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Abstract: The continuous berth allocation and quay crane assignment problem considers the size
of berths and ships, the number of quay cranes, the dynamic ships and non-crossing constraints of
quay cranes. In this work, a mixed-integer linear programming model of this problem is established,
aiming at minimizing the total stay time and delay penalty of ships. To solve the model, the
continuous berth is separated into discrete segments via a proposed discretization strategy. Thereafter,
a large neighborhood search algorithm composed of the random removal operator and relaxed
sorting-based insertion operator and a backtracking comparison-based constraint repair strategy are
proposed. The effectiveness of the model and algorithm presented is verified via real-life instances
with different characteristics, and the performances of different combinations of removal operators
and insertion operators in the large neighborhood search algorithmic framework are analyzed.
Numerical results show that the large neighborhood search algorithm can optimally solve the small-
scale instances in a reasonable time. Meanwhile, the results of large-scale instances show that the large
neighborhood search algorithm incorporating the discretization strategy is more efficient than other
genetic algorithms based on continuous optimization. With the proposed approach, high-quality
berth and quay crane allocation results can be obtained efficiently.

Keywords: berth allocation and quay crane assignment; continuous berth discretization; large
neighborhood search; constraint handling

1. Introduction

Maritime container transportation is one of the most important modes of transport
in international trade, and about 80 percent of the global trade volume is carried out by
sea and ports around the world [1]. With the increasing internationalization of container
transportation and continuous growth of port trade volume, ports have become more
and more busy and the competition between ports has become increasingly fierce. Berth
and quay crane (QC) are the core operation resources of the forefront of container ports
and making appropriate scheduling plans is of great significance to the effectiveness of
container ports. In order to improve the efficiency of berth and QC operations at container
terminals, this paper studies the berth allocation and quay crane assignment specific
problem (BACASP).

Over the years, scholars have paid great attention to resource scheduling in ports and
have obtained rich research results. Among them, the berth allocation problem is one of the
most vital problems, which aims to allocate vessels to berths restricted by certain physical
and technical constraints to maximize the efficiency of berth operations [2]. Bierwirth and
Meisel [3] conducted a literature review on existing research results of berth allocation
problem and classified the problem into continuous, discrete and mixed berth allocation
problem according to the berth layouts. In the BAPD a quay is divided into many sections,
called berths, where one vessel can be in service at a time. In the BAPC, there is no partition,
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and a vessel can be docked anywhere as long as there is enough space. Nishimura et al. [4]
established a BAPD model by considering the waiting time and handling time of vessels.
Subsequently, they further considered the vessels’ berthing priority and investigated the
corresponding diversification of BAPD. The BAPD is inefficient in terms of berth utilization.
With the rapid growth of transportation demand, discrete berth cannot meet the actual
operational requirements. Imai et al. [5] studied the continuous berth allocation problem
(BAPC), and obtained the upper and lower bounds of the problem by solving the corre-
sponding simple discrete berth allocation problem (BAPD). Cordeau et al. [6] mapped the
BAPD to a multi-depot vehicle routing problem with time windows (MDVRPTW) and
presented a flow-based model for the BAPD. In addition, a strategy for discretizing the
continuous berth space is proposed, and the BAPC and BAPD are unified into one solution
framework. A tabu search algorithm is proposed to solve the BAPC and BAPD. The BAPC
has been proved to be a NP-hard problem. Therefore, the research considerations for BAPC
is dominated by heuristic algorithms, such as Genetic Algorithm (GA) [7–9], Memetic
algorithm [10], ant colony optimization [11], particle swarm optimization algorithm [12],
tubu search algorithm [13], differential evolution algorithm [14], etc.

In practice, the handling time of a vessel at the berth is related to the QCs assigned
to the vessel, and incorporating berth allocation with quay assignment is essential for
maximizing the efficiency of berth and quay operation. Park and Kim [15] first proposed
the berth allocation and crane assignment problem (BACAP) and proposed a two-stage
approach to solve the problem, wherein the first stage used sub-gradient optimization to
determine the optimal berthing position and start time of berthing and number of QCs,
while the second stage utilized a dynamic programming method to assign specific QCs.
Meisel et al. [16] further considered the interference between QCs and the impacts of vessels’
berthing positions on its handling time, and proposed a mixed-integer linear model for the
BACAP. Rodriguez-Molins et al. [17] proposed an innovative GRASP-based approach to
solve the BACAP. Researchers in [18] proposed a mixed integer programming model for
the BACAP and a multi-objective algorithm to achieve the balance between delayed time of
vessels and handling energy consumption of QCs. Iris et al. [19] presented a BACAP model
by considering the vessel speed-up cost, delayed completion penalty delayed departure
penalty and QC cost. Thereafter, an algorithm based on large neighborhood search is
proposed to solve the problem, which was confirmed capable of solving instances with up
to 80 vessels. In their research, the number of QCs assigned to a vessel was assumed to be
able to change dynamically. However, the costs of operations due to frequently moving and
resetting of QCs were not considered. He et al. [20] proposed a mixed-integer programming
model for BACAP and factors such as the work efficiency of QC operators, the operation
cost of QCs and operation efficiency and performance-related monetary compensation
between day and night, are considered.

