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Abstract

The meccano method was recently introduced to construct simultaneously tetra-

hedral meshes and volumetric parameterizations of solids. The method requires

the information of the solid geometry that is defined by its surface, a meccano,

i.e. an outline of the solid defined by connected polyhedral pieces, and a toler-

ance that fixes the desired approximation of the solid surface. The method builds

an adaptive tetrahedral mesh of the solid (physical domain) as a deformation of

an appropriate tetrahedral mesh of the meccano (parametric domain). The main

stages of the procedure involve an admissible mapping between the meccano and

the solid boundaries, the nested Kossaczký’s refinement and our simultaneous un-

tangling and smoothing algorithm. In this chapter, we focus the application of the

method to build tetrahedral meshes over complex terrain, that are interesting for

simulation of environmental processes. A digital elevation map of the terrain, the

height of the domain, and the required orography approximation are given as input

data. In addition, the geometry of buildings or stacks can be considered. In these

applications we have considered a simple cuboid as meccano.

1 Introduction

Mesh generation is one of the most time-consuming process in numerical simula-

tions of engineering problems based on partial differential equations. On one hand,

an accurate discretization of the physical domain is fundamental to obtain a real-

istic simulation. On the other hand, it is well known that the quality of the mesh

plays a crucial role in the accuracy and stability of the numerical computation.

Many authors have devoted great effort to solving the automatic mesh genera-

tion problem in different ways [2, 11, 12, 23]. Along the past, the main objective

has been to achieve high quality adaptive meshes of complex solids with minimal

user intervention and low computational cost. At present, it is well known that

most mesh generators are based on Delaunay triangulation and advancing front
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technique, but problems, related to mesh quality or mesh conformity with the solid

boundary, can still appear for complex geometries. In addition, an appropriate defi-

nition of element sizes is demanded for obtaining good quality elements and mesh

adaption. Particularly, local adaptive refinement strategies have been employed

to mainly adapt the mesh to singularities of numerical solution. These adaptive

methods usually involve remeshing or nested refinement [3, 13, 15, 16, 22].

In this direction, we have introduced the meccano technique in [4, 17, 18, 19, 5]

for constructing adaptive tetrahedral meshes of solids. This algorithm requires a

coarse computational domain, then builds a surface parameterization and combines

refinement and a mesh optimization to produce an adaptive tetrahedral mesh of

the input domain. As a result, a piecewise linear volumetric parameterization is

obtained. The name of the method is due that the process starts from a coarse

approximation of the solid, i.e. a meccano composed by connected polyhedral

pieces.

The rest of the chapter is structured as follows. In Section 2 we overview the

meccano method for a general solid. In Section 3 we detail the algorithm to the

construction of the tetrahedral meshes over complex terrain. Finally, in Section 4,

we present several examples that illustrate the capabilities of the method.

2 The Meccano method

The meccano method is tetrahedral mesh generator [17, 18, 19, 5]. The method

requires a surface triangulation of the solid boundaries and a computational do-

main that coarsely approximates the solid. This computational domain is called

meccano. The procedure builds an adaptive tetrahedral mesh in the meccano and

deforms it to match the physical domain. For this purpose, the method combines

several procedures: an automatic mapping from the boundary of the meccano to

the boundary of the solid, a 3-D local refinement algorithm, and a simultaneous

mesh untangling and smoothing. It is important to point out that this method also

provides a continuous element-wise linear volumetric parameterization from the

computational domain to the solid.

The construction of the meccano (the computational domain) is not automatic

for complex solids (genus bigger than zero) and requires user intervention. How-

ever, in this chapter, we focus on the generation of tetrahedral meshes over complex

terrain, that are interesting for simulation of environmental processes, and whose

boundary is genus zero. Therefore, the meccano algorithm is fully automatic pro-

cedure.

The main steps of the meccano tetrahedral mesh generation algorithm are sum-

marized in Algorithm 1. The input data is a solid, Ω, defined by its boundary

representation (surface triangulation or CAD model), and a given precision to ap-

proximate its boundary, ε .

