usually results in very few instances per interval. As a result,

the estimation of p(C |X) might be so unreliable that we cannot identify the truly most

probable class even if there is no decision boundary in the interval. The smaller the interval

frequency, the less training instances per interval for probability estimation, thus the more

likely that the variance of the generated classifiers increases since even a small change of

the training data might totally change the probability estimation.

A possible solution to this problem is to require that the interval frequency should be

sufficient to ensure stability in the probability estimated therefrom. This raises the ques-

tion, how reliable must the probability be? That is, when estimating p(C=c |X=x) by

3Strictly speaking, the curves depict frequencies of classes from which the pdf can be derived.
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Fig. 7 Decision boundary of the attribute ‘left weight’ moves according to values of the attribute ‘right

weight’ in the UCI benchmark data set ‘Balance-Scale’
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p(C=c |X∗=x∗), how much error can be tolerated without altering the classification. This

motivates our following analysis.

5.4 Error tolerance of probability estimation

To investigate this factor, we return to our example depicted in Fig. 5. We suggest that dif-

ferent values have different error tolerance with respect to their probability estimation. For

example, for a test instance x〈X1=0.1〉 and thus of class c2, its true class probability distri-

bution is p(C=c1 |x)=p(C=c1 |X1=0.1) = 0.19 and p(C=c2 |x)=p(C=c2 |X1=0.1) =

0.81. According to naive-Bayes learning, so long as p(C=c2 |X1=0.1) > 0.50, c2 will be

correctly assigned as the class and the classification is optimal under zero-one loss. This

means, the error tolerance of estimating p(C |X1=0.1) can be as large as 0.81 − 0.50 =

0.31. However, for another test instance x〈X1=0.3〉 and thus of class c1, its probability distri-

bution is p(C=c1 |x)=p(C=c1 |X1=0.3) = 0.51 and p(C=c2 |x)=p(C=c2 |X1=0.3) =

0.49. The error tolerance of estimating p(C |X1=0.3) is only 0.51 − 0.50 = 0.01. In the

learning context of multi-attribute applications, the analysis of the tolerance of probabil-

ity estimation error is even more complicated. The error tolerance of a value of an at-

tribute affects as well as is affected by those of the values of other attributes since it is

the multiplication of p(C=c |Xi=xi) of each xi that decides the final probability of each

class.

The larger an interval’s frequency, the lower the expected error of probability estimates

pertaining to that interval. Hence, the lower the error tolerance for a value, the larger the

ideal frequency for the interval from which its probabilities are estimated. Since all fac-

tors affecting error tolerance vary from case to case, there cannot be a universal, or even a

domain-wide constant that represents the ideal interval frequency, which thus will vary from

case to case. Further, the error tolerance can only be calculated if the true probability distri-

bution of the training data is known. If it is unknown, the best we can hope for is heuristic

approaches to managing error tolerance that work well in practice.

5.5 Summary

By this line of reasoning, optimal discretization can only be performed if the probability

distribution of p(C=c |Xi=xi) for each pair 〈c, xi〉 given each particular test instance is

known; and thus the decision boundaries are known. If the decision boundaries are unknown,

which is often the case for real-world data, we want to have as many intervals as possible so

as to minimize the risk that an instance is classified using an interval containing a decision

boundary. Further, if we want to have a single discretization of an attribute that applies

to every instance to be classified, as the decision boundaries may move from instance to

instance, it is desirable to minimize the size of each interval so as to minimize the total extent

of the number range falling within an interval on the wrong size of a decision boundary.

By this means we expect to reduce the discretization bias. On the other hand, we want to

ensure that each interval frequency is sufficiently large to minimize the risk that the error

of estimating p(C=c |X∗
i =x∗

i ) will exceed the current error tolerance. By this means we

expect to reduce the discretization variance.

However, when the number of the training instances is fixed, there is a trade-off between

interval frequency and interval number. That is, the larger the interval frequency, the smaller

the interval number, and vice versa. Low learning error can be achieved by tuning inter-

val frequency and interval number to find a good trade-off between discretization bias and

variance. We have argued that there is no universal solution to this problem, that the optimal
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trade-off between interval frequency and interval number will vary greatly from test instance

to test instance.

These insights reveal that, while discretization is desirable when the true underlying prob-

ability density function is not available, practical discretization techniques are necessarily

heuristic in nature. The holy grail of an optimal universal discretization strategy for naive-

Bayes learning is unobtainable.

6 Existing discretization methods

Here we review four key discretization methods, each of which was either designed es-

pecially for naive-Bayes classifiers or is in practice often used for naive-Bayes classifiers.

We are particularly interested in analyzing each method’s discretization bias and variance,

which we believe illuminating.

6.1 Equal width discretization and equal frequency discretization

Equal width discretization (EWD) (Catlett 1991; Kerber 1992; Dougherty et al. 1995) di-

vides the number line between vmin and vmax into k intervals of equal width, where k is a

user predefined parameter. Thus the intervals have width w=(vmax − vmin)/k and the cut

points are at vmin + w,vmin + 2w, . . . , vmin + (k − 1)w.