The research mentioned above simplifies the BACAP by ignoring the restrictions
that the QCs cannot cross each other along the track. Zhang et al. [21] and Türkoğulları
et al. [22] argued that frequent change of QC assignment would result in considerable setup
costs, and thus the QC reassignment was inhibited once the operation starts. Regarding
this, Türkoğulları et al. [22] considered the non-crossing constraints of QCs, and proposed
a mathematical model with a branch-cut-plane algorithm for solving small-scale berth
allocation and quay crane assignment specific problems. Agra et al. [23] proposed a mixed-
integer model for the BACASP, where heterogeneous QCs with different loading and
unloading speeds and the non-crossing constraints of QCs are enforced. The model was
solved via a branch-and-cut algorithm, which was proven to be able to effectively solve
small-scale BACASPs to optimality. Thanos et al. [24] considered the movement range of
QCs and established a BACASP model aiming at minimizing the transshipment distance
of containers. Then a local search algorithm is proposed to solve this model. Bouzekri
et al. [25] considered different water depths and multiple quays, and proposed a model
integrating berth allocation and QC assignment problem.



J. Mar. Sci. Eng. 2022, 10, 495 3 of 18

Due to the high complexity, heuristic algorithms are usually employed for solving the
BACAP [26], especially for dealing with large-scale problems. Apart from the methods
mentioned above, other heuristics, especially the genetic algorithm [27], have also been
applied to solve BACAP. In GA, the constraint handling strategy has a great influence
on the quality of the obtained near-optimal solution. Among the studies on the BACAP,
superiority of feasible solutions [28], repair method [29] and penalty function [30–32] are
widely used. The superiority of feasible solutions strategy is easy implementation, but
it more suitable for multi-objective models. The repair method refers to adjusting an
infeasible solution to its nearest feasible solution. This strategy has high search efficiency.
Moreover, the reason why the penalty function strategy has been widely used is its high
flexibility and its easy implementation.

In this paper, a mixed-integer nonlinear programming model is proposed for BACASP
to minimize the total port stay time of vessels and the penalties of delay with the spatial
and temporal constraints such as the lengths of continuous berth, number of QCs and non-
crossing of QCs, etc. In the traditional solution method, the berthing position and handling
time of vessels are regarded as continuous decision variables, and the number of QCs is
regarded as discrete decision variables. BACASP is regarded as a hybrid optimization
problem and is solved by evolutionary algorithms such as genetic algorithm (GA) in [33].
This method contains continuous and discrete variables, making it difficult to design the
coding information interaction method and to guarantee the convergence performance and
stability of the algorithm [34]. To solve the problems associated with the existing methods,
a strategy for discretizing the continuous berth space is proposed to solve the BAP [6,35].
The BAP is a subproblem of the BACASP to be addressed in our study.

In this work, an MINLP model is presented for the BACASP. The BACASP is con-
verted to a discrete combinatorial optimization problem via a discretization strategy, and a
large neighborhood search (LNS) incorporating a specific constraint-handling technique is
proposed to efficiently solve it. The main contributions of this work are three-folds and
summarized as follows: (1) A discretization-strategy-based method to solve the BACASP
based on its combinatorial optimization property. (2) A specific LNS algorithm is designed
to solve the BACASP. Under the framework of LNS algorithm, some destroy and repair
operators are designed according to the problem’s characteristics to update the solution
and a backtracking comparison-based (BCB) constraint-handling strategy is proposed to
enhance the performance of the LNS for achieving feasible solutions of the BACASP, so as
to achieve an efficient solution to the BACASP. (3) A large number of experiments are con-
ducted to demonstrate the effectiveness of the proposed algorithm and constraint-handling
strategy in solving the BACASP.

2. Problem Description

The problem studied in this paper is described below. Section 2.1 describes the
notations and Section 2.2 introduces the problem model.

To facilitate the analysis, generally the BACASP can be described within a space-time
two-dimensional coordinate, which is described in Figure 1. The horizontal axis represents
the time, the vertical axis represents the berth, and the rectangles represent the vessels, the
lengths of which in the vertical and horizontal directions (li and hi) represent the length of
the vessel and the handling time, respectively. The vessel can be berthed at any position in
the continuous berth. The handling time of a vessel is affected by the number of assigned
QCs and its berthing position when considering the interference between the QCs. As
a result, it is assumed that each vessel corresponds to an optimal berthing position in
which the interference between the QCs is minimal. The QC track is distributed along the
coastline, where the QC can move to carry out loading and unloading operations on any
vessel. However, due to the limitation of the track structure, the QCs cannot pass each
other. Since different vessels cannot be served in the same berth at the same time, any two
rectangles in the figure cannot overlap.
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The objectives of this paper are to obtain the optimal berth allocation and QC assign-
ment theme, so as to minimize the port stay times and delayed departure time of vessels.