The first step of the procedure, Line 2, is to construct a meccano, M , that ap-

proximates the solid, by connecting polyhedral pieces. Then, in Line 3, a discrete

mapping, Π, between the boundary of the meccano and the boundary of the solid

is computed using a procedure based on the mean value parametrization proposed

by Floater in [9, 10]. Note that this parameterization is a continuous and element-

wise linear mapping. In Line 4, an initial coarse mesh of the meccano is generated,

and the boundary nodes are located on the solid boundary using the mapping Π. In

Lines 5–9, we obtain a mesh that approximates the solid boundary with the given
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Algorithm 1 Meccano tetrahedral mesh generation.

1: function MeccanoMesher(Solid Ω, Real ε)

2: Meccano M ← getMeccano(Ω)

3: Mapping Π← getBoundaryMapping(M , Ω)

4: Mesh T ← getInitialMesh(M , Π)

5: while distance(∂T , ∂Ω) > ε do

6: TriangleList R← getTrianglesToRefine(T , Ω, ε)

7: TriangleList R̂←refineTriangles(R)

8: projectNewNodesToBoundary(R̂, Π)

9: end while

10: qualityOptimization(T )

11: end function

tolerance ε . Specifically, in Line 6, we get the list of triangles that do not correctly

approximate the boundary of the solid, and then, in Line 7, we refine those tri-

angles by dividing their adjacent tetrahedra using the Kossaczký method [15]. In

Line 8, we project the new nodes onto the boundary of the solid using the mapping

Π. We iterate this process until there are no triangles to refine. Note that when

the nodes are mapped onto the solid boundary, low-quality and inverted elements

may appear. Thus, a simultaneous untangling and smoothing procedure [7] is ap-

plied in order to obtain a valid and high-quality tetrahedral mesh. As commented

before, the meccano method automatically provides a volumetric parameterization

from the computational domain to the solid. We show in Fig. 1 an example where

different steps of the meccano algorithm are sumarized.

3 Meccano method for the construction of 3D

meshes over complex topography

In this section we describe in detail the meccano method for the discretization of

three-dimensional domain that is limited in its lower part by a complex terrain, and

in its upper part by a rectangular horizontal plane region placed at a given height.

The lateral walls are formed by four vertical planes. The generated tetrahedral

mesh is appropriated for finite element simulations of environmental processes,

such as weather forecasting, wind field (see Chapter ??), fire propagation or atmo-

spheric pollution [20, 21].

In this case, the meccano consists on a simple cuboid. A digital elevation

map of the terrain and the required orography approximation are given as input

data. The mapping between the meccano and domain boundaries is obtained by

applying an automatic Floater’s parameterization [9, 10].

3.1 Meccano

As we commented before, a simple cuboid, M , is defined as meccano. Its upper

face coincides with the upper boundary of the domain, and its lower face is placed

at the minimum terrain height of the rectangular region.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: The different meccano steps. (a) Parametric space, (b) adaptive triangula-

tion of the meccano boundary, (c) tangled interior elements after surface mapping, (d)

optimized mesh, (e) resulting surface mesh, (f) frontal view
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We now divide the surface of the domain in six trivial patches (lower and

upper bound and lateral walls), and associate then with counterparts in the mec-

cano boundary. This correspondence must be compatible, in the sense, that if two

patches of the domain has non-empty intersection, their corresponding images on

meccano boundary also satisfy this property.

3.2 Parametrization of the domain boundary

Once the meccano is fixed, we have to determine a mapping between the cuboid

faces and the domain boundary. For that purpose, a discrete mapping from each

surface patch to the corresponding cuboid face is built using the mean value pa-

rameterization proposed in [10]. In order to get an admisible mapping, we note

that the discrete mappings have to coincide on the intersection of their associate

patches.

We now describe how the parametrization Πb of the lower bound ∂Ωb of the

physical space, can be obtained. The other ones (upper bound and lateral walls)

are simpler, and could be generated in the same way. In fact, in this particular

case, the parametrization of the upper bound is the identity. The method was in-

troduced by Floater [10], and provides a parametrization of a simply connected

surface triangulation.