Equal frequency discretization (EFD) (Catlett 1991; Kerber 1992; Dougherty et al. 1995)

divides the sorted values into k intervals so that each interval contains approximately the

same number of training instances, where k is a user predefined parameter. Thus each in-

terval contains n/k training instances with adjacent (possibly identical) values. Note that

training instances with identical values must be placed in the same interval. In consequence

it is not always possible to generate k equal frequency intervals.

Both EWD and EFD are often used for naive-Bayes classifiers because of their simplic-

ity and reasonably good performance (Hsu et al. 2000, 2003). However both EWD and EFD

fix the number of intervals to be produced (decided by the parameter k). When the training

data size is very small, intervals will have small frequency and thus tend to incur high vari-

ance. When the training data size becomes large, more and more instances are added into

each interval. This can reduce variance. However successive increases to an interval’s size

have decreasing effect on reducing variance and hence have decreasing effect on reducing

classification error. Our study suggests it might be more effective to use additional data to

increase interval numbers so as to further decrease bias, as reasoned in Sect. 5.

6.2 Entropy minimization discretization

EWD and EFD are unsupervised discretization techniques. That is, they take no account of

the class information when selecting cut points. In contrast, entropy minimization discretiza-

tion (EMD) (Fayyad and Irani 1993) is a supervised technique. It evaluates as a candidate

cut point the midpoint between each successive pair of the sorted values. For evaluating

each candidate cut point, the data are discretized into two intervals and the resulting class

information entropy is calculated. A binary discretization is determined by selecting the cut

point for which the entropy is minimal amongst all candidates. The binary discretization

is applied recursively, always selecting the best cut point. A minimum description length

criterion (MDL) is applied to decide when to stop discretization.
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Although EMD has demonstrated strong performance for naive-Bayes (Dougherty et al.

1995; Perner and Trautzsch 1998), it was developed in the context of top-down induction

of decision trees. It uses MDL as the termination condition. According to An and Cercone

(1999), this has an effect that tends to form qualitative attributes with few values so as to

help avoid the fragmentation problem in decision tree learning. For the same reasoning as

employed with respect to EWD and EFD, we thus anticipate that EMD will fail to fully

utilize available data to reduce bias when the data are large. Further, since EMD discretizes

a quantitative attribute by calculating the class information entropy as if the naive-Bayes

classifiers only use that single attribute after discretization, EMD might be effective at iden-

tifying decision boundaries in the one-attribute learning context. But in the multi-attribute

learning context, the resulting cut points can easily diverge from the true ones when the

values of other attributes change, as we have explained in Sect. 5.

6.3 Lazy discretization

Lazy discretization (LD) (Hsu et al. 2000, 2003) defers discretization until classification

time. It waits until a test instance is presented to determine the cut points and then estimates

probabilities for each quantitative attribute of the test instance. For each quantitative value

from the test instance, it selects a pair of cut points such that the value is in the middle of

its corresponding interval and the interval width is equal to that produced by some other

algorithm chosen by the user, such as EWD or EMD. In Hsu et al.’s implementation, the

interval frequency is the same as created by EWD with k=10. However, as already noted,

10 is an arbitrary value.

LD tends to have high memory and computational requirements because of its lazy

methodology. Eager approaches carry out discretization at training time. Thus the train-

ing instances can be discarded before classification time. In contrast, LD needs to keep all

training instances for use during classification time. This demands high memory when the

training data size is large. Further, where a large number of instances need to be classified,

LD will incur large computational overheads since it must estimate probabilities from the

training data for each instance individually. Although LD achieves comparable accuracy to

EWD and EMD (Hsu et al. 2000, 2003), the high memory and computational overheads

have a potential to damage naive-Bayes classifiers’ classification efficiency. We anticipate

LD will attain low discretization variance because it always puts the value in question at the

middle of an interval. We also anticipate that its behavior on controlling bias will be affected

by its adopted interval frequency strategy.

7 New discretization techniques that manage discretization bias and variance

We have argued that the interval frequency and interval number formed by a discretiza-

tion method can affect its discretization bias and variance. Such a relationship has been

hypothesized also by a number of previous authors ((Pazzani 1995; Torgo and Gama 1997;

Gama et al. 1998; Hussain et al. 1999; Mora et al. 2000); Hsu et al. 2000, 2003). Thus

we anticipate that one way to manage discretization bias and variance is to adjust interval

frequency and interval number. Consequently, we propose two new heuristic discretization

techniques, proportional discretization and fixed frequency discretization. To the best of our

knowledge, these are the first techniques that explicitly manage discretization bias and vari-

ance by tuning interval frequency and interval number.
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7.1 Proportional discretization

Since a good learning scheme should have both low bias and low variance (Moore and

McCabe 2002), it would be advisable to equally weigh discretization bias reduction and

variance reduction. As we have analyzed in Sect. 5, discretization resulting in large interval

frequency tends to have low variance; conversely, discretization resulting in large interval

number tends to have low bias. To achieve this, as the amount of training data increases

we should increase both the interval frequency and number and as it decreases we should

reduce both. One credible manner to achieve this is to set interval frequency and interval

number equally proportional to the amount of training data. This leads to a new discretiza-

tion method, proportional discretization (PD).

