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Abstract. For κ � 0 and r0 > 0 let M(n, κ, r0) be the set of all connected, compact n-dimensional
Riemannian manifolds (Mn, g) with Ricci (M, g) � −(n − 1)κg and Inj (M) � r0. We study the
relation between the kth eigenvalue λk(M) of the Laplacian associated to (Mn, g), � = −div(grad),
and the kth eigenvalue λk(X ) of a combinatorial Laplacian associated to a discretization X of M .
We show that there exist constants c, C > 0 (depending only on n, κ and r0) such that for all
M ∈ M(n, κ, r0) and X a discretization of M , c � λk (M)

λk (X ) � C for all k < |X |. Then, we ob-
tain the same kind of result for two compact manifolds M and N ∈ M(n, κ, r0) such that the
Gromov–Hausdorff distance between M and N is smaller than some η > 0. We show that there exist
constants c, C > 0 depending on η, n, κ and r0 such that c � λk (M)

λk (N ) � C for all k ∈ N.
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1. Introduction

Since the work of Buser in [6], it is known that in order to understand the spectrum
of the Laplacian associated to a compact Riemannian manifold, � = −div(grad),
it may be very powerful to discretize the manifold. Using this technique, Buser
considered manifolds with Ricci curvature and injectivity radius bounded below
and gave an uniform estimate of the spectrum, depending only on these bounds
(see Theorem 6.2 in [6]). The estimate of the kth eigenvalue turned out to be very
precise for large k’s (i.e. for k larger than a constant proportional to the volume of
the manifold). However, for the beginning of the spectrum, the result is not strong
enough to decide whether the eigenvalues may be close to zero or not.

Since, this question has been investigated by Brooks [2, 3], Burger [4], and
Buser himself in [7]. In these papers, the manifolds were especially, closely related
to Cayley graphs of groups or to Schreier graphs associated to a family of covering
spaces (in another context see also the work of Kanai [13, 14]).
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The point of view that will interest us here is the one taken up by Chavel in
his book [8], where the question of discretization is very well explained and where
he studies in particular the case of isoperimetric inequalities ([8], Chapter V) and
Sobolev inequalities ([8], Chapter VI). This book will be the main reference for
this paper.

The purpose of this note is to compare the spectrum of a compact Riemannian
manifold (Mn, g) to the spectrum of the combinatorial Laplacian of an associated
discretization X (defined as in [8]). More precisely, if M(n, κ, r0) denotes the
set of all compact n-dimensional Riemannian manifolds with Ricci curvature and
injectivity radius uniformly bounded below (i.e. with Ricci (M, g) � −(n − 1)κg,
κ � 0 and Inj(M) � r0 > 0, see Definition 3.6), we will show in Theorem 3.7
that there exist positive constants c, C (depending only on n, κ , r0) such that for all
manifolds M in M(n, κ, r0) and X a discretization associated to M , we have

c � λk(M)

λk(X )
� C

for all k < |X |. Remark that |X | behaves as the volume of M .
After defining precisely in Section 2 the notion of discretization and the

Laplacian related to it, Section 3 will be concerned with the proof of this result.
In Section 4, as a corollary of our result, we present a very simple proof of

Theorem 1 of Brooks in [2], which says that the first nonzero eigenvalue of a tower
of covering spaces of a compact manifold goes to zero if and only if the Cheeger
constant of the discretizations associated to the covering spaces does. In fact, we
prove that the kth eigenvalue of a tower of covering spaces of a compact manifold
goes to zero if and only if the kth eigenvalue of the discretizations associated
to the covering spaces does, which implies obviously the result of Brooks (see
Theorem 4.1). Note that our proof avoids integral geometry and some not obvious
considerations on the boundary of Dirichlet’s fundamental domains.

In Section 5, we compare the spectrum of two compact Riemannian mani-
folds M ∈ M(m, κ, r0) and N ∈ M(n, κ, r0) which are close with respect to the
Gromov–Hausdorff distance (see Theorem 5.1). In particular, as m = n we show in
Corollary 5.2 that we have an uniform control c � λk (M)

λk (N ) � C for all k and where c,
C > 0 depend on n, κ , r0 and on the Gromov–Hausdorff distance between M and
N (for the behaviour of the spectrum under convergence of manifolds with respect
to the Gromov–Hausdorff distance see Section 7 of [10]).

