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Discretisation of heterogeneous and anisotropic diffusion problems

on general nonconforming meshes
SUSHI: a scheme using stabilisation and hybrid interfaces 1

R. Eymard2, T. Gallouët3 and R. Herbin4

Abstract: A symmetric discretisation scheme for heterogeneous anisotropic diffusion problems on general
meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control
volumes and at some internal interfaces which may for instance be chosen at the diffusion tensor discontinuities.
The scheme is therefore completely cell-centred if no edge unknown is kept. It is shown to be accurate on several
numerical examples. Convergence of the approximate solution to the continuous solution is proved for general
(possibly discontinuous) tensors, general (possibly nonconforming) meshes, and with no regularity assumption
on the solution. An error estimate is then deduced under suitable regularity assumptions on the solution.

Keywords : Heterogeneous anisotropic diffusion, nonconforming grids, finite volume schemes

1 Introduction

Anisotropic heterogeneous diffusion problems arise in a wide range of scientific fields such as hy-
drogeology, oil reservoir simulation, plasma physics, semiconductor modelling, biology, etc.. When
implementing numerical methods for this kind of problem, one needs to find an approximation of u,
weak solution to the following equation:

−div(Λ(x)∇u) = f in Ω, (1)

with boundary condition
u = 0 on ∂Ω, (2)

where we denote by ∂Ω = Ω \ Ω the boundary of the domain Ω, under the following assumptions:

Ω is an open bounded connected polyhedral subset of R
d, d ∈ N \ {0}, (3)

Λ is a measurable function from Ω to Md(R), (4)

where we denote by Md(R) the set of d×d matrices, such that for a.e. x ∈ Ω, Λ(x) is symmetric, and
such that the set of its eigenvalues is included in [λ, λ], with λ and λ ∈ R satisfying 0 < λ ≤ λ, and

f ∈ L2(Ω). (5)

Under these hypotheses, the weak solution of (1)–(2) is the unique function u satisfying:







u ∈ H1
0 (Ω),

∫

Ω
Λ(x)∇u(x) · ∇v(x)dx =

∫

Ω
f(x)v(x)dx ∀v ∈ H1

0 (Ω).
(6)

Usual discretisation schemes for Problem (6) include finite difference, finite element or finite volume
methods. Finite volume methods are actually very popular in oilreservoir engineering, a probable
reason being that complex coupled physical phenomena may be discretised on the same grids. The
well-known five-point scheme on rectangles (see e.g. [29]) and four-point scheme on triangles [23] are
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3Université de Provence, France, Thierry.Gallouet@cmi.univ-mrs.fr
4Université de Provence, France, Raphaele.Herbin@cmi.univ-mrs.fr
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not easily adapted to heterogeneous anisotropic diffusion operators [24]. A scheme with an enlarged
stencil, which handles anisotropy on meshes satisfying an orthogonality property, was proposed and
analysed in [18]. Another problem that has to be faced in several fields of applications (such as
hydrogeology and oil reservoir engineering) is the fact that the discretisation meshes are imposed
by engineering and computing considerations; therefore, we have to deal with distorted and possibly
nonconforming meshes.
A huge literature exists in the engineering setting, so we shall not try to be exhaustive. Let us
nevertheless mention the finite volume schemes using the well-known multipoint flux approximation
[1, 2, 3]. These schemes involve the reconstruction of the gradient in order to evaluate the fluxes, which
is also the case in [13, 28]. Among other approaches let us cite [22], which uses a parametrisation
technique. However, even though these schemes perform well in a number of cases, their convergence
analysis often seems to remain out of reach, except under additional geometrical conditions [13].
More recently, finite volume schemes using interface values have been studied. In [19] we presented
a “hybrid finite volume” (HVF) scheme for any space dimension, which involves edge unknowns in
addition to the usual cell unknowns, and in [15], a “mixed finite volume” scheme (MFV) was proposed,
which involves the fluxes and the values as unknowns. This is also the case for the mimetic finite
difference (MFD) schemes [9, 10], which were introduced previously; in spite of their name, mimetic
schemes are very much in the finite volume spirit, since they rely on both a flux balance equation and
on the local conservativity of the numerical fluxes, that are probably the two “pillars” of the finite
volume philosophy; but then, finite volume schemes are also often called finite difference schemes in
the engineering literature because of the finite difference approximation of the fluxes. In fact, a recent
benchmark [25] provided sufficient information to suspect that the methods HFV, MFV and MFD
indeed coincide at the algebraic level and establishing this is the aim of ongoing work [16]. Let us
mention that the Raviart-Thomas mixed finite element method, which also involves edge unknowns,
was generalised to handle distorted hexahedral meshes [27]. These schemes require the fluxes or edge
unknowns as additional values (or as sole values after hybridisation), and they may be more expensive
than cell-centred schemes, especially in the 3D case.
In the two-dimensional case, we also mention [6], which discusses a scheme based on vertex reconstruc-
tions, and the family of double mesh schemes [26, 14, 7]. The generalisation of this type of scheme to
3D is the subject of ongoing work.
The scheme that we present here is designed on very general polygonal, possibly non-convex and
nonconforming meshes, with the following two priorities in mind:

• For cost reasons and data structure issues, we wish to obtain a symmetric scheme which is as
close as possible to a cell-centred scheme, that is to a scheme involving one unknown per control
volume (or grid cell).

• For accuracy reasons, we require the local conservativity of the numerical flux to hold at the
interfaces between highly heterogeneous media.

In [21], we introduced a cell-centred scheme for the approximation of the Laplace operator on noncon-
forming grids in the framework of the incompressible Navier-Stokes equations [21] and which may be
viewed as a low order nonconforming Galerkin approximation. The scheme (called “SUCCES” in [4])
was also implemented for anisotropic and heterogeneous problems on general meshes, and was shown
to be highly competitive for oil reservoir simulation in comparison with other well-known schemes
such as the multiple point flux approximation schemes. It is cheaper than the above mentioned hybrid
type schemes (HVF, MFV and MFD) because it is based on cell unknowns only. However, it is not
as accurate as the hybrid schemes for strongly heterogeneous problems, very likely because of the
weaker approximation of the normal fluxes at the heterogeneous interfaces. In the present work, we
construct a discretisation scheme (SUSHI) for any kind of polyhedral mesh, which incorporates the
best properties of the cell-centred (SUCCES) and hybrid (HFV) schemes: unknowns on the edges are
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only introduced when needed, for instance when there is strong medium heterogeneity at these edges.
If the set of edge unknowns is empty, then SUSHI reduces to the above mentioned cell-centred scheme;
if unknowns are associated to all internal edges, then SUSHI is the hybrid scheme HFV.

The outline of this paper is as follows. In Section 2, we present the guidelines which led us in the
construction of convergent schemes on general nonconforming meshes. The practical properties of
the resulting schemes are shown through numerical examples in Section 3. Then the mathematical
analysis of convergence and error estimation are performed in Section 4. This analysis is based on
some discrete functional analytic tools, such as discrete Sobolev inequalities, which are provided in
Section 5. Conclusions and perspectives are discussed in Section 6.

2 Fundamentals for a class of nonconforming schemes

Let us first present the desired properties which have led us to the design of the schemes under study:

(P1) The schemes must apply on any type of grid: conforming or nonconforming, 2D and 3D (or more,
see for instance the frameworks of kinetic formulations or financial mathematics), consisting of
control volumes which are only assumed to be polyhedral (the boundary of each control volume
is a finite union of subsets of hyperplanes).

(P2) The matrices of the linear systems generated are expected to be sparse, symmetric and positive
definite.

(P3) We wish to be able to prove the convergence of the family of discrete solutions to the solution
of the continuous problem as the mesh size tends to 0, and of the family of associate gradients
to the gradient of the solution, with no regularity assumption on the solution of the continuous
problem, and to derive error estimates when the analytic solution is regular enough.

In order to describe the schemes we now introduce some notations for the space discretisation.

Definition 2.1 (Space discretisation) Let Ω be a polyhedral open bounded connected subset of R
d,

with d ∈ N \ {0}, and ∂Ω = Ω \Ω its boundary. A discretisation of Ω, denoted by D, is defined as the
triplet D = (M, E ,P), where:

1. M is a finite family of nonempty connected open disjoint subsets of Ω (the “control volumes”)
such that Ω = ∪K∈MK. For any K ∈ M, let ∂K = K \K be the boundary of K; let |K| > 0
denote the measure of K and let hK denote the diameter of K.

2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all σ ∈ E,
σ is a nonempty open subset of a hyperplane of R

d, whose (d − 1)-dimensional measure |σ| is
strictly positive. We also assume that, for all K ∈ M, there exists a subset EK of E such that
∂K = ∪σ∈EK

σ. For any σ ∈ E, we denote by Mσ = {K ∈ M, σ ∈ EK}. We then assume that,
for all σ ∈ E, either Mσ has exactly one element and then σ ⊂ ∂Ω (the set of these interfaces,
called boundary interfaces, is denoted by Eext) or Mσ has exactly two elements (the set of these
interfaces, called interior interfaces, is denoted by Eint). For all σ ∈ E, we denote by xσ the
barycentre of σ. For all K ∈ M and σ ∈ EK , we denote by nK,σ the unit vector normal to σ
outward to K.

3. P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M, such that for all K ∈ M,
xK ∈ K and K is assumed to be xK-star-shaped, which means that for all x ∈ K, the inclusion
[xK ,x] ⊂ K holds. Denoting by dK,σ the Euclidean distance between xK and the hyperplane
including σ, one assumes that dK,σ > 0. We then denote by DK,σ the cone with vertex xK and
basis σ.
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Remark 2.1 The above definition applies to a large variety of meshes. Note that no hypothesis is
made on the convexity of the control volumes; in fact, generalised hexahedra, i.e. with faces which may
be composed of several planar sub-faces may be used. Often encountered in subsurface flow simulations,
such hexahedra may have up to 12 faces (resp. 24 faces) if each non planar face is composed of two
triangles (resp. four triangles), but only 6 neighbouring control volumes.

2.1 From a “hybrid” finite volume scheme. . .

The idea of the “hybrid” schemes (among them one may include the mixed finite elements, the mixed
finite volume or the mimetic finite difference schemes) is to find an approximation to the solution of
(1)–(2) by setting up a system of discrete equations for a family of values ((uK)K∈M, (uσ)σ∈E ) in the
control volumes and on the interfaces. The number of unknowns is therefore card(M) + card(E).
Following the idea of the finite volume framework, Equation (1) is integrated over each control volume
K ∈ M, which formally gives (assuming sufficient regularity on u and Λ) the following balance
equation on the control volume K:

∑

σ∈EK

(

−
∫

σ
Λ(x)∇u(x) · nK,σdγ(x)

)

=

∫

K
f(x)dx.

The flux −
∫

σ Λ(x)∇u(x) ·nK,σdγ(x) is approximated by a function FK,σ(u) of the values ((uK)K∈M,
(uσ)σ∈E ) at the “centres” and at the interfaces of the control volumes (in all practical cases, FK,σ(u)
only depends on uK and all (uσ′)σ′∈EK

). A discrete equation corresponding to (1) is then:

∑

σ∈EK

FK,σ(u) =

∫

K
f(x)dx ∀K ∈ M. (7)

The values uσ on the interfaces are then introduced so as to allow for a consistent approximation of the
normal fluxes in the case of an anisotropic operator and a general, possibly nonconforming mesh. We
thus have card(E) supplementary unknowns, and need card(E) equations to ensure that the problem
is well posed. For the boundary faces or edges, these equations are obtained by writing the discrete
counterpart of the boundary condition (2):

uσ = 0 ∀σ ∈ Eext. (8)

Following the finite volume ideas, we may write the continuity of the discrete flux for all interior edges,
that is to say:

FK,σ(u) + FL,σ(u) = 0, for σ ∈ Eint such that Mσ = {K,L}. (9)

We now have card(M) + card(Eint) unknowns and equations.

