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ABSTRACT

Several aspects of the discretization of strgsé fields, as opposed to
displacement fields, are reviewed. The most classical satisfies figorous
equilibrium, both translational and rotational in the interior domain of each
.element and reciprocity of surface tractions at interelement boundaries
-(strong d1ffusiv1ty).

The difficulties assodiated*with.kinematital,deformation modes are analysad

and resolved by different procedures :

— the composite element technique,
LT d
%
* Stience EEQT—Q&H@@Vuy controlled by the dual patch test,
1GUGes
‘C"Emlm@w&:,z{‘%}?ﬁ"ﬁ@«ﬁm dlsplacement connectors, or hybridation,
- dig@ﬁdEdﬂation of rotational equlllhrlum. '

This last and recent approach is discussed in some detail, It involves
direct or indfrect use of first order stress functions, whose C_ cont inuity
is sufficient for strong diffusivity. One of its advantages is the possibility
of curving the boundaries by a geometric isopar.ametric coordinate transformation.

Some numerical convergence .tests are presented to conclude,



1. THE CLASSICAL THEORY OF DIFFUSIVE EQUILIBRIUM ELEMENTS

|

A diffusive equilibrium element is based on the discretization of the;field of
stresses, together with organization of recipfocity of surface tractions at the vy»r\
interelement boundaries. Its variational support is the so-called complementary

energy principle with prescribed boundary displacements'; .

3

ok) dv - f n, 1., u, dS min ' (1)
JE T T
The minimum is a constrained one; the stresses must satisfy the volume equili-

brium equations

+ X =Q . . . o (2)

"1yt Yy

‘The compleméntary energy density ¢ is a positive definité function of its arguments
Tij (homogeneous quadratic for the usual linear stress-strain relatiqns). If prescrit
'pgdy'forces Xj are present, the equilibrium constraints (2) require the determinatiorn
of a particular set of stresses ?;j satisfying the non homogeneous equations, to
which may be added a general solution Uij of the homogeneous ones, In practice it is
necessary to follow a converse procedure, The stresses are discretized as complete
-polynomials of a certain degree and the equilibrium equations determine the pattern
of body loads that is acceptable. ' '

In the following two-dimensional example -

2
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we find that ' ¢
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XK= oGty ) T At Ay |
_ S N (4)
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and we are allowed to introduce linear distributions of body forces, whose intensitie

are connected to the stress parameters by the algebraic equations

mApTep g mAy =2 tvg) o == 2ty
- | (5)
~u =Y, * By = u, = 2(y, + 85) - Uy = 2(yg + By)
More generally (3) will be represented by a discretization such as
_ 0t =0 S .. (%) | S (8

. : ij m mij

where S (x) are assumed functions and o the unknown stress parameters; (4) 111

then become
X.=h X, (x) . | (7

with h  as intensities of the body load distributions ij(x) and the algebraic
relations between the hm and o will follows as in (5). We write them in matrix

form as

-where the row vector h contains the hIr in a conventional sequence and s the om;

As the hm are independent the matrix‘WT will have linearly independent rows,

We can transform the constrained minimum problem (1) to an unconstrained one

by the tAGRANGE multiplier technique'and—cdnsider the augmented functional

8(t) +u, (D, 1,, + X, av - n, t,, u, dS
JE [v() J 5 43 J)] LE i"1j 3

- \
The variational derivatives with respect to the now unconstrained Tij are

99 1
* —— —(Du+D u)
arij 2 i j
show1ng that, since 8¢ / ot J s the strains, the multipliers uj are, as the

notation ‘already betrayed, the dlspiacements themselves. Similarly, when in the
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discretized problem we wish to remove the algebraic constraints (8) by adgmentihg

the functional with the term

bY (h-WT s) - | - (9)

the column b of multipliers represents generalized displacements conjugate in the

wirtual work sense to the body load intensities :

- ; o _.T ' ,_
JE Xj uj dv = hm JE ij (x) uj dv = hm bm b"h (10)
so that the element bm conjugate to hm
bm = JE ij (x) uj dav : : : - (11)

is a'weighfed average of the unknown displacement field,

Other weighted ave:agés of displacements will be provided by the boundary term of
the functional, Different parts of the boundary, identified by a Greek subscript,
will be distinguished by the fact that they belong to different parts of the globai
structural boundary or are connected to different adjacent elements. Along one of
those partial boundaries the surface tractions are obtained from (6) and the direc-

tion cosines ni of the outward normal as

g mngtgmoing S x €3 E az

We need however another description in terms of generalized boundary loads gr(a)’
each of which is the intensity factor of an assumed surface traction distribution :
- T ., . (x " x €3 E 13
tj gr(a) rJ (a) ( ) 6 o ( )
By identifying (12) and (13) we obtain the algebraic relationship between the
and t@e o, in matrix form

Br(a)

S s

' E(w) - (o)
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Or, after collecting the contributions from all partial boundaries,
T . g=8s . o (14)

‘"Figure 1 shows a possible choice of surface traction modes and associated boundary
loads for the preceding two-dimensional example.

