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ABSTRACT

The dispersive behaviour of waves in softening problems is analysed. Attention is focused on the influence
of the numerical scheme on the dispersion characteristics in the process of localization of deformation.
Distinction has been made between softening models defined in a standard plasticity framework and in a
gradient-dependent plasticity theory. Waves in a standard softening plasticity continuum do not disperse
but due to spatial discretization dispersion is introduced which results in a mesh size dependent length
scale effect. On the other hand, wave propagation in a gradient-dependent softening plasticity continuum
is dispersive. By carrying out the dispersion analysis on the discretized system the influence of numerical
dispersion on material dispersion can be quantified' which enables us to determine the accuracy for the
solution of the localization zone. For a modelling with and without the inclusion of strain gradients
accuracy considerations with respect to mass discretization, finite element size, time integration scheme
and time step have been carried out,

KEY WORDS Dispersion analysis Softening plasticity model

INTRODUCTION

A large number of engineering materials including metals, polymers, soils, concrete and rock
are classified as softening materials. These materials show a reduction of the load-carrying
capacity accompanying by increasing localized deformations after reaching the limit load. For
the continuum modelling of softening behaviour the standard plasticity framework is widely
used. However, the use of standard softening plasticity models results in an ill-posed problem
with imaginary wave speeds. As a consequence, localization of deformation stays confined to a
zone of zero thickness. The finite element solution tries to capture the localization zone of zero
thickness which results in mesh sensitivity. Inclusion of higher-order spatial derivatives in the
constitutive equations has been proposed!->°-!! to rephrase standard continuum plasticity and
to avoid a spurious solution for the localization zone and an excessive mesh dependence. In this
paper, the standard softening plasticity modelling as well as the gradient-dependent softening
plasticity modelling will be assessed with respect to their capabilities in localization problems.

A dispersion analysis will be used to demonstrate the features of the softening plasticity model
with and without the inclusion of higher-order strain gradients. Eringen*'3 showed in his work
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on non-local elasticity that waves in a higher-order continuum are dispersive. Here, it will be
shown for softening problems what ill-posedness of the standard plasticity problem means in
terms of its dispersive characteristics. For the gradient model it is known from earlier work!%13
that real frequencies and dispersive properties are important for the simulation of localization
zones that have a finite thickness as observed for shear bands in metals, soils and rock and for
fracture process zones in concrete. The width of the localization zone is determined by the critical
mode that a gradient-dependent medium can transmit which is set by the length scale of the model.

This paper is primarily concerned with the discretization influence in softening problems. By
carrying out the dispersion analysis on the discretized system of equations additional dispersion
effects introduced by the numerical scheme can be quantified. This dispersion contribution by
spatial and temporal discretization affects the solution for the localization zone. This holds true
if the underlying material is a non-dispersive medium as in standard plasticity but also if the
material shows dispersion as a physical quantity as in gradient-dependent plasticity. Accuracy
considerations with respect to mass discretization, time integration scheme, time step and finite
element size have been carried out.

SOFTENING PLASTICITY AND GRADIENT-DEPENDENT SOFTENING PLASTICITY

We consider an initial boundary value problem in one spatial direction. The governing equations
for motion and continuity can then be stated as:

do  9%u .
ox o | @
and
du
s 2
¢ 0x @)

with p the mass density, u the displacement, ¢ and ¢ stress and strain and x and ¢ spatial and
temporal variables, respectively. For the constitutive relation we shall use a plasticity formalism,
so that the strain ¢ is decomposed into an elastic contribution &* and a plastic contribution &”:

g=¢+ef (3)
The elastic component is related to the stress ¢ via a bijective relation;
o=Ee* 4)
with E Young’s modulus. The strain-softening model is assumed to have the following format:
o=fle?) &)
or in a rate form:
¢ = hé? (6)
with of
= @

a constant negative value, representing linear strain-softening behaviour and a superimposed
dot denoting differentiation with respect to time. On the other hand, the gradient-dependent
strain-softening model is given according to the form:

o =f{e?,0%eP/0x?) (8)
which in rate form yields:

_0%P
d=hé?—¢ 5
ox

©®
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where in the analyses presented here,

—of
A6%e?/ox?)

C=

(10)

has also been assumed to be a constant.
Combination of (1)-(4) and (6) results in the wave equation for a one-dimensional softening
plasticity element:

Prs—T73~0 (11)

If we combine (1)4) with (9) we obtain the wave equation for a one-dimensional gradient-
dependent softening plasticity element:

c o*u 0*u 0*u  hE 9*u
h+E( P paxZatZ) P (12)

If £—0 the wave equation for the softening plasticity element (11) is recovered.

