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Discretization of Volterra Integral Equations

of the First Kind

By Hermann Brunner

Abstract. We show that various (discrete) methods for the approximate solution of

Volterra (and Abel) integral equations of the first kind correspond to some discrete

version of the method of (recursive) collocation in the space of (continuous) piece-

wise polynomials. In a collocation method no distinction has to be made between

equations with regular or weakly singular kernels; the regularity or nonregularity of

the given integral operator becomes only relevant when selecting a discretization

procedure for the moment integrals resulting from collocation. Similar results hold

for equations of the second kind.

1. Introduction. Let the subspace Ca(I) C 07) be defined by Ca(T) = {f&

C(T): f(a) = 0}, where I = [a, b] is a compact interval (a < b), and denote by T:

C(T) —► Ca(I) the Volterra integral operator

(1.1) (Tf) (x) = jXK(x, 0/(0 dt,      xei.
J a

Here, the kernel K of T is supposed to be such that either

(1.2a) K e <XS)   (where S = {(x, t): a < t < x < b}),

or

(1.2b) K(x, t) = G(x, t) (x - 0~\      X e (0, 1), with G e C(S).

We shall require one additional hypothesis (compare also Section 2): the operator

T will be called strictly monotone (or: positive [5] ) if its kernel K also satisfies either

(1 -3a) \K(x, 01 > r0 > 0,      (x, t)GS (for the case (1.2a)),

or

(1.3b) \G(x, t)\>ro>0,      (x, t)GS (for the case (1.2b)).

For a given function g G Ca(I) the Volterra integral equation of the first kind,

(1.4) (Ty)(x)=g(x),      xEI,

is to be solved in the space C(T). (Here, the expression "Volterra integral equation"

is meant to include both the classical Volterra equation corresponding»to (1.2a) and

the (generalized) Abel equation with kernel (1.2b).)
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VOLTERRA INTEGRAL EQUATIONS 709

Among the methods for the approximate solution of (1.4) suggested in recent

years, we mention, in the context of the following discussion, one-step methods based

on finite-difference techniques (compare Iinz [10]), those methods using the idea of

product integration introduced by Young [16] (see Linz [12], Weiss [14], Weiss and

Anderssen [15]), and the higher-order block methods of de Hoog and Weiss [6], [7]

(for a brief summary, compare also [1]).  It is the purpose of this note to show that

all these methods (in which the cases (1.2a) (regular kernel) and (1.2b) (weakly singu-

lar kernel) had to be treated separately) may be regarded as particular discretizations

of methods based on the idea of (recursive) collocation ([3], [4]), where the exact

solution y of (1.4) is projected into the space of piecewise polynomials s(x) of degree

m and with appropriate knots ZN C /: s(x) is either of continuity class C(T) (see Sec-

tion 2), or s(x) possesses discontinuities on ZN (Section 3).  If a given Volterra equa-

tion (1.4) is solved by recursive collocation, it is clear that no distinction has to be

made (in contrast to the various discrete methods just mentioned) between regular

(classical Volterra) operators and weakly singular (generalized Abel) operators; further-

more, methods using recursive collocation allow for an important degree of flexibility

in that they can be used for highly oscillatory (fast varying) kernels without increasing

m or the number of knots ZN C I simply by selecting an appropriate discretization

procedure when evaluating the resulting moment integrals.

2.  Recursive Collocation in S^\ZN).  Let A^: a = x0 <xx < • ■ ■ <xN =

b (N> 1) denote a partition of/, and define ZN = {x =xk: k = 1, . . . , N - 1}, ak

= [xk, xk + x] (k = 0,1, . . . ,N- 1).  Since the discrete methods for solving (1.4)

mentioned in Section 1 are usually applied with a uniform stepsize we shall deal, in

order to simplify the notation, only with special partitions A^ where xk = a + kh, k

= 0,1, ... ,N (although all the results hold for arbitrary AN).

We define the subspace S%\ZN) of C(I) by

40)(Zív) = Í* e C(I): i»|CTfc = <i>fc G nm, k = 0, 1.N- 1}      (m > 1),

i.e. S^\ZN) is the space of (continuous) piecewise polynomials of degree m > 1 and

with knots ZN.  For x G ok we set

m

(2.1) % = **(afc, x) = £ <**, A,.X*)>
v=0

where {<¡>k „} denotes a given basis in 7rm (on ak), and where

% = Ko- «*,!>•••. <*k,m)T G RW + 1 (k = 0,l,...,N~ 1).