Again the virtual work computation

1Jaug t_j uj ds = gr(a) JaaE Trj(a) (x) uj ds = gr(a) qr(a) (15)

defines the conjugate generalized boundary displacements

= T . ds : : : (16
U (o) Ja s ri@ Yy (16)
Collected in a single vector q, in the same conventional sequence as in g, they

give to the last term of the functional in'(l) the discretized form -
J t,u,dS=q g : (17)
3E j 3 . . A

" The bar, indicating that the boundary displacements are prescribed, was omitted
for the sake of notational simplicity,

The first term of the functional, assuming linear stress-strain relations :

= qu T

€ij ij pq

will become

. J1 [ _1[ _1
JE o(t) dv = 2 JE eij Tij av 3 I . Fij qu Tij dav 2 s F s (18)

where F is a positive definite matrix of generalized compliances,

The unconstrained discretized functional can thus be written
\ .
.%-STFs-O-bT(h-WTs)-qTSs ain - Qa9
: : s



S

and the set of minimizing equations is composed of (8) and

1

A~
N
=]

~

Fs-Wb=5gq

1

When it is satisfied we can deduce from it that

et Fs= w's) b + (Ss)Tq = hlb + gTq

a statement, in discretized form, of the virtual work theorem,

Given the body loads h and boundary displacements q, the minimizing equations and
the original constraints constitute a system that determines uniquely the stress

parameters and internal displacements

F W s STq

) (21)
w' ol \-b) [n o
In other words the symmetrical matrix of the systém is invertible, This can be
seen setting q=0 and h=0 and verifying that the homogeneoué set of equations only
possesses the trivial solution s=0 and b=0. Firstly-WTs = 0 induces sTWb = (bTWTs)Téo
From this and Fs - Wb = 0 we deduce sTFs = 0 and thus s=0 since F is positive definit

Finally we must have Wb=0 and the conclusion b=0 follows from the fact that W has

linearly independent.columns. Let
(22)

be the inverse matrix (obtained in pracfice by numerical inversion), so that

-'.

F'osTq + Vh | ’ - S (23)

-v'sTq + gn ' O q24)

o
"
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This last set fyrnishes the internal displacements.conjugate to the body loads;
they are simply linked to the boundary displacements when the body loads vanish.
From the set (23) we deduce in conjunction with (14) the stiffness relations of

the element

0
]

K q + sVh o (25)
where K=sFst - | | (26)

1s the stiffness matrix, Setting q=0 in (25) it can be seen how the body loads
are to be balanced by boundary reaction loads, '
Substitution of (24) and (25) into the CLAPEYRON form-of the energy of the element
shows it to be the sum of two energies, one due to the boundary displacements only,
the other due to the body loads only

2o+ qd=3d kKq+3n" o | (27)
K is merely non-negative and its singularities will be analyéed in the next section,
Q must be positive definite as, with fixed boundaries, the imposition of body
loads must élways generate stress—energy. Indeed, (22) being a left inverse of the
matrix in (21) we have the relationships

Fra+vul

(s/s)

Flw = o .
(28)

VIF-QW =0

viw

(h/h)

\ - -
where (s/s)\end (h/h) are identity matrices of the dimensions of s and h respectivel

From the last two follows

: viEy = q wlv = vt = q (29)

and;.since F is positive definite, so will be Q provided V has linearly independent

columns,



This however is obvious considering the last relation in transpose
WV = (b/h)

from which it is seen that V ho = 0 implies WTV'h0 = ho = 0,

From the first two of relations (28) we can also deduce

F+FF+ = ff.

Showing F+ to be non negative,

Another method consists in the generally easy preliminary process of solving
the constraints (8), expressing the stress parameters in terms of a particular

solution and the general solution for h = O

i
/

s=Vh+F 3 WV=(h/h) WE = 0)

(as the notation suggeéts, V and F.r satisfy the same equations as the second
and last of (23) but are not otherwise the same matrices). In the example, this

operation could simply consist in the elimination of the parameters

= s =1 : =1,
% = (A +v3) @ = -3 A=y @y = =7 A3~ ¥,
8, = --(u YY) B e -y B = -ty
3 1t 5 =Y, BT F - s

as justified by (5). We would then retain as independent set §
. .