DISPERSION

For a dispersion analysis we consider a single harmonic wave which propagates through a
one-dimensional element of the form:

u(x,t) = Ae'*x—on (13)
The frequency o is a function of the wave number k
w=fk) (14)

The function flk) is determined by the particular system under consideration. A system is
considered to be dispersive if!>:

S(k)#0 (15)
in which a prime denotes differentiation with respect to k.
If condition (15) is true the phase speed:
7
= 16
p (16)

is not the same for every wave number k and modes represented by its wave number travel at
different speeds and will therefore disperse. Finally, we adopt the standard definitions for the
wave length:

2n
A== 17
. (17)
and the period:
T=%7—r (18)
w

For a linear-elastic system (¢” =0) (14) has the non-dispersive form:
w=ck (19)
with ¢,=./E/p the so-called bar wave velocity. For the softening plasticity system, governed by
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w=ick /i (20
E+h

which means that all modes, represented by its wave number k, become stationary waves with
the same imaginary frequency and phase velocity and the system is non-dispersive. Basically, in
the softening plasticity system the imaginary value of the angular frequency w represents a real
growth coefficient and the solution according to (13) is an exponential function in time. For this
reason in the next section a growth coefficient will be introduced as w,= —iw.

Turning now our attention to gradient-dependent plasticity we substitute the harmonic wave
solution (13) into (12). The dispersion relation for the gradient-dependent softening plasticity

system can then be elaborated as:
[ h+ck?
w=ck [——— 21
E+h+ck? 1)

Now, the frequency is a real function of wave number k if

h
c

(11}, substitution of (13) yields:

k

\%

22

or using (17):
AL 2nl (23)

¢
I= /7 (24)

Equation (22) states that there exists a cut-off value for k. This value of k corresponds to the
mode with the largest wave length that the gradient-dependent softening system can transmit.
Above this value for k all frequencies are real.

The parameter ! is defined as the length scale parameter in the gradient-dependent plasticity
model. Since the gradient constant ¢ has entered the dispersion relation f(k)#0 and wave
propagation in the gradient-dependent plasticity system is dispersive. The dispersion curves have
been plotted in Figure la for the linear-elastic system, the softening plasticity system and the
gradient-dependent softening plasticity system. In Figure 15 the corresponding phase velocity—
wave number (c—k) curve is shown. In the Figures Ia and b the bar wave velocity c,= 1000 my/s,
the Young’s modulus E=20,000 N/mm? the softening modulus h= —0.1E and the gradient
constant ¢= 50,000 N. The values for & and ¢ imply a length scale parameter /= 5.0 mm.

with

@ [% 10° rad/s] ¢ [% 10° mm/s)
1. 1,0
linear-elastic
linear-elastic system
0.5 system 0.5

gradient-dependent

gradient-dependent softening system

softening system

0.0 - 0.0
softening system
softening system
0.5 ; —| & [/mm] 0.5 I k [1/mm]
i [ 10° rad/s] 0.5 1.0 ic (% 10% mm/s] 0.5 1.0
(a) (b)

Figure 1 Continuum dispersion curves for a linear elastic, softening and gradient-dependent softening system. (a)
Frequency versus wave number; (b) phase velocity versus wave number
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Dispersion in a softening system as described in this paper is closely related to the problem
of localization of deformation. As a result of softening localization of deformation may occur
and the behaviour of localized zones is very much dependent on the dispersive characteristics
of the material'?. For the softening plasticity system the inability of the material to transmit
waves with a real frequency (and phase velocity) causes the strains to localize in zones of zero
thickness. As soon as softening occurs localization of deformation is trapped and the zone cannot
extend. It will be demonstrated later that the numerical solution of the localization zone in the
softening plasticity system belongs to a stationary wave with frequency and phase velocity equal
to zero. The dispersion contribution due to spatial discretization causes the frequency to reach
a real zero value. The mesh-dependent solution for the localization zone corresponds to this
stationary wave and its wave length 1 is equal to the width of the zone, namely a one finite
element wide zone (in case of constant strain elements).

For the gradient-dependent softening system the fact that waves with real phase velocities
disperse has the advantageous consequence that the localization zone can extend and the strain
profile in the localization zone can be transformed because different modes travel at different
speeds. These features are of pivotal importance to simulate zones of localized deformation with
a finite size instead of the zero-thickness solution as obtained for the softening plasticity system.
Also for the gradient model the localization zone acts as a stationary wave with frequency and
phase velocity equal to zero. For this reason the width of the localization zone w is equal to
the lowest-order wave that the gradient-dependent softening system can transmit, i.e. w=2nl.
The width of the localization zone appears as a consequence of the length scale effect and the
spurious mesh dependence is removed!?,

In finite element formulations the governing equations for a one-dimensional softening
plasticity element ((11)) and for a gradient-dependent softening plasticity element ((12)) are
discretized with respect to spatial and temporal variables. As mentioned before, discretization
is another source of dispersion (see earlier work”-*4, and is introduced irrespective of the fact
whether the underlying material exhibits dispersion of waves (gradient-dependent softening
system) or not (softening system). The dispersion contribution of both temporal and spatial
discretization will be assessed separately, in the next section, firstly, for the softening plasticity
system and, secondly, for the gradient-dependent softening plasticity system.