We assume that the digital elevation map, that captures the orography, is given

by a triangular mesh embedded in 3D, that we denote Tb. The bottom cuboid face

∂Mb will be the parametric space. Then, we find a mapping

Πb : ∂Mb→ ∂Ωb

continuous and piece-wise linear, where τb = (Πb)
−1 (Tb) will be the planar tri-

angulation of ∂Mb associated to Tb. Note that the construction of the mapping

is equivalent to find an admissible localization of nodes of the planar triangulation

τb. The Floater solution first fixes the boundary nodes of τb and then the posi-

tion of the inner ones is given by the solution of a linear system based on convex

combinations.

Formally, let {x1, . . . ,xn} be the inner nodes and {xn+1, . . . ,xN} be the bound-

ary nodes of Tb, respectively, where N denotes the total number of nodes of Tb.

Fixed the position of boundary nodes {yn+1, . . . ,yN} of τb, the position of its inner

nodes {y1, . . . ,yn} is given by the solution of the system:

yk =
N

∑
l=1

λklyl , k = 1, . . . ,n.

The values of {λkl}
l=1,...,N
k=1,...,n are the weights of the convex combinations, such that

λkl = 0, if xk and xl are not connected

λkl > 0, if xk and xl are connected

N

∑
l=1

λkl = 1, for k = 1, . . .n.

The quality parametrization depend on the weights λkl . In [9] three alternatives

are analyzed: uniform parametrization, weighted least squares of edge lengths and

shape preserving parametrization. Another choice, called mean value coordinate,
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Figure 2: Orography of an area of Comunidad de Madrid (Spain) and its corresponding

parameterization space

is presented in [10]. The goal is to obtain an approximation of a conformal map-

ping.

Finally, we remark that in order to get an admissible mapping between mec-

cano boundary, ∂M , and domain boundary, ∂Ω, the boundary nodes that the

Floater algorithm fixes for the parameterization of each face, must coincide on

their common cuboid edges.

In Fig. 2 we show a surface triangulation, that approximates the orography of

an area of Comunidad de Madrid (Spain), and its corresponding parameterization

space obtained by the procedure described in this section.

3.3 Coarse tetrahedral mesh of the meccano

We build a coarse and high quality tetrahedral mesh, T0(M ) by splitting the

cuboid in cubes, and each cube is subdivided into six tetrahedra [15]. For this

purpose, it is necessary to define a main diagonal on the cube and corresponding

diagonal on its faces, see Figure 3(a). The resulting mesh can be recursively and

globally bisected [15] for fixing a uniform element size in the whole mesh. Three

consecutive global bisections for a cube are presented in Figures 3 (b), (c) and (d).

The resulting mesh of Figure 3(d) contains 8 cubes similar to the one shown in

Figure 3(a). Therefore, the recursive refinement of the cube mesh produces similar

tetrahedra to the initial ones.

3.4 Approximation of the orography: refinement and dis-

tance evaluation

The next step of the meccano algorithm is to approximate the orography of the ter-

rain with a prescribed tolerance ε . In fact, according to the choice of the meccano,
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(a) (b) (c) (d)

Figure 3: Refinement of a cube by using Kossaczký’s algorithm: (a) cube subdivision

into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube

main diagonal, (c) new nodes in diagonals of cube faces and (d) global refinement with

new nodes in cube edges

see section 3.1, we only need to impose the approximation criteria on the bottom

face of the meccano, ∂Ωb.

In order to obtain this approximation, the initial mesh T0(M ), is recursivelly

refined. Specifically, we select the set of triangles on the bottom of the meccano,

T ∈ ∂T (Mb), that do not correctly approximate the terrain of the domain, that is

T ≡ 〈v0,v1,v2〉 ∈ ∂T (Mb), d(〈Π(v0),Π(v1),Π(v2)〉 ,∂Ωb)> ε (1)

where, 〈Π(v0),Π(v1),Π(v2)〉 denotes the triangle that has as vertices {Π(vi)}
2
i=0.