For brevity we shall often write $k(x) for &k(ak, x).

The given integral equation (1.4) is now solved in the space S^\ZN) (rather

than in C(T)) by requiring that, for k = 0, 1, . . . , N - 1,

(2-2) (T<i>)(x)=g(x),      xGXk,

where Xk C ok is the set
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710 HERMANN BRUNNER

(2.3) Xk = {x = %kj = xk + <qfv. 0 < tj, < • • • < nm < U

The collocation condition (2.2) may be stated in a form which exhibits more clearly

the recursive generation of the approximating function $ G S^\ZN), namely

f* K(x, r)*k(f) dt = g(x) - £   f *"" lK(x, t)<i> (t) dt,

xeXk(k = 0,l,.. . ,N-1);

'** u=o Jx

(2.4a)

in addition, the continuity conditions for ZN yield

(2.4b) **(**) = **-i(**)>      xkGZN.

For x = xQ = a we set

(2.4c) $0(*o) = y(*)-

(We note here that, in order to avoid the evaluation of the value of the unknown exact

solution at x = a, the representation of $ on the initial interval o0 may be computed by

using collocation on a suitable set X0 C (xQ, xx] consisting of (m + 1) distinct points.

This will not be pursued further since, as was pointed out before, our interest lies in

the relationship between collocation methods and discrete methods which, in general,

have to rely on the starting value y(a).  But compare also Section 3.)

We now rewrite (2.4) in the form

(2.5) Ckak=rk,      k = 0,l,...,N-l,

where the components {rk • : / = 1, . . . , m] of rk G Rm + 1 are given by the right-

hand side of (2.4a) corresponding to x = %k • G Xk; its first component rk Q is ob-

tained by observing (2.4b), (2.4c). The matrix Ck = (CjkJ)m + i in (2.5) possesses

the elements

(2.6a)    cjkJ = fx k''mkj, ty¡>kv(t) dt     (J = 1,. . . , m; v = 0,1.m),
ck

and (by (2.4b))

(2.6b) 4*¿ =**>*>>      v = 0,l,...,m.

If the operator T in (1.4) is strictly monotone (i.e. if T satisfies one of the

corresponding pairs of conditions in (1.2) and (1.3)), then Ck is nonsingular for any

set Xk and any h> 0 (k = 0,1, . . . ,N- 1), since any basis {<pkv} for nm consti-

tutes a Chebyshev system on ok [5]. Hence, for such operators T, (2.4) (or (2.5))

defines a unique projection of the exact solution y of (1.4) in the subspace S^\ZN).

On the other hand, any of the methods described in [10], [14], [15], [7] yields a

projection of v in the space Rp, with p = mN + 1.

In order to establish the link between these two classes of methods we now se-

lect the following bases {<¡>k v) .  Let the sets {Qk} be given by
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VOLTERRA INTEGRAL EQUATIONS 711

Qk = í* " ak,i =xk+ujh:0<uo<ul<- ■■<um<l]

(2.7)
(k = 0,l,...,N-l).

For a fixed Qk let í'fc „(*) : J» — 0, 1,.... m} denote the corresponding Lagrange

fundamental polynomials; as the basis in 7rm we then choose {(¡>k v(x)} = {lk v(x)}.

Relation (2.1) yields immediately

(2.8) %if = $*(«*,/) = «it,/.      /-0,l,...,m,

since lkiV(.qkti) = &vJ.

The following result is now obvious.

Theorem 1. Assume:

(i)  77ie operator T in (1.4) is strictly monotone.

(ii) For a /foced &, 0 < A: < Af - 1, the (unique) approximation $ G S^\ZN)

to y on [x0, xk+l] has been generated by (2.4) (collocation on the sets Xß : ¡it = 0,

l,...,k).

Then the values {&kv} of $ on Qk are given by

J'^k j J™
'K(Hki,t) Z%Jk,^)dt

xk v=0

(2.9)

= Stik /) - X) .f " + ' *(**,/' î)*m W *•      J =h..., m,
u = 0  XM

VWfÄ Xm=0<S>kvlkv(xk) = *fc_!(*k).