DISCRETIZATION INFLUENCE IN SOFTENING PLASTICITY

Dispersion contribution by temporal discretization

A general family of time integration algorithms is considered that contains the Hilber~-Hughes—
Taylor a-method® as well as the Newmark-method family®:

M§‘+A'+(1 +a)Ka'+A‘—aKa'=0 (25)
at+At=at+Atﬁt_*_AtZ[(jz___ﬁ)ﬁt_*_ﬂﬁMAr] (26)
é'+A'=é'+At[(1 _y)§r+y§t+At] (27)

with 4, 4 and a the nodal accelerations, velocities and displacements, respectively. Equations
(25)(27) represent a semi-discrete system with mass matrix M and stiffness matrix K, which is
assumed to be constant over At. In this section spatial discretization is ignored and the continuum
values for M and K will be substituted. The integration parameters «, f and y determine the
stability, accuracy and dissipative properties of the system. Moreover, these parameters have an
‘influence on dispersion, which will be demonstrated in this paper for softening materials. Taking
a=0 the scheme reduces to the Newmark-method family with y=4 and B=% the average
acceleration method, y=% and f=15 the Fox-Goodwin method and y=% and =0 the central
difference method. Numerical dissipation can be introduced when y >4, however, from linear-
elastic considerations® it is known that second-order accuracy is lost in this case. For this reason
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Figure 2 Single degree of {freedom system with a negative stiffness

Hilber, Hughes and Taylor® developed the a-method in which numerical dissipation is introduced
via —4<a <0 while second-order accuracy can be preserved if y=%—a and f=3(1—a)2.

Before carrying out the dispersion analysis for a one-dimensional strain-softening system that
is discretized in the time domain we will discuss results obtained by Xie and Wood'® and
Cauvern? for a single degree of freedom system with a negative stiffness, representing softening
behaviour. The problem sketched in Figure 2 has been analysed using abovementioned time
integration schemes. The mass is initially displaced over u, and the displacement grows
exponentially in time according to the analytical solution:

u(t) =3uoe ™" +fuoe® (28)

The results have been plotted in Figure 2. It is obvious that the implicit Newmark-methods and
the a-method give an upper bound estimate of growth coefficient w, and displacement u, while
the explicit central difference scheme underestimates the analytical solution. From the results
reported in Figure 2 Xie and Wood!® concluded that the average acceleration method (y=%,
B =%) shows O(At?) convergence and the Fox—-Goodwin scheme (y =1, =) is O(At*) accurate.
N represents the convergence rate, i.e. a decrease of the time step by a factor 2 results in a
decrease of the error by a factor 16.0 for the Fox—~Goodwin method and by a factor 4.1 for the
average acceleration method.

The abovementioned results can be explained carrying out a dispersion analysis for the
softening plasticity problem discretized in the time domain. For the problem governed by wave
equation (11) a solution is assumed of the form:

u(x,t) = i(t)e™*> (29)
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Substitution of (29) into (11) eliminates the spatial derivative terms yielding;
0’ hE
P Tt E)

Discrete nodal values are substituted for the displacement function, via @(t)=a and we can
rewrite (30) into:

k=0 (30)

Mi+Ka=0 (31)
with the continuum values:
M=p (32)
h
K —-—-———E k? (33)
h+E

By considering the set of equations (25){27) at t —2At, t—At, t and t+ At the time derivatives
@~ @, @4 @t and @A can be eliminated and a temporally discretized equation of motion
can be derxved according to:

K(coa”A'——cla'—cza"A'—c3a“2A’)=KA{E(——a'+A‘+2a'-a"A‘) (34)
with:
co=p(1+0a) (39)
¢y =pa+(1+a)2f—y—%) (36)
c,=(1+a)fy—p——a2f—y—3) (37)
c3=—aly—p—% (38)

Solutions for the strain-softening plasticity system as derived in the previous section show
imaginary values for frequency w and phase velocity c. Hence, we assume non-harmonic solutions
of the displacements with a real growth coefficient w,:

at = Aew" (39)

ar+At — Aew,(t+At) — Aew,Axewrr (40)
am A= Aewrt— A — ge~ Wrlt ot (41)
a- 241 _ Aem,(t -241) Ae” Zcu,Aream (42)

Substitution of the solutions into (34) gives the dispersion relation for the temporally discretized
strain-softening system:

(h+E)D,
= 2AchD “43)
with
Dy =—e@Al4 ) gt (44)
D2=Coea)rAr_61__cze—w,At_Cae—Zw,At (45)

