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Abstract Gradient �ows in the Wasserstein space have become a powerful
tool in the analysis of di�usion equations, following the seminal work of Jordan,
Kinderlehrer and Otto (JKO). The numerical applications of this formulation
have been limited by the di�culty to compute the Wasserstein distance in
dimension > 2. One step of the JKO scheme is equivalent to a variational
problem on the space of convex functions, which involves the Monge-Ampère
operator. Convexity constraints are notably di�cult to handle numerically,
but in our setting the internal energy plays the role of a barrier for these
constraints. This enables us to introduce a consistent discretization, which
inherits convexity properties of the continuous variational problem. We show
the e�ectiveness of our approach on nonlinear di�usion and crowd-motion
models.

1 Introduction

1.1 Context

Optimal transport and displacement convexity

In the following, we consider two probability measures µ and ν on Rd with
�nite second moments, the �rst of which is absolutely continuous with respect
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to the Lebesgue measure. We are interested in the quadratic optimal transport
problem between µ and ν:

min

{∫
X

‖T (x)− x‖2 dµ(x); T : X → Rd, T#µ = ν

}
(1.1)

where T#µ denotes the pushforward of µ by T . A theorem of Brenier shows
that the optimal map in (1.1) is given by the gradient of a convex function
[8]. De�ne the Wasserstein distance between µ and ν as the square root of the
minimum in (1.1), and denote it W2(µ, ν). Denoting by K the space of convex
functions, Brenier's theorem implies that for ϕ ∈ K,

W2
2(µ,∇ϕ#µ) =

∫
Rd
‖x−∇ϕ(x)‖2 dµ(x) (1.2)

and that the map de�ned

ϕ ∈ K 7→ ∇ϕ#µ ∈ P(Rd), (1.3)

is onto. This map can be seen as a parameterization, depending on µ, of the
space of probability measures by the set of convex potentials K. This idea
has been exploited by McCann [20] to study the steady states of gases whose
energy F : P(Rd) → R is the sum of an internal energy U , such as the nega-
tive entropy, and an interaction energy E . McCann gave su�cient conditions
for such a functional F to be convex along minimizing Wasserstein geodesics.
These conditions actually imply a stronger convexity property for the func-
tional F : this functional is convex under generalized displacement: for any
absolutely continuous probability measure µ, the composition of F with the
parameterization given in Eq. (1.3), ϕ ∈ K 7→ F(∇ϕ#µ), is convex. Gener-
alized displacement convexity allows one to turn a non-convex optimization
problem over the space of probability measures into a convex optimization
problem on the space of convex functions.

Gradient �ows in Wasserstein space and JKO scheme

Our goal is to simulate numerically non-linear evolution PDEs which can be
formulated as gradient �ows in the Wasserstein space. The �rst formulation of
this type has been introduced in the seminal article of Jordan, Kinderlehrer
and Otto [16]. The authors considered the linear Fokker-Planck equation

∂ρ

∂t
= ∆ρ+ div(ρ∇V )

ρ(0, .) = ρ0

, (1.4)

where ρ(t, .) is a time-varying probability density on Rd and V is a potential
energy. The main result of the article is that (1.4) can be reinterpreted as the
gradient �ow in the Wasserstein space of the energy functional

F(ρ) =
∫
Rd
(log ρ(x) + V (x))ρ(x)dx. (1.5)
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Jordan, Kinderlehrer and Otto showed how to construct such a gradient �ow
through a time-discretization, using a generalization of the backward Euler
scheme. Given a timestep τ , one de�nes recursively a sequence of probability
densities (ρk)k>0 :

ρk+1 = arg min
ρ∈Pac(Rd)

1

2τ
W2

2(ρk, ρ) + F(ρ). (1.6)

The main theorem of [16] is that the discrete gradient �ow constructed by (1.6)
converges to the solution of the Fokker-Planck equation (1.4) in a suitable
weak sense as τ tends to zero. Similar formulations have been proposed for
other non-linear partial di�erential equations : the porous medium equation
[25] and more general degenerate parabolic PDEs [3], the sub-critical Keller-
Segel equation [6], macroscopic models of crowds [19], to name but a few. The
construction and properties of gradient �ows in the Wasserstein space have
been studied systematically in [5]. Finally, even solving for a single step of the
JKO scheme leads to nontrivial nonlocal PDEs of Monge-Ampère type which
appear for instance in the Cournot-Nash problem in game theory [7].

1.2 Previous work

Numerical resolution of gradient �ows.

Despite the potential applications, there exists very few numerical simulations
that use the Jordan-Kinderlehrer-Otto scheme and its generalizations. The
main reason is that the �rst term of the functional that one needs to minimize
at each time step, e.g. Eq. (1.6), is the Wasserstein distance. Computing the
Wasserstein distance and its gradient is notably di�cult in dimension two
or more. In dimension one however, the optimal transport problem is much
simpler because of its relation to monotone rearrangement. This remark has
been used to implement discrete gradient �ows for the quadratic cost [17,6,7]
or for more general convex costs [4]. In 2D, the Lagragian method proposed in
[12,9] is inspired by the JKO formulation but the convexity of the potential is
not enforced.

Calculus of variation under convexity constraints.

When the functional F is convex under generalized displacement, one can use
the parameterization Eq. (1.3) to transform the problem into a convex opti-
mization problem over the space of convex functions. Optimization problems
over the space of convex functions are also frequent in economy and geometry,
and have been studied extensively, from a numerical viewpoint, when F is an
integral functional that involve function values and gradients:

min
ϕ∈K

∫
Ω

F (x, ϕ(x),∇ϕ(x))dx (1.7)
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The main di�culty to solve this minimization problem numerically is to
construct a suitable discretization of the space of convex functions over Ω. The
�rst approach that has been considered is to approximate K by piecewise linear
functions over a �xed mesh. This approach has an important advantage: the
number of linear constraints needed to ensure that a piecewise linear function
over a mesh is convex is proportional to the size of the mesh. Unfortunately,
Choné and Le Meur [13] showed that there exists convex functions on the unit
square that cannot be approximated by piecewise-linear convex functions on
the regular grid with edgelength δ, even as δ converges to zero. This di�culty
has generated an important amount of research in the last decade.

Finite di�erence approaches have been proposed by Carlier, Lachand-Robert
and Maury [11], based on the notion of convex interpolate, and by Ekeland and
Moreno-Bromberg using the representation of a convex function as a maximum
of a�ne functions [14], taking inspiration from Oudet and Lachand-Robert
[18]. In both methods, the number of linear inequality constraints used to dis-
cretize the convexity constraints is quadratic in the number of input points,
thus limiting the applicability of these methods. More recently, Mirebeau pro-
posed a re�nement of these methods in which the set of active constraints is
learned during the optimization process [22]. Oberman used the idea of im-
posing convexity constraints on a wide-stencil [24], which amounts to only
selecting the constraints that involve nearby points in the formulation of [11].
Oudet and Mérigot [21] used interpolation operators to approximate the solu-
tions of (1.7) on more general �nite-dimensional spaces of functions. All these
methods can be used to minimize functionals that involve the value of the
function and its gradient only. They are not able to handle terms that involve
the Monge-Ampère operator detD2ϕ of the function, which appears when
e.g. considering the negative entropy of ∇ϕ|# ρ. It is worth mentioning here
that convex variational problems with a convexity constraint and involving the
Monge-Ampère operator detD2ϕ appear naturally in geometric problems such
as the a�ne Plateau problem, see Trudinger and Wang [27] or Abreu's equa-
tion, see Zhou [28]. The Euler-Lagrange equations of such problems are fully
nonlinear fourth-order PDEs and looking numerically for convex solutions can
be done by similar methods as the ones developed in the present paper.