We conclude this note with Section 6, where we give an example to show that the
assumption on the injectivity radius is essential in Theorem 5.1; the spectra of two
manifolds with Ricci curvature bounded below and arbitrarily Gromov–Hausdorff
close may strongly differ.

2. Spectrum of Roughly Isometric Graphs

Let X = (V, E) be a finite graph, where V denotes the set of vertices and E the
set of edges, and consider the path metric on this graph so that it becomes a metric
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space (see [8], p. 140). Denote by N (v) the set of neighbours of v ∈ V , that is to
say the set of vertices at distance 1 from v for the path metric. We will refer to m(v)
as the number of neighbours of v ∈ V and to νX as an upper bound for m(v) (i.e.
νX is such that for all v ∈ V , m(v) � νX ).

For such a finite graph, we can define a combinatorial Laplacian as in [15]
(Section 4.2) and the spectrum of this Laplacian will be denoted by

Spec(X ) = {0 = λ0(X ) � λ1(X ) � · · · � λl(X )}
where l = |X |−1 and |X | denotes the number of vertices of the graph. We have the
following variational characterization of Spec(X ) (see [1], p. 268). For a function
f : V → R, consider the Rayleigh quotient of f ,

R( f ) = ‖d f ‖2

‖ f ‖2

where ‖d f ‖2 = ∑
v∈V |d f |2(v) = ∑

v∈V

∑
w∈N (v) | f (w) − f (v)|2 and ‖ f ‖2 =∑

v∈V f 2(v). Then, for any (k + 1)-dimensional vector subspace W (k+1) of the
vector space F(V ) = { f : V → R}, the kth eigenvalue of X satisfies

λk(X ) � sup
{

R( f ) : f ∈ W (k+1) , f �= 0
}

So, if �(W ) denotes the supremum of Rayleigh quotients of nonzero functions
in W (i.e. �(W ) = sup{R( f ): f ∈ W , f �= 0}) and if Ek+1 denotes the set of all
(k + 1)-dimensional vector subspaces of F(V ), then we have

λk(X ) = inf{�(W ): W ∈ Ek+1}
Moreover, let us recall that a rough isometry is an application between metric

spaces � : (X1, d1) → (X2, d2) such that there exist some constants a � 1, b � 0,
τ � 0 satisfying

∀x1, y1 ∈ X1 , a−1d1(x1, y1) − b � d2(�(x1), �(y1)) � ad1(x1, y1) + b

and ∪x∈X1 B(�(x), τ ) = X2 (see [8], p. 142). The constants a, b and τ will be
referred as the constants of rough isometry.

THEOREM 2.1. Let X and Y be finite, connected graphs. Then, for each rough
isometry between X and Y , there exist positive constants c and C depending only
on νX , νY and on the constants of rough isometry such that

c � λk(X )

λk(Y )
� C

for all k < min{|X |, |Y |}.
Note that the constants c and C are independent of k, |X | and |Y |.
Proof. It suffices to prove that it exists C > 0 such that

λk(X ) � Cλk(Y ). (1)

We proceed in two steps.
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First, we show that it exists a constant c′ > 0 independent of k, such that if
λk(Y ) � c′ then (1) is true for some C > 0. Let X and Y denote also the set of
vertices of the respective graphs. Let �: X → Y be a rough isometry. To each
f : Y → R, we associate

�∗ f = f ◦ � : X → R

It can be shown that, there are positive constants c1, c2, c3, c4 depending only
on νX , νY and on the constants of rough isometry such that

‖�∗ f ‖2 � c1‖ f ‖2, (2)

‖d(�∗ f )‖2 � c2‖d f ‖2, (3)

‖ f ‖2 � c3‖d f ‖2 + c4‖�∗ f ‖2 (4)

(see [8], lemma VI.5.2 and VI.5.4).
Then, consider f0, . . . , fk : Y → R eigenfunctions associated to λ0(Y ), . . . ,