In Figure 3 the dispersion relation has been plotted for different values of the time step when
the average acceleration method is employed. The curves converge to the continuum dispersion
curve if the time step is decreased. For this implicit method we obtain upper bound values of
o, which agrees with the tendency observed for the single degree of freedom problem in Figure 2.
In Figure 4a the dispersion curve is plotted for different Newmark schemes. It is obvious that
the Fox~Goodwin method (8 = 75) gives the best approximation, while the inclusion of numerical
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Figure 3 Dispersion curve for temporally discretized
softening plasticity system—variation of the time step for
the average acceleration method
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Figure 4 Temporal discretization using the Newmark time integration method. (a) Dispersion curve (w,—k) with
At=4e—6s; (b) convergence of time stepping scheme

dissipation by using y=0.6 and $=0.3025 reduces the accuracy. The explicit central difference
scheme (B =0) underestimates ®,. To determine the exact convergence rate for the Newmark-
methods k has been calculated via (43) for w,=1.e6 rad/s (with exact solution k,=1.0 1/mm)
at different values of the time step. The results, summarized in Figure 4b, confirm abovementioned
results obtained by Xie and Wood'® with respect to the convergence rate for the Fox-Goodwin
method and the average acceleration method. A O(At*)-convergence for Fox-Goodwin and a
O(Ar?)-convergence for average acceleration can be proved with this temporal dispersion analysis.
Although the central difference scheme shows a smaller absolute error than the average
acceleration method its convergence rate is equal. Newmark with dissipation, i.e. y=0.6 and
B =0.3025, results in first-order accuracy. The same analysis has been carried out for the a-method
schemes and the results are reflected in the Figures 5a and 5b. The results with respect to the
accuracy of the Newmark methods and the a-methods have been summarized in Table 1.

Dispersion contribution by spatial discretization
The solution for the softening plasticity problem defined by (11) is now taken as:

u(x,t) = fi(x)e®" (46)
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Figure 5 Temporal discretization using the o time integration method. (a) Dispersion curve (w,— k) with At=4e~6s;
(b) convergence of time stepping scheme

Table 1 Accuracy of time integration schemes in softening plasticity

Method o Y B Accuracy
Average acceleration 0 0.5 0.25 O(At?)
Fox~Goodwin 0 0.5 0.0833 O(At%)
Central difference 0 0.5 0 O(Ar?)
Damped Newmark 0 0.6 0.3025 O(Ar)
a-Method -0.1 0.6 0.3025 O(Ar?)
a-Method -0.3 0.8 0.4225 O(At?)
a-Average acceleration -0.1 0.5 0.25 O(Ar)

Substitution of this solution into the equation of motion (1) yields:
o= pwuU (47)

with o(x,t)=d(x)e“". The problem can be described by a weak form of (47) in rate format, into
which the elastic stress—strain law (4), the decomposition in strains (3) and the constitutive
equation (6) have been substituted. Invoking the divergence theorem and neglecting boundary
tractions gives:

.. hE . ..
2 {6t 4d L +——— | 58-6dL =0 48
pw { u-d h+E{ (48)

in which 0 <x <L and §=201/dx. A finite element representation is assumed via:
ii(x)=Ha (49)

#(x)=Ba (50)

in which matrix H contains the interpolation polynomials for the velocity field and B=LH,
with L the differential operator matrix. Substitution of (49) and (50) into (48) and assuming that
the resulting equation holds for any admissible virtual velocity field a yields:

0*Ma+Ka=0 (51)
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in which

M=p[HHdL (52)
L

=E’-’+§E {B™BAL (53)
L

Spatial discretization of (51)~(53) has been done by means of linear bar elements with a two
point Gaussian quadrature. The matrices M and K are given in Appendix A. We assume a mesh
with one-dimensional elements of constant length d and consider the spatially discretized equation
of motion for node j. In case of a consistent mass we obtain:

2

pwid . . hE 1, | .,

—“—é—(aj_.l +4aj+aj+1)+m2(—aj_1+2aj—aj+1)=0 (54)
while using a lumped or a higher-order mass matrix similar expressions ensue (cf. Appendix
A). In contrast to the time discretization analysis a set of harmonic solutions is possible for (54)
because the wave number k remains real. We assume a solution at node j and the adjacent nodes
of the form:

dj - Aeikx (55)
;- = Ae**~ D= f(cos kd —i sin kd)e't* (56)
dj4y = Ae** D = A(cos kd +i sin kd)e™ (57

Substitution of (55)—(57) in the discretized equation of motion gives the dispersion relation for
the spatially discretized softening plasticity system:

¢, | —h K,
N s 58
C=AN BT EM, (58)

or in terms of the imaginary phase velocity:

emile | Th K (59)
kd\ (h+E)M,
in which:
K;=2(1~coskd) (60)
and:
M ;=32 +cos kd) (61)
for a consistent mass matrix,
M,=1 (62)
for a lumped mass matrix and
M, =5+cos kd) (63)

for a higher-order mass matrix. The higher-order mass matrix is obtained by averaging the
lumped and the consistent mass matrices.