It has already been briefly indicated that Theorem 1 holds independent of

whether the kernel K of T is of the form (1.2a) (regular) or (1.2b) (weakly singular).

In general, however, it will not be possible to evaluate the moment integrals occurring

in (2.9) explicitly: some appropriate discretization procedure has to be chosen to

approximate them.  It is only here that a distinction between regular and weakly sin-

gular kernels has to be made (note that the integrals over the intervals [x , x^+x],

p. = 0,1, ... ,k- I, occurring in rk are, in the case (1.2b), no longer singular since

%k ■ > xk). The discretization procedure one selects will depend on m as well as on

the behavior of K (or G, respectively), and one has, among others, the following op-

tions:

(i)  Discretization is based on one of the many available automatic quadrature

routines which compute the integrals in (2.6a) to a specified accuracy (compare, for

example, the recent report [13], as well as related work by Lyness and Kaganove).

Such an approach will be especially appropriate if the kernel of T is a rapidly vary-

ing function; here, the classical finite-difference methods [10] and the methods based

on product integration [14], [15] (which, as will be shown below, correspond to

rather crude discretization procedures for (2.9)) will not be feasible unless h is small.

(ii)  For K G C(S) (case (1.2a)), and for a fixed value of; (1 </ < m) in
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712 HERMANN BRUNNER

(2.9), let the integrals (2.6) be evaluated by an interpolatory quadrature formula (on

[xk, Zkj]), defined by weights {w-r : r = 0, 1, . . . , m} and abscissas {z^}, where

zLr  =xk+ VjV,h =xk+ Vrak¡ - xk),

r = 0, 1, . . . , m (with the quantities {^} as defined in (2.3), r?0 = 0: affine trans-

formation of the points Xk). The integrals occurring in the ;th component of rk in

(2.9) are discretized accordingly (by using the weights {wmr}, with w¡ r = T?;wm r(j

= 1, . . . , m), and the abscissas {{•   r} on the intervals [xß, xft+1], ¡x = 0, 1, . . . ,

k - 1). The discretized form of the left-hand side of (2.9) thus reads

m m

(2.10) £ Wi,Mk,r Xk + WS)  £ %Jk,viXk + VjVrh).
r=Q v=0

If we choose in particular r¡¡ = u,, j = 0, 1, . . . , m, with u0 = 0, um = 1, then the

resulting discretization procedure for (2.9) yields the block method suggested by de

Hoog and Weiss [7] (method (3.3)); here, (2.10) reduces to

m m

Z wi,rK(<(lKj, xk + Ujurh) £ *kflkiV(xk + Ujurh)      (j=l,...,m),
r=0 v=0

whereas the ;'th component of rk is replaced by

fc-l   m

giQkj) "IE wm,M<lkJ- Qu,r)%,r (%,0 =><«))•
M = 0 r=0

(iii)  If the kernel of T is of the form (1.2b) (weakly singular), then (2.9) can

be discretized in an analogous fashion: we now require that um < 1 since the singu-

larity occurs, for a fixed value of/, at t = %k ■.   In particular, Gauss-type quadrature

formulas will then be a suitable choice, (We mention here that, for nonsmooth ker-

nels, discretization procedures based on product-type quadrature introduced by Boland

and Duris [2] will often prove to be suitable alternatives, both for regular and weakly

singular kernels.)

To conclude this section we briefly consider the special case m = 1.  Here, it

will be convenient to choose the basis functions 4>k v(x) = [(x - xk)/h] ", x G ok (v =

0,1).

Theorem 2. Let the kernel K of T satisfy the conditions stated in Theorem 1.

Then, for m = 1, the approximating function $ e S[°\ZN) to the exact solution of

(1.4) is uniquely determined by (2.4) and is given by

ak,i={\xkkl^KX,tyi>kiX(t)dtY

^,1)-lfM+1^ i. t)%(t)dt -ak0Çk'lK(ïk ,, t)dt\
[ M = 0-% '       Xk )

(k = 0, 1,. . . ,N-1),

with a0 0 = y(a), and with ak 0 given by (2.4b).
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The proof is straightforward (compare (2.4a) and (2.6a)) and is hence omitted.