The rightmost crane number assigned to vessel i (Rc𝑖 )
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TimeO
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Figure 1. Diagram of the BACASP.

For BACASP, the following assumptions are made in this paper.

• There is no limitation of vessel draft and water depth.
• Since the handling time of the QC is much greater than its movement time, the QC’s

movement time is negligible.
• The QC assigned to a vessel cannot serve other vessels during the berthing period of

the vessel.
• The safety distance between vessels is included in the length of the vessels.

2.1. Notation

Table 1 lists the variables used in our model for the BACASP along with their types
and descriptions.

Table 1. Variables used in model. - is a dimensionless value.

Variables Type Definition Unit

si Integer Berthing start time of vessel ∀i ∈ N h
pi Integer Berthing position of vessel ∀i ∈ N m
ci Integer The number of QCs serving vessel ∀i ∈ N -

Lci Integer The leftmost QC of the service vessel ∀i ∈ N -
Rci Integer The rightmost QC of the service vessel ∀i ∈ N -
hi Integer The handling time of vessel ∀i ∈ N h
ei Integer Departure time of vessel ∀i ∈ N h

xij Binary
Set to 1 if the berthing start time of vessel ∀j ∈ N is later than
the departure time of vessel ∀i ∈ N, 0 otherwise -

yij Binary
Set to 1 if vessel ∀i ∈ N is fully berthed on the left side of vessel
∀j ∈ N, 0 otherwise -

∆bi Integer
Deviation between the desired and the berthing position of
vessel ∀i ∈ N m

2.2. Model of BACASP

This section presents a model for the BACASP which is extended from Türkoğulları
et al. (2014). In paper [22], the model assumes that the handling time of vessels is only
related to the number of QCs. To be more realistic, we also consider the impacts of berthing
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preference and interference between QCs on the handling time of vessels. The objective
and constraints of the model are as follows:

Min ∑
i∈N

{
(ei − ai) + (ei − di)

+
}

(1)

s.t.
ci

αhi ≥ (1 + ∆biβ)mi, ∀i ∈ N (2)

ei = si + hi, ∀i ∈ N (3)

∆bi ≥ pi − bi, ∀i ∈ N (4)

∆bi ≥ bi − pi, ∀i ∈ N (5)

ei ≤ sj + M(1− xij), ∀i, j ∈ N, i 6= j (6)

pi + li ≤ pj + M(1− yij), ∀i, j ∈ N, i 6= j (7)

xij + xji + yij + yji ≥ 1, ∀i, j ∈ N, i 6= j (8)

Lci ≤ Rci, ∀i ∈ N (9)

ci = Rci − Lci + 1, ∀i ∈ N (10)

Rci ≤ Lcj + M(1− yij) + Mxij + Mxji, ∀i, j ∈ N, i 6= j (11)

si ≥ ai, ∀i ∈ N (12)

pi + li ≤ L, ∀i ∈ N (13)

ci ≤ qmax
i , ∀i ∈ N (14)

ci ≥ qmin
i , ∀i ∈ N (15)

Rci ≤ g, ∀i ∈ N (16)

xij, yij ∈ {0, 1}, ∀i, j ∈ N (17)

si, ei, pi, ci, Rci, Lci ∈ {0, 1, · · · , ∞}, ∀i ∈ N (18)

The objective function (1) minimizes the port stay time and the delayed departure time,
whose component for each vessel are: (i) the waiting time and handling time of vessels, (ii)
the delayed departure time when the vessel is delayed to leave the port.

Constraint set (2) ensures that every vessel receives required QC hours considering
productivity losses by QC interference and the chosen berthing position. It is worth noting
that the constraint (2) in this paper is different from the constraint in [22]. They assume that
the handling time of vessels is only related to the number of QCs. Considering the realistic
scenario, the model also considers the impacts of berthing preference and productivity
lost by QC interference. Constraint set (3) describes that the departure time of vessel is
determined by the berthing start time and the handling time of vessel. Constraints (4) and
(5) determine the deviations of the berthing position from the desired berthing position.
Constraints (6)–(8) prevent any two vessels from overlapping in the space-time-diagram.
Constraints (9) and (10) indicate the relationship of the specific number of QCs assigned to
the same vessel. Constraint (11) means that for any two ships being served at the same time,
the assigned QCs cannot cross each other. Constraints (12) indicate the vessels berthing
after their arrival time. Constraints (13)–(18) are types and boundaries of each variable.

3. Methodology

This section describes the solution method for the BACASP. The framework of solution
method is presented in Section 3.1. The main techniques of the method are described in
Section 3.2.
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3.1. Framework of Solution Method

LNS is a neighborhood search algorithm with strong global search ability, which
is widely used in solving discrete optimization problems, and has achieved excellent
performance in solving discrete problems [36,37]. In this study, a discretization strategy [6]
is applied to divide the continuous berth into discrete segments, which transforms the
BACASP into a discrete combinatorial optimization problem, and is further solved by the
LNS algorithm. The frame of the LNS is shown in Algorithm 1.