1.3 Contributions.

In this article, we construct a discretization in space of the type of variational
problems that appear in the de�nition of the JKO scheme. More precisely,
given two bounded convex subsets X,Y of Rd, and an absolutely continuous
measure µ on X, we want to discretize in space the minimization problem

min
ν∈P(Y )

W2
2(µ, ν) + E(ν) + U(ν), (1.8)
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where P(Y ) denotes the set of probability measures on Y , and where the
potential energy E and the internal energy U are de�ned as follows:

E(ν) =
∫
Rd

∫
Rd
W (x, y)d[νν](x, y) +

∫
Rd
V (x)dν(x) (1.9)

U(ν) =


∫
Rd
U(σ(x))dx if dν = σdHd, σ ∈ L1(Rd)

+∞ if not

(1.10)

We assume McCann's su�cient conditions [20] for the generalized displace-
ment convexity of the functional F = W2

2(µ, .) + E + U , namely:

(HE) the potential V : Rd → R and interaction potential W : Rd × Rd → R are
convex functions. (If in addition V or W is strictly convex, we denote this
assumption (HE+))

(HU) The function U : R+ → R is such that the map r 7→ rdU(r−d) is convex
and non-increasing, and U(0) = 0. (If the convexity of r 7→ rdU(r−d) is
strict, we denote this assumption (HU+).)

Under assumptions (HE) and (HU), the problem (1.8) can be rewritten as a
convex optimization problem. Introducing the space KY of convex functions
on Rd whose gradient lie in Y almost everywhere, (1.8) is equivalent to

min
ϕ∈KY

W2
2(µ,∇ϕ#µ) + E(∇ϕ#µ) + U(∇ϕ#µ). (1.11)

Our contributions are the following:

� In Section 2, we discretize the space KY of convex functions with gradi-
ents contained in Y by associating to every �nite subset P of Rd a �nite-
dimensional convex subset KY (P ) contained in the space of real-valued
functions on the �nite-set P . We construct a discrete Monge-Ampère oper-
ator, in the spirit of Alexandrov, which satis�es some structural properties
of the operator ϕ 7→ det(D2ϕ), such as Minkowski's determinant inequal-
ity. Moreover, we show how to modify the construction of KY (P ) so as to
get a linear gradient operator, following an idea of Ekeland and Moreno-
Bromberg [14].

� In Section 3, we construct a convex discretization of the problem (1.11). In
order to do so, we need to de�ne an analogue of∇ϕ#µ, where ϕ is a function
in our discrete space KY (P ) and where µP is a measure supported on P . It
turns out that in order to maintain the convexity of the discrete problem,
one needs to de�ne two such notions: the pushforward Gac

ϕ#µP which is
absolutely continous on Y and whose construction involves the discrete
Monge-Ampère operator, and Gϕ#µP which is supported on a �nite set
and whose construction involves the discrete gradient. The discretization
of (1.11) is given by

min
ϕ∈KY (P )

W2
2(µ,Gϕ#µP ) + E(Gϕ#µP ) + U(Gac

ϕ#µP ). (1.12)
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� In Section 4, we show that if (µPn)n>0 is a sequence of probability mea-
sures on X that converge to µ in the Wasserstein sense, minimizers of the
discretized problem (1.12) with P = Pn converge, in a sense to be made
precise, to minimizers of the continuous problem. In order to prove this
result, we need a few additional assumptions: the density of µ should be
bounded from above and below on the convex domain X, and the integrand
in the de�nition of the internal energy (1.10) should be convex.

� Finally, in Section 5 we present two numerical applications of the space-
discretization (1.12). Our �rst simulation is a meshless Lagrangian simula-
tion of the porous medium equation and the fast-di�usion equation using
the gradient �ow formulation of Otto [25]. The second simulation concerns
the gradient-�ow model of crowd motion introduced by Maury, Roudne�-
Chupin and Santambrogio [19].

Notation

The Lebesgue measure is denoted Hd. The space of probability measures on
a domain X of Rd is denoted P(X), while Pac(X) denotes the space of prob-
ability measures that are absolutely continuous with respect to the Lebesgue
measure.

2 Discretization of the space of convex functions

The �rst goal of this section is to discretize the space of convex functions
whose gradients lie in a prescribed convex set Y . Then, we will de�ne a notion
of discrete Monge-Ampère operator for functions in this space. We will consider
functions from Rd to the set of extended reals R := R ∪ {+∞}.

De�nition 1 (Legendre-Fenchel transform) The Legendre transform ψ∗

of a function ψ : Y → R, is the function ψ∗ : Rd → R de�ned by the formula

ψ∗(x) := sup
y∈Y
〈x|y〉 − ψ(y). (2.13)

The space of Legendre-Fenchel transforms of functions de�ned over a convex
set Y is denoted by KY := {ψ∗;ψ : Y → R}. A function on Rd is called trivial
if it is constant and equal to +∞. The space of non-trivial functions in KY is
denoted K0

Y .

Lemma 1 Assume that Y is a bounded convex subset of Rd. Then,

(i) functions in KY are trivial or �nite everywhere: KY = K0
Y ∪ {+∞};

(ii) a convex function ϕ belongs to C1 ∩ K0
Y if and only if ∇ϕ(Rd) ⊆ Y ;

(iii) the set C1 ∩ K0
Y is dense in the set K0

Y for ‖.‖∞;
(iv) the space KY is convex;
(v) (stability by maximum) given a family of functions (ϕi)i∈I in KY , the

function ϕ(x) := supi∈I ϕi(x) is also in KY .
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Proof (i) We assume that ϕ belongs to KY , i.e. ϕ = ψ∗, where ψ is a function
from Y to R. We will �rst show that if ϕ is non-trivial, then ψ is lower bounded
by a constant on Y . By contradiction, assume that there exists a set of points
yk in Y such that ψ(yk)→ −∞. In this case, given any point x in X we have

ψ∗(x) > max
k
〈x|yk〉 − ψ(yk) > max

k
−‖x‖ ‖yk‖ − ψ(yk) = +∞,

so that ϕ is trivial.
(iii) Assume that ϕ belongs to K0

Y , so that there exists a convex function
ψ : Y → R lower bounded by a constant and such that ψ∗ = ϕ. Then, we can
approximate ψ by uniformly convex functions ψε(y) := ψ(y) + ε ‖y‖2 on Y .
The functions ϕε := ψ∗ε belong to KY , are smooth, and uniformly converge to
the function ϕ.

De�nition 2 (KY -envelope and KY -interpolate) The KY �envelope of a
function ϕ de�ned on a subset P of Rd is the largest function in KY whose
restriction to P lies below ϕ. In other words,

ϕKY := max{ψ ∈ KY ; ψ|P 6 ϕ|P }. (2.14)

A function ϕ on a set P ⊆ Rd is a KY -interpolate if it coincides with the
restriction to P of its KY �envelope. The space of KY �interpolates is denoted

KY (P ) := {ϕ : P → R;ϕ = ϕKY |P }. (2.15)

2.1 Subdi�erential and Laguerre cells

Consider a convex function ϕ on Rd, and a point x. A vector y ∈ Rd is a
subgradient of ϕ at x if for every z in Rd, the inequality ϕ(z) > ϕ(x)+〈z−x|y〉
holds. The subdi�erential of ϕ at x is the set of subgradients to ϕ at x, i.e.