Then we refine those triangles by dividing their adjacent tetrahedra using the Kos-

saczký method [15]. This procedure is iterated until the prescribed tolerance is

reached.

We use the following strategy for a practical computation of the distance.

Given T ∈ ∂T (Mb), let {qi}
k
i be a set of Gauss quadrature points, then d(Π(T ),∂Ωb)

is estimated as

d(〈Π(v0),Π(v1),Π(v2)〉 ,∂Ωb)≈ max
i=1,...,k

d(〈Π(v0),Π(v1),Π(v2)〉 ,Π(qi)). (2)

Once the final tetrahedral mesh T (M ) is generated in the cuboid, their bound-

ary nodes are mapped by Π onto the boundary of the domain. After this step,

low-quality and inverted elements may appear.

3.5 Relocation of inner nodes

There would be several strategies for defining a reasonable position for each inner

node of the domain: laplacian smoothing, Coons patches, radial basis functions,

etc.

Another effective possibility hinges on the volumetric mapping that produces

the meccano method (see section 3.7). However, this information is not known a

priori. In fact, we will reach this piecewise linear volume mapping at the end of

the mesh generation.

In practice, a good strategy is: we start meshing the solid by using a high value

of ε (a coarse tetrahedral mesh of the solid is obtained) and we continue decreasing

it gradually. In the first step of this strategy, no relocation is applied. In this

case, the number of nodes of the resulting mesh is low and the mesh optimization
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algorithm, that we describe below, is fast. In the following steps a relocation of

inner nodes is applied by using the mapping (volumetric parameterization) that is

defined by the previous iteration.

3.6 Simultaneous untangling and smoothing

Since the current mesh could be not valid (it could contain inverted element), it

is necessary to optimize it. The process that we describe in this section [7, 8],

must be able to smooth and untangle the mesh and is crucial in the proposed mesh

generator.

Usual techniques to improve the quality of a valid mesh, that is, one that does

not have inverted elements, are based upon local smoothing. In short, these tech-

niques consist of finding the new positions that the mesh nodes must hold, in such a

way that they optimize an objective function. Such a function is based on a certain

measurement of the quality of the local submesh N (q), formed by the set of tetra-

hedra connected to the free node q. Usually, objective functions are appropriate to

improve the quality of a valid mesh, but they do not work properly when there are

inverted elements. This is because they present singularities (barriers) when any

tetrahedron of N (q) changes the sign of its Jacobian.

Most of what is stated below is taken from [7], where we developed a pro-

cedure for untangling and smoothing tetrahedral meshes simultaneously. For that

purpose, we use a suitable modification of the objective function such that it is reg-

ular all over R3. When a feasible region (subset of R3 where q could be placed,

being N (q) a valid submesh) exists, the minima of both the original and the mod-

ified objective functions are very close, and when this region does not exist, the

minimum of the modified objective function is located in such a way that it tends

to untangle N (q). The latter occurs, for example, when the fixed boundary of N (q)
is tangled. With this approach, we can use any standard and efficient unconstrained

optimization method to find the minimum of the modified objective function, see

for example [1].

3.6.1 Objective functions

Several tetrahedron shape measures could be used to construct an objective func-

tion. Nevertheless, those obtained by algebraic operations [14] are specially indi-

cated for our purpose because they can be computed very efficiently and they allow

us to choose the shape of the tetrahedra to optimize. Our objective is to relocate

the nodes of T in positions where not only the mesh gets untangled, but also the

distortion introduced by the parameterization is minimized.

Let T be a tetrahedral element of T whose vertices are xk = (xk,yk,zk)
T ∈R3,

k = 0,1,2,3 and TR be the reference tetrahedron with vertices u0 = (0,0,0)T ,

u1 = (1,0,0)T , u2 = (0,1,0)T and u3 = (0,0,1)T . If we choose x0 as the trans-

lation vector, the affine map that takes TR to T is x =Au+x0, where A is the

Jacobian matrix of the affine map referenced to node x0, and expressed as A =
(x1−x0,x2−x0,x3−x0).