The BACASP optimal solution needs to determine the order of services at the berths
and the QCs allocated to the vessels. Let K be the set of berths after discretization and |K|
denote the total number of berths (line 1 in Algorithm 1). For a particular berth k, let Ps

k and

P f
k be the left and right boundaries of berth k, respectively. We define a solution structure

as follows in function (19):

X =


S1(B1) S1(B2) · · · S1(Bn1)
S2(B1) S2(B2) · · · S2(Bn2)
...

...
...

...
S|K|(B1) S|K|(B2) · · · S|K|(Bn|K|)

 (19)

The columns of the solution structure represent the berth, and the rows represent
the service order of vessels. X0, Xnow, Xaccept and Xbest are the initial solution, the current
solution, the accepted solution and the best solution, respectively. Set term Sk(Bu) denotes
the u-th served vessel on berth k and the number of QCs assigned to the vessel. Hitherto, we
prove that the optimal berthing position, berthing start time and number of cranes assigned
to each vessel can be obtained as long as the solution structure Sk(Bu) is determined.

The berthing start time sB1 of the first vessel on the berth is set as the arrival time of the
vessel, and sBu of subsequent vessels must be later than the departure time of the previous
one. The berthing start time of the vessel on berth k is:

sBu =

{
aBu , u = 1

max(aBu , aBu−1 + hBu−1), 1 < u ≤ nk
(20)

Destroy operators remove τ vessels from the current solution structure (line 5 in
Algorithm 1). τ is a random value in [1, N ·Φ] where ϕ controls the number of vessels to
be removed (%). A new solution structure can be obtained by implementing the destroy
(Z−) and repair (R+) operations (line 6 in Algorithm 1). There is conflict among vessels
on different berths due to the continuity of the berths. The BCB strategy is used to adjust
the infeasible solutions under the berthing sequence to form new solutions (line 7 in
Algorithm 1). Afterwards, the QC allocation algorithm proposed by [22] is adopted to
achieve optimal QC assignment results (line 8 in Algorithm 1). The basic idea is to first
determine the number of QCs allocated to the vessels, and then the specific QCs are
allocated in the order from left to right of the berthing position of the vessels. These
processes are repeated until the stop criteria is met. The details of destroy and repair
operators in Algorithm 1 are further discussed in the following subsections.
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Algorithm 1: Framework of the LNS algorithm.

Input: Parameters of LNS
Output: Xbest

1 Determine the number of berth segments |K|, and Ps
k , P f

k
2 Generate an initial solution X0
3 Xbest ← X0, Xaccept ← X0, Xnow ← X0
4 While the stop criteria are not met do
5 Determine τ = Random[1, N ·Φ]
6 Xnow = R+(Z−(Xnow))
7 Adjust Xnow using the strategy BCB
8 Cranes assignment algorithm
9 Acceptance criteria for solution
10 End while

3.2. Main Technique
3.2.1. Discretization Strategy

The discretization strategy was originally proposed by [6] to solve the BAP. This work
extends the discretization strategy solution of BAP to address and solve the BACASP. The
discretization strategy we proposed is designed to divide the continuous berth into discrete
segments, and convert the BACASP to a discrete combinatorial optimization problem,
which is efficiently solved by the proposed LNS. Figure 2a is a schematic diagram of the
discretized berths. The short solid line divides the berths and the dotted line represents
the berth boundary, indicating such as k, k− 1, and k + 1. Each berth shares part of the
adjacent berths.

…

V3

V4

V2

k − 1 k k +1

V1

…

𝑃𝑘
𝑠 𝑃𝑘

𝑓

Berth

Time

4

(1, k, 1)

(3, k, 2)

(4, k, 3)

(a) Discretized berths (b) the berthing sequence of berth 𝑘

O

4

3

1

Figure 2. Diagram of discrete berths and berthing order. (a) Description of the discretized berths.
(b) Description of the berthing sequence of berth k.

Take berth k as an example. Berth k occupies the right half of the left berth and the
left half of the right berth. The discretization strategy divides the berth segment, and the
continuous docking of vessels has no effect. Figure 2b is the berthing sequence of berth k.

The discretization strategy has an impact on the final solution. There are some limita-
tions in discretization strategy. The relationship between the length of discrete berths and
vessels affects the scheduling solutions. If the discrete berth is too long, the occupancy rate
of the berth will be reduced. If the discrete berth is too short, the discretization strategy
will caused a fragmentation of the decision space. All berth segments should allow all
types of vessels to dock during the course of the algorithm. Since the berths share a part of
the adjacent berths, vessels allocated to different berths may violate the space constraints.
Therefore, a constraint-handling strategy is proposed in this paper to solve this problem.
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3.2.2. Destroy Operators

(1) Related destroy operator

The related destroy operator was first proposed in [38] for vehicle routing problem
to remove similar nodes. In this study, the degree of similarity between vessel i and j is
computed through a relatedness function R(i, j), where a higher value corresponds to less
similar vessels. Since the arrival time and berthing position of the vessel have a greater
impact on the objective value, the following Equation (21) is constructed.