When discretizing a quantitative attribute for which there are n training instances with

known values, supposing that the desired interval frequency is s and the desired interval

number is t , PD employs (5) to calculate s and t . It then sorts the quantitative values in as-

cending order and discretizes them into intervals of frequency s. Thus each interval contains

approximately s training instances with adjacent (possibly identical) values.

s × t = n,

s = t. (5)

By setting interval frequency and interval number equal, PD can use any increase in train-

ing data to lower both discretization bias and variance. Bias can decrease because the interval

number increases, thus any given interval is less likely to include a decision boundary of the

original quantitative value. Variance can decrease because the interval frequency increases,

thus the naive-Bayes probability estimation is more stable and reliable. This means that

PD has greater potential to take advantage of the additional information inherent in large

volumes of training data than previous methods.

7.2 Fixed frequency discretization

An alternative approach to managing discretization bias and variance is fixed frequency dis-

cretization (FFD). As we have explained in Sect. 5, ideal discretization for naive-Bayes

learning should first ensure that the interval frequency is sufficiently large so that the error

of the probability estimate falls within the quantitative data’s error tolerance of probability

estimation. In addition, ideal discretization should maximize the interval number so that the

formed intervals are less likely to contain decision boundaries. This understanding leads to

the development of FFD.

To discretize a quantitative attribute, FFD sets a sufficient interval frequency, m. Then it

discretizes the ascendingly sorted values into intervals of frequency m. Thus each interval

has approximately the same number m of training instances with adjacent (possibly identi-

cal) values.

By introducing m, FFD aims to ensure that in general the interval frequency is sufficient

so that there are enough training instances in each interval to reliably estimate the naive-

Bayes probabilities. Thus FFD can control discretization variance by preventing it from

being very high. As we have explained in Sect. 5, the optimal interval frequency varies from

instance to instance and from domain to domain. Nonetheless, we have to choose a fre-

quency so that we can implement and evaluate FFD. In our study, we choose the frequency

as 30 since it is commonly held to be the minimum sample size from which one should draw

statistical inferences (Weiss 2002).
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By not limiting the number of intervals, more intervals can be formed as the training data

increase. This means that FFD can make use of extra data to reduce discretization bias. In

this way, where there are sufficient data, FFD can prevent both high bias and high variance.

It is important to distinguish our new method, fixed frequency discretization (FFD) from

equal frequency discretization (EFD) (Catlett 1991; Kerber 1992; Dougherty et al. 1995),

both of which form intervals of equal frequency. EFD fixes the interval number. It arbitrarily

chooses the interval number k and then discretizes a quantitative attribute into k intervals

such that each interval has the same number of training instances. Since it does not control

the interval frequency, EFD is not good at managing discretization bias and variance. In

contrast, FFD fixes the interval frequency. It sets an interval frequency m that is sufficient for

the naive-Bayes probability estimation. It then sets cut points so that each interval contains

m training instances. By setting m, FFD can control discretization variance. On top of that,

FFD forms as many intervals as constraints on adequate probability estimation accuracy

allow, which is advisable for reducing discretization bias.

7.3 Time complexity analysis

We have proposed two new discretization methods as well as reviewed four previous key

ones. We here analyze the computational time complexity of each method. Naive-Bayes

classifiers are very attractive to applications with large data because of their computational

efficiency. Thus it will often be important that the discretization methods are efficient so that

they can scale to large data. For each method to discretize a quantitative attribute, supposing

the number of training instances,4 test instances, attributes and classes are n, l, v and m

respectively, its time complexity is analyzed as follows.

• EWD, EFD, PD and FFD are dominated by sorting. Their complexities are of order

O(n logn).

• EMD does sorting first, an operation of complexity O(n logn). It then goes through all

the training instances a maximum of logn times, recursively applying ‘binary division’ to

find out at most n − 1 cut points. Each time, it will estimate n − 1 candidate cut points.

For each candidate point, probabilities of each of m classes are estimated. The complexity

of that operation is O(mn logn), which dominates the complexity of the sorting, resulting

in complexity of order O(mn logn).

• LD sorts the attribute values once and performs discretization separately for each test

instance and hence its complexity is O(n logn) + O(nl).

Thus EWD, EFD, PD and FFD have complexity lower than EMD. LD tends to have high

complexity when the training or testing data size is large.

8 Experimental evaluation

We evaluate whether PD and FFD can better reduce naive-Bayes classification error by better

managing discretization bias and variance, compared with previous discretization methods,

EWD, EFD, EMD and LD. EWD and EFD are implemented with the parameter k=10. The

original LD in Hsu et al.’s implementation (2000, 2003) chose EWD with k=10 to decide

its interval. That is, it formed interval width equal to that produced by EWD with k=10.

4We only consider instances with known value of the quantitative attribute.
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Table 1 Experimental data sets

Data set Size Qn. Ql. C. Data set Size Qn. Ql. C.