λk(Y ) and the corresponding functions on X , �∗ f0, . . . , �∗ fk : X → R. Denote by
V the subspace spanned by the fi ’s, V = 〈 f0, . . . , fk〉 and by W the corresponding
space, W = 〈�∗ f0, . . . , �

∗ fk〉.
If λk(Y ) � c′ = (2c3)−1 then W is of dimension k + 1: indeed, let g =∑k

i=0 ai�
∗ fi with at least one nonzero ai . In fact, g can be rewritten as g = �∗ f

with f = ∑k
i=0 ai fi . So, f is a nonzero function of V and satisfies ‖d f ‖2 �

λk(Y )‖ f ‖2. Then by (4)

‖g‖2 = ‖�∗ f ‖2 � c−1
4 (‖ f ‖2 − c3‖d f ‖2) � c−1

4 ‖ f ‖2(1 − c3λk(Y )) (5)

In particular, as λk(Y ) � c′ = (2c3)−1, the function g is not zero and this implies
that W is (k + 1)-dimensional. Moreover, under the same assumption on λk(Y ) and
using (3) and (5), we have R(�∗ f ) � 2c2c4 R( f ). Finally, we get

λk(X ) � sup{R(g) | g ∈ W − {0}}
= sup{R(�∗ f ) | f ∈ V − {0}}
� 2c2c4λk(Y )

It remains to show that (1) is still true if λk(Y ) > c′ = (2c3)−1. But by this
assumption, we have λk(X ) � λk(X )λk(Y )c′−1. So, in order to conclude, we need
an upper bound on λk(X ). For each f : X → R, we have

‖d f ‖2 =
∑

x∈X

∑

y∈N (x)

| f (x) − f (y)|2

� 2
∑

x∈X

∑

y∈N (x)

(| f (x)|2 + | f (y)|2)

� 4νX‖ f ‖2

This implies that R( f ) � 4νX for all f �= 0 and λk(X ) � 4νX . Finally, we get
λk(X ) � 4νX c′−1λk(Y ).
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3. Comparison of Spectra Between a Manifold and Its Discretization

Let (Mn, g) be a connected, compact Riemannian manifold. Consider the Laplacian
associated to M

� f = −div(grad f )

and denote its spectrum by

Spec(M) = {0 = λ0(M) < λ1(M) � . . .}
The characterization of the eigenvalues we will use subsequently is given by

Rayleigh quotients and Min-Max Theorem (see [16], p. 269, Min-Max Theorem).
So for F : M → R define the Rayleigh quotient of F to be

R(F) = ‖dF‖2

‖F‖2
=

∫
M ‖dF(x)‖2dV (x)
∫

M F(x)2dV (x)

where dV denotes the volume form on (M, g). Then, for any (k + 1)-dimensional
vector subspace W (k+1) of the vector space C∞(M) of smooth functions on M , the
kth eigenvalue of M satisfies

λk(M) � sup{R(F) : F ∈ W (k+1), F �= 0}
So, if �(W ) denotes the supremum of Rayleigh quotients of nonzero functions

in W (i.e. �(W ) = sup{R(F) : F ∈ W, F �= 0}) and if Ek+1 denotes the set of all
(k + 1)-dimensional vector subspaces of C∞(M), then we have

λk(M) = inf{�(W ) : W ∈ Ek+1}
Now, we associate a graph to a Riemannian manifold following [8] (Section

V.3.2). Let (Mn, g) be a connected compact n-dimensional Riemannian manifold.
A discretization of M , of mesh ε > 0, is a graph X = (V, E) such that the set
V of vertices is a maximal ε-separated subset of M (so it verifies that for any v,
w ∈ V , v �= w, we have d(v, w) � ε and ∪v∈V B(v, ε) = M). Moreover, the graph
structure of X is entirely determined by the collection of neighbours that we define
as follows. For each v ∈ V , w ∈ V is a neighbour of v, if 0 < d(v, w) < 3ε (see
[8], p. 140). We denote by N (v) the set of neighbours of v.