∂ϕ(x) := {y ∈ Rd;∀z ∈ Rd, ϕ(z) > ϕ(x) + 〈z − x|y〉} (2.16)

The following lemma allows one to compute the subdi�erential of the KY �
envelope of a function in KY (P ).

De�nition 3 (Laguerre cell) Given a �nite point set P contained in Rd, a
function ϕ on P , we denote the Laguerre cell of a point p in P the polyhedron

LagϕP (p) := {y ∈ Rd;∀q ∈ P,ϕ(q) > ϕ(p) + 〈q − p|y〉}.

Note that the union of the Laguerre cells covers the space, while the intersec-
tion of the interior of two Laguerre cells is always empty.

Lemma 2 Let P be a �nite point set. A function ϕ on P belongs to KY (P )
if and only if for every p in P , the intersection LagϕP (p) ∩ Y is non-empty.
Moreover, if this is the case, then

∂ϕKY (p) = LagϕP (p) ∩ Y. (2.17)
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Proof Denote K := KRd and ϕK the convex envelope of ϕ. It is then easy to
see that for every point p in P such that ϕK(p) = ϕ(p),

∂ϕK(p) = LagϕP (p).

Since KY ⊆ K and by de�nition, one has ϕKY (x) 6 ϕK(x), with equality when
x is a point in P . This implies the inclusion ∂ϕKY (p) ⊆ Y ∩ ∂ϕK(p). In order
to show that the converse also holds, one only needs to remark that

Y ⊆
⋃
p∈P

∂ϕKY (p).

Lemma 3 Let ϕ0, ϕ1 in KY (P ), let ϕt = (1− t)ϕ0 + tϕ1 be the linear inter-
polation on P between these functions, and denote ϕ̂t := [ϕt]KY . Then for any
p in P ,

∂ϕ̂t(p) ⊇ (1− t)∂ϕ̂0(p) + t∂ϕ̂1(p) (2.18)

LagϕtP (p) ∩ Y ⊇ (1− t)(Lagϕ0

P (p) ∩ Y ) + t(Lagϕ1

P (p) ∩ Y ) (2.19)

Proof Thanks to the previous lemma, the two inclusions are equivalent. Now,
let yi be a point in LagϕiP (p) ∩ Y , so that

∀q ∈ P, ϕi(q) > ϕi(p) + 〈q − p|yi〉.

Taking a linear combination of these inequalities, we get

∀q ∈ P, (1− t)ϕ0(q) + tϕ1(q) > (1− t)ϕ0(p) + tϕ1(p) + 〈q − p|yt〉,

with yt = (1− t)y0 + ty1. In other words, the point yt belongs to the Laguerre
cell LagϕtP (p). Since this holds for any pair of points y0 in Lagϕ0

P (p) and y1 in
Lagϕ1

P (p), we get the desired inclusion.

Remark 1 A corollary of the two previous lemmas is the convexity of the
space KY (P ) of KY -interpolates, a fact that does not obviously follow from
the de�nition.

Remark 2 The convex envelope of a function de�ned on a �nite set is always
piecewise-linear. In contrast, when the domain Y is bounded, the KY -envelope
of an element ϕ of the polyhedron KY (P ) does not need to be piecewise linear,
even when restricted to the convex hull of P . Fortunately, for the applications
that we are targeting, we will never need to compute this envelope explicitely,
and we will only use formula (2.17) giving the explicit expression of the sub-
di�erential.
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2.2 Monge-Ampère operator

In this paragraph, we introduce a notion of discrete Monge-Ampère operator
of KY -interpolates on a �nite set. This de�nition is closely related to the
notion of Monge-Ampère measure introduced by Alexandrov. Given a smooth
uniformly convex function ϕ on Rd, a change of variable gives∫

B

det(D2ϕ(x))dx =

∫
∇ϕ(B)

1dx = Hd(∇ϕ(B)). (2.20)

This equation allows one to de�ne a measure on the source domain X ⊆
Rd, called the Monge-Ampère measure and denoted MA[ϕ]. Using the right-
hand side of the equality, it is possible to extend the notion of Monge-Ampère
measure to convex functions that are not necessarily smooth (see e.g. [15]):

MA[ϕ](B) := Hd(∂ϕ(B)). (2.21)

De�nition 4 The discrete Monge-Ampère operator of a KY -interpolate ϕ :
P → R at a point p in P is de�ned by the formula:

MAY [ϕ](p) := Hd(∂ϕKY (p)), (2.22)

where Hd denotes the d-dimensional Lebesgue measure.

The relation between the discrete Monge-Ampère operator and the Monge-
Ampère measure is given by the formula:

∀ϕ ∈ KY (P ), MA[ϕKY ] =
∑
p∈P

MAY [ϕ](p)δp. (2.23)

In other words, the Monge-Ampère operator can be seen as the density of
the Monge-Ampère measure of ϕKY with respect to the counting measure
on P . The next lemma is crucial to the proof of convexity of our discretized
energies. It is also interesting in itself, as it shows that the interior of the set
KY (P ) of convex interpolates can be de�ned by |P | explicit non-linear convex
constraints.

Lemma 4 For any point p in P , the following map is convex:

ϕ ∈ KY (P ) 7→ − log(MAY [ϕ](p)). (2.24)

Proof Let ϕ0, ϕ1 in KY (P ), let ϕt = (1− t)ϕ0+ tϕ1 be the linear interpolation
between these functions, and denote ϕ̂t := [ϕt]KY . Using Lemma 3, and with
the convention log(0) = −∞, we have

log(Hd(∂ϕ̂t(p))) > log(Hd((1− t)∂ϕ̂0(p) + t∂ϕ̂1(p)))

> (1− t) log(Hd(∂ϕ̂0(p))) + t log(Hd(∂ϕ̂1(p))),

where the second inequality is the logarithmic version of the Brunn-Minkowski
inequality.
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2.3 Convex interpolate with gradient

In applications, we want to minimize energy functionals over the space KY ,
which involve potential energy terms such as

ϕ 7→
∫
X

V (∇ϕ(x))dµ(x), (2.25)

where V is a convex potential on Rd. Any functional de�ned this way is convex
in ϕ, and one would like to be able to de�ne a discretization of this functionals
that preserves this property. Given a function ϕ in the space KY (P ) and a
point p in P , one wants to select a vector in the subdi�erential ∂ϕKY (p),
and this vector needs to depend linearly on ϕ. A way to achieve this is to
increase the dimension of the space of variables, and to include the chosen
subgradients as unknown of the problem. This can be done as in Ekeland and
Moreno-Bromberg [14].

De�nition 5 (Convex interpolate with gradient) A KY -interpolate with
gradient on a �nite subset P of Rd is a couple (ϕ,Gϕ) consisting of a function
ϕ in the space of KY -interpolates KY (P ) and a gradient map Gϕ : P → Rd
such that

∀p ∈ P, Gϕ(p) ∈ ∂ϕKY (p). (2.26)

The space of convex interpolates with gradients is denoted KGY (P ).