Remark 2.2 In the case Λ(x) = λ(x)Id, on meshes satisfying an orthogonality condition as men-
tioned in the introduction of this paper (this condition states the orthogonality between the line join-
ing the centres of two neighbouring control volumes with their common interface, see [17, Defini-
tion 9.1 p. 762]), a consistent numerical flux is obtained using the two-point formula FK,σ(u) =
λK |σ|(uK − uσ)/dK,σ, where λK is the average value for λ in K. Then, writing (9) for all σ ∈ Eint

such that Mσ = {K,L}, we obtain uσ as a linear combination of uK and uL. Plugging this expression
into (7), we get a scheme with card(M) equations and card(M) unknowns (see [17, Section 11.1 pp.
815-820] for more details). In the case of a rectangular (resp. triangular) mesh, this is the well-known
five points (resp. four points) scheme with harmonic averages of the diffusion.

With a proper choice of the expression FK,σ(u), which we shall introduce below, this scheme, first
introduced in [19], is quite efficient for the simulation of fluid flow in heterogeneous media (where
harmonic averages for Λ are preferred to arithmetic averages [5]) and may be shown to converge. This
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scheme does have one drawback: since the number of unknowns is the sum of the number of control
volumes and of interior interfaces, the resulting scheme is quite expensive (although it is sometimes
possible to algebraically eliminate the values at the control volumes, as in the mixed hybrid finite
element method, see [8, pp. 178-181]).

Remark 2.3 Note that in the case of regular conforming simplices (triangles in 2D, tetrahedra in
3D), there is an algebraic possibility to express the unknowns (uσ)σ∈E as local affine combinations of
the values (uK)K∈M and therefore to eliminate them [31]. The idea is to remark that the linear system
constituted by the equations (7) for all K ∈ MS, where MS is the set of all simplices sharing the same
interior vertex S, and (9) for all the interior edges such that Mσ ⊂ MS, presents as many equations
as unknowns uσ, for σ ∈ ∪K∈MS

EK . Indeed, the number of edges in ∪K∈MS
EK such that Mσ 6⊂ MS

is equal to the number of control volumes in MS. Unfortunately, there is at this time no general result
on the invertibility or the symmetry of the matrix of this system, and this method does not apply to
other types of meshes than simplicial meshes.

In order to reduce the computational cost of the scheme, we developed in [21] an idea which is in fact
close to the finite element philosophy since we express the finite volume scheme in a weak form; to
this end, let us first define the sets XD and XD,0 where the discrete unknowns lie, that is to say:

XD = {v = ((vK)K∈M, (vσ)σ∈E ), vK ∈ R, vσ ∈ R}, (10)

XD,0 = {v ∈ XD such that vσ = 0 ∀σ ∈ Eext}. (11)

Multiplying, for any v ∈ XD,0, Equation (7) by the value vK of v on the control volume K and
summing over K ∈ M leads to:

∑

K∈M

vK

∑

σ∈EK

FK,σ(u) =
∑

K∈M

vK

∫

K
f(x)dx.

Using (9), we get the following discrete weak formulation:







Find u ∈ XD,0 such that:

〈u, v〉F =
∑

K∈M

vK

∫

K
f(x)dx, for all v ∈ XD,0,

(12)

with
〈u, v〉F =

∑

K∈M

∑

σ∈EK

FK,σ(u)(vK − vσ). (13)

Note that choosing v ∈ XD,0 such that vK = 1, vL = 0 for any L ∈ M, L 6= K and vσ = 0 for
any σ ∈ E yields (7). Similarly, choosing v ∈ XD,0 such that vK = 0 for any K ∈ M, and vσ = 1
and vτ = 0 for any τ ∈ E , τ 6= σ leads to (9). Therefore the hybrid finite volume scheme (7)–(9) is
equivalent to the discrete weak formulation (12).

2.2 . . . to a nonconforming finite element scheme. . .

We may then choose to use the weak discrete form (13) as an approximation of the bilinear form
a(·, ·), but with a space of dimension smaller than that of XD,0. This can be achieved by expressing
the value of u on any interior interface σ ∈ Eint as a consistent barycentric combination of the values
uK :

uσ =
∑

K∈M

βK
σ uK , (14)
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where (βK
σ ) K∈M

σ∈Eint

is a family of real numbers, with βK
σ 6= 0 only for some control volumes K close to

σ, and such that
∑

K∈M

βK
σ = 1 and xσ =

∑

K∈M

βK
σ xK ∀σ ∈ Eint. (15)

This ensures that if ϕ is a regular function, then ϕσ =
∑

K∈M βK
σ ϕ(xK) is a consistent approximation

of ϕ(xσ) for σ ∈ Eint. We recall that the values uσ, σ ∈ Eext are set to 0 in order to respect the
boundary conditions (2). Hence the new scheme reads:















Find u ∈ XD,0 such that uσ =
∑

K∈M

βK
σ uK ∀σ ∈ Eint, and

〈u, v〉F =
∑

K∈M

vK

∫

K
f(x)dx, for all v ∈ XD,0 with vσ =

∑

K∈M

βK
σ vK ∀σ ∈ Eint.

(16)

This method has been shown in [21] to be efficient in the case of a problem where Λ = Id (for the
approximation of the viscous terms in the Navier-Stokes problem). With an appropriate choice for the
expression of the numerical flux, it also yields conservativity in a certain sense (more on this below),
but no longer to the classical (in the finite volume framework) equation (9): indeed, since the degrees
of freedom on the edges are no longer present, one may not use vσ = 1 to recover (9). Note also
that taking vK = 1 does not yield (7). This scheme has been implemented for the discretisation of
the diffusive term in the incompressible Navier Stokes equations on general two- or three-dimensional
grids, and gives excellent results [11, 12]. Unfortunately, because of poor approximation of the local
flux at strongly heterogeneous interfaces, this approach is not sufficient to provide accurate results
for some types of flows in heterogeneous media, as we shall show in Section 3. This is especially true
when using coarse meshes, as is often the case in industrial problems.

2.3 . . . to an optimal compromise?

Therefore we now propose a scheme which has the advantage of both techniques: we shall use equation
(13) and keep the unknowns uσ on the edges which require them, for instance those where the matrix Λ
is discontinuous: hence (9) will hold for all edges associated to these unknowns; for all other interfaces,
we shall impose the values of u using (14), and therefore eliminate these unknowns. Let us decompose
the set Eint of interfaces into two nonintersecting subsets, that is: Eint = B ∪ H,H = Eint \ B. The
interface unknowns associated with B will be computed by using the barycentric formula (14).

Remark 2.4 Note that, although the accuracy of the scheme is increased in practice when the points
where the matrix Λ is discontinuous are located within the set

⋃

σ∈H σ, such a property is not needed
in the mathematical study of the scheme.

Let us introduce the space XD,B ⊂ XD,0 defined by:

XD,B = {v ∈ XD such that vσ = 0 for all σ ∈ Eext and vσ satisfying (14) for all σ ∈ B}. (17)

The composite scheme which we consider in this work reads:

{

Find u ∈ XD,B such that:
〈u, v〉F =

∑

K∈M vK

∫

K f(x)dx, for all v ∈ XD,B.
(18)

We therefore obtain a symmetric scheme with card(M) + card(H) equations and unknowns. It is
thus less expensive while it remains accurate (for the choice of numerical flux given below) even in the
case of strong heterogeneity (see section 3).
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Note that with the present scheme, (9) holds for all σ ∈ H, but not generally for any σ ∈ B. However,
fluxes between pairs of control volumes can nevertheless be identified. Indeed, we may write

〈u, v〉F =
∑

K∈M





∑

σ∈EK∩H

FK,σ(u)(vK − vσ) +
∑

σ∈EK∩B

∑

L∈M

FK,σ(u)βL
σ (vK − vL)



 ,

and therefore:

〈u, v〉F =
∑

K∈M

∑

σ∈EK∩H

FK,σ(u)(vK − vσ) +
1

2

∑

(K,L)∈ND

FK,L(u)(vK − vL),

where
ND = {(K,L) ∈ M2,∃σ ∈ EK ∩ B, βL

σ 6= 0 or ∃σ ∈ EL ∩ B, βK
σ 6= 0},

and
FK,L(u) =

∑

σ∈EK∩B

FK,σ(u)βL
σ −

∑

σ∈EL∩B

FL,σ(u)βK
σ .

Note that, if (K,L) ∈ ND, then (L,K) ∈ ND and FK,L(u) = −FL,K(u); furthermore, FK,L(u) 6= 0
implies (K,L) ∈ ND, and the scheme’s stencil is determined by the set {L ∈ M such that (K,L) ∈
ND}. Then, taking vK = 1 and all other degrees of freedom of v ∈ XD,B equal to 0, (18) yields

∑

σ∈EK∩H

FK,σ(u) +
∑

L∈M
(K,L)∈ND

FK,L(u) =

∫

K
f(x)dx,

which shows the “finite volume philosophy” of the scheme.

Remark 2.5 (Other boundary conditions) In the case of Neumann or Robin boundary condi-
tions, the discrete space XD,B is modified to include the unknowns associated to the corresponding
edges, and the resulting discrete weak formulation is then straightforward.

Remark 2.6 (Extension of the scheme) For consistency reasons, it is preferable that the coeffi-
cients βK

σ associated with σ ∈ B be nonzero for points xK that lie in the same “regularity zone” of
the solution as xσ (that is with a zone with no diffusion tensor discontinuity). This is not always
easy: indeed, in the tilted barrier example described in Section 3.3 below, the barrier contains only one
layer of grid cells, so that, for an internal interface of this layer, it is difficult to use points xL that
are located in the same diffusion regularity zone with respect to xK . There is, however, no additional
difficulty to replace (14) in the definition of (17) by

uσ =
∑

K∈M

βK
σ uK +

∑

σ′∈H

βσ′

σ uσ′ ∀σ ∈ B, (19)

∑

K∈M

βK
σ +

∑

σ′∈H

βσ′

σ = 1 and xσ =
∑

K∈M

βK
σ xK +

∑

σ′∈H

βσ′

σ xσ′ ∀σ ∈ B. (20)

This trick solves the consistency issue without switching the edge to the hybrid set H, while all the
mathematical properties shown below still hold.
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2.4 Construction of the fluxes using a discrete gradient

For the definition of the schemes to be complete, there now remains to explain how we find a convenient
expression for FK,σ(u) with respect to the discrete unknowns. An idea that has been used in several
of the schemes referred to in the Introduction is to look for a consistent expression of the flux by using
adequate linear combinations of the unknowns; however, referring to the beginning of Section 2, such
a reconstruction does not in general lead to the desired properties (P2) (symmetric definite positive
matrices) and (P3) (convergence). Our idea here is different: it is based on the identification of the
numerical fluxes FK,σ(u) through the mesh-dependent bilinear form 〈·, ·〉F defined in (13), using the
expression of a discrete gradient. Indeed let us assume that, for all u ∈ XD, we have constructed a
discrete gradient ∇Du, we then seek a family (FK,σ(u))K∈M

σ∈EK

such that

〈u, v〉F =
∑

K∈M

∑

σ∈EK

FK,σ(u)(vK − vσ) =

∫

Ω
∇Du(x) · Λ(x)∇Dv(x)dx ∀u, v ∈ XD. (21)

Remark 2.7 (On the construction of the discrete fluxes) Note that it is always possible to de-
duce an expression for FK,σ(u) satisfying (21), under the sufficient condition that, for all K ∈ M and
a.e. x ∈ K, ∇Du(x) is expressed as a linear combination of (uσ − uK)σ∈EK

, the coefficients of which
are measurable bounded functions of x. This property is ensured in the construction of ∇Du(x) given
below.

We prove in Section 4 below that the desired properties (P2) and (P3) hold if the discrete gradient
satisfies the following properties:

1. (Weak compactness) For a sequence of space discretisations of Ω with mesh size tending to 0, if
the sequence of associated grid functions is bounded in some sense, then their discrete gradient
converges at least weakly in L2(Ω)d to the gradient of an element of H1

0 (Ω);

2. (Consistency) If ϕ is a regular function from Ω to R, the discrete gradient of the piece-wise
function defined by taking the value ϕ(xK) on each control volume K and ϕ(xσ) on each edge
σ is a consistent approximation of the gradient of ϕ.