Again, a number of well-known methods for the numerical solution of (1.4)

may be obtained from (2.11) by specifying the type of kernel of 7'and the discreti-

zation procedure for the moment integrals.  We mention two examples:

(i)  If K G C(S), and if the trapezoidal rule is used (with stepsize h, and by

choosing %k x = *fc+1), then (2.11) clearly yields the trapezoidal method [10].

(ii)   Let now K be of the form (1.2b) (weakly singular case).  Then, if the in-

tegrals in (2.11) are regarded as weighted integrals, with the weight functions

wu(0 = (h,! - t)~X      (p = 0,l,...,k),

discretization by the (weighted) trapezoidal rule (stepsize h, %k x =xk+l) furnishes

the product integration method suggested by Weiss [14].

3. Recursive Collocation in S^~}\(ZN).   In the present section we shall

show that certain discrete methods for solving (1.4) correspond to special discretiza-

tions of recursive collocation methods in the space of piecewise polynomials which

possess discontinuities (finite jumps) on  ZN.  As before, let /rc > 1, and let A^ and

ZN be as in Section 2, with o'k = (xk, xk+ x ] (k = 0, 1, . . . , N - 1).  We define

the space S^~i\(ZN) by

S{mlJx{ZN) = {* : *|ajt €*„,_„ * = 0, 1, . . . , N- 1},

i.e. S^-}_\(ZN) consists of piecewise polynomials of degree (m - 1) (with knots ZN)

which have (finite) discontinuities on ZN.  For x G a'k we set for 4> G S^-}_\(ZN)

m

(3.1) % = **(«*. *) = Z ak, A,„(*)>
I>=1

where now {<pk v} denotes some basis for irm_x (on a'k), and where ak G Rm.   Fur-

thermore, let Xk be as in (2.3), and define the sets Q'k C o'k by

(3.2) Q'k = {x = q'kj =xk+Ujh:0<ux<---<um<l}.

In analogy with the procedure described in Section 2, an element <ï> G S^}.\(ZN)

approximating the exact solution y of (1.4) on / will be generated recursively by

collocation on the sets {Xk}, i.e. we have again the collocation conditions (2.4a) but

now without the continuity and starting requirements (2.4b) and (2.4c) for ZN U

{a}.  For each k = 0, 1, . . . ,N- 1, (2.4a) yields, for a strictly monotone operator

T, a uniquely defined <&k and hence a unique 4> G S^~!_\(ZN).

We then have (again by observing (2.8)) the following result, in analogy with

Theorem 1.

Theorem 3. Assume:

(i)   The operator T in (1.4) is strictly monotone.

(ii) For a fixed k, 0 < k < N - 1, the (unique) approximation 4> G Sfal \(ZN)

to y on (x0, xk+x] has been found by (2.4a) (collocation on the sets Xß : /i = 0,

...,k).

If the {o)k j : / = 1, . . . , m) denote the Lagrange fundamental polynomials
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714 HERMANN BRUNNER

for the set Q'k, then the values {4>fc v : v = 1, . . . , m} of <i> on Q'k are given by

'k „~i

k-1

)x    K(tkj>t)Z*k,v"k,»(t)dt

(3.3)
lu+l v

M=0"XM
= *«*./) - Z L       Wies ')*„('> *•      ' = *•

(vv/'f/i f/ie improper integrals defined in the usual manner).

As has already been indicated implicitly, the above construction of $ G S^-i\(ZN)

does not require the value y(a).  Furthermore, we note the following:

(i)  Suppose that K G C(S) (case (1.2a)).  For a fixed /, 1 < / < m, let the in-

tegrals (2.6) occurring in (3.3) be evaluated by interpolatory quadrature (on (xk,

%k •] ) using weights {wl r : r = 1.m} and abscissas

z<$ = xk + VflA      r=l,...,m

(with {t?;} defined in (2.3)).  The integrals on the right-hand side of (3.3) are evaluated

analogously (as before, we have w,   = r¡jWm r, r= 1, . . . , m).  The discretized left-

hand side of (3.3) hence is

m m

(3.4)      Z w'i,rK^k,r xk + V/Vrh) £ *kiVukiP(xk + vpS)      (j=l,...,m).
r=l v=l

It is now easily seen that the particular choice r¡¡ = Ui(j = 1,. . . , m), with um = 1,

yields the block method introduced by de Hoog and Weiss [6] (method (3.3)).