Furthermore, X is roughly isometric to M (see [8], p. 147). So we will use on
X the metric induced by M rather than the path metric.

Fix once and for all ε smaller than 1
2 Inj(M). Denote by κ � 0 a constant such that

Ricci(M, g) � −(n − 1) κg. Then, by the Bishop–Gromov comparison theorem,
νX is bounded above by a constant depending only on n, κ and ε. So we can
assume νX = ν(n, κ, ε). Furthermore, using Croke’s Inequality (cf. [8], p. 136) and
Bishop’s comparison theorem, we have

1

V−κ (ε)
Vol(M) � |V | � 2n

εnc(n)
Vol(M)
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where V−κ (ε) denotes the volume of the ball of radius ε in the simply connected
space of constant sectional curvature −κ and of dimension n.

The goal of this section is to compare Spec(X ) and Spec(M) using the same
idea as in the case of roughly isometric graphs. So we have to associate functions
on M to functions on V and vice versa. This leads us to use the smoothing and
the discretization applications considered in Chavel’s book. Let us recall the main
definitions and results from [8] (Section VI.5) we will need.

First, to go from the discretization X = (V, E) to the manifold M , we need to
smooth discrete functions.

DEFINITION 3.1. Let {φv}v∈V be a partition of unity subordinate to the cover
{B(v, 2ε)}v∈V of M . Then for each f : V → R, the smoothing of f is defined by
F = S f : M → R

(S f )(x) =
∑

v∈V

φv(x) f (v)

LEMMA 3.2. There exist positive constants c1 and c2 depending only on n, κ and
on the mesh of the discretization such that

‖S f ‖2 � c1‖ f ‖2, (6)

‖d(S f )‖2 � c2‖d f ‖2. (7)

Proof. See [8], Section VI.5.2.

Then, to go in the other direction, we want to discretize smooth functions.

DEFINITION 3.3. For each F : M → R the discretization of F is defined by
f = DF : V → R

DF(v) = 1

Vol(B(v, 3ε))

∫

B(v,3ε)
F(x)dV (x)

where dV denotes the volume form on (M, g).

LEMMA 3.4. There exist positive constants C1 and C2 depending only on n, κ

and on the mesh of the discretization such that

‖DF‖2 � C1‖F‖2 (8)

‖d(DF)‖2 � C2‖dF‖2 (9)

Proof. See [8], Section VI.5.1.

Finally, compose S and D and look at how it differs from the identity.
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LEMMA 3.5. There exist positive constants c3 and C3 depending only on n, κ

and on the mesh of the discretization such that

‖ f − DS f ‖2 � c3‖d f ‖2 (10)

‖F − SDF‖2 � C3‖dF‖2 (11)

Proof. see [8], Sections VI.5.4 and VI.5.5.

We now state and prove the main technical theorem of this note.

DEFINITION 3.6. For κ � 0 and r0 > 0 define M(n, κ, r0) as the set of all
connected, compact n-dimensional Riemannian manifolds (Mn, g) with Ricci cur-
vature and injectivity radius uniformly bounded below, i.e. with Ricci(M, g) �
−(n − 1)κg and Inj(M) � r0.

THEOREM 3.7. There exist positive constants c, C such that for all M ∈
M(n, κ, r0) and for any discretization X of M (with mesh < 1

2r0), we have

c � λk(M)

λk(X )
� C

for all k < |X |.
The constants c and C depend only on n, κ and on the mesh of X.

In particular, if we fix the mesh equal to 1
4r0, then these constants depend only

on the local geometry of M , i.e. on n, κ and r0. Note moreover that all constants
are independent of k.

Theorem 3.7 is a direct consequence of Theorem 3.8 and Theorem 3.9. In fact,
the proof of Theorem 3.7 goes in two steps as for the discrete case. The first step
deals in some sense with small eigenvalues; we show that Theorem 3.7 is true for
eigenvalues smaller than some constant, using Chavel’s results (see Theorem 3.8).
The second step of the proof of Theorem 3.7 consists in showing that Theorem
3.7 is true even if the eigenvalues are ‘big’, that is to say bigger than the constants
appearing in Theorem 3.8. The proof here is really different from the previous one
and uses basic facts on eigenvalues of Laplacian (see Theorem 3.9).