R(i, j) = δ · |ai − aj|+ η · |pi − pj| (21)

where δ and η are the correlation coefficients of the arrival time and berthing position of
the vessel, respectively. The operator randomly destroys a vessel i, calculates the R(i, i′)
(i′ ∈ current solution X), and destroys vessel j with the maximum value of the relatedness
function. This procedure is repeated until Φ vessels are removed.

(2) Random destroy operator

The random destroy operator removes τ vessels randomly from the current solution.
This operator expands the range of neighborhood search and avoids the LNS sitting at the
local optimum.

3.2.3. Repair Operators

(1) Deep greedy repair operator

The deep greedy repair operator was proposed by [39] for solving vehicle routing
problems. In this study, we propose an operator suitable for this problem based on the
idea of deep greedy repair operator. The deep greedy repair operator intends to repair the
vessels to the positions with minimal objective value increment among all feasible positions.
Let Rp be the set of vessels that have been destroyed and X+i be the solution with vessel i
reinserted. Let Ob(X) be the objective value of current solution X. The implementation of
this operator with respect to the BACASP is described in the following three steps. Firstly,
examine whether set Rp is empty and where the vessel (that belongs to Rp) can be repaired.
For each vessel i ∈ Rp, the deep greedy repair operator calculates and records its best
insertion position pi,1 with the lowest cost O1

b(X+i, pi,1) (line 2 in Algorithm 2). Afterwards,
vessel j = argminj∈Rp

O1
b(X+j, pj,1) is inserted into its best insertion position pj,1 of X. This

procedure is repeated until Rp is empty.

Algorithm 2: Deep greedy repair operator.

Input: The set of vessels removed Rp
Output: The current solution X
1 While Rp 6=∅ do

2 Calculate O1
b(X+i, pi,1), O2

b(X+i, pi,2), · · · of structure X+i with vessel i
inserted to position pi,l

3
Insert vessel j = argminj∈Rp

O1
b(X+j, pj,1) to its best insertion position

pj,1 into X
4 Remove vessel j from Rp
5 End while

(2) Slack sorted repair operator

Mauri et al. [35] proposed the sorted greedy operator, in which vessels berthing in
the same berth can only be served in a certain order, which may lead the search trapped
in local optimum. As such, we propose the slack sorted repair operator considering the
QC capacity demand and the remaining time to the due time of vessel. This operator first
sorts the vessels in set Rp according to the slack value Vi in ascending order. Then, given
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the current solution, the operator repairs the first vessel into its best position in every berth.
We define Vi as follows:

Vi = mi/(di − ai) (22)

where mi is required QC capacity of vessel i, and di − ai is the difference between the latest
departure time and the arrival time of vessel. The handling time of the vessel is related to
mi, and a larger mi indicates that the vessel needs longer time to departure.

3.2.4. BCB Strategy

Due to the limitations of the discretization strategy, the vessel allocation to these
positions may not always satisfy the spatial constraints when the distances between the
berthing positions are too small. Therefore, the BCB strategy is proposed in this paper to
solve this problem.

We use LNS to solve the model combining the constraint handling strategy, which
include the BCB strategy. The BCB strategy can solve the infeasible solutions caused by
discretization strategy and reduce the waste of berths. Let Ek be the set of unadjusted
vessels on berth k. Let k′ be the berth on the left of berth k. The specific steps of BCB strategy
are as follows:

Step 1: Select the leftmost berth of the coastline and mark it as k.
Step 2: If Ek 6= ∅, continue; Otherwise, go to Step 7.
Step 3: Find the first vessel i ∈ Ek and determine the berthing position pi of vessel i.
Step 4: If vessel i overlaps with vessel j (j ∈ Ek or j ∈ Ek′ , and j 6= i), continue;

otherwise, go to Step 6.
Step 5: Eliminate the overlap of vessel i with j and return to Step 4.
Step 6: Remove vessel i from Ek and return to Step 2.
Step 7: If berth k is the rightmost berth of the coastline, stop; Otherwise, Continue.
Step 8: k = k + 1. Return to Step 2.
Figure 3 shows the setting method of berthing position. The berthing position is

determined in Step 3. Assume that Vessel 1 is at the berth k and b1 is the best berthing
position of vessel 1. If b1 < Ps

k , then p1 = Ps
k , as shown in Figure 3a. If Ps

k ≤ b1 ≤ P f
k and

b1 + l1 ≤ P f
k , then p1 = b1, as shown in Figure 3b. Otherwise, p1 = P f

k − l1, as shown in
Figure 3c.