Note that the space KGY (P ) can be considered as a convex subset of the
vector space of functions from P to R × Rd. Lemma 5 below implies that
KGY (P ) forms a convex subset of this vector space, for which one can construct
explicit convex barriers. Given a closed subset A of Rd and x a point of Rd,
d(x,A) denotes the minimum distance between x and any point in A.

Lemma 5 Let ϕ0 and ϕ1 be two functions in KY (P ) and let vi a vector in
the subdi�erential ∂ϕ̂i(p) for a certain point p in P . Then,

(i) the vector vt = (1− t)v0 + tv1 lies in ∂ϕ̂t(p);
(ii) the map t 7→ d(vt,Rd \ ∂ϕ̂t(p)) is concave;

Moreover, a function ϕ belongs to the interior of KY (P ) if and only if

∀p ∈ P, MAY [ϕ](p) > 0. (2.27)

Proof The �rst item is a simple consequence of Lemma 3. In order to prove
the second item, we �rst remark that setting Ri := d(vi,Rd \∂ϕ̂i(p)), one has:
B(vi, Ri) ⊆ ∂ϕ̂i(p). Using the second inclusion from Lemma 3 and the explicit
formula for the Minkowski sum of balls, we get:

(1− t)B(v0, R0) + tB(v1, R1) = B(vt, (1− t)R0 + tR1) ⊆ ∂ϕ̂t(p).

This implies the desired concavity property:

d(vt,Rd \ ∂ϕ̂t(p)) > (1− t)R0 + tR1.
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As for the last assertion, assume by contradiction that there is a p ∈ P such
that ∂ϕKY (p) has empty interior, and let y ∈ ∂ϕKY (p). Since the Laguerre cells
cover the space, this means that y also belongs to (the boundary) of Laguerre
cells with nonempty interior corresponding to points p1, . . . , pk ∈ P k for some
k ≥ 2. In this case, p necessarily is in the relative interior of the convex hull
of {p1, . . . , pk} and ϕKY is a�ne on this convex hull, contradicting interiority
of ϕ.

3 Convex discretization of displacement-convex functionals

In the discrete setting, the reference probability density ρ is replaced by a
probability measure µ on a �nite point set. Since the subdi�erential of a con-
vex function ϕ can be multi-valued, the pushforward ∇ϕ#µ is not uniquely
de�ned in general. In order to maintain the convexity properties of the three
functionals in our discrete setting, we will need to consider two di�erent types
of push-forwards.

De�nition 6 (Push-forwards) Let µ be a probability measure supported
on a �nite point set P , i.e. µ =

∑
p∈P µpδp. We consider a convex interpolate

with gradient (ϕ,Gϕ) in KGY (P ) and we de�ne two ways of pushing forward
the measure µ by the gradient of ϕKY .

� The �rst way consists in moving each Dirac mass µpδp to the selected
subgradient Gϕ(p), thus de�ning

Gϕ#µ :=
∑
p∈P

µpδGϕ(p). (3.28)

� The second possibility, is to spread each Dirac mass µpδp on the whole
subdi�erential ∂ϕKY (p). This de�nes, when ϕ is in the interior of KY (P ),
an absolutely continuous measure:

Gac
ϕ#µ :=

∑
p∈P

µp
Hd
∣∣
∂ϕKY (p)

Hd(∂ϕKY (p))
. (3.29)

Remark 3 Note that in both cases, the mass of µ located at p is transported
into the subdi�erential ∂ϕKY (p). This implies that the transport plan between
µ and Gϕ#µ induced by this de�nition is optimal, and similarly for Gac

ϕ#µ.
We therefore have an explicit expression for the squared Wasserstein distance
between µ and these pushforwards:

W2
2(µ,Gϕ#µ) =

∑
p∈P

µp ‖p−Gϕ(p)‖2 (3.30)

W2
2(µ,G

ac
ϕ#µ) =

∑
p∈P

µp
Hd(∂ϕKY (p))

∫
∂ϕKY (p)

‖p− x‖2 dx (3.31)
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Fig. 1 We consider a point set P = {q, p±}, with q = (2, 0) and p± = (0,±1), and a
function ϕt which linearly interpolates between ϕ0 = χ{q} and ϕ1 = 0. (Left) Laguerre cells
LagϕtP (p) intersected with the square [−1, 1]2 at t = 0. (Middle) Laguerre cells at t = 1.
(Right) Graph of the second moment of the measure Gac

ϕt#
µ as a function of t, showing the

lack of convexity of a discretized energy.

Theorem 1 Given a bounded convex set Y and a measure µ supported on a
�nite set P , and under hypothesis (HE) and (HU), the maps

(ϕ,Gϕ) ∈ KGY (P ) 7→ E(Gϕ#µ) (3.32)

ϕ ∈ KY (P ) 7→ U(Gac
ϕ#µ) (3.33)

are convex. Moreover, under assumptions (HE+) and (HU+) the functional

(ϕ,Gϕ) ∈ KGY (P ) 7→ F(ϕ) := E(Gϕ#µ) + U(Gac
ϕ#µ) (3.34)

has the following strict convexity property: given two functions ϕ0 and ϕ1 in
KGY (P ), and ϕt = (1− t)ϕ0 + tϕ1 with t ∈ (0, 1), then

F(ϕt) 6 (1− t)F(ϕ0) + tF(ϕ1),

with equality only if ϕ0 − ϕ1 is a constant. In particular, there is at most one
minimizer of F up to an additive constant.

Proof The proof of (3.33) uses the log-concavity of the discrete Monge-Ampère
operator as in Lemma 4 and McCann's condition [20]. The proof of (3.32) is
direct: if (ϕ0, Gϕ0) and (ϕ0, Gϕ0) belong to KGY (P ), and Gϕt := (1− t)Gϕ0 +
tGϕ1

, then the convexity of E follows from that of V and W .
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Remark 4 The convexity of the internal energy (3.33) also holds when consid-
ering the monotone discretization of the Monge-Ampère operator introduced
by Oberman in [23].

Remark 5 It seems necessary to consider two notions of push-forward of a
given measure µ. Indeed, the internal energy of a measure that is not absolutely
continuous is +∞, so that it only makes sense to compute the map U on the
absolutely continuous measure Gac

ϕ#µ. On the other hand, condition (HE) is

not su�cient to make the potential energy functional ϕ ∈ KGY (P ) 7→ E(Gac
ϕ#µ)

convex. This can be seen on the example given in Figure 1: let Y = [−1, 1]2
and P = {q, p±} with q = (2, 0) and p± = (0,±1). We let ϕt be the linear
interpolation between ϕ0 := 1{q}, and ϕ1 = 0, and We let µ = 0.8δq+0.1δp+ +
0.1δp− . The third column of Figure 1 displays the graph of the second moment
of the absolutely continuous push-forward, i.e.

t 7→ E(Gac
ϕt#µ), where E(ν) =

∫
Rd
‖x‖2 dν(x), (3.35)

The graph shows that this function is not convex in t, even though E is convex
under generalized displacement since it satis�es McCann's condition (HE).