Let us consider that TI is our ideal or target tetrahedron whose vertices are v0,

v1, v2 and v3. If we take v0 = (0,0,0)T the linear map that takes TR to TI is v =Wu,

where W = (v1−v0,v2−v0,v3−v0) is its Jacobian matrix. As the parametric and

real meshes are topologically identical, each tetrahedron of T has its counterpart

in CK . Thus, in order to reduce the distortion in the volumetric parameterization
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we will fix the target tetrahedra of N (q) as their counterparts of the local mesh in

the parametric space.

The affine map that takes TI to T is x =AW−1v+x0, and its Jacobian matrix

is S = AW−1. Note that this weighted matrix S depends on the node chosen as

reference, so this node must be the same for T and TI . We can use matrix norms,

determinant or trace of S to construct algebraic quality metrics of T . For example,

the mean ratio, Q = 3σ
2
3

|S|2
, is an easily computable algebraic quality metric of T ,

where σ = det(S) and |S| is the Frobenius norm of S. The maximum value of

Q is the unity, and it is reached when A = µRW , where µ is a scalar and R is

a rotation matrix. In other words, Q is maximum if and only if T and TI are

similar. Besides, any flat tetrahedron has quality measure zero. We can derive

an optimization function from this quality metric. Thus, let x = (x,y,z)T be the

position of the free node, and let Sm be the weighted Jacobian matrix of the m-th

tetrahedron of N (q). We define the distortion, ηm, of the m-th tetrahedron as the

inverse of its quality:

ηm =
|Sm|

2

3σ
2
3

m

(3)

Then, the corresponding objective function for N (q) is constructed by using the

p-norm of (η1,η2, . . . ,ηM) as

∣∣Kη

∣∣
p
(x) =

[
M

∑
m=1

η p
m (x)

] 1
p

(4)

where M is the number of tetrahedra in N (q). We obtain the optimal position of

the free node by minimizing (4).

Although this optimization function is smooth in those points where N (q) is

a valid submesh, it becomes discontinuous when the volume of any tetrahedron

of N (q) goes to zero. It is due to the fact that ηm approaches infinity when σm

tends to zero and its numerator is bounded below. In fact, it is possible to prove

that |Sm| reaches its minimum, with strictly positive value, when q is placed in the

geometric center of the fixed face of the m-th tetrahedron. The positions where q

must be located to get N (q) to be valid, i.e., the feasible region, is the interior of

the polyhedral set P defined as P =
M⋂

m=1

Hm,where Hm are the half-spaces defined

by σm (x) ≥ 0. This set can occasionally be empty, for example, when the fixed

boundary of N (q) is tangled. In this situation, function
∣∣Kη

∣∣
p

stops being useful

as an optimization function. Moreover, when the feasible region exists, that is

int P 6= /0, the objective function tends to infinity as q approaches the boundary

of P. Due to these singularities, it is formed a barrier which avoids reaching the

appropriate minimum when using gradient-based algorithms, and when these start

from a free node outside the feasible region. In other words, with these algorithms

we can not optimize a tangled mesh N (q) with the above objective function.

3.6.2 Modified objective functions

We proposed in [7] a regularization in the previous objective function (4), so that

the barrier associated with its singularities will be eliminated and the new function

will be smooth all over R3. An essential requirement is that the minima of the
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original and modified functions are nearly identical when int P 6= /0. Our modifi-

cation consists of substituting σ in (3) by the positive and increasing function

h(σ) =
1

2
(σ +

√
σ2 +4δ 2) (5)

being the parameter δ = h(0). Thus, the new objective function here proposed is

given by

∣∣K∗η
∣∣

p
(x) =

[
M

∑
m=1

(η∗m)
p (x)

] 1
p

(6)

where

η∗m =
|Sm|

2

3h
2
3 (σm)

(7)

is the modified objective function for the m-th tetrahedron. With this modification,

we can untangle the mesh and, at the same time, improve its quality. An implemen-

tation of the simultaneous untangling and smoothing procedure for an equilateral

reference tetrahedron is freely available in [8].