The dispersion relation (58) shows that w, is not only dependent on k but also on the finite
element size d, the mass distribution M, and, of course, the type of element that has been used.
For a consistent mass distribution the w,—k curve is plotted in Figure 6a for different sizes of
the finite element. Convergence to the continuum dispersion curve occurs upon mesh refinement
(d—0). An upper bound estimate of the growth coefficient w, is obtained if we use a consistent
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Figure 6 Spatial discretization of softening plasticity system. (a) Dispersion curve {w,—k)}—variation of d using a
consistent mass matrix; (b) dispersion curve (w,—k)—variation of mass discretization using d =2 mm
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Figure 6 Spatial discretization of softening plasticity
system, (¢) Convergence of mass discretization

Figure 7 Spatial discretization of softening plasticity
system—influence of finite element size d and mass
distribution on cut-off value for w,

mass matrix. On the other hand, as shown in Figure 6b, an analysis with a lumped mass matrix
results in a lower bound approximation, while the higher-order mass matrix gives the best
performance, even for higher wave numbers (smaller wave lengths). The exact convergence rate
for the different mass discretizations has been determined by variation of finite element size d.
In Figure 6¢c w, has been calculated via (58) for k=1.0 1/mm and is compared with the exact
value w,,. The higher-order mass matrix is 4th-order accurate while the consistent and the
lumped mass matrix give the same error and are 2nd-order accurate. It is observed in Figures6a
and 6b that the deviation between the curves obtained by spatial discretization and the continuum
dispersion curve increases for higher wave numbers (smaller wave lengths). This implies that the
accuracy of the finite element solution rapidly reduces when the wave length is of the same order
as the finite element size, which is in fact a trivial result. In Figure 7 it is demonstrated that this
inaccuracy leads to cut-off values for w, The growth coefficient w, reaches a maximum value,
which decreases when a smaller finite element size is taken, cf. d=5 mm versus d =10 mm. Use
of a lumped mass matrix results in a smaller cut-off value for w, in comparison with use of a
.consistent mass matrix. The existence of a cut-off value for w, reflects the fact that there is a
limit to the amount of unstable behaviour that a mesh can resolve,

Finally, in Figure 8 the imaginary phase velocity ¢ has been plotted against wave number k.
Although the phase velocity has no physical meaning because in the continuum formulation
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Figure 8 Spatial discretization of softening plasticity
system—influence of finite element size on imaginary
phase velocity using a consistent mass matrix

((20)) it has the same imaginary value for every mode, the influence of spatial discretization
causes the phase velocity to become dependent on k and according to (59) reaches zero (real!)
values if:

1—coskd=0 (64).

which is satisfied if the wavelength 1 =d. In numerical solutions of the softening plasticity system
we obtain a one-element-wide localization zone in case of constant strain elements. Apparently
the localization zone belongs to a stationary wave with a wave length equal to the finite element
size and a non-imaginary phase velocity equal to zero. In conclusion, the analytical solution of
the localization zone shows an imaginary wave effect, while the numerical solution, due to a
regularizing contribution of the spatial discretization, corresponds to a real stationary wave with
a wave length set by the finite element mesh.

DISCRETIZATION INFLUENCE IN GRADIENT-DEPENDENT SOFTENING
PLASTICITY

Dispersion contribution by temporal discretization

In contrast to the softening system described above, the gradient-dependent softening system
exhibits dispersion of waves as a consequence of material behaviour. By carrying out the dispersion
analysis, in fact, the interaction between physical and numerical dispersion is examined. For the
problem governed by (12) a solution according to (29) is assumed, which gives:

257 20512
p LB BN 65)
ot*  ck*+h+E

which in discrete format reads

Mia+Ka=0 (66)
with
M=p (67)
Ek*(ck® +h)
K="" " 6
k2 +h+E (68)

Equations (34)~(37), discretized in the time domain for the Newmark-method family and the
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o~-method, are also valid for the gradient-dependent softening system, of course K now given by
(68). Solutions for (66) now are harmonic according to:

al = Aeiwr (69)
at Bt = At AN = 4(cos wAt + i sin wAL)e’ ! (70)
a'~ M= 4ei@t A0 = 4(cos wAt —isin wAt)e’ (1)
a8t = 4e't =280 = A(cos 2wAt — i sin 2wAt)e’” (72)

Substitution of the set of solutions into (34) gives the dispersion relation with real and imaginary
components. It appears that the real part offers the non-trivial solution by:

k’-=%( ZD - —h—l_)~2—> %( Di_ D3 2(2E+h)13‘D2)m (73)
c2At* ¢ ciAtt &2 ciAt?c
in which:
D, =2(1 —cos wAt) (74)
D, =(co—c,)cos wAt —c5 cos 2wAt —c, (75)

and the real phase velocity follows from c2=w?/k>.

In Figure 9a the dispersion curve has been plotted for different time integration schemes. As
for the standard softening plasticity system the Fox—Goodwin method shows the best performance
for gradient-dependent softening plasticity. It is remarkable that the Fox—Goodwin method,
although the method is implicit on the basis of linear elastic considerations, gives an upper
bound approximation of the continuum dispersion curve just like the central difference scheme.
The average acceleration method and the «-method underestimate the frequency w leading to
elongated periods T. In Figure 9b the rate of convergence is plotted for the time integration
schemes by means of the difference with the continuum solution at k.= 1.0 1/mm. The results
are exactly the same as for the softening plasticity system, i.e. the Fox—Goodwin method exactly
reaches O(At*) accuracy while the average acceleration method, the a-method and the central
difference scheme perform O(At?) accurate. So the conclusions from Table I for the softening
plasticity system also hold true for the gradient-dependent softening plasticity system.