𝑃𝑘
𝑠

Time

V1

b1

(a) (b) (c)

V1

𝑃𝑘
𝑠

𝑃𝑘
𝑓

V1

b1

Time Time

Berth𝑃𝑘
𝑓𝑃𝑘

𝑓
𝑃𝑘
𝑠

k − 1 k k + 1

b1

k − 1 k k + 1 k − 1 k k + 1

O
OO

Figure 3. The setting method of berthing position.

The overlap can be eliminated by delaying the berthing start time of the vessel and
pushing back the berthing position of the vessel, and the influence of the two methods on
the value of the objective function is calculated. Finally, the BCB strategy compares the
objective value increments and chooses a way to make the increments smaller to eliminate
the overlap.
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3.2.5. Acceptance Criteria

With respect to the acceptance criteria (line 9 in Algorithm 1), a commonly used
acceptance criteria (line 9 in Algorithm 1) in SA is applied in this paper [35]. Specifically, for
a new solution X′, a neighbor solution X with smaller objective value (Ob(X′) < Ob(X))
is accepted, and with probability e(Ob(X)−Ob(X′))/T otherwise. The temperature T starts
at Tstart and decreased by ∆T in each iteration and resets to Tstart when the freezing
temperature Tend is reached.

4. Numerical Experiments
4.1. Generation of Instances

Two sets of problem instances are employed in this study for computational experi-
ments. The first set of instances is the real data of 21 vessels reported by [22] at the Tianjin
Five Continents International Container Terminal in Tianjin during a 200-h planning period.
The terminal has a berth 1200 m long with 12 QCs. This set consists of 7 instances with
different scales, denoted as i01–i07, and the numbers of vessels are 3, 6, 9, 12, 15, 18, and 21,
respectively.

At present, there is no public large-scale example set of the BACASP. The second
set of instances include vessels following the generation rules proposed by Türkoğulları
et al. [22]. We generate the number of vessels N from 24 to 60. The length li and the QC
capacity demand mi of each vessel i are generated from uniform distribution U(3, 8) and
U(10, 120). The desired berthing position of vessel is generated by uniform distributions
U(1, L− li + 1). The length of the vessel directly determines qmin

i and qmax
i . Vessels with

length of 3, 4, 5, 6, 7, and 8 correspond to their qmin
i and qmax

i in the range [2, 2], [2, 3], [2, 4],
[3, 5], [3, 6], and [3, 7]. The due time is generated according to si +

⌈
mi/qmax

i
⌉
+ U(5, 15)

where
⌈
mi/qmax

i
⌉

is rounded up to the nearest integer (mi/qmax
i ). Table 2 shows the means

and variances of the Parameters of the sample.

Table 2. The means and variances of the Parameter of the sample.

Parameter li mi qmin
i qmax

i bi ai di

Mean 5.4 66.4 2.4 4.4 10.6 294.7 320.6
Variance 1.9 1119.6 0.2 1.9 30.3 26,827.8 26,934.1

All the experimental study is coded in C language and carried out on a computer with
a 3.00 GHz CPU and 8 GB RAM. For each instance, the analysis is run for 20 consecu-
tive times.

4.2. Parameter Setting

All parameters are used within the appropriate range, and extensive experiments
based on the orthogonal design have been performed on different parameter combinations.
Table 3 shows the parameters of the LNS algorithm, which include α, β, Φ, Nt, Tstart, Tend
and ∆T . When the parameter changes within a range, and the most appropriate quantity
is selected according to the influence of the variation of the parameter combination on
the solution. Afterwards, a certain parameter combination is selected based on the best
average result of the testing instances. All experiments are run for 20 consecutive times with
different randomness seeds with the same parameter combination, as shown in Table 3.
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Table 3. Parameters of the LNS algorithm.

Parameter Description Range Tuned Value

α Interference exponent for the cranes (0.9, 0.8) 0.9
β Berth deviation factor (0.01, 0.02) 0.01
Φ The number of vessels to be removed (0.3, 0.35, 0.4) 0.3
Nt Number of iterations (2000, 5000, 10,000) 5000

Tstart Start temperature 1000 1000
Tend Freezing temperature 0.01 0.01
∆T Cooling rate 0.975 0.975

4.3. Computational Results on the First Set of Instances
4.3.1. Analysis of Operators

To illustrate the performance of slack sorted repair operator, we increase pairwise
combinations of different removal and insertion operators and the results are shown in
Figures 4 and 5. Figure 4 is the average and the best objective values of the solution obtained
by different combinations of destroy–repair operators. Figure 5 depicts the standard
deviation and CPU time of the solution obtained by different combinations of destroy–
repair operators. Different operators are represented by the related destroy operator (Re),
random destroy operator (Ra), deep greedy repair operator (Gr) and slack sorted repair
operator (Sl). Figure 4 shows that the Ra-Sl combination obtains the best average and best
values in most cases. Figure 5 The standard deviation shows an increasing trend with
the increase of vessels’ size. In general, the value of the standard deviation of the Re-Gr
combination is the largest, and the value of the standard deviation of the Ra-Sl combination
is the smallest. The CPU time in Figure 5 shows that the combinations using Sl operator
have shorter running time than the combinations using Gr operator. For scenario i07, the
CPU time of the Re-Gr operator is 79.6 s, and the CPU time of the Re-Sl operator is 31.9 s.
Compared with the Gr operator, the Sl operator saves ((79.6− 31.9)/79.6)× 100% = 59.9%
of the computing time. The reason is that the Sl operator can obtain the insertion order of the
vessels by calculating the slack variables of the removed vessels. The Gr operator calculates
the insertion cost of the removed vessels, and only obtains the currently best inserted
vessels, and then continues the above calculation process until the insertion sequence of all
vessels is completed.