LaborNegotiations 57 8 8 2 Annealing 898 6 32 6

Echocardiogram 74 5 1 2 German 1000 7 13 2

Iris 150 4 0 3 MultipleFeatures 2000 3 3 10

Hepatitis 155 6 13 2 Hypothyroid 3163 7 18 2

WineRecognition 178 13 0 3 Satimage 6435 36 0 6

Sonar 208 60 0 2 Musk 6598 166 0 2

Glass 214 9 0 6 PioneerMobileRobot 9150 29 7 57

HeartCleveland 270 7 6 2 HandwrittenDigits 10992 16 0 10

LiverDisorders 345 6 0 2 SignLanguage 12546 8 0 3

Ionosphere 351 34 0 2 LetterRecognition 20000 16 0 26

HorseColic 368 7 14 2 Adult 48842 6 8 2

CreditScreening 690 6 9 2 IpumsLa99 88443 20 40 13

BreastCancer 699 9 0 2 CensusIncome 299285 8 33 2

PimaIndiansDiabetes 768 8 0 2 ForestCovertype 581012 10 44 7

Vehicle 846 18 0 4

Since we manage discretization bias and variance through interval frequency (and interval

number), which is relevant but not identical to interval width, we implement LD with EFD

being its interval frequency strategy. That is, LD forms interval frequency equal to that

produced by EFD with k=10. We clarify again that training instances with identical values

must be placed in the same interval under each and every discretization scheme.

8.1 Data

We run our experiments on 29 benchmark data sets from UCI machine learning reposi-

tory (Blake and Merz 1998) and KDD archive (Bay 1999). This experimental suite com-

prises 3 parts. The first part is composed of all the UCI data sets used by Fayyad and Irani

when publishing the entropy minimization heuristic for discretization. The second part is

composed of all the UCI data sets with quantitative attributes used by Domingos and Paz-

zani for studying naive-Bayes classification. In addition, as discretization bias and variance

responds to the training data size and the first two parts are mainly confined to small size,

we further augment this collection with data sets that we can identify containing numeric

attributes, with emphasis on those having more than 5000 instances. Table 1 describes each

data set, including the number of instances (Size), quantitative attributes (Qn.), qualitative

attributes (Ql.) and classes (C.). The data sets are increasingly ordered by the size.

8.2 Design

To evaluate a discretization method, for each data set, we implement naive-Bayes learning

by conducting a 10-trial, 3-fold cross validation. For each fold, the training data are dis-

cretized by this method. The intervals so formed are applied to the test data. The following

experimental results are recorded.

• Classification error. Listed in Table 3 in Appendix is the percentage of incorrect classi-

fications of naive-Bayes classifiers in the test averaged across all folds of the cross vali-

dation.



58 Mach Learn (2009) 74: 39–74

Fig. 8 Comparing alternative discretization methods

• Classification bias and variance. Listed respectively in Table 4 and Table 5 in Appendix

are bias and variance estimated by the method described by Webb (2000). They equate

to the bias and variance defined by Breiman (1996), except that irreducible error is ag-

gregated into bias and variance. An instance is classified once in each trial and hence ten

times in all. The central tendency of the learning algorithm is the most frequent classifi-

cation of an instance. Total error is the proportional of classifications across the 10 trials

that are incorrect. Bias is that portion of the total error that is due to errors committed by

the central tendency of the learning algorithm. This is the portion of classifications that

are both incorrect and equal to the central tendency. Variance is that portion of the total

error that is due to errors that are deviations from the central tendency of the learning

algorithm. This is the portion of classifications that are both incorrect and unequal to the

central tendency. Bias and variance sum to the total error.

• Number of discrete values. Each discretization method discretizes a quantitative at-

tribute into a set of discrete values (intervals), the number of which as we have sug-

gested relates to discretization bias and variance. The number of intervals formed by each

discretization method, averaged across all quantitative attributes is also recorded and il-

lustrated in Fig. 8b.

8.3 Statistics

Various statistics are employed to evaluate the experimental results.

• Mean error. This is the arithmetic mean of a discretization’s errors across all data sets.

It provides a gross indication of the relative performance of competing methods. It is

debatable whether errors in different data sets are commensurable, and hence whether

averaging errors across data sets is very meaningful. Nonetheless, a low average error is

indicative of a tendency towards low errors for individual data sets.

• Win/lose/tie record (w/l/t). Each record comprises three values that are respectively the

number of data sets for which the naive-Bayes classifier trained with one discretization

method obtains lower, higher or equal classification error, compared with the naive-Bayes

classifier trained with another discretization method.

• Mean rank. Following the practice of the Friedman test (Friedman 1937, 1940), for each

data set, we rank competing algorithms. The one that leads to the best naive Bayes clas-

sification accuracy is ranked 1, the second best ranked 2, so on and so forth. A method’s
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mean rank is obtained by averaging its ranks across all data sets. The mean rank is less

susceptible to distortion by outliers than is the mean error.

• Nemenyi test. As recommended by Demsar (2006), to compare multiple algorithms

across multiple data sets, the Nemenyi test can be applied to mean ranks of competing

algorithms and indicates the absolute difference in mean ranks that is required for the

performance of two alternative algorithms to be assessed as significantly different (here

we use the 0.05 critical level).

8.4 Observations and analyses

Experimental results are presented and analyzed in this section.

8.4.1 Mean error and average number of formed intervals

Figure 8a depicts the mean error of each discretization method across all data sets, which is

further decomposed into bias and variance. It is observed that both PD and FFD achieve the

lowest mean error among alternative methods. PD attains the lowest mean bias and FFD the

second lowest. LD acquires the lowest mean variance.