Let us first define:

∇Ku =
1

|K|
∑

σ∈EK

|σ|(uσ − uK)nK,σ ∀K ∈ M,∀u ∈ XD, (22)

where nK,σ is the outward to K normal unit vector, |K| and |σ| are the usual measures (volumes,
areas, or lengths) of K and σ. The consistency of formula (22) stems from the following geometrical
relation:

∑

σ∈EK

|σ|nK,σ(xσ − xK)t = |K|Id ∀K ∈ M, (23)

where (xσ − xK)t is the transpose of xσ − xK ∈ R
d, and Id is the d × d identity matrix. Indeed,

for any linear function defined on Ω by ψ(x) = G · x with G ∈ R
d, assuming that uσ = ψ(xσ) and

uK = ψ(xK), we get uσ − uK = (xσ − xK)tG = (xσ − xK)t∇ψ, hence (22) leads to ∇Ku = ∇ψ.
Since the coefficient of uK in (22) is in fact equal to zero, a re-construction of the discrete gradient
∇Du solely based on (22) cannot lead to a definite discrete bilinear form in the general case. Hence,
we now introduce a stabilised gradient:

∇K,σu = ∇Ku+RK,σu nK,σ, (24)

with

RK,σu =

√
d

dK,σ
(uσ − uK −∇Ku · (xσ − xK)) , (25)
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(recall that d is the space dimension and dK,σ is the Euclidean distance between xK and σ). We may
then define ∇Du as the piece-wise constant function equal to ∇K,σu a.e. in the cone DK,σ with vertex
xK and basis σ:

∇Du(x) = ∇K,σu for a.e. x ∈ DK,σ. (26)

Note that, from the definition (25), thanks to (23) and to the definition (22), we get that

∑

σ∈EK

|σ|dK,σ

d
RK,σu nK,σ = 0 ∀K ∈ M. (27)

We prove in Lemmata 4.2 and 4.3 below that the discrete gradient defined by (22)-(26) indeed satisfies
the above stated weak compactness and consistency properties. In order to identify the numerical
fluxes FK,σ(u) through Relation (21), we put the discrete gradient in the form

∇K,σu =
∑

σ′∈EK

(uσ′ − uK)yσσ′

,

with

yσσ′

=















|σ|
|K|nK,σ +

√
d

dK,σ

(

1 − |σ|
|K|nK,σ · (xσ − xK)

)

nK,σ if σ = σ′

|σ′|
|K|nK,σ′ −

√
d

dK,σ|K| |σ
′|nK,σ′ · (xσ − xK)nK,σ otherwise .

(28)

Thus,

∫

Ω
∇Du(x) · Λ(x)∇Dv(x)dx =

∑

K∈M

∑

σ∈EK

∑

σ′∈EK

Aσσ′

K (uσ − uK)(vσ′ − vK) ∀u, v ∈ XD, (29)

with,

Aσσ′

K =
∑

σ′′∈EK

yσ′′σ · ΛK,σ′′yσ′′σ′

and ΛK,σ′′ =

∫

DK,σ′′

Λ(x)dx. (30)

Then we get that the local matrices (Aσσ′

K )σσ′∈EK
are symmetric and positive, and the identification

of the numerical fluxes using (21) leads to the expression:

FK,σ(u) =
∑

σ′∈EK

Aσσ′

K (uK − uσ′). (31)

Remark 2.8 (Link with the MFD method) The above technique yields an explicit construction
of a particular MFD method. Indeed, if one chooses xK as the centre of mass of K, the matrix AK

defined by (30) is an adequate choice for the matrix WE which is a parameter in the general formulation
of the family of MFD methods as proposed in [10]. The advantages of the specific matrix AK are that:

• on particular meshes, taking a natural choice for xK (for instance the circumcenter for a tri-
angular mesh in the case of a 2D isotropic problem), it degenerates to a diagonal matrix (see
Lemma 2.1 below);

• it is linked to an explicit formulation of a consistent gradient, which is used to define the discrete
bilinear form (29).

Note however that the SUSHI scheme defined by (18) is not the MFD method of [9, 10]; the main
reason is that according to the choice B, the SUSHI scheme may be either a completely cell-centred
scheme, or a partly or fully hybrid scheme, while the MFD method is a pure hybrid scheme. Note
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also that in SUSHI, one may take any point in cell K for xK , while the MFD schemes [9, 10] are
constructed with the centre of mass (however, this choice might be generalised).
Note that the procedure which we describe in Section 2.2 to write a cell-centred scheme could be applied
to any mimetic scheme (or low order mixed finite element scheme) to yield a centred scheme. However,
further investigations are needed to determine under what conditions the present convergence analysis
extends to mimetic schemes, and conversely, whether the mimetic analysis applies to the SUSHI scheme
(ongoing work, [16]).

The fluxes defined by (22)-(31) satisfy certain properties which are detailed in Lemma 4.4, and which
allow us to prove the convergence of the scheme, as is shown in Theorem 4.1. Note that it seems difficult
to deduce such properties from fluxes obtained by using natural expansions of regular functions. Note
also that both Lemma 4.4 and Theorem 4.1 hold for general heterogeneous, anisotropic and possibly
discontinuous fields Λ, for which the solution u of (6) is not in general more regular than u ∈ H1

0 (Ω).
In the case where Λ and u are regular enough, the local flux consistency satisfied by (31) is used
in order to obtain an error estimate, see Theorem 4.2. The coefficient

√
d may be replaced by any

positive real number without any change in the proof of convergence; in fact, for certain problems it
can be interesting to use another coefficient, as described in [20] for the so called “SUSHI-P” scheme
(P for parametric, meaning that the user may choose the stabilisation coefficient as well as the set of
edges B). The choice

√
d is however natural in the sense that with this value, if B = ∅, the scheme

boils down in two dimensions to the well-known harmonic averaging five points scheme on rectangles
and a four-point scheme on triangles; more generally, in any space dimension, even if B 6= ∅ and taking
the most natural value for uσ if σ ∈ B, the resulting flux is a two-point flux on meshes that satisfy
the “superadmissibility condition” (32), not necessarily with a harmonic averaging of Λ in the case
σ ∈ B; this is proven in the next lemma. Note that this superadmissibility condition is also satisfied
by rectangular parallelepipeds in three dimensions but unfortunately not by tetrahedra.

Lemma 2.1 (Superadmissible mesh and two-point flux) Let D = (M, E ,P) be a discretisation
of Ω in the sense of Definition 2.1, satisfying the following superadmissibility condition:

nK,σ =
xσ − xK

dK,σ
∀K ∈ M, ∀σ ∈ EK . (32)

Let us furthermore assume that Λ(x) = λ(x)Id, where λ is a piece-wise constant function from Ω to
R, which is equal to a constant λK in each K ∈ M; then, the inner product defined by (21)-(25) reads:

〈u, v〉F =
∑

K∈M

λK

∑

σ∈EK

|σ|
dK,σ

(uK − uσ)(vK − vσ).

Moreover, choosing thanks to (32), xσ = (dK,σxL + dL,σxK)/(dK,σ + dL,σ) for σ ∈ Eint with Mσ =
{K,L} in (15), the scheme (18) is the following two-point flux scheme:

∑

K∈M

FK,σ =

∫

K
f(x) dx, (33)

FK,σ =
λKλL(dK,σ + dL,σ)

λKdL,σ + λLdK,σ

|σ|
dK,σ + dL,σ

(uK − uL) if σ ∈ Eint ∩H, Mσ = {K,L}, (34)

FK,σ =
dK,σλK + dL,σλL

dK,σ + dL,σ

|σ|
dK,σ + dL,σ

(uK − uL) if σ ∈ Eint ∩ B, Mσ = {K,L}, (35)

FK,σ = λK
|σ|
dK,σ

uK if σ ∈ Eext ∩ EK , (36)
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Proof. Let us compute 〈u, v〉F under the assumptions of Lemma 2.1. From (21) and thanks to (27)
we get:

〈u, v〉D =
∑

K∈M

λK

∫

K
∇Du(x) · ∇Dv(x)dx

=
∑

K∈M

λK



|K|∇Ku · ∇Kv +
∑

σ∈EK

|σ|dK,σ

d
RK,σu RK,σv



 .

Now from the definition (22) and thanks to the assumption (32), the discrete gradient given by (22)
may be written as follows:

∇Kv =
1

|K|
∑

σ∈EK

|σ|
dK,σ

(vσ − vK)(xσ − xK) ∀K ∈ M, ∀v ∈ XD,

From (23), we get
∑

σ∈EK

|σ|dK,σ

d

√
d

dK,σ
(xσ − xK)

√
d

dK,σ
(xσ − xK)t = |K|Id.

Therefore, we get that

∑

σ∈EK

|σ|dK,σ

d
RK,σu RK,σv =

∑

σ∈EK

|σ|
dK,σ

(uσ − uK)(vσ − vK) − |K|∇Ku · ∇Kv,

which in turn yields that

〈u, v〉D =
∑

K∈M

λK

∑

σ∈EK

|σ|
dK,σ

(uσ − uK)(vσ − vK).

Hence the matrix AK only contains the terms |σ|
dK,σ

on the diagonal, and the flux FK,σ(u) is given by

FK,σ(u) = λK
|σ|
dK,σ

(uK − uσ).

Then the scheme (18) can be written as a classical cell-centred finite volume scheme, with two-point
fluxes FK,L(u) = −FK,L(u) for any σ ∈ Eint with Mσ = {K,L}. Indeed, in the case σ /∈ B, the above
expression of FK,σ(u) allows us to get the following expression of uσ from (9):

uσ =

λK

dK,σ
uK + λL

dL,σ
uL

λK

dK,σ
+ λL

dL,σ

.

This yields the harmonic averaging two-point flux

FK,L(u) = |σ|
λK

dK,σ

λL

dL,σ

λK

dK,σ
+ λL

dL,σ

(uK − uL).

In the case σ ∈ B, the two-point barycentric formula uσ = (dK,σuL + dL,σuK)/(dK,σ + dL,σ) together
with (18) leads to the resulting two-point flux

FK,L(u) =
dK,σλK + dL,σλL

dK,σ + dL,σ

|σ|
dK,σ + dL,σ

(uK − uL).

�
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3 Numerical results

We present some numerical results obtained with various choices of B in the scheme (18), (13) with
the flux (31), which we synthesise here for the sake of clarity:



























Find u ∈ XD,B (that is (uK)K∈M, (uσ)σ∈H), such that:
∑

K∈M

∑

σ∈EK

FK,σ(u)(vK − vσ) =
∑

K∈M

vK

∫

K
f(x)dx, for all v ∈ XD,B,

with FK,σ(u) =
∑

σ′∈EK

Aσσ′

K (uσ′ − uK) ∀K ∈ M,∀σ ∈ EK .

(37)

where the matrices Aσσ′

K are defined by (30)-(28). In the following, we shall use the choices B = ∅
(HFV), B = Eint or B the set of edges which are located on the diffusion tensor discontinuity interfaces;
this latter choice is reported as SUSHI-NP (for non parametric) in [20], in contrast with SUSHI-P (for
parametric) where the choice of the set B may be different, along with the value of the stabilisation
coefficient in (25).

3.1 Implementation

Let us first describe an implementation aspects of the scheme. The unknowns, i.e. the values uK ,
for K ∈ M and the values uσ, σ ∈ Eint ∩ H, are ordered as (ui)i=1,...,N . The N ×N matrix and the
N × 1 right-hand-side of the linear system resulting from (18) are computed thanks to a loop over
the control volumes K ∈ M and to an inner loop on each edge σ ∈ EK . Let us detail the matrix
computation loop.