THEOREM 3.8. There exist positive constants a, A, c′ and C ′ such that for all
M ∈ M(n, κ, r0) and for any discretization X of M (with mesh < 1

2r0), we have

(i) If λk(X ) � a, then
λk(M)

λk(X )
� c′,

(ii) If λk(M) � A, then
λk(X )

λk(M)
� C ′

for all k < |X |.
The constants a, A, c′ and C ′ depend only on n, κ and on the mesh of X.
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Proof. (i) The idea of the proof is exactly the same as in Theorem 2.1, using
the above lemma in order to bound Rayleigh quotients. Let M ∈ M(n, κ, r0) and
X = (V, E) a discretization with mesh < 1

2r0. Then, consider f0, . . . , fk : V → R

eigenfunctions associated to the first k + 1 eigenvalues of X . Denote by W the
subspace spanned by these eigenfunctions. Smooth each fi to obtain F0 = S f0,
. . . , Fk = S fk : M → R and SW the subspace spanned by the Fi ’s.

Then, if λk(X ) < a = 1
4 c−1

3 , SW is (k + 1)-dimensional. In order to prove
this fact, let F be an element of SW , F = ∑k

i=0 ai Fi with at least one non-zero
coefficient. In fact, F is the smoothing of a discrete f ∈ W such that f = ∑k

i=0 ai fi

and by (10), we have ‖ f −DS f ‖2 � c3‖d f ‖2. So the norm of F satisfies (by (8))

‖F‖ � C
− 1

2
1 ‖DF‖ � C

− 1
2

1 (‖ f ‖−‖ f −DS f ‖) � C
− 1

2
1

(‖ f ‖−c
1
2
3 ‖d f ‖) (12)

But f is a nonzero function belonging to the subspace W , so it satisfies ‖d f ‖ �√
λk(X )‖ f ‖ and by assumption on λk(X ) and by (12), we get

‖F‖ � 1

2
C

− 1
2

1 ‖ f ‖ (13)

As the eigenfunctions of X are linearly independent, this shows that the dimen-
sion of SW is the same as the dimension of W , that is to say k +1. Moreover, under
the same assumption on λk(X ) and using (13), we obtain

R(S f ) � c′ R( f )

for all f ∈ W −{0}. This leads now to the conclusion. Using the Min-Max Theorem,
we have

λk(M) � sup{R(F)|F ∈ SW − {0}}
� c′ sup{R( f )| f ∈ W − {0}}
= c′λk(X )

and this ends the proof of the theorem. The second part of the proof can be carried
out exactly in the same way, because of the symmetry of the results concerning
the smoothing and the discretization of functions. So it would not bring more
informations to do it here.

THEOREM 3.9. Let a and A as in Theorem 3.8. Then, there exist positive con-
stants c′′ and C ′′ such that for all M ∈ M(n, κ, r0) and for any discretization X of
M (with mesh < 1

2r0), we have

(i) If λk(X ) > a, then
λk(M)

λk(X )
� c′′.

(ii) If λk(M) > A, then
λk(X )

λk(M)
� C ′′,

for all k < |X |.
The constants c′′ and C ′′ depend only on n, κ and on the mesh of X.
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Proof. (i) As λk(X ) > a, then λk(M) < a−1λk(X )λk(M). So, it suffices to
show that λk(M) � λκ

1( ε
2 ), where λκ

1( ε
2 ) denotes the first nonzero eigenvalue of

the Dirichlet problem on the ball of radius ε
2 in the simply connected space of

constant sectional curvature −κ and of same dimension as M . We prove this result
as follows. For each vertex vi of X , i � 1, we can consider fi : M → R the first
eigenfunction of the Dirichlet problem for the ball B(vi ,

ε
2 ) extended by 0 outside

the ball. By Cheng’s comparison Theorem R( fi ) � λκ
1

(
ε
2

)
(see [9], p. 74).