Figure 8b depicts the average number of discrete values formed by each discretization

method across all data sets. It reveals that on average, EMD forms the least number of dis-

crete values while FFD forms the most. This partially explains why FFD achieves lower bias

than EMD in general. The same reasoning applies to PD against EMD. Note that training

instances with identical values are always placed in the same interval. In consequence EFD

is not always possible to generate 10 equal frequency intervals.

8.4.2 Win/lose/tie records on error, bias and variance

The win/lose/tie records, which compare each pair of competing methods on classification

error, bias and variance respectively, are listed in Table 2. It shows that in terms of reduc-

ing bias, both PD and FFD win more often than not compared with every single previous

discretization method. PD and FFD do not dominate other methods in reducing variance.

Nonetheless, very frequently their gains in bias reductions overwhelm their losses in vari-

ance reduction. The end effect is that both PD and FFD win more often than not compared

with every single alternative method.

8.4.3 Mean rank and Nemenyi test

Figure 9 illustrates the mean rank of each discretization method as well as applying Nemenyi

test to mean ranks. In each subgraph, the mean rank of a method is depicted by a circle. The

horizontal bar across each circle indicates the ‘critical difference’. The performance of two

methods is significantly different if their corresponding mean ranks differ by at least the

critical difference. That is, two methods are significantly different if their horizontal bars are

not overlapping. Accordingly, it is observed in Fig. 9b that in terms of reducing bias, PD is

ranked the best and FFD the second best. Furthermore, PD is statistically significantly better

than EWD, EFD and LD. It also wins (although not significantly) against EMD (w/l/t record

being 22/4/3 as in Table 2a). FFD is statistically significantly better than LD and EFD. It

also wins (although not significantly) against EWD and EMD (w/l/t records being 19/8/2

and 16/11/2 respectively as in Table 2a). Figure 9c suggests that as for variance reduction,

there is no significant difference between PD, FFD and alternative methods, except for LD
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Fig. 9 Friedman test and Nemenyi test

Table 2 Win/lose/tie records on

error, bias and variance for each

pair of competing methods

w/l/t EWD EFD EMD LD PD

(a) error

EFD 11/16/2

EMD 17/12/0 13/15/1

LD 17/10/2 19/8/2 15/14/0

PD 22/7/0 22/6/1 21/5/3 20/8/1

FFD 20/8/1 19/8/2 20/9/0 19/8/2 12/15/2

(b) bias

EFD 12/16/1

EMD 18/10/1 19/9/1

LD 10/14/5 14/12/3 6/16/7

PD 24/5/0 23/3/3 22/4/3 27/1/1

FFD 19/8/2 19/10/0 16/11/2 22/7/0 14/14/1

(c) variance

EFD 13/12/4

EMD 9/15/5 9/15/5

LD 21/5/3 23/3/3 22/5/2

PD 12/14/3 6/17/6 12/12/5 5/20/4

FFD 17/10/2 11/14/4 15/13/1 11/17/1 13/14/2

which is the most effective method. However, LD’s bias reduction is adversely affected by

employing EFD to decide its interval frequency. Hence it does not achieve good classifica-

tion accuracy overall. In contrast, PD and FFD reduce bias as well as control variance. In

consequence, as shown in Fig. 9a, they are ranked the best for reducing error, where from

the most effective to the least are PD, FFD, LD, EMD, EWD and EFD.

8.4.4 PD and FFD’s performance relative to EFD and EMD

We now focus on analyzing PD and FFD’s performance relative to EFD and EMD because

the latter two are currently the most frequently used discretization methods in machine learn-

ing community. Among papers published in 2005 and so far in 2006 by the journal “Ma-

chine Learning” and the proceedings of “International Conference on Machine Learning”,

there are no less than 15 papers on Bayesian classifiers, among which 2 papers assume all
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Fig. 10 PD’s performance relative to EFD and EMD

Fig. 11 FFD’s performance relative to EFD and EMD

variables being discrete, 6 papers use EFD with k = 5 or 10, and 7 papers use EMD. The

comparison results are illustrated in Figs. 10, 11 and 12. In each subgraph of Fig. 10, the

values on the Y axis are the outcome for EFD divided by that for PD. The values of the X

axis are the outcome for EMD divided by that for PD. Each point on the graph represents

one of the 29 data sets. Points on the right of the vertical line at X = 1 in each subgraph

are those for which PD outperforms EMD. Points above the horizontal line at Y = 1 indi-

cate that PD outperforms EFD. Points above the diagonal line Y = X represent that EMD

outperforms EFD. It is observed that PD is more effective in reducing bias compared with

EFD and EMD as the majority of points fall beyond the boundaries X = 1 and Y = 1 in

Fig. 10b. On the other hand, PD is less effective in reducing variance than EFD and EMD

as more points fall within the boundaries X = 1 and Y = 1 in Fig. 10c. Nonetheless, PD’s

gain in bias reduction dominates. The end effect is that PD outperforms both EFD and EMD

in reducing error as the majority of points fall beyond the boundaries X = 1 and Y = 1 in

Fig. 10a. The same lines of reasoning apply to FFD in Fig. 11 as well.