1. All stored matrix coefficients are initially set to 0.

2. The expression FK,σ(u) is written in the form FK,σ(u) =
∑

i=1,...,N a
(i)
K,σui, where the nonzero

coefficients (a
(i)
K,σ)i=1,...,N are only locally computed (they are not stored for all K and σ). These

coefficients are obtained after the elimination of all (uσ)σ∈EK∩B in (31):

FK,σ(u) =
∑

σ′∈EK∩H

Aσσ′

K (uK − uσ′) +
∑

σ′∈EK∩B

Aσσ′

K

∑

L∈M

βL
σ′(uK − uL).

3. The line of the matrix corresponding to the unknown uK is incremented at the column j with

the coefficient a
(j)
K,σ.

4. If σ ∈ B with vσ =
∑

L∈M βL
σ vL for any v ∈ XD,B, the line of the matrix corresponding to each

L ∈ M such that βL
σ 6= 0 is incremented at the column j with the coefficient −βL

σ a
(j)
K,σ.

5. If σ ∈ Eint ∩H, the line of the matrix corresponding to the edge σ is incremented at the column

j with the coefficient −a(j)
K,σ.

This procedure is identical in the cases B = ∅ (HFV), B 6= ∅ and B = Eint. However, in the case where
B = ∅ (HFV), one may eliminate the unknowns uK with respect to the unknowns uσ, as in the hybrid
implementation of the mixed finite element method.

3.2 Order of convergence

We consider here the numerical resolution of Equation (1) supplemented by the homogeneous Dirichlet
boundary condition (2); the right-hand side is chosen so as to obtain an exact solution to the problem
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and easily compute the error between the exact and approximate solutions. We consider Problem
(1)-(2) with a constant matrix Λ:

Λ =

(

1.5 .5
.5 1.5

)

, (38)

and choose f : Ω → R such that the exact solution to Problem (1)–(2) is ū defined by ū(x, y) =
16x(1 − x)y(1 − y) for any (x, y) ∈ Ω. Note that in this case, the composite scheme is in fact the
cell-centred scheme, there are no edge-unknowns.
Let us first consider conforming meshes, such as the triangular meshes which are depicted on Figure
1, and uniform square meshes.

Figure 1: Regular conforming coarse and fine triangular grids

For both B = ∅ (pure hybrid scheme: HFV) and B = Eint (cell-centred scheme), the order of conver-
gence is close to 2 for the unknown u and 1 for its gradient. Of course, the hybrid scheme is almost
three times more costly in terms of number of unknowns than the cell-centred scheme for a given
precision. However, the number of nonzero terms in the matrix is, again for a given precision on
the approximate solution, larger for the cell-centred scheme than for the hybrid scheme. Hence the
number of unknowns is probably not a sufficient criterion for assessing the cost of the scheme.
Results were also obtained in the case of uniform square or rectangular meshes. They show a better
rate of convergence of the gradient (order 2 in the case of H = Eint and 1.5 in the case B = Eint), even
though the rate of convergence of the approximate solution remains unchanged and close to 2.
We then use a rectangular nonconforming mesh, obtained by cutting vertically the domain into two
parts and using a rectangular grid of 3n × 2n (resp. 5n × 2n) on the first (resp. second side), where
n is the number of the mesh, n = 1, . . . , 7. Again, the order of convergence which we obtain is 2 for u
and around 1.8 for the gradient. We give in Table 1 below the errors obtained in the discrete L2 norm
for u and ∇u for a nonconforming mesh and (in terms of number of unknowns) and for the rectangular
4 × 6 and 4 × 10 conforming rectangular meshes, for both the hybrid and cell-centred schemes. We
show in Figure 2 the solutions for the corresponding grids (which look much the same for the two
schemes).

Further detailed results on several problems and conforming, nonconforming and distorted meshes
may be found in [20].

3.3 The case of a highly heterogeneous tilted barrier

We now turn to the heterogeneous case. The domain Ω =]0, 1[×]0, 1[ is composed of 3 sub-domains,
which are depicted in Figure 3: Ω1 = {(x, y) ∈ Ω;ϕ1(x, y) < 0}, with ϕ1(x, y) = y − δ(x − .5) − .475,
Ω2 = {(x, y) ∈ Ω;ϕ1(x, y) > 0, ϕ2(x, y) < 0}, with ϕ2(x, y) = ϕ1(x, y) − 0.05, Ω3 = {(x, y) ∈
Ω;ϕ2(x, y) > 0}, and δ = 0.2 is the slope of the drain (see Figure 3). Dirichlet boundary conditions are
imposed by setting the boundary values to those of the analytical solution given by u(x, y) = −ϕ1(x, y)
on Ω1 ∪ Ω3 and u(x, y) = −ϕ1(x, y)/10

−2 on Ω2.
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NU NM ǫ(u) ǫ(∇u)
n B = ∅ B = Eint B = ∅ B = Eint B = ∅ B = Eint B = ∅ B = Eint

C1 130 48 874 488 1.28E-01 1.20E-01 1.64E-02 3.57E-02
NC 182 64 1334 724 1.03E-01 9.43E-02 1.66E-02 3.69E-02
C2 222 80 1542 864 7.61E-02 7.09E-02 9.18E-03 2.44E-02

Table 1: Error for the nonconforming rectangular mesh, pure hybrid scheme (B = ∅) and centred (B = Eint)
schemes. For both schemes NU is the number of unknowns in the resulting linear system, NM is the number of
nonzero terms in the matrix, ǫ(u) is the discrete L2 norm of the error of the solution and ǫ(∇u) is the discrete
L2 norm of the error in the gradient. C1 and C2 are the two conforming meshes represented on the left and
the right in Figure 2, and NC is the nonconforming one represented in the middle.

Figure 2: The approximate solution for conforming and nonconforming meshes. Left: conforming
8 × 6 mesh, centre: nonconforming 4 × 6, 4 × 10 mesh, right: conforming 10 × 10.

The permeability tensor Λ is heterogeneous and isotropic, given by Λ(x) = λ(x)Id, with λ(x) = 1 for
a.e. x ∈ Ω1 ∪ Ω3 and λ(x) = 10−2 for a.e. x ∈ Ω2. Note that the isolines of the exact solution are
parallel to the boundaries of the sub-domain, and that the tangential component of the gradient is
0. We use the meshes depicted in Figure 3. Mesh 3 (containing 10 × 25 control volumes) is obtained
from Mesh 1 by the addition of two layers of very thin control volumes around each of the two lines
of discontinuity of Λ: because of the very low thickness of these layers, equal to 1/10000, the picture
representing Mesh 3 is not different from that of Mesh 1.

Ω1

Ω2

Ω3

Figure 3: Domain and meshes used for the tilted barrier test: mesh 1 (10×21 centre), mesh 2 (10×100
right)

We get the following results for the approximations of the four fluxes at the boundary.
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nb. unknowns matrix size x = 0 x = 1 y = 0 y = 1

analytical -0.2 0.2 1. -1.

B = Eint

mesh 1 210 2424 −1.17 1.17 3.51 −3.51
mesh 2 1000 11904 −0.237 0.237 1.104 −1.104
mesh 3 250 2904 −0.208 0.208 1.02 −1.02

SUSHI-NP
mesh 1 239 2583 −0.2 0.2 1. −1.
mesh 2 1020 12036 −0.2 0.2 1. −1.

HFV
mesh 1 599 4311 −0.2 0.2 1. −1.
mesh 2 2890 21138 −0.2 0.2 1. −1.

Note that the values of the numerical solution given by the pure hybrid (HFV) and composite (SUSHI-
NP) schemes are equal to those of the analytical solution (this holds under the only condition that
the interfaces located on the lines ϕi(x, y) = 0, i = 1, 2, are not included in B, and that, for all σ ∈ B,
all K ∈ M with βK

σ 6= 0 are included in the same sub-domain Ωi). Note that Mesh 3, which leads
to acceptable results for the computation of the fluxes, is not well suited for such a coupled problem,
because of too small control volume measures. Hence SUSHI on Mesh 1 appears to be the most
suitable method for this problem.
A satisfying natural choice (SUSHI-NP in the above results) is thus to match H with the discontinuities
of Λ. It is sometimes interesting to choose another set B. This is for instance the case for the numerical
locking problem for which the choice B = ∅ is best even though the diffusion tensor is homogeneous
[20].
It is also sometimes interesting to replace the stabilisation coefficient

√
d in (25) by some other coef-

ficient α > 0. This is the case for instance for very distorted meshes or singular problems, in order
to maintain the positivity of the unknown. The coefficient α is taken to be greater than

√
d. The

approximate solution remains positive, but the L2 norm of the error is generally larger. We refer to
[20] for such experiments.

4 Convergence of the scheme

Let us first introduce some notations related to the mesh. Let D = (M, E ,P) be a discretisation of Ω
in the sense of Definition 2.1. The size of the discretisation D is defined by:

hD = sup{hK ,K ∈ M},

and the regularity of the mesh by:

θD = max

(

max
σ∈Eint,K,L∈Mσ

dK,σ

dL,σ
, max
K∈M,σ∈EK

hK

dK,σ

)

. (39)

For a given set B ⊂ Eint and for a given family (βK
σ ) K∈M

σ∈Eint

satisfying property (15), we introduce a

measure of the resulting regularity by

θD,B = max

(

θD, max
K∈M,σ∈EK∩B

∑

L∈M |βL
σ ||xL − xσ|2
h2

K

)

. (40)

Remark 4.1 Note that, for any mesh, it is easy to choose the family (βK
σ ) K∈M

σ∈Eint

so that θD,B remains

small. It suffices to express xσ as the barycentre of d + 1 points xL (which is always possible), for L
sufficiently close to K, so that xL − xσ is close to hK when βK

σ 6= 0. Note also that in fact, it would
be sufficient to have hη

K with η > 1 instead of h2
K in (40) thus allowing the use of farther points.
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Remark that, thanks to the assumption that K is xK -star-shaped, the following property holds:

∑

σ∈EK

|σ|dK,σ = d |K| ∀K ∈ M. (41)

The space XD defined in (10) is equipped with the following semi-norm:

∀v ∈ XD, |v|2X =
∑

K∈M

∑

σ∈EK

|σ|
dK,σ

(vσ − vK)2, (42)

which is a norm on the spaces XD,0 and XD,B respectively defined by (11) and (17).
Let HM(Ω) ⊂ L2(Ω) be the set of piece-wise constant functions on the control volumes of the mesh
M. We then denote, for all v ∈ HM(Ω) and for all σ ∈ Eint with Mσ = {K,L}, Dσv = |vK − vL| and
dσ = dK,σ + dL,σ, and for all σ ∈ Eext with Mσ = {K}, we denote Dσv = |vK | and dσ = dK,σ. We
then define the following norm:

∀v ∈ HM(Ω), ‖v‖1,2,M =
∑

K∈M

∑

σ∈EK

|σ|dK,σ

(

Dσv

dσ

)2

=
∑

σ∈E

|σ|(Dσv)
2

dσ
. (43)

(Note that this norm is also defined by (74) in Lemma 5.2, setting p = 2).
For all v ∈ XD, we denote by ΠMv ∈ HM(Ω) the piece-wise function from Ω to R defined by
ΠMv(x) = vK for a.e. x ∈ K, for all K ∈ M. Using the Cauchy-Schwarz inequality, we have for all
σ ∈ Eint with Mσ = {K,L},

(vK − vL)2

dσ
≤ (vK − vσ)2

dK,σ
+

(vσ − vL)2

dL,σ
∀v ∈ XD,

which leads to the relation
‖ΠMv‖2

1,2,M ≤ |v|2X ∀v ∈ XD,0. (44)

For all ϕ ∈ C(Ω,R), we denote by PDϕ the element of XD defined by ((ϕ(xK))K∈M, (ϕ(xσ))σ∈E ),
by PD,Bϕ the element v ∈ XD,B such that vK = ϕ(xK) for all K ∈ M, vσ = 0 for all σ ∈ Eext,
vσ =

∑

K∈M βK
σ ϕ(xK) for all σ ∈ B and vσ = ϕ(xσ) for all σ ∈ H.