Now, consider Vi the subspace spanned by f1, . . . , fi . As the balls of radius
ε/2 are disjoint, the fi ’s are orthogonal and so Vi is of dimension i . We can apply
Min-Max Theorem and get for all k < |X |

λk(M) � sup{R( f ) : f ∈ Vk+1, f �= 0}
= sup

{∑
a2

i ‖d fi‖2

∑
a2

i ‖ fi‖2
: f =

∑
ai fi ∈ Vk+1, f �= 0

}

� sup

{∑
a2

i λ
κ
1

(
ε
2

)‖ fi‖2

∑
a2

i ‖ fi‖2
: f =

∑
ai fi ∈ Vk+1, f �= 0

}

� λκ
1

(
ε

2

)

Finally, we get λk(M) < a−1λκ
1( ε

2 )λk(X ).
(ii) As λk(M) > A, then λk(X ) � A−1λk(M)λk(X ). We have seen in Theorem 2.

that λk(X ) � 4νX . So we get λk(X ) � 4A−1νXλk(M).

4. Application to the Spectrum of a Tower of Coverings

As a first application, we will discuss the following theorem.

THEOREM 4.1 Let (Mn, g) be a compact n-dimensional Riemannian manifold.
Let {Mi }i�1 be a family of finite-sheeted covering spaces of M with induced
Riemannian metric. Let �i be the Schreier graph of the subgroup π1(Mi ) of π1(M).
Then, there exist constants c, C > 0 such that for all k < |�i |

c � λk(Mi )

λk(�i )
� C.

In particular, for all k

λk(Mi ) → 0 when i → ∞ ⇐⇒ λk(�i ) → 0 when i → ∞.

For k = 1, it is exactly the result of Brooks (see [2], Theorem 1).
We prove the result in two steps. First, we associate to Mi a discretization Xi of

sufficiently small mesh, in order to compare Spec(Mi ) to Spec(Xi ) (as in Section 3).
Secondly, we show that Xi and �i are roughly isometric, which allows us to apply
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Theorem 2.1 to Spec(�i ) and Spec(Xi ), so that we obtain the desired result between
Spec(Mi ) and Spec(�i ).

The first step is really a direct application of Theorem 3.7 and is stated in
Theorem 4.2.

THEOREM 4.2 Let M and {Mi }i�1 be as in Theorem 4.1. Let X be a discretization
of M (with mesh < 1

2 Inj(M)) and lift it to Mi to obtain a discretization Xi of Mi .
Then, there exist positive constants c and C independent of i such that for all
k < |Xi |.

c � λk(Mi )

λk(Xi )
� C

In particular, for all k

λk(Mi ) → 0 when i → ∞ ⇐⇒ λk(Xi ) → 0 when i → ∞
Proof. If (Mn, g) ∈ M(n, κ, r0), then Mi ∈ M(n, κ, r0), as Mi is provided

with the induced Riemannian metric. Moreover, Xi is a discretization of Mi with
same mesh of X smaller than 1

2r0. So we can apply Theorem 3.7 to each pair
(Mi , Xi ) and get constants independent of i .

In the second step, we have to compare the Schreier graph �i appearing in
Theorem 4.1 to the discretization Xi of Mi appearing in Theorem 4.2. This is the
next result.

THEOREM 4.3 Let {(Xi , �i )}i�1 be as in Theorems 4.1 and 4.2. Then, there exist
positive constants c and C independent of i such that for all k < |�i |

c � λk(Xi )

λk(�i )
� C

In particular, for all k

λk(Xi ) → 0 when i → ∞ ⇐⇒ λk(�i ) → 0 when i → ∞
Proof. Geometrically, the graph �i corresponds to the lift of a graph � in M ,

where � consists of a unique point (see [1], p. 254, for a definition of Schreier
graphs). As M is compact, � and X are roughly isometric (see [8], p. 147). Let us
call �, �i and X , Xi the set of vertices of the respective graphs too and � : � → X
a rough isometry such that d(g, �(g)) < ε. We can lift � and get �i : �i → Xi

in the following way. If g ∈ �i , then by construction of Xi , there exists �i (g) = x
with πi (x) = �(πi (g)) and d(x, g) < ε (where πi denotes the canonical projection
of Mi onto M). Clearly, �i is a rough isometry with same constants of rough
isometry as �. So we can apply Theorem 2.1 to each pair (Xi , �i ) and get constants
independent of i .
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Note that, as any two discretizations of a compact manifold are roughly isomet-
ric, then we can replace �i by the lift of any discretization of M and Theorem 4.1
is still true.