T — ‘
87 = (u) ag ag By By B Yy Yy Y3 Y, Y5 Yg)

and use

b= (A Ay A3 1y 1y uy)

as load intensity parameters,



The'functional will now read -

1.T ~ . AT 1.T - T '
28 Fss s+ 3 Fsh h +-5 h th h -qeg _ m:n-
with g = (SV)h + (SF')§ = Hh + s3 R 6D

and the minimizing equations

o)
w)
+
ool
o

]
wn

N

ss sh

JE—

Because Fss is positive definite

8 =¥, (S q-F_ h

and the stiffness relations are

g=Kqg+ (H~S5S Fss Fsh) h ' (32)
K=35§ ng st o R (33)

|

- If desired, the internal displacements can be recuperated as CASTIGLIANO derivatives
of the stress energy with respect to the elements of h

_ -~ : T
b=F §+F h h (Fhs Fsh

) ' (34)

‘In any case the final form of the stiffness relations shows that the equilibrium
-element can be assembled by the same direct stiffness method as conforming
kinematiéal elements, the only difference being in the weak character of the
'dispiacement connectors ¢. The limitation in the knowledge of displacements to
weak quantities'(weighted averages) is unavoidable, as the integrability conditions
of strains W%ll, as a rule, be violated. This may seem to contrast with the case
of the kinematical models in which the strong information on displacements can be
differentiated to produce also strong stress-information, The -reliable -information
.on stresses is however the one provided by the conjugates to nodal and internal

—displacements-which, being in the- form-of-weighted averages, are-weak.
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2. THE KINEMATICAL DEFORMATION MODES

Since the earliest conception of equilibrium models 1,2 it is known that,
while the stiffness matrix always exists, it is not necessarily well behaved,

'By this we mean that the solutions of the problem
RKq=0 , : ' ) (35)

‘may comprize more than the boundary displacements associated with a displacement
of the element as-a rigid body (the so-called rigid body modes) but also boundary
deformat ion modes. If we take K as given by (33), the problem (35) is fully
equivalent to the simﬁler problem

sTq=o0 | . (36)

/ o <
that depends only on the kinematics and statics of the element, The g matrix
-has_n(8) .columns and n(g) rows; accordingaits defiﬁition by (31) it governs the
boundary loads generated by stresses in equilibrium without body loads. If the
complete polynomials adopted to represént the state of stress are of sufficiently
high degree, self-stressing states can exist, such that -

-~

S§ =0 37)

They correspond to stresses in equilibrium without either body loads or surface
tractions applied at the boundary; We denote by X a matrix, whose 1inear1y independe
columns constitute a fundamental set of solutions of (37), so that any linear

~combinat ion

s =X x , (38)
is a self-stgessing. The number of independent self-stressings will be denoted by
n(x), the number of elements of vector x, The rank of S is then n(8) - n(x).
"Since ST has the same rank we will have

n(8) - n(x) = n(g) - n(r) (39)

where n(r) is the number of independant solutions 6f (36) , the general solution
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of which is written in the form i
: i
| |

q=Rr (40)

an arbitrary linear combination of a fundamental set contained as columns of R,

By definition then we sh;ll have

g X=0 and | STR=0 | o - o (41)
‘Using the transpose of the iast property we finé from (32)

R'g = R Hh - @)

the existence conditions for solving (32) with respect to q. They are automatically
satisfied for such columns of R that represent rigid body modes being in this case
a virtual work statement of global equilibrium and, as'such,.a coﬁsequence of our
imposition of local equilibrium, _

For each column of R representing a kinematical deformation mode, (42) imposes an
-additional and unwelcome restriction on the loading possibilities of the element
‘necessary in order to avoid the excitation of a deformation to which the element

offers no elastic reaction.

The origin of kinemat ical deformétion modes can be traced to our desire to
“have a diffusive, as well as equilibrated, element, whereby it also becomes
endowed with the interesting property of providing a strain-energy bound opposite
to that of kinematical and conforming elements e
Diffusivity,requires that the generalized boundary loads be defined, together with
their associated weak displacement connectors, on each partial boundary separately,
'This often results in a n(g) that is too large. In the example, assuming a triangular
.element (the quadrilateral is of‘qourse sti11ll worse) we have n(x) = O and
.n(r) = n(g) - n(s) = 18 - 12 = 6 leading to>3 kinematical modes in addition to the

3 rigid body modes.

The general situation for the triangular membrane elements is easily analyzed.
~Faking for the-elements of §~the¥cqefficients of a complete polynomial approximation
to an AIRY function &(x,y) , amputated of its linear improductive terms, we have, if

n is the polynomial degree of the stresses and n+2 that of the AIRY function
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n(3) =-% (n+3) (n+4) - 3 = %-(n+1)(n+6)

The forces generated on a piece ds of the boundary are

” 2 . .
Y X S L SN T
ds t_ Oy dy Tox dx ayz dy + 535y dx = d 3y (43)
- 9% 22 36
ds ty=Txydy'-Uy dx-‘—'-a—ya-;dy—az dx‘=— 'ﬁ'

Hen;e, if the surfacé tractions tx and_ty are to be zero on the boundary, the first
partial aerivat?yes of ¢ must be constant and we may take them to be zero by adjustin
the coefficients B and vy of the improductive terms a+8x+yy. Theﬁ, as we shall

have 3¢ /3s = O on the boundary, we may also take ¢ = O on the boundary by

,propér adjustment of a, This allows us to count n(x) by observing that a polynomial
AIRY function vanishing together with its nofmal derivative on the boundary of a

triangle is necessarily of the form

¢ = (L1 L, L3)2 P(x,y)

where Li= 0 is the equation (linear in x and y) of one side of the triangle.
P(x,y) is thus a polynomial of degreen + 2 = 6 = n -~ 4 and the number of its

coefficients is
n(x) = %(n-3) (n-2)  (n(x) =0 if n £ 3)