(ii)  For operators Twith weakly singular kernels (case (1.2b)) discretization in

(3.3) may be carried out along the lines of remark (iii) of Section 2.   In particular,

Gauss-type quadrature formulas will again be prime candidates in the approximate

evaluation of the singular integrals occurring on the left-hand side of (3.3).

As in Section 2, we conclude our discussion with a remark on the special case

m = 1.  We have

Theorem 4. Let the kernel K of T in (1 A) satisfy the conditions of Theorem

1. Then the approximating function $ G S^1 \ZN) to the exact solution y of (1.4)

is uniquely determined by (2.4a) and is given by

"-M  = UXk'   *«*.!. 0* •  JAG*,,)"   ZVlJ^      *«*.!' ')*
(3.5)

(k = 0,l,...,N-l).

As in Theorem 2, a number of discrete methods for solving (1.4) may be ob-

tained from (3.5) by specifying the type of kernel of Tand the discretization proce-

dure selected for evaluating the moment integrals in (3.5):

(i)  If, in (3.5), we choose £fc x = xk+ x, and if <ï>fc = ak x is regarded as an

approximation to y(x) at x = (xk + xk+i)/2, then the resulting discretization is
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identical with the product midpoint method of Linz [12] ; the classical midpoint

method [10] is found by discretizing (3.5) via the (product) midpoint quadrature

rule (stepsize h¡2).

(ii)   The midpoint product method suggested by Weiss and Anderssen [15] for

the numerical solution of (1.4) with weakly singular kernel (1.2b) is another discrete

version of (3.5): here,collocation is again at %k x = xk+i (k = 0, 1, . . . , N - 1),

and the resulting moment integrals are treated as weighted integrals with weight func-

tions wß(t) = (£k x - t)~K (p = 0, 1, . . . , k); they are then discretized by applying

the (weighted) midpoint quadrature rule for each interval o'.  Again, these special

discretization procedures will only be suitable for smooth kernels; in general it will be

advantageous to apply some efficient automatic quadrature routine [13] to the inte-

grals in (3.5).

4.  Concluding Remarks.  If the Volterra operator T in (1.4) is strictly mono-

tone, i.e. if T satisfies one of the corresponding pairs of conditions in (1.2) and (1.3),

and if the integrals in (2.4a) (left-hand side) are computed exactly, then the resulting

matrix Ck in (2.5) will be nonsingular for any choice of Xk and Qk (k = 0, 1, . . . ,

N - 1).  (We note in passing that condition (1.3) may be weakened: in (1.3a), for

example, K is allowed to vanish at some (or all) points x = t G /, i.e. K(x, x) = 0, x

G /, with \K(x, 01 > 0, a < t < x < b.) By continuity, this will remain true if the

discretization procedure applied to Ck is such that the integrals (2.6a) are approximat-

ed to sufficient accuracy (by making use of an appropriate automatic quadrature

routine).

However, for m > 1, and for a fixed h > 0, this will no longer hold in general

(again by continuity arguments) if Ck is discretized by a given fixed discretization pro-

cedure which does not take into account the nature of the kernel of T.  In the case

m = 1 the situation is different: strict monotonicity of T implies that the discretized

equations (2.11) and (3.5), respectively, possess unique solutions provided the quad-

rature formula used has positive weights (as in Gauss quadrature, for example).   Also,

if discretization is based on the (simple) trapezoidal rule (for (2.11)), or the (simple)

midpoint rule (for (3.5)), then strict monotonicity of 7Ms no longer required for the

existence of a unique solution: the corresponding discrete regularity conditions re-

duce to K(x, x) i= 0, x G ZN U {b} and K(x, x - h/2) i= 0, x G ZN U {b}, respectively.

Finally, it is trivial that the above discussion applies to (regular or weakly singu-

lar) Volterra integral equations of the second kind,

(4.1) y(x)+(Ty)(x)=g(x),      xEI,

with T given by (1.1).  The product-type method of [11] and the Runge-Kutta-type

methods of [8] again correspond to particular choices of the sets {Xk} and the dis-

cretization procedure for the resulting moment integrals.  Here again, a distinction

between regular and weakly singular kernels has only to be made when selecting the

discretization method, and it will in general also be appropriate to base it on some

efficient automatic quadrature routine.
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