As discussed earlier softening is the driving force for localization of deformation and the
localization zone is represented by a stationary wave with frequency o and phase velocity ¢
both equal to zero. In Figures 9a and 10, in which the phase velocity is plotted against the wave

6
5 0@ [x10° rad/s] D CA 1 2 4 B 16 A/[x1.25%-85]
B [i} | | | | |
B E:a=-03p5=04225y =0.8
SETHAH
Ta= = =
B:a=0ﬂ='/‘iz;’,=‘/§
~10- E'/
0.5- B !
A : continuum 1
=0ﬂ=l/4 7=1/2 -20— 4
ta=0p=Yay=1h
=Oﬂ=05 y=lfp o}
N = .422 =08
0.0 (ZI £=0 T z k [1/mm] In ———l‘
0 0.5 1.0 ¢

Figure 9 Dispersion curve for temporally discretized gradient-dependent softening plasticity system. (a) Dispersion
curve (w,—k)—variation of time integration scheme using At =2e— 6s; (b) convergence of time stepping scheme
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108 £3¢10% mnys) o [x10° rad/s)
A : continuum A : continuum 8
B:At=1le-68 A 104 B:d=1mm
C:Ar=2e-6s5 B C:d=2mm B
D:Ar=3e~-6s c D:d=3mm A
E:Ar=4e-65 D E:d=4mm

0.5+ E

0.5 E
0.0 T k [I/mm] 0.0 T k [1/mm}
Q 0.5 1.0 0 a5 - 1.0

Figure 10 Dispersion curve for temporally discretized (@)

gradient-dependent softening plasticity system—real Figure 11 Spatial discretization of gradient-dependent

phase velocities upon variation of the time step for softening plasticity system. (a) Dispersion curve (@ — k)—
average acceleration method variation of d using a consistent mass matrix

o [x10° rad/s}

- 1 2 4 8 16  d [%0.125 mm]
A : continuum B 0——1 | I I |
1.0 B : consistent mass
C : lumped mass D
D : higher-order mass A
(¢
-5}
0.5+
B
c B : consistent mass
D C : lumped mass
10 D : higher-order mass
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(b) (©

Figure 11 Spatial discretization of gradient-dependent softening plasticity system. (b) dispersion curve w— k)——variation
of mass discretization using d=2 mm (c) Convergence of mass discretization
number for the average acceleration scheme, the stationary wave is reflected by the cut-off value

for wave number k=./ —h/¢. It appears that this value is not affected by the time integration
scheme (Figure 9a) or the time step (Figure 10).

Dispersion contribution by spatial discretization

The problem with the application of standard algorithms for elastoplastic solids for the
gradient-dependent plasticity formulation is that (9) is a partial differential equation. To solve
the problem numerically Miihlhaus and Aifantis'® and de Borst and Miihlhaus? have proposed
to consider the plastic strain &” as an independent unknown in addition to the displacement.
For this purpose we assume harmonic solutions of the form:

u(x,t) =d(x)e™" (76)

eP(x,t) =E7(x)e'®" 7
The problem can be described by a weak form of the rate equation of motion (1) and the
constitutive rate equation (9), in which the solution (76)~{77) is substituted and &= E(—&F):

—pw?(Si-dd L+ |58 E(f—£")dL=0 (78)
L L
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o0%g?P

jaéP[E(é—-sp) heP+c—-]dL 0 (79)
L dx?

and, again, the divergence theorem has been applied while the boundary tractions were neglected.
We assume a finite element representation of (78) and (79) via:

i(x)=Ha (80)
&(x)=Ba (81)
£7(x)=h"¢ (82)

0%EP(x) .
=p'e

57 P (83)
in which & are the nodal plastic strain rates. An important issue is now the order of interpolation
of the variables @ and &”. While Cinterpolants suffice for #, the presence of a second spatial
derivative of & requires C-continuous shape functions. In the numerical analysis presented here,
Hermitian functions have been used for h for this purpose. Because of that the nodal gradients
of the plastic strain rate dé enter the equations as additional variables. p is calculated by
differentiating the polynomials of h twice. The matrices H and B are standard and h and p are
given in Appendix B.

Substitution of (80)83) into (78) and (79) yields:

- C‘)zMnaé + l(naé - Kaeé =0 (84)
K,.a+K,e=0 (85)
in which

M,,=p[H'HdL (86)

L
K,,=E[BTBdL 87

L
K,,=E[BThTdL (88)

L
K,,=E{hBdL (89)

L
= [[—(h+E)h™h+zchpT]dL (90)

L

The matrices (86)-(90) have been determined for a bar element with a two-point quadrature rule
as described in Appendix B. Again, we assume a mesh with elements of constant length 4 and
considering (84) and (85) for node j results in the following three equations with the unknowns
4, é and de:

2

w?d . . E .
—-p—6(3aj_1+10a_,-+3aj+1)+g(—aj_1+2aj—aj+1)—

SRS

, Ed . . . ,
(éj_l——ej+1)—3—2(3dej,1—6dej+3dej+1)=0 (91)
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(h+ E)d (h+ E)d?