We denote by PMϕ ∈ HM(Ω) the function such that PMϕ(x) = ϕ(xK) for a.e. x ∈ K, for all K ∈ M
(we then have PMϕ = ΠMPDϕ = ΠMPD,Bϕ).
The following lemma provides an equivalence property between the L2-norm of the discrete gradient,
defined by (22)-(26) and the norm | · |X .

Lemma 4.1 Let D be a discretisation of Ω in the sense of Definition 2.1, and let θ ≥ θD be given
(where θD is defined by (39)). Then there exists C1 > 0 and C2 > 0 only depending on θ and d such
that:

C1 |u|X ≤ ‖∇Du‖L2(Ω) ≤ C2 |u|X ∀u ∈ XD, (45)

where ∇D is defined by (22)-(26).

Proof. By definition,

‖∇Du‖2
L2(Ω)d =

∑

K∈M

∑

σ∈EK

|σ|dK,σ

d
|∇K,σu|2.

Therefore, using property (27),

‖∇Du‖2
L2(Ω)d =

∑

K∈M



|K||∇Ku|2 +
∑

σ∈EK

|σ|dK,σ

d
(RK,σu)

2



 . (46)
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Let us now notice that the following inequality holds:

(a− b)2 ≥ λ

1 + λ
a2 − λb2 ∀a, b ∈ R, ∀λ > −1. (47)

We apply this inequality to (RK,σu)
2 for some λ > 0 and obtain

(RK,σu)
2 ≥ λd

1 + λ

(

uσ − uK

dK,σ

)2

− λd|∇Ku|2
( |xσ − xK |

dK,σ

)2

. (48)

This leads to

∑

σ∈EK

|σ|dK,σ

d
(RK,σu)

2 ≥ λ

1 + λ

∑

σ∈EK

|σ|dK,σ

(

uσ − uK

dK,σ

)2

− λ |K| d|∇Ku|2θ2.

Choosing λ = 1
dθ2 , we get that

‖∇Du‖2
(L2(Ω))d ≥ λ

1 + λ
|u|2X ,

which shows the left inequality of (45).
Let us now prove the right inequality. On one hand, using the definition (22) of ∇Ku and (41), the
Cauchy–Schwarz inequality leads to

|∇Ku|2 ≤ 1

|K|2
∑

σ∈EK

|σ|
dK,σ

(uσ − uK)2
∑

σ∈EK

|σ|dK,σ =
d

|K|
∑

σ∈EK

|σ|
dK,σ

(uσ − uK)2. (49)

On the other hand, by definition (25), and thanks to the definition of the regularity of the mesh (39),
we have

(RK,σu)
2 ≤ 2d

(

(
uσ − uK

dK,σ
)2 + |∇Ku|2|

xσ − xK

dK,σ
|2
)

≤ 2d

(

(
uσ − uK

dK,σ
)2 + θ2|∇Ku|2

)

. (50)

From (46), (49) and (50), we conclude that the right inequality of (45) holds. �

We may now state a weak compactness result for the discrete gradient.

Lemma 4.2 (Weak discrete H1 compactness) Let F be a family of discretisations in the sense
of Definition 2.1 such that there exists θ > 0 with θ ≥ θD for all D ∈ F . Let (uD)D∈F be a family of
functions, such that:

• uD ∈ XD,0 for all D ∈ F ,

• there exists C > 0 with |uD|X ≤ C for all D ∈ F ,

• there exists u ∈ L2(Ω) with lim
hD→0

‖ΠMuD − u‖L2(Ω) = 0.

Then, u ∈ H1
0 (Ω) and ∇DuD weakly converge in L2(Ω)d to ∇u as hD → 0, where the operator ∇D is

defined by (22)-(26).

Proof. Let us prolong ΠMuD and ∇DuD by 0 outside of Ω. Thanks to Lemma 4.1, up to a
subsequence, there exists some function G ∈ L2(Rd)d such that ∇DuD weakly converges in L2(Rd)d

to G as hD → 0. Let us show that G = ∇u. Let ψ ∈ C∞
c (Rd)d be given. Let us consider the term

TD
1 defined by

TD
1 =

∫

Rd

∇DuD(x) ·ψ(x)dx.

17



We get that TD
1 = TD

2 + TD
3 , with

TD
2 =

∑

K∈M

∑

σ∈EK

|σ|(uσ − uK)nK,σ · ψK , with ψK =
1

|K|

∫

K
ψ(x)dx,

and

TD
3 =

∑

K∈M

∑

σ∈EK

RK,σu nK,σ ·
∫

DK,σ

ψ(x)dx.

We compare TD
2 with TD

4 defined by

TD
4 =

∑

K∈M

∑

σ∈EK

|σ|(uσ − uK)nK,σ · ψσ,

with

ψσ =
1

|σ|

∫

σ
ψ(x)dγ(x).

We get that

(TD
2 − TD

4 )2 ≤
∑

K∈M

∑

σ∈EK

|σ|
dK,σ

(uσ − uK)2
∑

K∈M

∑

σ∈EK

|σ|dK,σ|ψK −ψσ|2,

which leads to lim
hD→0

(TD
2 − TD

4 ) = 0.

Since

TD
4 = −

∑

K∈M

∑

σ∈EK

|σ|uKnK,σ · ψσ = −
∫

Rd

ΠMuD(x)divψ(x)dx,

we get that lim
hD→0

TD
4 = −

∫

Rd u(x)divψ(x)dx. Let us now turn to the study of TD
3 . Noting again that

(27) holds, we have:

TD
3 =

∑

K∈M

∑

σ∈EK

RK,σu nK,σ ·
∫

DK,σ

(ψ(x) −ψK)dx.

Since ψ is a regular function, there exists Cψ only depending on ψ such that |
∫

DK,σ
(ψ(x)−ψK)dx| ≤

CψhD
|σ|dK,σ

d
. From (50) and the Cauchy-Schwarz inequality, we thus get:

lim
hD→0

TD
3 = 0.

This proves that the function G ∈ L2(Rd)d is a.e. equal to ∇u in R
d. Since u = 0 outside of Ω,

we get that u ∈ H1
0 (Ω), and the uniqueness of the limit implies that the whole family ∇DuD weakly

converges in L2(Rd)d to ∇u as hD → 0.
�

Note that the proof that u ∈ H1
0 (Ω) also results from (44), which allows us to apply Lemma 5.7 of

the Appendix in the particular case p = 2. Let us also remark that several discrete gradients could
be chosen, which satisfy the weak compactness property (see for instance the proof of Lemma 5.7).
However, we emphasise that the choice of the specific gradient (22) also stems from coercivity and
consistency issues. Let us now state the discrete gradient consistency property.

Lemma 4.3 (Discrete gradient consistency) Let D be a discretisation of Ω in the sense of Defi-
nition 2.1, and let θ ≥ θD be given. Then, for any function ϕ ∈ C2(Ω), there exists C3 only depending
on d, θ and ϕ such that:

‖∇DPDϕ−∇ϕ‖(L∞(Ω))d ≤ C3 hD, (51)

where ∇D is defined by (22)-(26).
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Proof. From definitions (26) and (24) we get

|∇K,σPDϕ−∇ϕ(xK)| ≤ |∇KPDϕ−∇ϕ(xK)| + |RK,σPDϕ|.

From (22), we have, for any K ∈ M,

∇KPDϕ =
1

|K|
∑

σ∈EK

|σ|(ϕ(xσ) − ϕ(xK))nK,σ

=
1

|K|
∑

σ∈EK

|σ|
(

∇ϕ(xK) · (xσ − xK) + h2
KρK,σ

)

nK,σ,

where |ρK,σ| ≤ Cϕ with Cϕ only depending on ϕ. Thanks to (23) and to the regularity of the mesh,
we get

|∇KPDϕ−∇ϕ(xK)| ≤ 1

|K|
∑

σ∈EK

|σ|h2
K |ρK,σ| ≤ hK d Cϕθ.

From this last inequality, using Definition 25, we get

|RK,σPDϕ| =

√
d

dK,σ
|ϕ(xσ) − ϕ(xK) −∇KPDϕ · (xσ − xK)|

≤
√
d

dK,σ

(

h2
KρK,σ + h2

K d Cϕθ
)

≤
√
dθ(hKCϕ + hKdCϕθ),

which concludes the proof. �

We now give the abstract properties of the discrete fluxes, which are necessary to prove the convergence
of the general scheme (18), (13), and then prove that the fluxes that we constructed in Section 2.4
indeed satisfy these properties.

Definition 4.1 (Continuous, coercive, consistent and symmetric families of fluxes)
Let F be a family of discretisations in the sense of definition 2.1. For D = (M, E ,P) ∈ F , K ∈ M and
σ ∈ E, we denote by FD

K,σ a linear mapping from XD to R, and we denote by Φ = ((FD
K,σ)K∈M

σ∈E
)D∈F .

We consider the bilinear form defined by

〈u, v〉F =
∑

K∈M

∑

σ∈EK

FD
K,σ(u)(vK − vσ) ∀(u, v) ∈ X2

D. (52)

The family of numerical fluxes Φ is said to be continuous if there exists M > 0 such that

〈u, v〉F ≤M |u|X |v|X ∀(u, v) ∈ X2
D, ∀D = (M, E ,P) ∈ F . (53)

The family of numerical fluxes Φ is said to be coercive if there exists α > 0 such that

α|u|2X ≤ 〈u, u〉F ∀u ∈ XD ∀D = (M, E ,P) ∈ F . (54)

The family of numerical fluxes Φ is said to be consistent (with Problem (1)–(2)) if for any family
(uD)D∈F satisfying:

• uD ∈ XD,0 for all D ∈ F ,

• there exists C > 0 with |uD|X ≤ C for all D ∈ F ,

• there exists u ∈ L2(Ω) with lim
hD→0

‖ΠMuD − u‖L2(Ω) = 0 (recall that, from Lemma 5.7, we get

that u ∈ H1
0 (Ω)),
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then

lim
hD→0

〈uD, PDϕ〉F =

∫

Ω
Λ(x)∇ϕ(x) · ∇u(x)dx ∀ϕ ∈ C∞

c (Ω). (55)

Finally the family of numerical fluxes Φ is said to be symmetric if

〈u, v〉F = 〈v, u〉F ∀(u, v) ∈ X2
D, ∀D = (M, E ,P) ∈ F .

We now show that the family of fluxes defined by (28)-(31) satisfies the definition of a consistent,
coercive and symmetric family of fluxes. Recall that the SUSHI scheme (37) is studied numerically in
Section 3 with this choice for the family of fluxes.

Lemma 4.4 (Flux properties) Let F be a family of discretisations in the sense of Definition 2.1.
We assume that there exists θ > 0 with

θD ≤ θ ∀D = (M, E ,P) ∈ F , (56)

where θD is defined by (39). Let Φ = ((FD
K,σ)K∈M

σ∈EK

)D∈F be the family of fluxes defined by (28)-(31).

Then, the family Φ is a continuous, coercive, consistent and symmetric family of numerical fluxes in
the sense of Definition 4.1.

Proof. Since the family of fluxes is defined by (28)-(31), it satisfies (21), and therefore we have:

〈u, v〉F =

∫

Ω
∇Du(x) · Λ(x)∇Dv(x)dx ∀u, v ∈ XD.

Hence the property 〈u, v〉F = 〈v, u〉F holds. The continuity and coercivity of the family Φ result from
Lemma 4.1 and the properties of Λ, which give: 〈u, v〉F ≤ λ‖∇Du‖L2(Ω)‖∇Dv‖L2(Ω) and 〈u, u〉F ≥
λ‖∇Du‖2

L2(Ω) for any u, v ∈ XD. The consistency results from the weak and strong convergence

properties in Lemmas 4.2 and 4.3, which give ∇DuD → ∇u weakly in L2(Ω) and ∇DPDϕ → ∇ϕ in
L2(Ω) as the mesh size tends to 0. �

Theorem 4.1 (Convergence) Let F be a family of discretisations in the sense of Definition 2.1,
for any D ∈ F , let B ⊂ Eint and (βK

σ ) K∈M

σ∈Eint

satisfying (15). Assume that there exists θ > 0 such that

θD,B ≤ θ, for all D ∈ F , where θD,B is defined by (40). Let Φ = ((FD
K,σ)K∈M

σ∈E
)D∈F be a continuous,

coercive and symmetric and consistent family of numerical fluxes in the sense of Definition 4.1. Let
(uD)D∈F be the family of functions satisfying (18) for all D ∈ F . Then ΠMuD converges in L2(Ω) to
the unique solution u of (6) as hD → 0. Moreover ∇DuD converges to ∇u in L2(Ω)d as hD → 0.