8.4.5 Rival algorithms’ performance relative to data set size

Figure 12 depicts PD, FFD, EFD and EMD’s classification error, bias and variance respec-

tively with regard to the increase of data set size. The horizontal axis corresponds to data

sets whose sizes are increasingly ordered as in Table 1, where the size values are treated as

‘nominal’ instead of ‘numeric’. Please be noted that although it is not justified to connect

points with lines since data sets are independent of each other, we do it because we need

differentiate among alternative discretization methods. The Y axis represents the classifica-

tion error obtained by a discretization method on a data set that is normalized by the mean

error of all methods on this data set. It is observed that when the data set size becomes large,
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Fig. 12 Classification errors, bias and variance along data set size change

PD and FFD can consistently reduce classification error relative to EFD and EMD. This is

very welcome because modern classification applications very often involve large amounts

of data. This empirical observation also confirms our theoretical analysis that with training

data increasing, in order to reduce classification error, contributing extra data to reducing

bias is more effective than to reducing variance.

8.4.6 FFD’s bias and variance relative to m

FFD involves a parameter m, the sufficient interval frequency. In this particular paper, we

set m as 30 since it is commonly held to be the minimum sample size from which one

should draw statistical inferences (Weiss 2002). The statistical inference here is to estimate

p(C=c |Xi=xi) from p(C=c |X∗
i =x∗

i ) where the attribute X∗
i is the discretized version

of the original quantitative attribute Xi . We have argued that by using m FFD can control
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variance while use additional data to decrease bias. It is interesting to explore the effect of

different m values on bias and variance. Figure 13 in the Appendix illustrates for each data

set NB’s classification bias when using FFD with alternative m values (varying from 10 to

100). It is observed that bias monotonically increases with m increasing in many data sets

such as Hepatitis, Glass, Satimage, Musk, PioneerMobileRobot, IpumsLa99, CensusIncome

and ForestCovertype; and bias zigzags in other data sets such as HeartCleveland, LiverDis-

orders, CreditScreening and SignLanguage. Nonetheless, the general trend is that bias in-

creases while m increases. The bias when m = 100 is higher than the bias when m = 10 in 27

data sets out of all 29 data sets. This frequency is statistically significant at the 0.05 critical

level according to the one-tailed binomial sign test. Note that for very small data sets such

as LaborNegotiations and Echocardiogram, the curves reach a plateau very early. This is be-

cause if the number of training instances n is less than or equal to 2m, FFD simply forms two

intervals, each containing approximately n
2

instances. For example, LaborNegotiations has

57 instances and thus 38 training instances under 3-fold cross validation. When m becomes

equal to or larger than 20, FFD always conducts the same binary discretization. Hence the

bias becomes a constant and is no longer dependent on the m value. This limitation is more

and more relieved in the succeeding data sets whose sizes become bigger and bigger.

Figure 14 in the Appendix illustrates for each data set NB’s classification variance when

using FFD with alternative m values (varying from 10 to 100). It is observed that vari-

ance monotonically decreases with m increasing in some data sets such as Echocardio-

gram, Hepatitis, HandwrittenDigits, Adult, CensusIncome and ForestCovertype; and vari-

ance zigzags in other data sets such as WineRecognition, Ionosphere, BreastCancer and

Annealing. Nonetheless, the general trend is that variance decreases while m increases. The

variance when m = 100 is lower than the variance when m = 10 in 22 data sets out of all 29

data sets. This frequency is statistically significant at the 0.05 critical level according to the

one-tailed binomial sign test. Again, small data sets reach a plateau early as explained for

bias in the above paragraph.

Because NB’s final classification error is a combination of bias and variance, and be-

cause bias and variance often present opposite trends with m increasing, how to dynamically

choose m to achieve the best trade-off between bias and variance is a domain-dependent

problem and is a topic for future research.

8.4.7 Summary

The above observations suggest that

• PD and FFD enjoy an advantage in terms of classification error reduction over the suite

of data sets studied in this research.

• PD and FFD better reduce classification bias than alternative methods. Their advantage in

bias reduction grows more apparent with the training data size increasing. This supports

our expectation that PD and FFD can use additional data to decrease discretization bias,

and thus high bias is less likely to attach to large training data any more.

• Although not able to minimize variance, PD and FFD control variance in a way compet-

itive to most existent methods. However, PD tends to have higher variance especially in

small data sets. This indicates that among smaller data sets where naive-Bayes probabil-

ity estimation has a higher risk to suffer insufficient training data, controlling variance by

ensuring sufficient interval frequency should have a higher weight than controlling bias.

That is why FFD is often more successful at preventing discretization variance from be-

ing very high among smaller data sets. Meanwhile, we have also observed that FFD does

have higher variance especially in some very large data sets. We suggest the reason is that
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m=30 might not be the optimal frequency for those data sets. Nonetheless, the loss is

often compensated by their outstanding capability of reducing bias. Hence PD and FFD

still achieve lower naive-Bayes classification error more often than not compared with

previous discretization methods.

• Although PD and FFD manage discretization bias and variance from two different per-

spectives, they attain classification accuracy competitive with each other. The win/lose/tie

record of PD compared with FFD is 15/12/2.