C mms , ; ¢ . ,
+'3—2£(333j_1+66€j+33e_’-+1)+”6“4(de1_1_d2j+1)=0 (92)
Ed . s h+Eyd* . , h+E)d® . . .
E(Ba,-_1—6aj+3aj+‘)—(—26135—-(-63ej_1+63ej+1)-(—z(gé—-(——27dej_1+9Odej—27dej+,)
¢ o , LIy , ,
+'6"'4‘:(_9e]_1+9ej+1)+'1'§§(3dej_1—"42dej+3dej+1)=0 (93)

in which a consistent mass matrix has been used. We can find a consistent set of harmonic
solutions of the form:

;= Ae™ %4
¢;=ikBe™** 95)
dé;=k*Ce™** (96)
The set of solutions at the neighbouring nodes j+1 is then:
4 =AM = A(cos kd + i sin kd)e™™ 97)
é;41 =ikBe*>*4 =k B(i cos kb + sin kd)e™> (98)
dé;,. , =k*Ce***9=k2C(cos kd £ i sin kd)e™> (99)

Substitution of the complete solution ((94)~(99)) in the spatially discretized equations of motion
(93)(93) gives a system of three equations for which the non-trivial solution reads:

2 . v
w=ce\/(£+3k K“)(l coskd) kK, sin kd (100)
216 M, i M,

Again, the parameter M, is dependent on the mass distribution. For a consistent, a lumped and
a higher-order mass matrix, respectively, we derive

M, =¥5+3cos kd) (101)
M,=1 (102)
M,=7(13+3cos kd) (103)

Note that (101) and (103) differ slightly from (61) and (63) because of a different location of the
integration points.The values K,, and K,, in (100) are defined by:

D D
K‘“:E(Jsinkd——y(cos kd~—1)><———2——> (104)
D, 16 D,D,—D,D,

1
Kyo= -—D—(Esinkd+D1K41) (105)

2
with the functions:

I

(106)

1

<(335 135(h+E)d) 33¢ 377(h+EM
T T coskd——"o T T
16d 512 16d 512

= 2
Dz=k2<_i+w>sinkd (107)
32 1024
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= 2
D3=k<-25+w)sinkd (108)
32 1024
I 3 ‘ il 3
D4=k2((3id+27(h+E)d )Coskd_ZICd_45(h+E)d ) (109)
64 2048 64 2048

The dispersion curve of the discretized bar for a consistent mass distribution is plotted in
Figure 11a for different sizes d of the finite element. We observe that refinement of the mesh
(d—0) leads to convergence of the dispersion curve to the continuum dispersion curve. Again,
we obtain an upper bound estimate for the frequency using consistent mass distribution. The
influence of the mass discretization is shown in Figure 11b, in which a consistent, a lumped and
a higher-order mass matrix have been used for a finite element with size d=2.0 mm. The lumped
mass matrix provides lower bound values, while the higher-order mass matrix leads to the best
result as we have seen earlier for the spatially discretized strain-softening system. However,
although the same tendency in accuracy between an approach with and without gradients occurs
it appears that the exact order of convergence differs. In Figure 11c, in which w is calculated for
k=1.0 1/mm by means of (100)-(105) and w, is the exact frequency from the continuum dispersion
analysis, we observe that the higher-order mass matrix gives the best results but does not increase
the order of accuracy. So, a higher-order matrix in a gradient-dependent softening plasticity
context does not imply a higher-order accuracy. Another result of the variation of mass matrices
is that the type of distribution does not affect the width of a stationary localization zone. The
cut-off value for wave number k and implicitly also for wave length A is the same for the three
curves in Figure 11b. This result is logical since inertia, effects do not play a role in a stationary
localization zone.

An important observation from Figure 12, in which the phase velocity has been plotted against
the wave number, is that the point that represents the stationary localization wave (c = 0) gradually
moves to a smaller value of k when larger elements are used. This means that the wave length
(=2n/k) which represents the width of the localization zone increases. This is exactly what is
observed in numerical calculations with gradient-dependent softening plasticity models'3. This
widening of the localization band can be quantified exactly. If we take ¢c=0 in the discretized
dispersion relation a dependence can be derived between the width of the localization zone in
the discretized continuum w, and the element size d. This result is plotted in Figure 13, in which
w, is normalized with respect to the exact width of the location zone w,=2nl. A criterion for
the required number of finite elements n,,,,, in the localization zone can be derived. Namely, if

¢ [x 106 mmy/s]

A : continuum 8
1.0-/ B:d=1mm 1.5 WalWe

C:d=2mm B

D:d=3mm A

E:d=4mm
0.5+ E
0.0 T k [1/mm)]

0 0.5 1.0
0.5 T T T T d [mm)]

Figure 12 Dispersion curve for spatially discretized 0.0 1.0 2.0 3.0 4.0 5.0
gradient-dependent softening plasticity system—real phase
velocities upon variation of the finite element size using Figure 13 Spatial discretization influence on the width

a consistent mass matrix of the localization zone
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a 10% mismatch between discretized and exact value is accepted it follows that the minimum
number of finite elements is:

Moy >t =118 (110)
erit 10%

It is noted that the use of elements with a quadratic interpolation for the velocity field results
in a much less severe condition. Equation (110) is derived for a consistent mass distribution
while temporal discretization effects were not considered. However, variation of the mass
discretization (see Figure 11b) and variation of the time integration scheme (see Figure 9a) confirm
that the wave number of the cut-off mode (and therefore the width of the localization zone) was
not affected and (110) will not be different if all discretization influences would have been taken
into account.