Proof. Letting v = uD in (18) and applying the Cauchy-Schwarz inequality yields

〈uD, uD〉F =

∫

Ω
f(x)ΠMuD(x)dx ≤ ‖f‖L2(Ω)‖ΠMuD‖L2(Ω).

We apply the Sobolev inequality (77) with p = 2, which gives in this case

‖ΠMuD‖L2(Ω) ≤ C4‖ΠMu‖1,2,M.

Using (44) and the consistency of the family Φ of fluxes, we then have

α|ΠMuD|2X ≤ C4 ‖f‖L2(Ω)|uD|X .

This leads to the inequality

‖uD‖1,2,M ≤ |uD|X ≤ C4

α
‖f‖L2(Ω). (57)
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Thanks to Lemma 5.7, we get the existence of u ∈ H1
0 (Ω), and of a subfamily extracted from F , such

that ‖ΠMuD − u‖L2(Ω) tends to 0 as hD → 0. For a given ϕ ∈ C∞
c (Ω), let us take v = PD,Bϕ in (18)

(recall that PD,Bϕ ∈ XD,B). We get

〈uD, PD,Bϕ〉F =

∫

Ω
f(x)PMϕ(x)dx.

Let us remark that, thanks to the continuity of the family Φ of fluxes, we have

〈uD, PD,Bϕ− PDϕ〉F ≤M
C13

α
‖f‖L2(Ω) |PD,Bϕ− PDϕ|X .

Thanks to (15) and (40), we get the existence of Cϕ only depending on ϕ (through its second order
partial derivatives) such that, for all K ∈ M and all σ ∈ B ∩ EK ,

|
∑

L∈M

βL
σϕ(xL) − ϕ(xσ)| ≤

∑

L∈M

|βL
σ ||xL − xσ|2Cϕ ≤ θD,BCϕh

2
K . (58)

We can then deduce
lim

hD→0
|PD,Bϕ− PDϕ|X = 0. (59)

Thanks to the F-extracted subfamily properties, we may apply the consistency hypothesis on the
family Φ of fluxes, which gives

lim
hD→0

〈uD, PDϕ〉F =

∫

Ω
Λ(x)∇ϕ(x) · ∇u(x)dx.

Gathering the two results above leads to

lim
hD→0

〈uD, PD,Bϕ〉F =

∫

Ω
Λ(x)∇ϕ(x) · ∇u(x)dx,

which concludes the proof of the following equality

∫

Ω
Λ(x)∇ϕ(x) · ∇u(x)dx =

∫

Ω
f(x)ϕ(x)dx.

Therefore, u is the unique solution of (6), and we get that the whole family (uD)D∈F converges to u
as hD → 0.

Let us now prove the second part of the theorem.
Let ϕ ∈ C∞

c (Ω) be given (this function is devoted to approximate u in H1
0 (Ω)). Thanks to the

Cauchy-Schwarz inequality, we have

∫

Ω
|∇DuD(x) −∇u(x)|2dx ≤ 3 (TD

5 + TD
6 + T7),

with TD
5 =

∫

Ω |∇DuD(x)−∇DPDϕ(x)|2dx, TD
6 =

∫

Ω |∇DPDϕ(x)−∇ϕ(x)|2dx, and T7 =
∫

Ω |∇ϕ(x)−
∇u(x)|2dx. Thanks to Lemma 4.3, we have limhD→0 T

D
6 = 0.

Thanks to Lemma 4.1 and to the coercivity of the family of fluxes, there exists C5 such that

‖∇Dv‖2
L2(Ω)d ≤ C2

2|v|2X ≤ C5 〈v, v〉F ∀v ∈ XD,

with C5 = C2
2

α . Taking v = uD − PDϕ, we have

TD
5 ≤ C5 (〈uD, uD〉F − 2〈uD, PDϕ〉F + 〈PDϕ,PDϕ〉F ).
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By Theorem 4.1 and thanks to and consistency of the family of fluxes, we get

lim
hD→0

〈uD, PDϕ〉F =

∫

Ω
∇u(x) · Λ(x)∇ϕ(x)dx.

The sequence |PDϕ|X is bounded; using the regularity of ϕ, the regularity hypotheses of the family of
discretisations, together with the consistency of the family of fluxes implies that

lim
hD→0

〈PDϕ,PDϕ〉F =

∫

Ω
∇ϕ(x) · Λ(x)∇ϕ(x)dx.

Remarking that passing to the limit hD → 0 in (18) with v = uD provides that 〈uD, uD〉F converges
to
∫

Ω ∇u · Λ∇udx, we get that

lim
hD→0

〈uD − PDϕ, uD − PDϕ〉F =

∫

Ω
∇(u− ϕ) · Λ∇(u− ϕ)dx ≤ λ

∫

Ω
|∇u−∇ϕ|2dx,

which yields

lim sup
hD→0

TD
5 ≤ C5 λ

∫

Ω
|∇u−∇ϕ|2dx.

From the above results, we obtain that there exists C6, independent of D, such that
∫

Ω
|∇DuD(x) −∇u(x)|2dx ≤ C6

∫

Ω
|∇ϕ(x) −∇u(x)|2dx+ TD

8 ,

with (noting that ϕ is fixed) limhD→0 T
D
8 = 0. Let ε > 0; we may choose ϕ such that

∫

Ω |∇ϕ(x) −
∇u(x)|2dx ≤ ε, and we may then choose hD small enough so that TD

8 ≤ ε. This completes the proof
that

lim
hD→0

∫

Ω
|∇DuD(x) −∇u(x)|2dx = 0 (60)

in the case of a general continuous, coercive, consistent and symmetric family of fluxes. �

Let us write an error estimate in the particular case Λ = Id, assuming a regular exact solution to (6).

Theorem 4.2 (Error estimate, isotropic case) We consider the particular case Λ = Id, and we
assume that the solution u ∈ H1

0 (Ω) of (6) is in C2(Ω). Let D = (M, E ,P) be a discretisation in the
sense of Definition 2.1, let B ⊂ Eint be given, let B = (βK

σ )σ∈B,K∈M ⊂ R such that (15) holds, and let
θ ≥ θD,B be given (see (40)). Let (FK,σ)K∈M,σ∈E be a family of linear mappings from XD to R, such
that there exists α > 0 with

α|v|2X ≤ 〈v, v〉F ∀v ∈ XD, (61)

defining 〈·, ·〉F by (52). We denote by

E(u) =





∑

K∈M

∑

σ∈EK

dK,σ

|σ|

(

FK,σ(PD,Bu) +

∫

σ
∇u(x) · nK,σdγ(x)

)2




1/2

. (62)

Then the solution uD of (18) satisfies that there exists C7, only depends on α and on θ, such that

‖ΠMuD − PMu‖L2(Ω) ≤ C7E(u), (63)

and satisfies that there exists C8, only depending on α, θ and u such that

‖∇DuD −∇u‖L2(Ω)d ≤ C8 (E(u) + hD) . (64)

Moreover, in the particular case where (FK,σ)K∈M,σ∈E is defined by (28)-(31), there exists C9, only
depending on α, θ and u, such that

E(u) ≤ C9 hD. (65)
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Remark 4.2 (Extensions of the error estimate) Note also that the extension of Theorem 4.2 to
the case u ∈ H2(Ω) is possible for d = 2 or d = 3. However it would demand a rather longer and
more technical proof and is not expected to provide more information on the link between accuracy
and the regularity of the mesh than the result presented here. In the case of the pure hybrid scheme
(HFV, B = ∅), an error estimate could however be obtained by assuming u piece-wise to be H2.
Such error estimates were also obtained for pure hybrid schemes of the mimetic type by using the
tools of the mixed finite element theory (see e.g. [10]). If B 6= ∅, one must furthermore assume
that the barycentric formulae (14)-(15) or (19)-(20) are written with unknowns located in the same
regularity zone, as explained in Remark 2.6. Nevertheless such error estimates are not possible for
general L∞ diffusion operators, since in such a case the maximal regularity of the continuous solution
is H1

0 (Ω). Then, by interpolation, one may get some error estimates if the continuous solution is in
H1

0 (Ω) ∩Hs(Ω) as in the classical finite element framework.

Proof. Let v ∈ XD, since −∆u = f , we get:

−
∑

K∈M

vK

∫

K
∆u(x)dx =

∫

Ω
f(x)ΠMv(x)dx. (66)

Thanks to the following equality (recall that u ∈ C2(Ω) and therefore ∇u · nK,σ is defined on each
edge σ)

−
∑

K∈M

vK

∫

K
∆u(x)dx = −

∑

K∈M

∑

σ∈EK

(vK − vσ)

∫

σ
∇u(x) · nK,σdγ(x),

we get that

〈PD,Bu, v〉F =

∫

Ω
f(x)ΠMv(x)dx+

∑

K∈M

∑

σ∈EK

(

FD
K,σ(PD,Bu) +

∫

σ
∇u(x) · nK,σdγ(x)

)

(vK − vσ).

Taking v = PD,Bu− uD ∈ XD,B in this latter equality and using (66) we get

〈v, v〉F =
∑

K∈M

∑

σ∈EK

(

FD
K,σ(PD,Bu) +

∫

σ
∇u(x) · nK,σdγ(x)

)

(vK − vσ),

which leads, using (61) and the Cauchy-Schwarz inequality, to

α|v|X ≤ E(u). (67)

Using (44) and the Sobolev inequality (77) with p = 2 provides the conclusion of (63). Let us now
prove (64). We have

‖∇DuD −∇u‖L2(Ω)d ≤ ‖∇DuD −∇DPD,Bu‖L2(Ω)d + ‖∇DPD,Bu−∇u‖L2(Ω)d .

The bound of the first term in the above right-hand side is bounded thanks to Lemma 4.1 and (67).
The inequality ‖∇DPD,Bu−∇u‖L2(Ω)d ≤ C10hD is obtained thanks to Lemma 4.3 and using a similar
inequality to (58), replacing ϕ by u.

Let us now turn to the proof of (65) in the particular case where the family of fluxes is defined by
(28)-(31). Indeed, we get in this case that, for all v ∈ XD,

FK,σ(v) = −
∑

σ′∈EK

(∇Kv +RK,σ′v nK,σ′) · |σ
′|dK,σ′

d
yσ′σ,
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with

yσ′σ =















|σ|
|K|nK,σ +

√
d

dK,σ

(

1 − |σ|
|K|nK,σ · (xσ − xK)

)

nK,σ if σ = σ′

|σ|
|K|nK,σ −

√
d

dK,σ′ |K| |σ|nK,σ · (xσ′ − xK)nK,σ′ otherwise .

Using (23), we get that
∑

σ′∈EK

|σ′|dK,σ′

d
yσ′σ = |σ|nK,σ.

Since there exists C11 ∈ R+ such that |RK,σ′PD,Bu| ≤ C11 hK , there exists some C12 ∈ R+ with

∣

∣

∣

∣

FK,σ(PD,Bu) +

∫

σ
∇u(x) · nK,σdγ(x)

∣

∣

∣

∣

≤ C12 |σ|hK .