3.7 Volumetric parameterization

One of the consequence of the meccano method is that it produces automatically a

volumetric parametrization of the domain. This mapping ΠΠΠ is an extension of the

surface parameterization Π built at Section 3.2:

ΠΠΠ : M →T ≈Ω (8)

where a point p included in a tetrahedron of M is mapped, preserving barycentric

coordinates, into a point q belonging to the transformed tetrahedron of T .

3.8 Meccano as surface mesher

Numerical simulation of some engineering/environmental problem, such as solar

radiation (see Chapter ??), only requires a surface mesh. The meccano algorithm,

that we describe along this section, can be particularized to generate triangular

meshes of complex terrains . In this case, the meccano is a rectangle, that plays

the role of parametric space of the surface defined by the elevation map of the

terrain. Then, Floater’s strategy (Section 3.2) allows to build a mapping between

the meccano and the terrain surface. Finally, an analogous approximation strategy

to Section 3.4 provides the final surface mesh.

Since the Floater’s parameterization is a quasi-conformal mapping, the smooth-

ing step can be avoided in general. Nevertheless, the surface smoothing [6] could

be used to improve the mesh quality.

4 Numerical examples

The performance of our new mesh generator is shown in the following applica-

tions. The first corresponds to a domain placed at La Palma (Canary Islands,

Spain), of 10×30 km. In the second example we discretize a bigger domain: Gran
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(a) (b)

(c) (d)

Figure 4: a) Clip of the mesh along the algorithm: b) After node boundary projection,

c) After inner node relocation, d) After smoothing (final mesh).

Canaria (Canary Island, Spain), 60× 70 km, and we analyze several approxima-

tions for different values of ε parameter. Finally, in the third example, we include

a chimney in a region of Gran Canaria Island and build the associated mesh. In

all cases, the topography is given by a digitalization of the area where heights are

defined over a uniform grid with a spacing step of 25 m in directions x and y (raster

data). The computations were done on an MacBook Pro with two processors, 3.5

GHz, Inter Core and 16 Gb RAM memory.

4.1 La Palma

We first consider a rectangular area in Isla de La Palma (Canary Islands, Spain)

of 10× 30 km. The upper boundary of the domain has been placed at 3 km. To

define the topography we use a digitalization of the area where heights are defined

over a uniform grid with a spacing step of 25 m in directions x and y. Therefore,

the associated meccano is a cuboid of dimension 10×30×3 km. After computing

a boundary mapping, Π between the boundary of the meccano and the boundary

of the domain (see section 3.2 for details), we divided it into 5× 15× 1 cuboids.

Each cuboid is subdivided into six tetrahedra by using the subdivision proposed in

[15], see Figure 3. Then, we fix ε = 5 m, and begin the approximation procedure

described at Section 3.4.

The resulting mesh has 75320 tetrahedra and 17664 nodes and it nears the ter-

rain surface with an error less than ε = 5 m. The adaptive procedure performs

18 refinement steps (bisection). Besides, we relocate the inner nodes using the

volumetric parameterization produced by a coarse ε (ε = 100 m.), and reduce the

number of inverted tetrahedra from 23612 to 5266. Finally, we apply the optimiza-

tion process of Section 3.6. The node distribution is hardly modified after 12 steps,

resulting a valid and high quality mesh (the mesh is untangled after 8 iterations).

We remark that we have not relocated those nodes placed on the terrain during this
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Figure 5: Detail of Isla de La Palma (Canary Island): Surface of the final mesh.

optimization process. In Fig. 4 we show several clips of the tetrahedral mesh along

the generation procedure and in Fig. 5 the surface of the final mesh is presented.