0
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200

250

300

350

400

450

i01 i02 i03 i04 i05 i06 i07

Average

Instance

Ra-Sl Ra-Gr Re-Gr Re-Sl 最好值Best value

Figure 4. Average and the best objective values obtained by different combinations of destroy–
repair operators.
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Figure 5. Standard deviation and CPU times obtained by different combinations of destroy–
repair operators.

In Figure 4, the difference among the best solutions obtained by different operator
combinations is very small. To further investigate the difference between operator combina-
tions, we implement them, respectively, based on the observed value obtained by wilcoxon
rank sum (WRS) test [40]. At the significance level of 5%, this method detects whether there
is a significant difference between the two groups. If yes, it indicates the bilateral detection
probability p < 0.05, rejects the null hypothesis, and the observed value h returns 1; If not, 0
is returned. Table 4 shows the WRS test of different combinatorial operators, where WRS1,
WRS2 and WRS3 are the rank sum statistics of operators Ra-Sl and Ra-Gr, Re-Sl and Re-Gr,
respectively. The results of Ra-Sl and Ra-Gr are significantly different in more than half of
the examples, the results of Ra-Sl and Re-Sl are significantly different in all examples, and
the results of Ra-Sl and Re-Gr are significantly different in most examples.

Table 4. The WRS test of different combinatorial operators.

Instances
WRS1 WRS2 WRS3

p h p h p h

i01 3.11 × 10−4 1 1.08× 10−2 1 5.88× 10−2 0
i02 7.39× 10−1 0 9.90× 10−5 1 2.54× 10−4 1
i03 5.78× 10−2 0 1.83× 10−2 1 1.32× 10−1 0
i04 5.18× 10−2 0 6.24× 10−4 1 8.70× 10−5 1
i05 4.77× 10−3 1 9.96× 10−3 1 8.70× 10−5 1
i06 6.38× 10−3 1 8.60× 10−5 1 8.80× 10−5 1
i07 3.48× 10−3 1 1.31× 10−4 1 1.03× 10−4 1

4.3.2. Analysis of BCB Strategy

Figure 6 shows the comparison results obtained under the BCB strategy and time-
adjustment (TA) strategy, where the BCB strategy performs better in mean and variance
overall. The time-adjustment strategy is lack of flexibility and cannot get better results in
the large or complex scale instances. The BCB strategy combines adjustment of berthing
start time and berthing position to ensure the stability and efficiency of the algorithm.
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Figure 6. The results of BCB and time adjustment strategy.

4.3.3. Analysis of LNS Algorithm

In order to confirm the merit of the proposed LNS for solving the BACASP, the results
obtained by the LNS are compared with those obtained in Türkoğulları et al. [22], where
the necessary and sufficient condition is proposed for generating an optimal solution of the
BACASP, which is obtained by commercial solver CPLEX 12.2. In case this condition is not
satisfied, the cutting plane algorithm is used until the condition holds.

The handling time of vessels in Türkoğulları et al. [22] is obtained by dividing the
QC capacity demand of each vessel according to the number of cranes assigned, which is
rounded up to the nearest integer. The costs attracted by vessels’ deviations from their best
berthing positions and the impacts of interference among QCs have not been included in
the handling time. Instead, the offset of the berthing position is considered in the objective
function. To compare with the quality of solutions presented in Türkoğulları et al. [22],
the handling time and objective in this set of instances are set to be the same as those in
Türkoğulları et al. [22]. Specifically, we set parameters α and β in constraint (2) as 1 and 0,
respectively, and the objective function then written as:

min
n

∑
i=0
{γ1|si − ai|+ γ2|pi − bi|+ γ3max(0, ai + hi − 1− di)} (23)

The objective function contains the cost of waiting time of berthing, deviation from the
desired berthing position and delayed departures of vessels. The corresponding coefficients
γ1, γ2, and γ3 are 1000, 1000 and 2000, respectively.

Table 5 shows the comparison results of the LNS algorithm and CPLEX solver for
solving the BACASP. The “Best”, “Average” and “RT” in Table 5 denote the best objective
value, average objective value and the average CPU time for 20 consecutive runs obtained
by the LNS. The table shows that the LNS can solve all instances to optimality. The results
also infer that the proposed LNS has good stability. For the instances i06 and i07, the
method proposed in Türkoğulları et al. [22] is not able to obtain a feasible solution of the
BACASP within the specified time (76,110 s) by CPLEX solver. As a result, the BACASP
is relaxed to a BACAP, which is optimally solved by CPLEX. Afterwards, Türkoğulları
et al. [22] checked the optimal solutions of the relaxed BACAP in i06 and i07, and found the
solutions in aforementioned condition. In contrast, the proposed LNS can find the optimal
solutions for all instances without relaxation within 41 s.
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Table 5. Comparison results of the LNS algorithm and CPLEX solver for solving the BACASP.