This leads to the conclusion of (65). �

5 Discrete functional analysis

This section is devoted to some results of functional analysis that are useful for the proof of convergence
of numerical schemes when the approximate solution is piece-wise constant on the mesh. Although
some of the results presented here were already introduced in previous works of the authors, they
were mostly presented (even when not needed, see [17, Remark 9.13 p. 793]) in the framework of
“admissible” meshes, that is meshes with an orthogonality condition.
We recall that in the proof of the main convergence Theorem 4.1, we first obtain from the scheme
some estimates on the approximate solutions in the discrete H1 norm. We now show how, from a
general discrete W 1,p estimate (this generalisation to p 6= 2 is useful in the case of nonlinear problems)
we obtain a discrete Lq estimate for some q > p (Lemma 5.3). We then obtain a certain compactness
result in L1 (Lemma 5.5 and therefore in Lp (Lemma 5.6), which in turn allows to show that the limit
of the approximate solution is in W 1,p

0 (Ω) (Lemma 5.7).

5.1 Discrete Sobolev embeddings

5.1.1 Discrete embedding of W 1,1 in L1⋆

The discrete Sobolev embedding of W 1,1 in L1⋆

requires less assumptions on the mesh than those
given in Definition 2.1. We therefore introduce a larger class of meshes in the following definition.

Definition 5.1 (Polyhedral partition of Ω) Let d ≥ 1 and let Ω be an open bounded set in R
d,

whose boundary is a finite union of part of hyperplanes. A polyhedral partition M of Ω is a finite
partition of Ω such that each element K of this partition is measurable and has a boundary ∂K that
is composed of a finite union of parts of hyperplanes (the facets of K) denoted by σ: ∂K = ∪σ∈EK

σ.
Let E be the set of the facets of all the elements of M: E = ∪K∈MEK . If σ ∈ E is a facet of this
partition, one denotes by |σ| the (d − 1)–Lebesgue measure of σ. Let HM(Ω) be the set of functions
from Ω to R, constant on each element of M. Let u ∈ HM(Ω). If σ ∈ EK ∩ EL (that is σ is a facet
such that σ ⊂ K ∩L), one sets Dσu = |uK − uL|. If σ ∈ E is on the boundary of Ω and K ∈ M (that
is σ = ∂Ω ∩K), one sets Dσu = |uK |. For u ∈ HM(Ω), one sets

‖u‖1,1,M =
∑

σ∈E

|σ|Dσu. (68)
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Lemma 5.1 Let d ≥ 1 and let Ω be an open bounded set of R
d, whose boundary is a finite union of

parts of hyperplanes. Let M be a polyhedral partition of Ω in the sense of Definition 5.1. Then, with
the notations of Definition 5.1,

‖u‖L1⋆ (Ω) ≤
1

2
√
d
‖u‖1,1,M ∀u ∈ HM(Ω), with 1⋆ =

d

d− 1
. (69)

Proof. Different proofs of this lemma are possible. A first proof consists in adapting to this discrete
setting the classical proof of the Sobolev embedding due to L. Nirenberg (actually, it gives 1/2 instead
of 1/(2

√
d) in (69)): it is based on an induction on d. This proof is essentially given in [17, Lemma 9.5

page 790], with slightly less general hypotheses; in fact the so called orthogonality assumption is not
used in the proof of Lemma 9.5 of [17]. An easy adaptation of this proof leads to the present lemma
(with 1/2 instead of 1/(2

√
d) in (69)).

The present proof makes direct use of L. Nirenberg’s result, namely:

‖u‖L1⋆ (Rd) ≤
1

2d
‖u‖W 1,1(Rd) ∀u ∈W 1,1(Rd), (70)

where ‖u‖W 1,1(Rd) =
∑d

i=1 ‖Diu‖L1(Rd) and Diu is the weak derivative (or derivative in the sense of

distributions) of u in the direction xi (with x = (x1, . . . , xd) ∈ R
d).

For u ∈ L1(Rd), one sets ‖u‖BV =
∑d

i=1 ‖Diu‖M with, for i = 1, . . . , d, ‖Diu‖M = sup{
∫

u ∂ϕ
∂xi

dx,

ϕ ∈ C∞
c (Rd), ‖ϕ‖L∞(Rd) ≤ 1}. The function u belongs to the space BV if u ∈ L1(Rd) and ‖u‖BV <∞.

We first remark that (70) is true with ‖u‖BV instead of ‖u‖W 1,1(Rd), and if u ∈ BV instead ofW 1,1(Rd).

Indeed, to prove this result (which is classical), let ρ ∈ C∞
c (Rd,R+) with

∫

ρdx = 1. For n ∈ N
⋆,

define ρn = ndρ(n·). Let u ∈ BV and un = u ⋆ ρn so that, with (70):

‖un‖L1⋆ (Rd) ≤
1

2d

d
∑

i=1

‖Diun‖L1(Rd). (71)

Since un is regular, ‖Diun‖L1(Rd) = ‖Diun‖M , and, for ϕ ∈ C∞
c (Rd), using Fubini’s theorem:

∫

Rd

un
∂ϕ

∂xi
dx =

∫

Rd

u
∂

∂xi
(ϕ ⋆ ρn)dx ≤ ‖Diu‖M‖ϕ‖L∞(Rd).

This leads to ‖Diun‖L1(Rd) ≤ ‖Diu‖M . Since un → u a.e., as n → ∞, at least for a sub-sequence,
Fatou’s lemma gives, from (71):

‖u‖L1⋆ (Rd) ≤
1

2d
‖u‖BV ∀u ∈ BV. (72)

Let u ∈ HM(Ω). One sets u = 0 outside Ω so that u ∈ L1(Rd). One has ‖u‖BV = sup{
∫

Rd u divϕ dx,
ϕ ∈ C∞

c (Rd,Rd), ‖ϕ‖L∞(Rd) ≤ 1}, with ‖ϕ‖L∞(Rd) = supi=1,...,d ‖ϕi‖L∞(Rd) and ϕ = (ϕ1, . . . , ϕd). But,

for ϕ ∈ C∞
c (Rd,Rd) such that ‖ϕ‖L∞(Rd) ≤ 1, an integration by parts on each element of M gives

(where nσ is a normal vector to σ and γ is the (d− 1)−Lebesgue measure on σ):

∫

Rd

u divϕ dx =
∑

σ∈E

Dσu

∫

σ
|ϕ · nσ|dγ(x) ≤

√
d‖u‖1,1,M.

Then, one has ‖u‖BV ≤
√
d‖u‖1,1,M and (72) leads to (69).

�
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5.1.2 Discrete embedding of W 1,p in Lp⋆

, 1 < p < d

We now prove a discrete Sobolev embedding for 1 < p < d and for meshes in the sense of Definition 2.1.

Lemma 5.2 Let d > 1, 1 < p < d and let Ω be a polyhedral open bounded connected subset of R
d. Let

D be a discretization on Ω in the sense of Definition 2.1. Let η > 0 be such that η ≤ dK,σ/dL,σ ≤ 1/η
for all σ ∈ E, where Mσ = {K,L}. Then, there exists C13, only depending on d, p and η such that

‖u‖Lp⋆ (Ω) ≤ C13 ‖u‖1,p,M ∀u ∈ HD(Ω), (73)

where p⋆ = pd
d−p and

‖u‖p
1,p,M =

∑

K∈M

∑

σ∈EK

|σ|dK,σ

(

Dσu

dσ

)p

, (74)

with dσ = dK,σ + dL,σ, if Mσ = {K,L}, and dσ = dK,σ, if Mσ = {K}.
Proof. We follow here L. Nirenberg’s proof of the Sobolev embedding. Let α be such that α1⋆ = p⋆

(that is α = p(d − 1)/(d − p) > 1). Let u ∈ HD(Ω). Inequality (69) applied with |u|α instead of u
leads to:

(
∫

Ω
|u|p⋆

dx

)
d−1

d

≤
∑

σ∈E

|σ|Dσ |u|α.

For σ ∈ Eint, Mσ = {K,L}, one has Dσ|u|α ≤ α(|uK |α−1 + |uL|α−1)Dσu. For σ ∈ Eext, Mσ = {K},
one has Dσ|u|α ≤ α|uK |α−1Dσu. This yields:

(
∫

Ω
|u|p⋆

dx

)
d−1

d

≤
∑

K∈M

∑

σ∈EK

|σ|α|uK |α−1Dσu, (75)

For all σ ∈ E , one has 1 ≤ 1+η
η

dK,σ

dσ
, if σ ∈ Eint, Mσ = {K,L}, or if σ ∈ Eext, Mσ = {K}. Then,

Hölder’s inequality applied to (75) yields, with q = p/(p− 1):

(

∫

Ω
|u|p⋆

dx)
d−1

d ≤ α
1 + η

η
(
∑

K∈M

∑

σ∈EK

|σ|dK,σ|uK |(α−1)q)
1

q ‖u‖1,p,M. (76)

Since (α− 1)q = p⋆, one has:

∑

K∈M

∑

σ∈EK

|σ|dK,σ|uK |(α−1)q = d

∫

Ω
|u|p⋆

dx.

Then, noticing that (d − 1)/d − 1/q = 1/p⋆, we deduce (73) follows from (76) with C13 = α1+η
η d1/q

only depending on d, p and η. �

5.1.3 Discrete embedding of W 1,p in Lq, for some q > p

Let 1 ≤ p < ∞, we now deduce from Lemma 5.3 the following lemma, which gives the discrete
embedding of W 1,p in Lq, for some q > p.

Lemma 5.3 Let d ≥ 1, 1 ≤ p < ∞ and let Ω be a polyhedral open bounded connected subset of R
d.

Let D be a mesh of Ω in the sense of Definition 2.1. Let η > 0 be such that η ≤ dK,σ/dL,σ ≤ 1/η for
all σ ∈ E, where Mσ = {K,L}. Then, there exists q > p only depending on p and there exists C14,
only depending on d, Ω, p and η such that

‖u‖Lq(Ω) ≤ C14 ‖u‖1,p,M ∀u ∈ HD(Ω), (77)

where ‖u‖p
1,p,M is defined in (74).
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Proof. If p = 1, one takes q = 1⋆ and the result follows from Lemma 5.1 (in this case C14 does not
depend on η). If 1 < p < d, one takes q = p⋆ applies Lemma 5.2.

If p ≥ d, one chooses any q ∈]p,∞[ and p1 < d such that p⋆
1 = q (this is possible since p⋆

1 tends to
∞ as p1 tends to d). Lemma 5.2 gives, for some C13 only depending on p, d and η, that ‖u‖Lq(Ω) ≤
C13 ‖u‖1,p1,M. But, using Hölder’s inequality, there exists C15, only depending on d, p, Ω, such that
‖u‖1,p1,M ≤ C15 ‖u‖1,p,M. Inequality (5.3) follows with C14 = C13C15 . �

5.2 Compactness results for bounded families in the discrete W
1,p norm

5.2.1 Compactness in Lp

We prove in this section that bounded families in the discrete W 1,p norms are relatively compact in
Lp. We begin here also with the case p = 1, giving in this case a crucial inequality which holds for
general polyhedral partitions of Ω.

Lemma 5.4 Let d ≥ 1 and let Ω be an open bounded set in R
d, whose boundary is a finite union of

parts of hyperplanes. Let M be a polyhedral partition of Ω in the sense of Definition 5.1. Then, with
the notations of Definition 5.1,

‖u(· + y) − u‖L1(Rd) ≤ |y|
√
d‖u‖1,1,M ∀u ∈ HM(Ω), ∀y ∈ R

d, (78)

where u is defined on the whole space R
d, taking u = 0 outside Ω, and |h| is the Euclidean norm of

h ∈ R
d.

Proof. One may prove this result in a similar way to that of [17, Lemma 9.3 p. 770] where an L2

estimate on the translations is proven. Indeed, the proof of Lemma 9.3 [17] holds in the case p = 1
considered here for a general partition, while for p > 1, it requires the orthogonality condition satisfied
by the admissible meshes of [17, Definition 9.1 p 762]. We give here a simpler proof dedicated to the
case p = 1, using the BV−space, as in Lemma 5.1.