CONCLUSIONS

Temporary discretization does not affect the width of the localization zone in softening plasticity
problems and gradient-dependent softening plasticity problems. Due to dissipation of energy in
the softening stage lower-order modes dominate the response and discretization effects introduced
by the time stepping scheme are negligible. However, a number of interesting conclusions can
be drawn if higher frequency behaviour is considered. By means of an analysis of dispersive
waves it is proven that a Fox—Goodwin scheme performs 4th-order accurate with respect to the
time step in standard and gradient-dependent softening problems. The inclusion of numerical
dissipation reduces the accuracy, except for the o method which is still 2nd-order accurate. It
is noted that in localization problems the large remainder of the body is elastic and using the
Fox-Goodwin method as the most accurate time-stepping scheme for the localization zone may
require a small time step for the elastic part because of the conditional stability of the method.

Spatial discretization is shown to introduce additional dispersion effects which influence the
formation of localization zones. In a softening plasticity continuum waves cannot propagate
and do not disperse and the width of the localization zone is left unspecified. However, the
numerical scheme introduces a dispersion effect by means of a dependence of the imaginary
wave velocity on the wave number. The finite element solution for the localization zone appears
to be a real stationary wave with a wave length set by the element size.

For a gradient-dependent softening plasticity continuum the length scale effect sets the width
of the localization band. Dispersion is already a property of the material. By carrying out the
dispersion analysis on the discretized system the influence of numerical dispersion on material
dispersion has been determined. This leads to an accuracy criterion for the minimum number
of finite elements needed in the localization zone.

Finally, the influence of mass discretization on the dispersion characteristics has been
investigated. A higher-order mass matrix in a softening plasticity system is 4th-order accurate
with Tespect to the finite element size, while consistent and lumped mass discretization show
2nd-order convergence. Also for the gradient-dependent model the higher-order mass matrix
gives the best performance but does not increase the order of accuracy. The mass distribution
in the finite element does not affect the width of the localization zone which is evident since
inertia effects do not play a role in a localization zone which is represented by a stationary wave.
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APPENDIX A

Lagrangian element for softening plasticity

For the linear Lagrangian element with quadrature points at £ =4(141 /\/i)d and two degrees
of freedom the consistent element mass matrix reads:

d 1
M=p [H Hdx=2 Al
pj < [1 2] (A1)
with a cross-sectional area equal to 1. For the lumped mass matrix we have:
d[1 0]
M="% (A2)
210 1]
and combination of consistent and lumped mass gives:
d[5 1]
=P (A3)
121 5]
representing a higher-order mass matrix. For the element stiffness matrix we use:
hE 4 E 1l 1 -
K="E [pBdx=1E ! ‘} (A4)
h+Ep h+Ed 1
APPENDIX B

Hermitian element for gradient-dependent softening plasticity

For the two-noded Hermitian element with quadrature points at {=3%d and 3d and three
degrees of freedom per node (a;, ¢;, d¢;) we use C°-interpolants for the velocity field which gives
standard definitions for H and B. For the plastic strain rates, however, we use C'-continuous
shape functions which implies:

3x? 2x3 2x? x3 3x? 2x?  x? x3:|
e e T A P 0 Bl
l: daz d d* a* a3 d d? (BD)
and
6 12x 4 6x 6 12x 2 6x
T=| —s+ = =t 5—— ——+—} B2
"[dz & dTEE R 4 (B2)

in which the conjugated vector &€ =(¢;,dé;é;.,,dé;, ;), while 4 =(a;d;, ). Using H, B, h and p the

element matrices in (86)—(90) can be determmed namely
pdl 5 3
=p(H™Hdx="— B3
M,, pf . 6[ 3 5:| (B3)
The lumped mass matrix is given by (A2) and the higher-order mass matrix is:
L 3] (B4)
32 13

The element stiffness matrices are:

d
Kaa=E_fBTde=§[_11 '11] (B5)
4]



228 L. J. SLUYS ET AL.

3d 1 3d
d E 16 16
— ThTdy —— B6
K, E{Bhdx 3| 34 1 4 (B6)
16 16

d
K,.= {[—(h-+E)h™h+chpTldx=
0

1508d 2584  540d  —126d* —132 —130d 132 -2
htE| 2584> 454> 12642  —27d® | g 1| —18d —21d> 184  3d?
T209| s40d 12642 15084 —2s8a®| 1284 132 24 —132  130d

12647 —27d® —2584% 4543 —18d 3% 184 —21d?

(B7)

Note that the contribution hp? introduces the non-symmetry in the stiffness matrix.

—
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