Remark 6 The two maps considered in the Theorem can be computed more
explicitely:

E(Gϕ#µ) =
∑
p∈P

µpV (Gϕ(p)) +
∑
p,q∈P

µpµqW (Gϕ(p), Gϕ(q)) (3.36)

U(Gac
ϕ#µ) =

∑
p∈P

U

(
µp

MAY [ϕ](p)

)
MAY [ϕ](p) (3.37)

In particular, when U is the negative entropy (U(r) = r log r), one has:

U(Gac
ϕ#µ) = −

∑
p∈P

µp log(MAY [ϕ](p)). (3.38)

Consequently the internal energy term plays the role of a barrier for the con-
straint set KY (P ), that is: if U(Gac

ϕ#µ) is �nite, then ϕ belongs to the interior
of KY (P ). The same behavior remains true if the function U has super-linear
growth at in�nity. This enables us to extend U(Gac

ϕ#µ) to the whole space RP ,
by setting it to +∞ when MAY [ϕ](p) = 0 for some p ∈ P .

4 A convergence theorem

Let X,Y be two convex domains in Rd, and µ be a probability measure on
X which is absolutely continuous with respect to the Lebesgue measure on
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X, and whose density ρ is bounded from above and below: ρ ∈ [r, 1/r], with
r > 0. We are interested in the minimization problem

min
ν∈P(Y )

F(ν) = min{F(∇ϕ|# µ);ϕ ∈ KY }, (4.39)

where F(ν) := W2
2(µ, ν) + E(ν) + U(ν), (4.40)

and where the terms of the functional F satisfy the following assumptions:

(C1) the energy E (resp U) is weakly continuous (resp. lower semicontinuous)
on P(Y );

(C2) U is an internal energy, de�ned as in (1.10), where the integrand U :
R → R is convex, U(0) = 0 and U has superlinear growth at in�nity
i.e. lims→∞ s−1U(s) = +∞.

Remark 7 Note that the condition (C2) is di�erent from McCann's condition
(HU) for the displacement convexity of an internal energy. Among the internal
energies that satisfy both McCann's conditions and (C1)�(C2), one can cite
those that occur in the gradient �ow formulation of the heat equation, where
U(r) = r log r, and of the porous medium equation, for which U(r) = 1

m−1r
m,

with m > 1. The superlinear growth assumption in (C2) ensures that the in-
ternal energy acts as a barrier for the convexity constraint in the approximated
problem (4.41).

Theorem 2 (Γ -convergence) Assume (C1)� (C2). Let µn be a sequence of
probability measures supported on �nite subsets Pn ⊆ X, converging weakly to
the probability density ρ, and consider the discretized problem

min
(ϕ,Gϕ)∈KGY (Pn)

W2
2(µn, Gϕn#µn) + E(Gϕn#µn) + U(Gac

ϕn#µn). (4.41)

Then, there exists a minimizer ϕn of (4.41). Moreover, the sequence of ab-
solutely continuous measure σn := Gac

ϕn#
µn is a minimizing sequence for the

problem (4.39). If F has a unique minimizer ν on P(Y ), then σn converges
weakly to ν.

Step 1 There exists a minimizer to (4.41).

Proof Let (ϕkn)k be a minimizing sequence (which we can normalize by impos-
ing ϕkn(p) = 0 at a �xed p ∈ Pn). Since Y is bounded, we may assume that, up
to some not relabeled subsequences ϕkn and Gϕkn converge to some (ϕn, Gϕn).

We can also assume that ϕ̂kn := [ϕkn]KY converges uniformly to ϕ̂n = [ϕn]KY .
The convergence in the Wasserstein term and in E is then obvious, it remains
to prove a liminf inequality for the discretized internal energy. First note that
thanks to (C2), we also have that there is a ν > 0 such that MAY [ϕ

k
n](p) ≥ ν

for every k and every p ∈ Pn. Then observe that the internal energy can be
written as

U(Gac
ϕkn#

µn) :=
∑
p∈Pn

F (p,MAY [ϕ
k
n](p)), F (p, t) := tU

(µp
t

)
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so that F (p, .) is nonincreasing thanks to (C2). It is then enough to prove that
for every p ∈ Pn one has:

lim sup
k

MAY [ϕ
k
n](p) = lim sup

k
Hd(∂ϕ̂kn(p)) ≤ Hd(∂ϕ̂n(p)) (4.42)

but the latter inequality follows at once from Fatou's Lemma and the fact that
if y belongs to ∂ϕ̂kn(p) for in�nitely many k then it also necessarily belongs to
∂ϕ̂n(p). This proves that ϕn solves (4.41).

Let m and mn be the minima of (4.39) and (4.41) respectively. Our goal
now is to show that limn→∞mn = m. In order to simplify the proof, we will
keep the same notation for an absolutely continuous probability measure and
its density.

Step 2 lim infn→∞mn > m

Proof For every n, let ϕn ∈ KY (Pn) be a minimizer of the discretized problem
(4.41). By compactness of the set KY (up to an additive constant), and tak-
ing a subsequence if necessary, we can assume that ϕ̂n := [ϕn]KY converges
uniformly to a function ϕ in KY . We can also assume that both sequence of
measures σn := Gac

ϕn#
µn and νn := Gϕn#µn converge to two measures σ and ν

for the Wasserstein distance. The di�culty is to show that these two measures
ν and σ must coincide. Indeed, let πn (resp. π′n) be optimal transport plans
between µn and νn (resp. µn and σn). Taking subsequences if necessary, these
optimal transport plans converge to two transport plans π (resp. π′) between
ρ and ν (resp. ρ and σ) that are supported on the graph of the gradient of
ϕ. Since the �rst marginal of π and π′ coincide, one must have π = π′ and
therefore ν = σ. The result then follows from the weak lower semicontinuity
of U , and the continuity of (µ, ν) 7→W2

2(µ, ν) + E(ν).

We now proceed to the proof that lim supn→∞mn 6 m. Our �rst step is
to show that probability measures with a smooth density bounded from below
and above are dense in energy. More precisely, we have:

Step 3 m = minε>0 min{F(σ);σ ∈ Pac(Y ) ∩ C0(Y ), ε 6 σ 6 1/ε}

Proof Let σ be a probability density on Y such that F(σ) < +∞. Then, ac-
cording to Corollary 1.4.3 in [2], there exists a sequence of probability densities
σn on Y that satisfy the three properties:

(a) For every n > 0, σn is bounded from above and below:

0 < inf
y∈Y

σn(y) < sup
y∈Y

σn(y) < +∞;

(b) σn converges to σ in L1(Y );
(c) U(σn) 6 U(σ).
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Moreover the proof of Corollary 1.4.3 in [2] can be modi�ed by taking a smooth
convolution operator so as to ensure that each σn is continuous on Y . Our task
is then to show that

lim inf
n→∞

F(σn) 6 F(σ),

where F(σ) = W2
2(µ, σ) + E(σ) + U(σ). Thanks to (C1), and thanks to the

Wasserstein continuity of the terms σ 7→ W2
2(µ, σ) + E(σ), we only need to

show that σn converges to σ in the Wasserstein sense. This follows from the
easy inequality

W2
2(σ, σ

′) 6 ‖σ − σ′‖L1(Y ) diam(Y )2.

Step 4 Let σ ∈ P(Y )∩C0(Y ), with ε 6 σ 6 1/ε. Then, for every n > 0, there
exists a convex interpolate ϕn ∈ KY (Pn) such that

∀p ∈ Pn, σ(∂[ϕn]KY (p)) = µn({p}). (4.43)

Proof By Breniers' theorem, there is a convex potential ψn on Y such that
∇ψn#σ = µn, so that ϕn := ψ∗n has the desired property.