Let u ∈ C∞
c (Rd). For x,y ∈ R

d, one has:

|u(x+ y) − u(x)| = |
∫ 1

0
∇u(x+ ty) · ydt| ≤ |y|

∫ 1

0
|∇u(x+ ty)|dt.

Integrating with respect to x and using Fubini’s Theorem gives the well-known result

‖u(· + y) − u‖L1(Rd) ≤ |y|
∫

Rd

|∇u|dx ≤ |y|
d
∑

i=1

‖Diu‖L1(Rd), (79)

where ∇u = (D1u, . . . ,Ddu). By density of C∞
c (Rd) in W 1,1(Rd), Inequality (79) is also true for

u ∈W 1,1(Rd).

We proceed now as in Lemma 5.1, using the same notations. Let u ∈ BV and un = u ⋆ ρn. Since
un ∈W 1,1(Rn), Inequality (79) gives, for all y ∈ R

d, ‖un(· + y) − un‖L1(Rd) ≤ |y|∑d
i=1 ‖Diun‖L1(Rd).

But, for i = 1, . . . , d, as in Lemma 5.1, ‖Diun‖L1(Rd) ≤ ‖Diu‖M . Then, since un → u in L1(Rd), as
n→ ∞, we obtain:

‖u(· + y) − u‖L1(Rd) ≤ |y|
d
∑

i=1

‖Diu‖M = |y|‖u‖BV ∀u ∈ BV, ∀y ∈ R
d. (80)

Let u ∈ HM(Ω). One sets u = 0 outside Ω so that u ∈ L1(Rd); thanks to lemma 5.1, ‖u‖BV ≤√
d‖u‖1,1,M and thus:

‖u(· + y) − u‖L1(Rd) ≤ |y|
√
d‖u‖1,1,M ∀y ∈ R

d.
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An easy consequence of Lemmas 5.1 and 5.4 is a compactness result in L1 given in the following
lemma.

Lemma 5.5 Let d ≥ 1 and let Ω be an open bounded set in R
d, such that its boundary ∂Ω is a finite

union of parts of hyperplanes. Let F be a family of polyhedral partitions of Ω in the sense of Definition
5.1. For M ∈ F , let uM ∈ HM(Ω) and assume that there exists C ∈ R such that for all M ∈ F ,
‖uM‖1,1,M ≤ C. Then, the family (uM)M∈F is relatively compact in L1(Ω) and also in L1(Rd) taking
uM = 0 outside Ω.

Proof. By Lemma 5.1, the family (uM)M∈F is bounded in L1⋆

(Ω). Since Ω is bounded, the
family (uM)M∈F is bounded in L1(Ω) and also in L1(Rd), taking uM = 0 outside Ω. Thanks to the
Kolmogorov compactness theorem, Lemma 5.4 gives that the family (uM)M∈F is relatively compact
in L1(Ω) and also in L1(Rd) taking uM = 0 outside Ω. �

Note that in fact, the above result also holds for general (non polyhedral) partitions of Ω, for instance
in the case of curved boundaries. In the case p > 1, we need an additional hypothesis on the meshes
which we state in the following lemma.

Lemma 5.6 Let d ≥ 1, 1 ≤ p < ∞ and Ω be a polyhedral open bounded connected subset of R
d. Let

F be a family of meshes of Ω in the sense of Definition 2.1. Let η > 0 be such that, for all D ∈ F ,
one has η ≤ dK,σ/dL,σ ≤ 1/η for all σ ∈ E, where Mσ = {K,L}. For D ∈ F , let uD ∈ HD(Ω) and
assume that there exists C ∈ R such, for all D ∈ F , ‖uD‖1,p,M ≤ C. Then, the family (uD)D∈F is
relatively compact in Lp(Ω) and also in Lp(Rd) taking uD = 0 outside Ω.

Proof. Thanks to Lemma 5.3 and to the fact that Ω is bounded, the family (uD)D∈F is bounded
in L1(Ω) and also in L1(Rd) taking uD = 0 outside Ω. Thanks once again to the fact that Ω is
bounded, the family (‖uD‖1,1,M)D∈F is bounded in R. Then, as in the previous lemma, the Kolmogorov
compactness theorem gives that the family (uD)D∈F is relatively compact in L1(Ω) and also in L1(Rd)
taking uD = 0 outside Ω.

In order to conclude we use, once again, Lemma 5.3. It gives that the family (uD)D∈F is bounded in
Lq(Ω) for some q > p. With the relative compactness in L1(Ω), this leads to the fact that the family
(uD)D∈F is relatively compact in Lp(Ω) (and then also in Lp(Rd) taking uD = 0 outside Ω). �

5.2.2 Regularity of the limit

With the hypotheses of Lemma 5.6, assume that uD → u in Lp as size(D) → 0 (Lemma 5.6 gives that
this is possible, at least for subsequences of sequences of meshes with vanishing size). We prove below
that u ∈W 1,p

0 (Ω).

Lemma 5.7 Let d ≥ 1, 1 ≤ p < ∞ and let Ω be a polyhedral open bounded connected subset of R
d.

Let (Dn)n∈N be a family of discretisations of Ω in the sense of Definition 2.1. Let η > 0 be such
that, for any discretisation Dn = (Mn, En,Pn), one has η ≤ dK,σ/dL,σ ≤ 1/η for all σ ∈ E, where
Mσ = {K,L}. For n ∈ N, let u(n) ∈ HDn(Ω) and assume that there exists C ∈ R such, for all n ∈ N,
‖u(n)‖1,p,Mn ≤ C. Assume also that size(Dn) → 0 as n→ ∞. Then:

1. There exists a sub-sequence of (u(n))n∈N, still denoted by (u(n))n∈N, and u ∈ Lp(Ω) such that
u(n) → u in Lp(Ω) as n→ ∞.

2. u ∈W 1,p
0 (Ω) and

‖∇u‖Lp(Ω)d = ‖ |∇u| ‖Lp(Ω) ≤
(1 + η)d

p−1

p

η
C (81)

(recall that |∇u| is the Euclidean norm of ∇u).
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Proof. The fact that there exists a subsequence of (u(n))n∈N, still denoted by (u(n))n∈N, and
u ∈ Lp(Ω) such that u(n) → u in Lp(Ω) as n → ∞ is a consequence of the relative compactness of
(u(n))n∈N in Lp given in Lemma 5.6. There only remains to prove that u ∈W 1,p

0 (Ω).

Letting u(n) = 0 and u = 0 outside Ω, one also has u(n) → u in Lp(Rd). Let us now construct an
approximate gradient, denoted by ∇̃Dnu

(n), bounded in Lp(Ω), equal to 0 outside Ω and converging,
at least in the distributional sense, to ∇u.
Step 1 Construction of ∇̃Du, for u ∈ HD(Ω), and its properties.
Let n ∈ N and D = Dn. For this step, one sets u = u(n) (not to be confused with the limit of the
sequence (u(n))n∈N). For σ ∈ E , one sets uσ = 0 if σ is on the boundary of Ω. Otherwise, one has
Mσ = {K,L} and we choose a value uσ between uK and uL (it is possible to choose, for instance,
uσ = 1

2(uK + uL) but any other choice between uK and uL is possible). Then, one defines ∇̃Du on
K ∈ D in the following way:

∇̃Du =
1

|K|
∑

σ∈EK

|σ|nK,σ(uσ − uK).

The function ∇̃Du is constant on each K ∈ M and, on K, using Hölder’s inequality

|∇̃Du|p ≤ 1

(|K|)p





∑

σ∈EK

|σ|nK,σ|uσ − uK |





p

≤ 1

(|K|)p





∑

σ∈EK

|σ|dK,σ





p−1
∑

σ∈EK

|σ|dK,σ

(

Dσu

dK,σ

)p

.

Since
∑

σ∈EK
|σ|dK,σ = d|K|, one deduces

|∇̃Du|p ≤ dp−1

|K|
∑

σ∈EK

|σ|dK,σ

(

Dσu

dK,σ

)p

.

This gives an Lp- estimate on ∇̃Du in (Lp(Ω))d (or in (Lp(Rd))d, setting ∇̃Du = 0 outside Ω), in terms
of ‖u‖1,p,M, namely

‖|∇̃Du|‖Lp ≤ (1 + η)d
p−1

p

η
‖u‖1,p,M. (82)

In order to prove, in the next step, the convergence of this approximate gradient, we now compute
the integral of this gradient against a test function. Let ϕ ∈ C∞

c (Rd; Rd), ϕK the mean value of ϕ on
K ∈ D, and ϕσ the mean value of ϕ on σ. Then,

∫

Rd

∇̃Du · ϕdx =
∑

K∈D

∑

σ∈EK

|σ|nK,σ(uσ − uK)ϕK =
∑

K∈D

∑

σ∈EK

|σ|nK,σ(−uK)ϕσ +R(u, ϕ), (83)

with
R(u, ϕ) =

∑

K∈D

∑

σ∈EK

|σ|nK,σ(uσ − uK)(ϕK − ϕσ).

Then, there exists Cϕ only depending on ϕ, d, p, Ω and η such that |R(u, ϕ)| ≤ Cϕsize(D)‖u‖1,p,M.
Equation (83) can also be written as

∫

Rd

∇̃Du · ϕdx =
∑

K∈D

∫

K
(−uK) div(ϕ) dx+R(u, ϕ) = −

∫

Rd

u div(ϕ) dx+R(u, ϕ). (84)

Step 2 Convergence of ∇̃Dnu
(n) to ∇u and proof of u ∈W 1,p

0 (Ω) .
We consider now the sequence (u(n))n∈N. Inequality (82) gives

‖|∇̃Du
(n)|‖Lp ≤ (1 + η)d

p−1

p

η
‖u(n)‖1,p,M.
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Then, the sequence (∇̃Du
(n))n∈N is bounded in Lp(Rd)d and we can assume, up to a subsequence, that

∇̃Du
(n) converges to some w weakly in Lp(Rd)d, as n→ ∞ and ‖ |w| ‖Lp ≤ (1+η)d

p−1

p

η C.

Let ϕ ∈ C∞
c (Rd; Rd), Equation (84) gives

∫

Rd

∇̃Du
(n) · ϕdx = −

∫

Rd

u(n) div(ϕ) dx+R(u(n), ϕ). (85)

Thanks to |R(u(n), ϕ)| ≤ Cϕsize(Dn)‖u(n)‖1,p,Mn , one has R(u(n), ϕ) → 0, as n → ∞. Since u(n) → u
in Lp(Rd) as n→ ∞, passing to the limit in (85) gives:

∫

Rd

w · ϕdx = −
∫

Rd

u div(ϕ) dx.

Since ϕ is arbitrary in C∞
c (Rd,Rd), one deduces that ∇u = w. Then u ∈ W 1,p(Rd) and ‖|∇u|‖Lp ≤

(1+η)d
p−1

p

η C. Finally, since u = 0 outside Ω, one has u ∈W 1,p
0 (Ω). �

6 Conclusion and perspectives

A symmetric discretisation scheme was introduced for anisotropic heterogeneous problems on dis-
torted nonconforming meshes. Although this scheme stems from the finite volume analysis, which was
developed these past years, its formulation is actually derived from a discrete weak formulation; in
this respect it may be seen as a nonconforming finite element method. Tools of functional analysis
were obtained, which allow a mathematical analysis of the scheme; the convergence of the discrete
solution to the exact solution of the continuous problem is shown with no regularity assumption on
the solution (other than the natural assumption that it is in H1

0 (Ω)). Even though this convergence
result yields no rate of convergence, it is probably more interesting than error estimates which require
some assumptions on the diffusion tensor. Nevertheless, we show an order 1 estimate in the case of
the Laplace operator, which is readily adaptable to regular (say piece-wise C1) isotropic diffusion op-
erators. The numerical results presented here show the good performance of the scheme (in particular
order 2 is obtained for the convergence in the L2 norm of the solution), and so do three dimensional
experiments which were performed in [12] for the incompressible Navier–Stokes equations on general
grids. Note that the convergence analysis which is performed here readily extends to the non-linear
setting of Leray-Lions operators. This will be the subject of a future paper.
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