On each side t and ty are polynomials ¢f degree n in the arc length, determined

by (n+1) local values, or generalized loads, so that

n(g) = 6(n+l)

-

Equation (39) then furnishes for n(k) = n(r)-3 the number of kinematical

deformat ion modes

n(k) = 2 1f =1
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"While the stiffness matrix is well-behaved for the constant stress element’

n=0, the kinematical modes may appear at the assembling levell.
For n 2 1 they appear at the element level and in order to get rid of them

a geometrical interpretation is useful, Their maximum number of 3 immediatly

suggests that they must be due to the generalized reciprocity principie of stresses

at the 3 corners that relates the surface traction distributions of two edges,

Let ni and ng denote the direction cosines of the outward normal on two adjacent

edges. The generalized reciprocity principle in terms of the surface tractions ti

and t; at the corner will read

n't"=n'nq" =|-||‘,=;vv' )

nj j nj ny T 1 oy nj Tji ni.t:1 ' (44)
Suppose then that two pairs of the generalized forces defined along an edge
result from the linear distributions of surface tractions associated to their

cornér values, as illustrated for the paif X12 and X21 in figure 1.

In the reciprocity principle applied at corner 1

+ =
"x12 ®x13 7 Py12 Fy13 T Mas a2t Myi3 Yo
we can substitute (c,., and c,, are the length of edges 12 and 13)

12 - 713

n X, = X

CC2 %12 T2 S22 %125 %"

t =2 X c.,t =2Y c, .t =2X
-and -obtain a constraint between the 4 boundary loads near corner 1

vy = ¥)%y3 = (xp = %)Y 3 = (y-y9)%), - (xl—XB)YIZ

2 €13 "x13 7 Y173 C13fyi3 T ¥

€12 Y12 12 S12%12 12 13%x13 13 °13ty13~ &

3

13

=i

This can now be 1nterpreted, in view of the point of application of the loads at on

third edge length from the cormer, as the vanishlng of their total moment with

respect to the barycenter éxl M %9 * X3 Y1 M Y2 * Y3

. This 1s true for any
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values of the stress parameters ahd‘the virtual work interpretation indicates

» ' ' that this constraint would
be enforced if a triangular piece connecting the two points of application were
pin-jointed at the barycenter. This "floating corner" condept corresponds in general
to three separate mechanisms, one for each corner (figure 2). For n=1 there are no
other points of application of boundary loads, and a common rotation of the three
pieces is not a kinematical deformation mode any more, it is a rigid body mode.
Hence the‘number of kinematical modes is exceptionally reduced to 2 in that case.
For n=0, the generalized reciprocity constraints at the corners become identical

to the global equilibrium constraints of the loads.

3, THE COMPOSITE ELEMENT TECHNIQUE

Assembling a small number of elements in a special pattern to form a composite
is one of the oldest answers to the nuisance of kinematicalideformation modes,
Figure 3 shows two typical patterns for meﬁbrane analysis,

The first consists in subdivising a triaﬁglq‘by an arbitrary internal point in
three triangular subelements., In ofder to show how the kinematical modes are
inhibited, it was sufficient to illustrate the connexiomns corresponding to the

case n=1l, The second pattern is a quadrilaﬁeral subdivided by its diagonals.
The.geometry is then such that the deformation mode of the internal four bar linkag
can take place with A, B, C, D as fixedvpiyots and does not displace the outer
boundary of the composite 1. The analogy between AIRY stress funetion and transvers
deflection of KIRCHHOFF plate bending theory 4’3_ is another justification of thes
patterns that, as a matter of fact, were initially invented to solve the Cl
conformity problem of plate deflexion%61t appears clearly from (43) that the

analogous C., continuity of the AIRY fdnction solves the diffusivity problem,

1
Costly as they may seem in degrees of freedom, the composite elements enjoy

the, often precious , advantage of dual energy bounders’,

4, THE VIRTUAL WORK TEST AND QUASI DIFFUSIVE ELEMENTS

Anothe; efficient remedy against kinematical mo&es, leading to simpler
equilibrium elements, is to apply the dual version of the'patch‘test invented by
"IRONS and reformulated by STRANG‘"L41. In a complete cubic AIRY functibn there is
~a special symmetrical term '

¢ =a L, L, L, | . , (45)
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that vanishes along all sideé of the triangle, As a result 82¢ /as2 = 0 on the

boundary and only tangential surface tractions are generated. Their resultant
moment with respect to a corner point reduces to that of thé opposite edge. |
distribution and must vanish because there is global equilibrium. Consequently
along each edge the linear tangential surface traction distribution is statically
equivalent to zero; it is antisymmetrical and vanishes at the mid-edge point,