Step 5 Assuming that the functions ϕn in KY (Pn) are constructed as above,
we can bound the diameter of their subdi�erentials:

lim
n→∞

max
p∈Pn

diam(∂[ϕn]KY (p)) = 0. (4.44)

Proof Let ϕ̂ ∈ KY be a potential for the quadratic optimal transport problem
between ρ and σ. Let ϕ̂n := [ϕn]KY and ψ = ϕ̂∗ and ψn = ϕ̂∗n. First, we add
a constant to ϕ and ϕn such that the integral of ψ and ψn over σ is zero,∫

Y

ψ(y)σ(y)dy =

∫
Y

ψn(y)σ(y)dy = 0.

Poincaré's inequality on Y with density σ gives us∫
Y

|ψn(y)− ψ(y)|2 σ(y)dy 6 const(p, Y, σ)

∫
Y

‖∇ψn −∇ψ(y)‖2 σ(y)dy,

and the weak continuity of optimal transport plans then ensures that the right-
hand term converges to zero. Noting that ψn and ψ are convex on Y and have
a bounded Lipschitz constant, because the gradients ∇ψ,∇ψn belong to X,
this implies that ψn converge uniformly to ψ. Taking the Legendre transform,
this shows that ϕ̂n converges uniformly to ϕ̂ on the compact domain X.

We now prove (4.44) by contradiction, and we assume that there exists a
positive constant r, and a sequence of points (pn), with pn ∈ Pn and such
that there exists yn, y

′
n ∈ ∂ϕ̂n(pn) with ‖yn − y′n‖ > r. By compactness, and

taking subsequences if necessary, we can assume that pn converges to a point
p in X and that the sequences (yn) and (y′n) converge to two points y, y′ in Y
with ‖y − y′‖ > r. Since the point yn belongs to ∂ϕ̂n(pn), one has:

∀x ∈ X, ϕ̂n(x) > ϕ̂n(pn) + 〈yn|x− p〉.
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Taking the limit as n goes to ∞, this shows us that y (and similarly y′) be-
longs to ∂ϕ̂(p), so that diam(∂ϕ̂(p)) > r. The contradiction then follows from
Ca�arelli's regularity result [10]: under the assumptions on the supports and
on the densities, the map ϕ̂ is C1,β up to the boundary of X. In particular, the
subdi�erential of ϕ̂ must be a singleton at every point of X, thus contradicting
the lower bound on its diameter.

Step 6 Let σn := Gac
ϕn#

µn and νn := Gϕn#µn, where ϕn is de�ned above.
Then,

lim
n→∞

‖σn − σ‖L∞(Y ) = 0. (4.45)

lim
n→∞

W2(νn, σ) = 0. (4.46)

Proof First, note that since σ is continuous on a compact set, it is also uni-
formly continuous. For any δ > 0, there exists ε > 0 such that ‖x− y‖ 6 ε
implies |σ(x)− σ(y)| 6 δ. Using Equation (4.44), for n large enough, the sets
Vp := ∂[ϕn]KY (p) have diameter bounded by ε for all point p in Pn. By de�-
nition, the density σn is equal to

σn =
∑
p∈P

σ̂pχVp with σ̂p :=
1

Hd(Vp)

∫
Vp

σ(x)dx. (4.47)

By the uniform continuity property, on every cell Vp one has |σ(x)− σ̂p| 6 δ,
thus proving ‖σn − σ‖L∞(Y ) 6 δ for n large enough. This implies that σn
converges to σ uniformly, and a fortiori that limn→∞W2(σn, σ) = 0. Then,

W2(νn, σ) 6 W2(νn, σn) +W2(σn, σ). (4.48)

Moreover, one can bound the Wasserstein distance explicitely between σn and
νn by considering the obvious transport plan on each of the subdi�erentials
(∂[ϕn]KY (p))p∈Pn :

W2
2(νn, σn) 6

∑
p∈Pn

diam(∂[ϕn]KY (p))
2µp 6 max

p∈Pn
diam(∂[ϕn]KY (p))

2. (4.49)

The second statement (4.46) follows from Eqs. (4.48), (4.49) and (4.44).

Step 7 limn→∞W2
2(µn, νn) + E(νn) + U(σn) = W2

2(µ, σ) + E(σ) + U(σ)

Proof The convergence of the �rst two terms follows from the Wasserstein
continuity of the map (µ, ν) ∈ P(Y ) 7→W2

2(µ, ν)+ E(ν). In order to deal with
the third term, we will assume that n is large enough, so that the densities
σ, σn belong to the segment Sε/2 = [ε/2, 2/ε]. The integrand U of the internal
energy is convex on R, and therefore Lipschitz with constant L on Sε/2, so
that ∣∣∣∣∫

Y

U(σn)dx−
∫
Y

U(σ(x))dx

∣∣∣∣ 6 ∫
Y

|U(σn)− U(σ(x))|dx

6 L ‖σn − σ‖L∞(Y ) .
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5 Numerical results

5.1 Computation of the Monge-Ampère operator

In this paragraph we explain how to evaluate the discretized internal energy of
Gac
ϕ#µP , where ϕ is a discrete convex function in KY (P ), and Y is a polygon

in the euclidean plane. Thanks to the equation

U(Gac
ϕ#µP ) =

∑
p∈P

U (µp/MAY [ϕ](p))MAY [ϕ](p), (5.50)

one can see that the internal energy and its �rst and second derivatives can
be easily computed if one knows how to evaluate the discrete Monge-Ampère
operator and its derivatives with respect to ϕ. Our assumptions for performing
this computation will be the following:

(G1) the domain Y is a convex polygon and its boundary can be decomposed
as a �nite union of segments S = {s1, . . . , sk}

(G2) the points in P are in generic position, i.e. (a) there does not exist a triple
of collinear points in P and (b) for any pair p, q of distinct points in P ,
there is no segment s in S which is collinear to the bisector of [pq].

The Jacobian matrix of the discrete Monge-Ampère operator is a square matrix
denoted (JMAY [ϕ])p,q∈P , while its Hessian is a 3-tensor denoted (HMAY [ϕ])p,q,r∈P .
The entries of this matrix and tensor are given by the formulas

JMAY [ϕ]pq :=
∂MAY [ϕ](p)

∂1q
, (5.51)

HMAY [ϕ]pqr :=
∂2MAY [ϕ](p)

∂1r∂1q
, (5.52)

where 1p denotes the indicator function of a point p in P . The goal of the
remaining of this section is to show how the computation of the Jacobian
matrix and the Hessian tensor are related to a triangulation which is de�ned
from the Laguerre cells by duality.

Abstract dual triangulation

Given any function ϕ on P , we introduce a notation for the intersection of the
Laguerre cell of P with Y , and we extend this notation to handle boundary
segments as well. More precisely, we set:

∀p ∈ P, V ϕ(p) := LagϕP (p) ∩ Y,
∀s ∈ S, V ϕ(s) := s.