9 Conclusion

We have proved a theorem that provides a new explanation of why discretization can be

effective for naive-Bayes learning. Theorem 1 states that so long as discretization preserves

the conditional probability of each class given each quantitative attribute value for each test

instance, discretization will result in naive-Bayes classifiers delivering the same probability

estimates as would be obtained if the correct probability density functions were employed.

We have analyzed two factors, decision boundaries and the error tolerance of probability

estimation for each quantitative attribute, which can affect discretization’s effectiveness. In

the process, we have presented a new definition of the useful concept of a decision bound-

ary. We have also analyzed the effect of multiple attributes on these factors. Accordingly,

we have proposed the bias-variance analysis of discretization performance. We have demon-

strated that it is unrealistic to expect a single discretization to provide optimal classification

performance for multiple instances. Rather, an ideal discretization scheme would discretize

separately for each instance to be classified. Where this is not feasible, heuristics that man-

age discretization bias and variance should be employed. In particular, we have obtained new

insights into how discretization bias and variance can be manipulated by adjusting interval

frequency and interval number. In short, we want to maximize the number of intervals in

order to minimize discretization bias, but at the same time ensure that each interval contains

sufficient training instances in order to obtain low discretization variance.

These insights have motivated our new heuristic discretization methods, proportional

discretization (PD) and fixed frequency discretization (FFD). Both are able to manage dis-

cretization bias and variance by tuning interval frequency and interval number. Both are also

able to actively take advantage of increasing information in large data to reduce discretiza-

tion bias as well as control variance. Thus they are expected to outperform previous methods

especially when learning from large data. It is desirable that a machine learning algorithm

maximize the information that it derives from large data sets, since increasing the size of a

data set can provide a domain-independent way of achieving higher accuracy (Freitas and

Lavington 1996; Provost and Aronis 1996). This is especially important since large data sets

with high dimensional attribute spaces and huge numbers of instances are increasingly used

in real-world applications, and naive-Bayes classifiers are particularly attractive to theses

applications because of their space and time efficiency.

Our experimental results have supported our theoretical analysis. The results have

demonstrated that our new methods frequently reduce naive-Bayes classification error

when compared to previous alternatives. Another interesting issue arising from our em-

pirical study is that simple unsupervised discretization methods (PD and FFD) are able

to outperform a commonly-used supervised one (EMD) in our experiments in the context

of naive-Bayes learning. This contradicts the previous understanding that EMD tends to

have an advantage over unsupervised methods (Dougherty et al. 1995; Hsu et al. 2000;

Hsu et al. 2003). Our study suggests it is because EMD was designed for decision tree

learning and can be sub-optimal for naive-Bayes learning.
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Appendix

Table 3 Naive Bayes’ classification error (%) under alternative discretization methods

Data set EWD EFD EMD LD PD FFD

LaborNegotiations 12.3 8.9 9.5 9.6 7.4 9.3

Echocardiogram 29.6 30.0 23.8 29.1 25.7 25.7

Iris 5.7 7.7 6.8 6.7 6.4 7.1

Hepatitis 14.3 14.2 13.9 13.7 14.1 15.7

WineRecognition 3.3 2.4 2.6 2.9 2.4 2.8

Sonar 25.6 25.1 25.5 25.8 25.7 23.3

Glass 39.3 33.7 34.9 32.0 32.6 39.1

HeartCleveland 18.3 16.9 17.5 17.6 17.4 16.9

LiverDisorders 37.1 36.4 37.4 37.0 38.9 36.5

Ionosphere 9.4 10.3 11.1 10.8 10.4 10.7

HorseColic 20.5 20.8 20.7 20.8 20.3 20.6

CreditScreening 15.6 14.5 14.5 13.9 14.4 14.2

BreastCancer 2.5 2.6 2.7 2.6 2.7 2.6

PimaIndiansDiabetes 24.9 25.6 26.0 25.4 26.0 26.5

Vehicle 38.7 38.8 38.9 38.1 38.1 38.3

Annealing 3.8 2.4 2.1 2.3 2.1 2.3

German 25.1 25.2 25.0 25.1 24.7 25.4

MultipleFeatures 31.0 31.8 32.9 31.0 31.2 31.7

Hypothyroid 3.6 2.8 1.7 2.4 1.8 1.8

Satimage 18.8 18.8 18.1 18.4 17.8 17.7

Musk 13.7 18.4 9.4 15.4 8.2 6.9

PioneerMobileRobot 13.5 15.0 19.3 15.3 4.6 3.2

HandwrittenDigits 12.5 13.2 13.5 12.8 12.0 12.5

SignLanguage 38.3 37.7 36.5 36.4 35.8 36.0

LetterRecognition 29.5 29.8 30.4 27.9 25.7 25.5

Adult 18.2 18.6 17.3 18.1 17.1 16.2

IpumsLa99 21.0 21.1 21.3 20.4 20.6 18.4

CensusIncome 24.5 24.5 23.6 24.6 23.3 20.0

ForestCovertype 32.4 33.0 32.1 32.3 31.7 31.9
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Table 4 Naive Bayes’ classification bias (%) under alternative discretization methods