It will produce no virtual work “on any displacement distribution = along the

edge that is linear, such as would be generated by an arbitrary state of constant
strain within the element, Assuming that the dual patch test, or its equivalent
the zero interface virtual work on linear edge displacement 13 , 1s a sufficient
condition for energy convergence, which seems pretty well substantiated on many
numerical examples (but not the necessity), we may reduce diffusivity tonuasi—
diffusivity by renouncing to transmit such an antisymmetrical distribution across
an interface., What can happen then is that the two tangential surface tractions
across an interface will not be exactly reciprocal (except at mid-edge) but will
differ by a linear antisymmetrical distribution. A stress parameter like a in (45)
will be considered as an internal degree of freedom and computed from energy
minimization at each element level, If we thus reduce by 1 the number of stress
parameters S, we also reduce by 3 number of boundary loads required for Qdasi-
diffusivity. On each side we need only relate to the six remaining stress
parameters, the total normal load, the total tangential load and the total moment
of surface tractions at mid edge. Those edge resultants_will be exactly transmit-
ted to the neighbour by identifying the conjugateé weak displacements : average
nqrmal displacement, average tangential and average rotation of the edge.

The 9 boundary loads being related by 3 global equilibrium equations, 6 of them
are independent and match the 6 remaining stress parameters; thére are no
kinematical deformation modes., ' '

Such a quasi diffusive equilibrium element, or its generalization for n > 1,

has’ unfortunately never been tested up to now,
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5. WEAK DIFFUSIVITY

A variational justification of strong diffusivity 3 is as follows. On the
+ _ .
faces F and F of an interface F we require coherence of the displacement
data
U, =u, =au
b 3 J
and obtain as constrained variational principle extended now to the union of all

_element with boundarydU

I o) AV ~ = f u, (&7 + t0)ds - f u. t, ds min
UE Flg 3 J J sy 3 4 T

We may consider 33 to be prescribed on 3U in the global problem, but on each F it

.1s now essentially an internal unknown, If undiscretized, its free variation

requires the strong diffusivity proprety (reciprocity of surface tractions)

Converseli, if this property is satisfied by the proper piecing together of the
stress fields, the connectors ;5 disappear from the giobal variationalvprinciple
that reduces to the form originally used at element level, As shown before, the
.numer ical information received for the connectors is in weak form.

Considering that strong diffusivity can lead to kinematical deformation modes

a natural step consists in constraining the coanectors. Following T.H.H. PIAN J

we consider a coherent connector displacement field to be defined at the interfaces

in terms of a-limited number of degrees of freedom
' u} =q Qmj (x) x¢ F

-and the variations taken on the'E; will now require weak diffusivity
A\ :

: o +
,[F Qpy () (e + ) ds =0
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The theéry at element level of such hybrid elements is not fundamentally different
from that of the strongly diffusive ones. The only difference is in the computation
of the boundary term of the functional (1).

The boundary loads, instead of Being defined on each partial boundary to‘represent
intensities of surface traction distributions, become virtual work conjugates

to the nodal displacements defined on the boundary. The result is a different
kinemat ical matrix g . Given a polynomial stress field, the larger the number of
degrees of freedom allocated to the displacements, the closerto strong diffusivity
but also to the danger of kinematical deformation modes. Figure 4 shows two recentl
tested membrane hybrids based on a complete cubic AIRY function generating the
interior stress field (n=1) with 9 strong displacement connectors at the boundary.
The first has a linear normal displacement along each boundary and a quadratic
tangential component, The reversé is truevfor the second., None has kinematical
deformation modes, They are the exact duals of recently proposed KIRCHHOFF plate
bending hybrids based on.a cubic deflexion field and strong SOUTHWELL stress
functions connectors 73 . The equivalent donnexions of the AIRY function and its
first-derivatives is shown on the right. They do not satisfy exactly -the C1

cont inuity requirement (otherwise the element would be strongly diffusive) but

satisfy the dual patch test requirements,

6. DISCRETIZATION OF ROTATIONAL EQUILIBRIUM

‘The most recent proposal for removing kinematical deformation modes is to
relax the rigid enforcement of local rotational equilibrium, as expressed by the
symmetry .of the stress.tensor. It has a firm variational background, initially
developped to aproach a complementary energy formulation for finite displacements
and later applied inlinearized form to its present purpose;m’qg.It is formulated

here for the membrane case only in order to unify the presentation.