The evolution of the mesh quality during the optimization process is showed

in Figure 6. These curves are obtained by sorting the elements in increasing order

of its quality. This measure tends to stagnate quickly. Note that the quality curves

corresponding to the eighth and twelfth optimization steps are very close. The

average quality measure increases to qκ = 0.75. After this optimization process,

the worst quality measure of the optimized mesh tetrahedra is 0.25. In addition,

we present in Fig. 7(a) the ‘cumulative frequency polygon’ of the generated mesh;

for a given value of x ∈ (0,1) the line represents the percentage of elements that

have a quality ≤ x and in Fig. 7(b) the quality histogram of the final mesh: where

the height of each bar is the relative number of tetrahedra with quality associate to

the bar. We note that the 80% of tetrahedra have a quality bigger than 0.70.

The total CPU time for the mesh generation is less than 20 seconds. In partic-

ular, the computational cost of the simultaneous untangling and smoothing proce-

dure is about 8 seconds.

4.2 Gran Canaria

We now approximate the orography of Gran Canaria (Canary Islands, Spain). We

consider a rectangular area of 60×70 km, and fix the upper bound of the domain

to 11 km. As in the previous case, the topography is defined by a rasted data, with

25 m as discretization step. In Fig. 8 we show the corresponding meccano and its

initial triangulation, respectively.

We generate several meshes of Gran Canaria, for several values of the dis-

cretization parameter ε . Table 1 reports their main features. The volumetric pa-

rameterization that induces a tetrahedral mesh is used to relocate the inner nodes

of the following finer mesh. Note that neither the number of optimization steps

nor the minimum quality depend drastically on ε . The CPU time includes surface

parameterization, approximation and smoothing.
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Figure 6: Quality curves for the initial (blue line) and optimized meshes after 8th (red

line) and 12th (orange line) iterations for the domain of La Palma (Canary Island).
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Figure 7: a) Cumulative frequency polygon of the final mesh; for a given quality value

x ∈ (0,1) the line represents the percentage of elements that have a quality ≤ x. b)

Quality histogram of the final mesh. The height of each bar is the relative number of

tetrahedra with quality associate to the bar.
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(a) (b)

Figure 8: Initial meccano of Gran Canaria Island (a) and its corresponding intial mesh

(b).

ε (m) Tetrahedra Nodes Ref. level SUS iter. qmin qmax CPU Time (s.)

(untang.+smooth.)

200 8760 2127 12 3+6 0.45 0.77 ≈ 13

100 39800 9191 17 3+6 0.30 0.76 ≈ 22

75 70572 16231 18 2+5 0.31 0.76 ≈ 33

50 153252 35092 21 2+5 0.31 0.76 ≈ 71

35 278674 63740 24 3+6 0.32 0.76 ≈ 145

25 478420 109315 24 3+6 0.26 0.75 ≈ 212

Table 1: Main features of meshes of Gran Canaria Island for several values of the

discretization parameter ε .
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In Fig. 9 we show the surface of the final mesh for ε = 25 m and some details

of the discretization of Gran Canaria topography.

4.3 Industrial chimney

In this last example we show that meccano algorithm allows to include the geom-

etry of building or stacks. We now consider an area located at north east of Gran

Canaria, Spain (see Fig. 10(a)), where we introduce a chimney of a power plant.

The dimension of the domain is 15× 25× 10 km, and the chimney has 5 m. of

radius and a height of 100 m. In order to get a good approximation of the chimney

we define the tolerance ε as :

ε(x) =

{
0.5m. if the distance from x to the chimney is less than 100 m.

5m. otherwise

The adaptive procedure performs 96 refinement step (bisection) to reach the pre-

scribed tolerance. The resulting mesh has 695678 tetrahedra and 159166 nodes

and its surface is shown in Fig. 11.

In Fig. 12 some details of the chimney discretization are presented. Note that

the features of the structure are proprertly approximated by our algorithm.

After relocating the inner nodes, using the volumetric parameterization pro-

duced by a coarse ε , the optimization process only required 16 steps to untangle

and smooth the mesh. The average quality measure of the final mesh is qκ = 0.70.