5. Gromov–Hausdorff Close Manifolds have Comparable Spectra

Another application of Theorem 3.7 is the following result.

THEOREM 5.1. Let (Mm, gM ) ∈ M(m, κ, r0) and (N n, gN ) ∈ M(n, κ, r0). Sup-
pose that the Gromov–Hausdorff distance between M and N is smaller than η > 0.
Then, there exist positive constants c and C (depending only on η, κ , r0 and on the
dimensions) and K > 0 (proportional to the volume of M and N) such that for all
k < K

c � λk(M)

λk(N )
� C

and there exist c′ and C ′ (depending on the dimensions, η, κ and r0) such that for
all k � K

c′ � λk(M)m

λk(N )n
� C ′

COROLLARY 5.2. Let M and N be two same dimensional compact Riemannian
manifolds, i.e. M, N ∈ M(n, κ, r0). Suppose that the Gromov–Hausdorff distance
between M and N is smaller than η > 0. Then, there exist positive constants c and
C (depending only on η, n, κ and r0) such that for all k

c � λk(M)

λk(N )
� C

Proof of Theorem 5.1. Recall (from Section 3) that if X M is a discretization of
M ∈ M(m, κ, r0) of mesh ε < 1

2r0, then

1

V−κ (ε)
Vol(M) � |X M | � 2m

εmc(m)
Vol(M)

Let X M be a discretization of M ∈ M(m, κ, r0) and X N a discretization of
N ∈ M(n, κ, r0) with same mesh ε < 1

2r0. Moreover, choose ε < 1
2r0 such that

min{|X M |, |X N |} � max

{

Vol(M)
2m+2

c(m)rm
0

, Vol(N )
2n+2

c(n)rn
0

}

(ε depend only on m, n, κ and r0).
Then, the proof is done in two steps. First, if k < min{|X M |, |X N |}, we

will apply Theorem 2.1 and Theorem 3.7 (as will follow) and second, for k �
min{|X M |, |X N |}, we will use a result of Buser (Theorem 6.2 in [6]).



44 TATIANA MANTUANO

Consider the case k < min{|X M |, |X N |}. By definition of the Gromov–
Hausdorff distance (see [12]) there exist Z a Riemannian manifold and two isomet-
ric embeddings f : M → Z , g: N → Z such that ∪x∈M B( f (x), η) ⊃ g(N )
and ∪y∈N B(g(y), η) ⊃ f (M). Then, X M and X N are roughly isometric via
�: X M → X N defined as follows. For each x ∈ X M there exist x ′ ∈ N and
x ′′ ∈ X N such that d( f (x), g(x ′)) < η and d(x ′, x ′′) < ε. Then define �(x) = x ′′

so that d( f (x), g(φ(x))) < η + ε. Then, we clearly have that

d(x, y) − 2(η + ε) < d(�(x), �(y)) < d(x, y) + 2(η + ε)

Moreover, if z ∈ X N then there exist y ∈ M and x ∈ X M such that
d(g(z), f (y)) < η and d(x, y) < ε. This implies that

d(�(x), z) � d(g(�(x)), f (x)) + d( f (x), f (y)) + d( f (y), g(z)) < 2(η + ε)

and so ∪x∈X M B(�(x), 2(η + ε)) ⊃ X N . Note that the constants of rough isometry
depend only on ε and η. To conclude this first part, it suffices to apply Theorem 3.7
to (M, X M ) and (N , X N ) and Theorem 2.1 to (X M , X N ).