The equilibrium equations without body loads (this simplification is not

essential to the theory)

© 90 ot ' ot 3o ‘
——x+_l§=0 ——’EX-{-—-X:O
ox 3y ax dy



are solved by using a first order stress functions vector (A,B)

. 9B - _9B = 3A - _ 34
°x "3y Tyx dx °y Tax 0 Txy 3y (46)

and the surface traction vector, computed like in (43), becomes
t_ds = dB £, ds = - da | (47)

The rotational equilibrium condition

—

T -1, _=g==-"===0 | (48)

is incorporated as a constraint in the complementary energy principle by means

of a Lagrangian multiplier w(x,y)
J{<I>+w(-2—B-—a—é-)} dxdy—§ WdB-vdA min (49)
E x ey A,B
’

The complementary energy is now considered as a (positive definite) function

of the arguments

35 1 : 1 ,3B ., 9A : A
- = e — + 2 ar mer [— — = —
% = 3y 7T ey * Ty 2 Gz ' 5y % % (50)

The symmetry of the strain tensor is maintained by the fact that the energy
remains a symmetric function of the stresses without requiring that (48) be
satisfied, The variational equations and natural boundary conditions for

.unconstrained w, A and B are respectively : equation (48),

sy O€ e ' 3 de - 3¢ -
e XX 9w _ _ X, Y : (51)
ox 9y ax- oy 3y ax
du +(e sind + (w - € )cosH ) ds =0
\ 2 e XY
\ (52)
=0

T dv + ((e + w)sin® - € cosH ) ds
Xy .y

17,
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where & is the angle between ox and the outward normal to the'boundary.

Equations (51) are recognized to be the BELTRAMI equations for the integration

of the material rotation w . _

The complementary energy of an element will vanish if and only if the field of its

arguments (50) vanishes identically, This will be the case when

dB - dA
= B(x) A = A(y) —+ = =0
( b, ax T dy
and the only possibility is
dB _ _dA . _ _
rrtadie 3y =y that is Txy = TYx Y | (53)

an arbitrary constant. It is the zero energy stress field, representing in its
purest form the violation of rotational equilibrium. It is interesting to oberve

that the field
A=o -yy B=g +vyx - (54)

analogous to a rigid body displacement vector, represents the energy improductive

part of the stress functions vector,

‘The idea is now to replace this vector together with the rotation multiplier
-w by complete polynomial approximations. So doeing it may be expected that
since thé reciprocity brinciple at corners need no more apply, the kinematical
deformat ion modes may disappear. This proves to be correct provided the degree
0of w be at most n-1 when the degree of A and B is n+l (n is still the polynomial
degree of the stress field).
The set s of stress parameters will be taken to.be coefficients of the monomials

in A and B, excluding the improductive constant a, and Bo
n{s) = 2 ((n+2) (n+3) 1) = (n+1)(n+4) . (55)

The energy of the element will be of the form



with F non negative and posséssing one non triviel singular solut ion
Fs =0 S - (56)

due to y the zero energy state.

The coefficients of the w poiynomial will be listed in vector h so that

9B  9A _ T ~
J Ew o x ay) dxdy = s W h (57)

__bilinear form that needs some breliminary discussion,
Arbitrary variations on h will produce the discretized rotational equilibrium

constraints
Ws =0 _ .(58)
and the bilinear form will always be zero.

l, If w is arbitrary of degree n we can, for any A and B of degree n+l, select
it so that o = ACEE - -0

|

|

and for this mode of rotation we will have

J gB aA)z dxdy
E X

Hence in this case we have always

and rotational equilibrium is rigorously enforced;we are back to a classical

equilibrium model.

\

\
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2. If w is arbitrary of degree s n we establish that W has linearly independent

.columns, The proof is by contradiction. If we had a non zero vector holsuch that

W ho = 0 then sT W ho = 0 for any s vector,
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‘This means that a non zero polynomial w_ of degree < n would exist such that

3B _ BA _
JE w55 - By) dxdy = O

for any polynomials A and B of degree n+1,This should be true in particular of

‘A =0 and B a primitive of 3& = W .
' 9x o

But then I wz dxdy = 0 and w = 0.
o o
E R .
To finish the discretiéaﬁion, the boundary term of the functional is treated as in

the classical theory of equilibrium elements, defining a set g of boundary loads

attached to each partial boundary, establishing their relationship
g=8Ss . - ' (59)
/ ' '

to the stress parameters and their conjugatq weak displacements q.

The minimizing equations of

l-éT Fs+ sT Wh- qT S's uin
2
: syh

are then presented in a form
= . - (60)

| reminiscent of system (21). While F is now singular because of (56), the matrix

is still invertible; the homogeneous system has only the trivial solution :

w'_rs =0 =+ sTih =0 » s5Fs =0 s =) s,

\
The proof is achieved if we can show that wTso # 0 , for then

XWTSO'= 0 » A=0 » =0 + Wh=0-+ h=0,
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Let us achieve the proof by‘coﬁtradiction again.'If WTso = 0, ﬁheﬁ
T Wh =0 for any h. This means that for any polynomial w we should have, when

A=-yyand B = yx

J w(g—i-——)ddy ZYJ w dxdy =
E : 2

and this already fails to hold for the simplest case w = constant that would
insure the minimum requirement of global rotational equilibrium of the element,

Using the notation (22) for tbe inverse matrix
s =F $siq b=Vl §Tq | (61)
and the stiffness relation of the.eiement is
- (sF'sT)q - . ' o _ (62)

It remains to show that if the degree of w 1is € n-1 the stiffness matrix is
well behaved.
Rigid body and kinematical deformation modes must be such values of q and h that

may exist without stresses. Hence, setting s=0 in (60) they must satisfy
sTq = whn o | (63)