We present in Fig. 13(a) the ‘cumulative frequency polygon’ of the generated

mesh; for a given value of x ∈ (0,1) the line represents the percentage of elements

that have a quality ≤ x and in Fig. 13(b) the quality histogram of the final mesh:

where the height of each bar is the relative number of tetrahedra with quality as-

sociate to the bar. We note that the 90% of tetrahedra has a quality bigger than

0.7. The CPU time to generate the final mesh is about 600 s. We remark that this

time can be drastically reduced by using a parallel algorithm of the simultaneous

untangling and smoothing procedure [?].

Conclusions

We have established the main aspects to generate a tetrahedral mesh able to adapt

to the topography of a rectangular area with a minimum intervention of users. Our

three-dimensional domain is limited on its lower part by the terrain and on its up-

per part by a horizontal plane placed at a height where the magnitudes under study

may be considered steady. The lateral walls are formed by four vertical planes. The

main input data consist on a digital elevation map of the terrain and its desired ap-

proximation. The adaptive mesh is efficiently built by using the Meccano Method,

that was previously introduced by the authors. The node distribution is obtained

automatically in the domain under study, able to get the irregular topographic infor-

mation of the terrain, and with a decreasing density as altitude increases in relation

to the terrain. In addition, the meshes can be generated on a laptop with a low CPU

time. Our procedure constructs high quality meshes that are appropriated to simu-

late environmental problems over complex terrain, in particular those analysed in

this book: Wind simulation and solar radiation. In this last case, a surface adaptive

triangulation of the terrain is only necessary in the numerical model. The mesh
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Figure 9: Surface of the final mesh of Gran Canaria Island, for ε = 50m., and several

details
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(a) (b)

Figure 10: (a) Map of the Gran Canaria’s north east, and 2D mesh of the surface.

Figure 11: Surface of the final mesh of Gran Canaria’s north east.
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(a) (b)

(c) (d)

Figure 12: Details of the chimney discretization.
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Figure 13: a) Cumulative frequency polygon of the final mesh; for a given quality

value x ∈ (0,1) the line represents the percentage of elements that have a quality ≤ x.

b) Quality histogram of the final mesh. The height of each bar is the relative number

of tetrahedra with quality associate to the bar.
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generation procedure can also consider the inclusion of stacks for air pollution

simulation.

Acknowledgements

This research was partially supported by FEDER and the Spanish Government,

“Ministerio de Economı́a y Competitividad” under grand contracts CTM2014-

55014-C3-1-R, CTM2014-55014-C3-3-R, the Department of Education, Junta of

Castilla y León, under grand contract SA020U16 and by CONACYT-SENER “Fon-

doSectorial CONACYT SENER HIDROCARBUROS” under grand contract 163723.

References

[1] Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programing: Theory

and Algorithms. John Wiley and Sons Inc., New York (1993)

[2] Carey, G.F.: Computational Grids: Generation, Adaptation and Solution

Strategies. Taylor & Francis, Washington (1997)

[3] Carey, G.F.: A perspective on adaptive modeling and meshing (AM&M).

Comput. Meth. Appl. Mech. Eng. 195, 214–235 (2006)

[4] Cascon, J., Montenegro, R., Escobar, J., Rodriguez, E., Montero, G.: A

new meccano technique for adaptive 3-d triangulations. In: Proceed-

ings of the 16th International Meshing Roundtable, pp. 103–120. Springer-

Verlag, Berlin, Germany (2007). DOI 10.1007/978-3-540-75103-8 6. URL

https://doi.org/10.1007/978-3-540-75103-8 6

[5] Cascón, J.M., Rodrı́guez, E., Escobar, J.M., Montenegro, R.: Comparison of

the meccano method with standard mesh generation techniques. Engineering

with Computers 31(1), 161–174 (2015). DOI 10.1007/s00366-013-0338-6

[6] Escobar, J.M., Montero, G., Montenegro, R., Rodrı́guez, E.: An algebraic

method for smoothing surface triangulations on a local parametric space. In-

ternational Journal for Numerical Methods in Engineering 66(4), 740–760

(2006). DOI 10.1002/nme.1584. URL http://dx.doi.org/10.1002/nme.1584

[7] Escobar, J.M., Rodrı́guez, E., Montenegro, R., Montero, G., González-Yuste,
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