Now, consider the case k � min{|X M |, |X N |}. In this case and by assumption
on ε, we can apply Theorem 6.2 of [6] to M and N which leads to the result

(
k

Vol(M)

) 2
m

c1 � λk(M) �
(

k

Vol(M)

) 2
m

c2,

where c1 and c2 are constants depending on m, κ and r0. Similarly,
(

k

Vol(N )

) 2
n

c3 � λk(N ) �
(

k

Vol(N )

) 2
n

c4,

where c3 and c4 are constants depending on n, κ and r0. Putting both inequalities to-
gether, we get that there exist constants c5 and c6 depending only on the dimensions,
κ and r0 such that

c5

(
Vol(M)

Vol(N )

)2

� λk(M)m

λk(N )n
� c6

(
Vol(M)

Vol(N )

)2

Furthermore, we have seen in Section 3 that there exist constants c7, c8, c9 and
c10 depending only on the dimensions, κ and r0 such that

c7|X M | � Vol(M) � c8|X M |,
c9|X N | � Vol(N ) � c10|X N |.

As we have shown in the first part of the proof the discretizations are roughly
isometric (the constants of rough isometry depend only on ε and η). This implies
that there exist constants c11 and c12 depending on ε and η such that

c11 � |X M |
|X N | � c12.
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These last inequalities give us upper and lower bounds (depending only on η, m,
n, κ and r0) for Vol(M)/Vol(N ).

Finally, we get that there exist constants c, C > 0 depending only on η, m, n, κ

and r0 such that for all k

c � λk(M)m

λk(N )n
� C.

In particular, the constants do not depend on k.

6. An Example

Let us now discuss an example in order to show that the assumption on the injectivity
radius in Theorem 5.1 is necessary. Consider Mε the manifold obtained by taking
two hyperbolic cylinders, gluing them together at both ends and ‘smoothing the
angles’.

More precisely, for 0 < ε < 1 take

Mε = [−1 − ρε; 1 + ρε] × S
1/∼

where ∼ identifies the ends (i.e. (ρ1, t1) ∼ (ρ2, t2) if and only if ρ1 = ρ2 = ±(1+ρε)
and t1 = t2) and ρε = arccosh(ε− 1

2 ). Provide Mε with the Riemannian metric

ds2 = dρ2 + f (ρ)2dt2

where

f (ρ) =






ε cosh(ρ + ρε + 1) if ρ ∈ [−1 − ρε; −1],√
ε

8

(
(1+√

1−ε)ρ4 − 2(1+3
√

1−ε)ρ2 + 9+5
√

1−ε

)
if ρ ∈ [−1; 1],

ε cosh(−ρ + ρε + 1) if ρ ∈ [1; 1 + ρε].

Then, Mε has sectional curvature uniformly bounded (i.e. independently of ε)
and injectivity radius comparable to ε. Moreover, as Mε admits an involution and
if Dε = {(ρ, t) : ρ ∈ [−1 − ρε; 0], t ∈ R/Z}, then λ1(Mε) is either the first
nonzero eigenvalue of Dε for the Neumann problem λN

1 (Dε) or the first eigenvalue
of Dε for the Dirichlet problem λD

1 (Dε), where Dε is provided with the same
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Riemannian metric as Mε. But Dε can be provided with an hyperbolic metric
ds ′2 = dρ2 + ε2 cosh2(ρ + ρε + 1)dt2 and we can easily show that there are
positive constants c1 and c2 independent of ε such that

c1ds2 � ds ′2 � c2ds2.

Then, applying a result of Dodziuk (see [11], Proposition 3.3), we get a constant
c3 independent of ε such that

λ
N ,D
1 (Dε, ds2) � c3λ

N ,D
1 (Dε, ds ′2)

But, we know that for thin hyperbolic cylinders λ
N ,D
1 (Dε, ds ′2) � 1

4 (see [5], p.
35). Finally, we have shown that λ1(Mε) � c > 0 where c is independent on ε.

Moreover, Mε is Hausdorff–Gromov close to the circle Sε of length 2ρε + 2 and
λ1(Sε) goes to zero when ε goes to zero too. So

λ1(Mε)

λ1(Sε)
→ ∞ when ε → 0

Then, this quotient cannot be bounded and the theorem is not true for the family
(Mε, Sε), because the injectivity radius of Mε is not uniformly bounded below.
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