For h=0 (no rotation of the element) we expect to find the solutions
corresponding to translational modes 9y and qy + That those are indeed solutious
is obvious from the fact that A and B were devised to satisfy local translational
equilibrium. Consequently global translational equilibrium is satisfied. In
virtual work form this means that

T T T T_.T

T = . = =
gq =s S q, = 0. .8 qy =85S qy 0 for any s

\

. \ .
and establishes the proof. That there are no other solutions for h=0 may be

established by counting as by (39)

- —a(r) =-n(g) - n(s)-+ n(x)
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n(s) is given by (55) , n(g) ='6(n+1) as for pure equilibrium elements.
To count the sef-stressing states we observe on (47) that the surface tractions
vanish if A and B remain constant on the boundary, We may then add to each an

' improductive constant to obtain A =0 and B = O on the boundary. In a triangular

element each must then be of the form

L1 L2 L3 P(x,y)

-Where P is a polynomial of degree n+l - 3 = n-2 with %f(n—l)n coefficients.

Thus n(x) = n(n-1) and we obtain as expected
n(r) = 2

Let ho be the vector corresponding to a uniform rotation w = 1; it will be

shown that a solution q, (a rigid body rotation mode) exists to the problem
STq = Why

The existence conditions : orthogonality of the right-hand side with respect to
all solutions of the homogeneous adjoint Ss = O
T

s W h0 =0 s an arbitrary self-stressing

are satisfied. Indeed this amcunts to verify that for w = 1 and A and B zero

on the boundary

3B 9A _
IE w(ax ay) dxdy = [

The element has thus the 3 rigid body modes and it remains to find the rules

Adx + Bdy =0
9E :

under which, for h vectors independent of ho’ the existence conditions for a

solution of q
\

.sT Wh=20 » s an arbitrary self-stressing (64)

can-be violated by a proper choice of self~stressing, so that the element is free
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from kinematical deformation modes.
A sufficient rule is that the polynomial degree of w be £ n-1l. A proof consists’
in testing all monomials of w of the form

b . -
W =Xy a and b non negative and not both zero

with respect to selfstressings in which the polynomial degree of A and B , being

at least two units above that w , 1s allowed to be
n+tl 2 atb + 2

We thus examine for A and B vanishing at the boundary the value of

" sTHh = 2y &3 gy - @ bx® 3?71 - Bax® ! yP) axay
;/ ‘E ox " ' E - :

For a and b odd we choose the admissible'se¥fstressing

A=0 . B

-y Ly L, L,

For a'odd and b even

A=0 B - L, L, L

For a even and b odd

For a and b even

B=-xL, L, L

A=yl L, 1L, 1L Iy

In any casé we find that the existence condition (64) is violated by the result
sTW h > O since L, L, L, is positive at any interior point of E and muitiplied

. 17273
by even powers of x and vy,
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"Numerical experience obtained by the junior author and reported in the last
section establishes that this type of element gives good convergénce provided
"w be not given a lower degree than its maximum n-1 compatible with the
disappearence of kinematical modes,

It should also be observed that there are local points where the discrepancy
between Tyx and Txy disappears, the barycen?er for example and other points

when n > 1.

7. ISOPARAMETRIC TRANSFORMATION OF DIFFUSIVE ELEMENTS

One of the most interesting features of rotationally dis&retized elements
is the possibility of obtaining curved boundaries by isoparametric coordinate trans-
formations without loosing the stfong diffusivity property. Let (£,n) denote
the cartesian coordinates for elements with straight boundaries, that become

curvilinear coordinates in the physical coordinates
= + = n+
x=¢ +U W (E,_n) y=nm VoW (E,m

The Wm(g,n) are interpolation (shaping) functions related to nodal boundary shifts
(Um,Vm) defining the new geometry of the element., The identification of nodal
shifts at interfaces allows in principle to kéep the curved elements contiguous

so that if A and B are Co continuous in the (E,n) system, they remain Co cont inuous
as ‘functions of x and y. This is of course sufficient to preserve strong diffusivity
‘However, inot any type of geometrical transformation is permissible, if some other
basic properties are to be maintained, Let Cr (E,n) be interpolation functions

related to nodal values (Ar’Br) of the first order stress functions
A= Ar Cr(E,n) . B = Er Cr (E4m)

and such that the identification of nodal values at interfaces insures Co continuity
of A and B.\We need essentially that (Ar’Br) values exist such that we may have
in physical coord inates '

A=o %o, x+a,y - B=8, + 8 x By

1
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for any values of the_(ai, Bi) parameters, This means that we keep the existence
in the physical plane of the energy improductive terms and of an arbitrary state
of uniform stress. In the (£,n) plane this requires the existence of a solution

(Ar, Br) to the equations

Ar Cr (E,n) (ao +af + azn) + (ul U +a, Vm) u (g,n)

B, €. (E,n) = (B, *+ ByE + B,n) + (B) U + B, V) W (£;n)

A first part of the solution

A(D e
X r

C. (Eyn) = a_  + o0& + ayn C. (&,n) =B +BE + B,
certainly éxists, because in the (£,n) plane the stress functions are at least
complete linear polynomials. A sufficient condition for the existence of the
second part
aPc g = U +a, vy w3 Pc (g,m = BU + 8V W _(E,n)
r r *°? 1 ™m 2 m m 7 r ¢’ lm 2m’ m "?
is clearly that the geometrical interpdlation functions Wm (Eyn) form a

subset of the Cr E,n).