(5.53)

We also introduce a notation for the �nite intersections of these cells:

∀p1, . . . , ps ∈ P ∪ S, V ϕ(p1 . . . ps) := V ϕ(p1) ∩ ... ∩ V ϕ(ps) (5.54)

The decomposition of Y given by the cells V ϕ(p) induces an abstract dual
triangulation Tϕ of the set P ∪S, whose triangles and edges are characterized
by:



Discretization of functionals involving the Monge-Ampère operator 19

(i) a pair (p, q) in P ∪ S is an edge of Tϕ i� V ϕ(pq) 6= ∅;
(ii) a triplet (p, q, r) in P ∪ S is a triangle of Tϕ i� V ϕ(pqr) 6= ∅.
An example of such an abstract dual triangulation is displayed in Figure 2.

The construction of this triangulation can be performed in timeO(N logN+
k), where N is the number of points and k is the number of segments in the
boundary of Y . The construction works by adapting the regular triangulation
of the point set, which is the triangulation obtained when Y = Rd, and for
which there exists many algorithms, see e.g. [1].

Jacobian of the Monge-Ampère operator

By Lemma 3, for any point p in P , the function ϕ 7→ MAY [ϕ](p) is log-
concave on the set KY (P ). This function is therefore twice di�erentiable almost
everywhere on the interior of KY (P ), using Alexandrov's theorem. The �rst
derivatives of the Monge-Ampère operator is easy to compute, and involves
boundary terms: two points p, q in P ,

JMAY [ϕ]pq =
H1(V ϕ(pq))

‖p− q‖
if q 6= p (5.55)

JMAY [ϕ]pq = −
∑
q∈P

(qp)∈Tϕ

H1(V ϕ(pq))

‖p− q‖
(5.56)

Note that every non-zero element in the square matrix corresponds to an edge
in the dual triangulation Tϕ.

Hessian of the Monge-Ampère operator

We will not include the computation of the second order derivatives, but we
will sketch how it can be performed using the triangulation Tϕ. First, we
remark that thanks to our genericity assumption, for every triangle pqr of
Tϕ, the set V ϕ(pqr) consists of a single point, which we also denote V ϕ(pqr).
For any edge pq in the triangulation Tϕ, where p, q are two points in P , the
intersection V ϕ(pq) = V ϕ(q) ∩ V ϕ(q) is a segment [x, y]. The endpoint x of
this segment needs to be contained in a third cell V ϕ(r) for a certain element r
of P ∪S \{p, q}, so that x = V ϕ(pqr). Similarly, there exists r′ in P ∪S \{p, q}
such that y = V ϕ(pqr′). One can therefore rewrite the length of V ϕ(pq) as

H1(V ϕ(pq)) = ‖V ϕ(pqr)− V ϕ(pqr′)‖ . (5.57)

The expression of the Hessian can be deduced from Equations (5.55)�(5.56)
and (5.57), and from an explicit computation for the point V ϕ(pqr). Moreover,
to each nonzero element of the Hessian one can associate a point, an edge or
a triangle in the triangulation Tϕ. More precisely:

HMAY [ϕ]pqr 6= 0 =⇒ p = q = r or (p = q and (pr) is an edge of Tϕ)

or (pqr) is a triangle of Tϕ.
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∂φHY (p2)

s1

s2

s4

p2
p1

s3

Fig. 2 On the left, the intersection of power cells with a convex polygon (in red), and on
the right, the dual triangulation.

In particular, the total number of non-zero elements of the tensor HMAY [ϕ]
is at most proportional to the number |P | of points plus the number |S| of
segments.

5.2 Non-linear di�usion on point clouds

The �rst application is non-linear di�usion in a bounded convex domain X in
the plane. We are interested in the following PDE, where the parameter m is
chosen in [1− 1/d,+∞). A numerical application is displayed on Figure 3 .

∂ρ

∂t
= ∆ρm on X

∇ρ ⊥ nX on ∂X
(5.58)

When m = 1, this PDE is the classical heat equation with Neumann boundary
conditions. When m < 1, this PDE provides a model of fast di�usion, while
for m > 1 it is a model for the evolution of a gas in a porous medium. Otto
[25] reinterpreted this PDE as a gradient �ow in the Wasserstein space for the
internal energy

Um(µ) =


∫
Rd
Um(ρ(x))dx if µ� Hd, ρ :=

dµ

dHd
,

+∞ if not.

, (5.59)

where Um(r) = rm(x)
m−1 when m 6= 1 and U1(r) = r log r. A time-discretization

of this gradient-�ow model can be de�ned using the Jordan-Kinderlehrer-Otto
scheme: given a timestep τ > 0 and a probability measure µ0 supported on
X, one de�nes a sequence of probability measures (µk)k>1 recursively

µk+1 = arg min
µ∈P(X)

W2
2(µk, µ) + Um(µ) (5.60)
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The energies involved in this optimization problem satisfy McCann's assump-
tion for displacement convexity, and our discrete framework is therefore able to
provide a discretization in space of Equation (5.60) as a convex optimization
problem. We use this discretization in order to construct the non-linear di�u-
sion for a �nite point set P0 contained in the convex domain X. Note that for
this experiment, we do not use the formulation involving the space of convex
interpolates with gradient, KGX(P ). For every function ϕ in KY (P ), and every
point p in P , we select explicitely a subgradient in the subdi�erential ∂ϕKY (p)
by taking its Steiner point [26].

We start with µ0 =
∑
p∈P δp/ |P | the uniform measure on the set P0, and

we de�ne recursively


ϕk = argmin

{
1

2τ
W2

2(µk, Gϕ#µk) + U(Gac
ϕ#µk);ϕ ∈ KX(Pk)

}
µk+1 = Gϕk#µk,

Pk+1 = spt(µk+1)

, (5.61)

where Gϕ(p) is the Steiner point of ∂ϕKY (p). This minimization problem is
solved using a second-order Newton method. Note that, as mentioned in the
remark following Theorem 1, the internal energy plays the role of a barrier for
the convexity of the discrete function ϕ. When second-order methods fail, one
could also resort to more robust �rst-order methods for the resolution of the
optimization problem, using for instance a projected gradient algorithm.

5.3 Crowd-motion with congestion

As a second application, we consider the model of crowd motion with con-
gestion introduced by Maury, Roudne�-Chupin and Santambrogio [19]. The
crowd is represented by a probability density µ0 on a convex compact sub-
set with nonempty interior X of R2, which is bounded by a certain constant,
which we assume normalized to one (so that we also naturally assume that
Hd(X) > 1). One is also given a potential V : X → R, which we assume to be

λ-convex, i.e. V (.) + λ ‖.‖2 is convex. The evolution of the probability density
describing the crowd is induced by the gradient �ow of the potential energy

E(µ) =
∫
Rd
V (x)dµ(x), (5.62)

in the Wasserstein space, under the additional constraint that the density
needs to remain bounded by one. We rely again on time-discretization of this
gradient �ow using the Jordan-Kinderlehrer-Otto scheme. This gives us the
following formulation:

µk+1 = arg min
µ∈P(X)

1

2τ
W2

2(µk, µ) + E(µ) + U(µ), (5.63)
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Fig. 3 (Top) The original point set P0 in the square domain X = [−2, 2]2 contains 2 900
points. (Bottom rows) The evolution of the point cloud Pk at timesteps k = 5, 10, 20, 40, 80
with τ = 0.01 is de�ned using Eq. (5.61) for various values of the exponent m. From top to
bottom, m takes increasing values in {0.6, 1, 2, 3}. Note that the case m = 0.6 is outside of
the scope of the Γ -convergence theorem
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where U is the indicatrix function of the probability measures whose density
is bounded by one:

U(µ) =

 0 if µ� Hd and dµ

dHd
6 1

+∞ if not.
(5.64)

In order to perform numerical simulations, we replace this indicatrix function
by a smooth approximation.