Data set EWD EFD EMD LD PD FFD

LaborNegotiations 7.7 5.4 6.7 6.3 5.1 6.1

Echocardiogram 22.7 22.3 19.9 22.3 22.4 19.7

Iris 4.2 5.6 5.0 4.8 4.3 6.2

Hepatitis 13.1 12.2 11.7 11.8 11.0 14.5

WineRecognition 2.4 1.7 2.0 2.0 1.7 2.1

Sonar 20.6 19.9 20.0 20.6 19.9 19.5

Glass 24.6 21.1 24.5 21.8 19.8 25.9

HeartCleveland 15.6 14.9 15.7 16.1 15.5 15.6

LiverDisorders 27.6 27.5 25.7 29.6 28.6 27.7

Ionosphere 8.7 9.6 10.4 10.4 9.3 8.8

HorseColic 18.8 19.6 18.9 19.2 18.5 19.1

CreditScreening 14.0 12.8 12.6 12.6 12.2 12.9

BreastCancer 2.4 2.5 2.5 2.5 2.5 2.4

PimaIndiansDiabetes 21.5 22.3 21.2 22.8 21.7 23.0

Vehicle 31.9 31.9 32.2 32.4 31.8 32.2

Annealing 2.9 1.9 1.7 1.7 1.6 1.8

German 21.9 22.1 21.2 22.3 21.0 21.8

MultipleFeatures 27.6 27.9 28.6 27.9 27.2 27.3

Hypothyroid 2.7 2.5 1.5 2.2 1.5 1.5

Satimage 18.0 18.3 17.0 18.0 17.1 16.9

Musk 13.1 16.9 8.5 14.6 7.6 6.2

PioneerMobileRobot 11.0 11.8 16.1 12.9 2.8 1.6

HandwrittenDigits 12.0 12.3 12.1 12.1 10.7 10.5

SignLanguage 35.8 36.3 34.0 35.4 34.0 34.1

LetterRecognition 23.9 26.5 26.2 24.7 22.5 22.2

Adult 18.0 18.3 16.8 17.9 16.6 15.2

IpumsLa99 16.9 17.2 16.9 16.9 15.9 13.5

CensusIncome 24.4 24.3 23.3 24.4 23.1 18.9

ForestCovertype 32.0 32.5 31.1 32.0 30.3 29.6
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Table 5 Naive Bayes’ classification variance (%) under alternative discretization methods

Data set EWD EFD EMD LD PD FFD

LaborNegotiations 4.6 3.5 2.8 3.3 2.3 3.2

Echocardiogram 6.9 7.7 3.9 6.8 3.2 5.9

Iris 1.5 2.1 1.8 1.9 2.1 0.9

Hepatitis 1.2 2.0 2.2 1.9 3.1 1.2

WineRecognition 1.0 0.7 0.6 0.9 0.7 0.7

Sonar 5.0 5.2 5.5 5.2 5.8 3.8

Glass 14.7 12.6 10.3 10.2 12.8 13.2

HeartCleveland 2.7 2.0 1.8 1.5 2.0 1.3

LiverDisorders 9.5 8.9 11.7 7.3 10.3 8.8

Ionosphere 0.7 0.7 0.7 0.5 1.2 1.9

HorseColic 1.7 1.2 1.7 1.6 1.8 1.5

CreditScreening 1.6 1.7 1.9 1.3 2.1 1.3

BreastCancer 0.1 0.1 0.1 0.1 0.1 0.2

PimaIndiansDiabetes 3.4 3.3 4.7 2.6 4.3 3.5

Vehicle 6.9 7.0 6.7 5.7 6.3 6.1

Annealing 0.8 0.5 0.4 0.6 0.6 0.5

German 3.1 3.1 3.8 2.9 3.7 3.6

MultipleFeatures 3.4 3.9 4.3 3.1 4.0 4.4

Hypothyroid 0.8 0.3 0.3 0.2 0.3 0.3

Satimage 0.8 0.6 1.1 0.4 0.7 0.8

Musk 0.7 1.5 0.9 0.8 0.7 0.6

PioneerMobileRobot 2.5 3.2 3.2 2.4 1.9 1.7

HandwrittenDigits 0.5 0.9 1.4 0.6 1.4 2.0

SignLanguage 2.5 1.4 2.5 1.0 1.8 2.0

LetterRecognition 5.5 3.3 4.2 3.2 3.2 3.3

Adult 0.2 0.3 0.5 0.2 0.5 1.0

IpumsLa99 4.1 4.0 4.4 3.5 4.7 4.9

CensusIncome 0.2 0.2 0.2 0.2 0.2 1.1

ForestCovertype 0.4 0.5 1.0 0.3 1.4 2.3
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Fig. 13 NB’s classification bias when using FFD with alternative m values. Note that very small data sets

reach a plateau very early because FFD simply performs binary discretization when the number of training

instances n is less than or equal to 2m
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Fig. 13 (Continued)



70 Mach Learn (2009) 74: 39–74

Fig. 14 NB’s classification variance when using FFD with alternative m values. Note that very small data sets

reach a plateau very early because FFD simply performs binary discretization when the number of training

instances n is less than or equal to 2m
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Fig. 14 (Continued)
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