26,

8. NUMERICAL EXPERIENCE WITH THE DISCRETIZATION OF ROTATIONAL EQUILIBRIUM
. | i
The results presented were obtained with a triangular plane stress equilibrium
membrane element, the ﬁbiyhdmial degree n of the stresses varying from O to 3, and..
the degree m of.rofation being inferior to n, except for n=0, which is in fact
a pure equilibrium model free of kinematical modes at the element level. The

connectors. are presented on fig, 5;

8.1. FIRST EXAMPLE

The first application was to a rectangular cantilever beam. The geometry, the
numerical characteristics and the adopted mesh are shown on fig. 6, -
The theoretical total potential energy is Ep = 509,866,

The results for all the different combinations of degrees are :

n m ) Ep

453,624
344,293
499,260
327,246
495,316
505,956

()
N = . O}~ O]C

It must be observed that the calculated energyAis always inferior to the
‘theoretical value, that is to say“the model seems, with regards to energy bounds,
to behave as a conforming displacémenf model.

More comments will be given in example 2, _

Figure 7 gives some idea about -the quality of the element when compared to others,
among which the hybrids presented in sectién 5. ‘

DQl, DQ2 denote respectively : a conforming displacement triangular model of degree
1, and the analogous of degree 2, The element is indicated by the couple of

values (n,m), Notice that (1,0) falls between DQl and DQ2,
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8.2, SECOND EXAMPLE

The convergence tests have been established for a trapezoidal cantilever beam,
illustrated on figure 8., Four different meshes have been used, dividing the edges
of the beam in 1, 2, 4, 8 eqﬁal segments; each quadrilateral so obtained being
then subdivided by its diagonéls into 4 triangular elements, '

The convergence of the total potential energy is plotted in terms of the mesh
siées in fig. 9, Two boundary values;_calculated from elementary strengh of

~‘nfl_f;-vlt:erials are : 319,4232 and 359.1122,

The computed results for the enérgy are summarized hereunder :

(n,m) 1x1 2x2 4x4 8x8

(1,0) 173.7009 | 251.7284 306,2896 329,4883
(2,0) 143,1832 | 241,6242 303.6846 329,0178
(2,1) 329.6447 | 338.5844 | 339.6372 339,7740
(3,0) 141,5422 | 240.6105 303,3672 323,9484
(3,1) 325,6752 | 333,0253 339,5080 339,7293
3,2)! 338.8439 | 339,6576 339,7708 339,7902

Comments on the results obtained with the discretization of rotational equilibrium

Example 2 confirﬁs‘the featﬁre of lower bound energy convefgence of the
element, An explanation could be the following : for a given stress degree n ,
a better solution is expected when the degree of the rotation is increased, The
xotation being of displﬁcement nature , the element will be more flexible and the
energy higher, which is confirmed by the numerical results. Conversely, when
m is fixed, the solution deteriorétes for a higher stress degree, since the model
becomes stiffer. It is interesting to note the energy leap for the three n cases,
ﬁhen the rotat ion passes from degree 0 to 1.
This brihgs out the decisive part played by the rotation, specially in this geome-
trically severe example, '

For the two examples, the classification established for an increasing quality is

(3,0, (2,00, (1,00, (3,1, (2,1), (3,2).
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As a conclusion, the proposed element gives a good.convergence provided the degree
of the rotation is increased in parallel with the stjess degreé,,ﬁhat is to say

m =n - 1, Otherwise, a lack of balance exists between the rigorous satisfaction
.of translational equilibrium and the minimum acceptable state of rotational

equilibrium » which is detrimental to the element,
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DECOMPOSITION OF A PARABOLIC SURFACE
TRACTION DISTRIBUTION t, IN THREE PARTS

- 1 1 2 G -.S
ty = ty, 3 (1-G) + t,, —(140) + N1-G") 6=

EACH PART HAS A RESULTANT LOAD X,,,X, AND X

FIG. 1



VIRTUAL WORK INTEGRATION OF KINEMATICAL DEFORMATION MODE

- FIG. 2



A
&

FIG. 3






Caption of Fig. 4

Two hybrid elements based on equilibrated linear stress fields
Left ¢ 1local displacement connectors
Right: equivalent Airy stress function connectors
‘ ° local value of Airy function
—+ normal slope of Airy function at Gauss points

"\ average normal slope.

In each case a 10 th internal stress parameter to be determined by energy

minimization at element level,



FIG. 5
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