Uα(µ) =


∫
Rd
ρα(x)(− log(1− ρ(x)1/d)dx if µ� Hd and ρ :=

dµ

dHd
,

+∞ if not.
(5.65)

Note that if Uα(µ) is �nite, then the density of µ is bounded by one almost
everywhere. Moreover, we have the following convexity and Γ -convergence
results:

Proposition 1 (i) The energy Uα is convex under general displacement.
(ii) Uα Γ -converges (for the weak convergence of measures on X) to U as α

tends to +∞ ;
(iii) βU1 Γ -converges to U as β tends to 0.

Proof The proof of (i) uses McCann's theorem: one only needs rdU(r−d) to be
convex non-increasing and U(0) = 0, which follows from a simple computation.
(ii) The proof of the Γ -liminf inequality is obvious since Uα ≥ U and U is lower
semicontinuous. As for the Γ -limsup inequality, we proceed as follows: we �rst
�x µ ∈ P(X) such that U(µ) = 0 (otherwise, there is nothing to prove). Let us
then �x a set A ⊂ X such thatHd(A) > 1 and letm be the uniform probability
measure on A. For ε ∈ (0, 1), let us then de�ne µε := (1− ε)µ+ εm so that µε
has a density bounded by 1− Cε where C := 1− 1

Hd(A)
> 0. Letting α→∞

and setting εα ∼ α−1/2, one directly checks that Uα(µεα) = O(e−α
1/2

log(α)).
Therefore lim supα Uα(µεα) = 0 = U(µ) which proves the Γ -limsup inequality.

For (iii), the proof is similar, choosing εβ ∼ e−β
−1/2

as β → 0 for the Γ -limsup
inequality.

Numerical result

Figure 4 displays a numerical application, where we compute the Wasserstein
gradient �ow of a probability density whose energy is given by

F(ρ) =
∫
X

V (x)ρ(x)dx+ αU1(ρ), (5.66)

where X = [−2, 2]2, and V (x) = ‖x− (2, 0)‖2 + 5 exp(−5 ‖x‖2 /2).

Note that the chosen potential is semi-convex. We track the evolution of a
probability density on a �xed grid, which allows us to use a simple �nite
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Fig. 4 Simulation of crowd motion under congestion using the gradient �ow formulation.
The congestion term is given by βU1 (see Equation (5.65)), for various values of β. From
top to bottom, β is set to 10−k for 0 6 k 6 2.

di�erence scheme to evaluate the gradient of the transport potential. From
one timestep to another, the mass of the absolutely continuous pushforward
of the minimizer is redistributed on the �xed grid.

Acknowledgements. The authors gratefully acknowledge the support of the
French ANR, through the projects ISOTACE (ANR-12-MONU-0013), OPTI-
FORM (ANR-12-BS01-0007) and TOMMI (ANR-11-BSO1-014-01).

References

1. Cgal, Computational Geometry Algorithms Library. Http://www.cgal.org
2. Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge-

Kantorovich theory. Ph.D. thesis, Georgia Institute of Technology, USA (2002)
3. Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge-

Kantorovich theory. Advances in Di�erential Equations 10(3), 309�360 (2005)
4. Agueh, M., Bowles, M.: One-dimensional numerical algorithms for gradient �ows in the

p-Wasserstein spaces. Acta applicandae mathematicae 125(1), 121�134 (2013)
5. Ambrosio, L., Gigli, N., Savaré, G.: Gradient �ows: in metric spaces and in the space of

probability measures. Lectures in Mathematics ETH Zürich (2005)



Discretization of functionals involving the Monge-Ampère operator 25

6. Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest de-
scent scheme for the subcritical Patlak-Keller-Segel model. SIAM Journal on Numerical
Analysis 46(2), 691�721 (2008)

7. Blanchet, A., Carlier, G.: Optimal transport and Cournot-Nash equilibria. arXiv
preprint arXiv:1206.6571 (2012)

8. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions.
Communications on pure and applied mathematics 44(4), 375�417 (1991)

9. Burger, M., Carrillo, J.A., Wolfram, M.T., et al.: A mixed �nite element method for
nonlinear di�usion equations. Kinetic and Related Models 3(1), 59�83 (2010)

10. Ca�arelli, L.A.: Boundary regularity of maps with convex potentials. Communications
on pure and applied mathematics 45(9), 1141�1151 (1992)

11. Carlier, G., Lachand-Robert, T., Maury, B.: A numerical approach to variational prob-
lems subject to convexity constraint. Numerische Mathematik 88(2), 299�318 (2001)

12. Carrillo, J.A., Moll, J.S.: Numerical simulation of di�usive and aggregation phenom-
ena in nonlinear continuity equations by evolving di�eomorphisms. SIAM Journal on
Scienti�c Computing 31(6), 4305�4329 (2009)

13. Choné, P., Le Meur, H.V.: Non-convergence result for conformal approximation of varia-
tional problems subject to a convexity constraint. Numer. Funct. Anal. Optim. 5-6(22),
529�547 (2001)

14. Ekeland, I., Moreno-Bromberg, S.: An algorithm for computing solutions of variational
problems with global convexity constraints. Numerische Mathematik 115(1), 45�69
(2010)

15. Gutiérrez, C.E.: The Monge-Ampère equation, vol. 44. Birkhauser (2001)
16. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker�Planck

equation. SIAM journal on mathematical analysis 29(1), 1�17 (1998)
17. Kinderlehrer, D., Walkington, N.J.: Approximation of parabolic equations using the

Wasserstein metric. ESAIM: Mathematical Modelling and Numerical Analysis 33(04),
837�852 (1999)

18. Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull
method. SIAM Journal on Optimization 16(2), 368�379 (2005)

19. Maury, B., Roudne�-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model
of gradient �ow type. Mathematical Models and Methods in Applied Sciences 20(10),
1787�1821 (2010)

20. McCann, R.J.: A convexity principle for interacting gases. Advances in Mathematics
128(1), 153�179 (1997)

21. Mérigot, Q., Oudet, E.: Handling convexity-like constraints in variational problems.
arXiv preprint arXiv:1403.2340 (2014)

22. Mirebeau, J.M.: Adaptive, anisotropic and hierarchical cones of discrete convex func-
tions. arXiv preprint arXiv:1402.1561 (2014)

23. Oberman, A.M.: Wide stencil �nite di�erence schemes for the elliptic Monge-Ampère
equation and functions of the eigenvalues of the hessian. Discrete Contin. Dyn. Syst.
Ser. B 10(1), 221�238 (2008)

24. Oberman, A.M.: A numerical method for variational problems with convexity con-
straints. SIAM Journal on Scienti�c Computing 35(1), A378�A396 (2013)

25. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation.
Communications in partial di�erential equations 26(1-2), 101�174 (2001)

26. Schneider, R.: Convex bodies: the Brunn-Minkowski theory, vol. 44. Cambridge Uni-
versity Press (1993)

27. Trudinger, N.S., Wang, X.J.: The a�ne Plateau problem. J. Amer. Math. Soc. 18(2),
253�289 (2005)

28. Zhou, B.: The �rst boundary value problem for Abreu's equation. Int. Math. Res. Not.
IMRN (7), 1439�1484 (2012)