Instance
Türkoğulları et al. [22] LNS

Best CPLEX RT(s) Cutting Plane Algorithm RT(s) Best Average RT(s)

i01 2000 372 11.3 2000 2000 0.55
i02 21,000 53,689 35.3 21,000 21,000 2.05
i03 21,000 21,383 40.3 21,000 21,000 4.85
i04 21,000 57,818 44.9 21,000 21,000 8.40
i05 35,000 76,110 83.5 35,000 40,750 15.35
i06 43,000 – 105.3 43,000 44,500 25.60
i07 43,000 – 89.3 43,000 45,200 40.25

4.4. Computational Results on the Second Set of Instances

Due to the complexity of BACASP, exact methods are difficult to find the optimal in
the efficient time, especially for dealing with a large-scale problem. Traditionally, BACASP
is regarded as a continuous and discrete hybrid optimization problem, which is solved
by the evolutionary algorithms, such as GA [33]. The genetic algorithm encodes the
solution, interacts with the encoded information of different solutions, and solves the
problem by combining the constraint processing method. Among them, the repair method
(GA-RM) and the penalty function (GA-PF) strategy are used widely. GA-RM delays the
berthing start time of overlapping vessels to get a feasible solution. The GA-PF constructs a
fitness function that balances the objective function and constraints violation to obtain a
feasible solution.

In order to further verify the discretization strategy and the performance of LNS
algorithm in solving large-scale BACASP, the GA-RM, GA-PF and LNS algorithms are
tested wiht the second set of examples, respectively. The results of the two algorithms are
summarized in Table 6, where “BE”, “ME”, “SD” and “FS” donate the best objective value,
the mean, the standard deviation of the objective value and the times feasible solutions are
obtained in the 20 runs, respectively. When the scale of vessels is less than 40, GA-PF can
obtain better solutions than GA-RM. When the number of vessels reaches 40, the quality of
the solution obtained by GA-PF decreases significantly. The “SD” of GA-PF is the largest
among all instances. The GA-PF has the advantage of high flexibility but disadvantage of
difficulties of the parameters of the objective and the penalty. The penalty function of the
GA-PF cannot effectively solve large-scale cases. The GA-RM has high feasible solution
search efficiency, but there is a large systematic deviation in the search process. The average
solution, the best solution and the standard deviation of the objective function obtained
by the LNS algorithm are better than those obtained by GA-RM and GA-PF. Although
this paper considers a few factors such as QCs interference and berthing deviation in the
handling time, the LNS algorithm satisfies all constraints and obtains a feasible solution
in each operation. In comparison, GA-PF cannot often obtain feasible solutions while the
proposed method can.

Table 6. The results of LNS algorithm and GA.

Instance N
LNS GA-RM GA-PF

BE ME SD FS BE ME SD FS BE ME SD FS

i08 24 375 379.0 3.8 20 547 581.4 30.9 20 504 692.5 120.6 16
i09 28 493 497.8 4.1 20 739 790.7 33.4 20 573 822.4 133.6 13
i10 32 563 570.7 4.1 20 855 888.7 36.2 20 676 897.6 133.5 16
i11 36 618 626.5 5.1 20 922 1008.6 80.2 20 790 936.5 137.0 9
i12 40 898 913.2 6.3 20 980 1060.2 63.0 20 1774 2278.4 308.3 10
i13 50 1239 1278.8 17.9 20 1448 1501.2 42.0 20 1981 2673.3 550.1 19
i14 60 1482 1535.8 24.7 20 1898 1993.2 71.9 20 2073 3249.6 735.3 10
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The BACASP allocation scheme obtained by the above method can reflect the stay
times of vessels, delayed departure times of vessels and the berth occupancy rate. The
objective value of the model includes two parts: the total stay time and the delayed
departure time of vessels. Taking the best solution obtained by LNS and GA-RM as an
example. Table 7 shows the statistics of the vessel’s stay time in port and delayed departure
time, as well as the difference of stay time ∆st and the difference of delayed departure time
∆dt. The LNS algorithm can effectively reduce the stay time of vessels in port for 6 out of 7
instances. Furthermore, the LNS algorithm reduces the delayed departure time of vessels
in all cases. In instance i08, the total times at port and delayed times of the 24 vessels
decreased by 117 h and 72 h, respectively.

Table 7. The statistical results of stay time and delayed departure time of vessels.

Instance N
LNS GA-RM

∆st ∆dtStay
Time

Delayed
Departure Time RT(s) Stay

Time
Delayed

Departure Time RT(s)

i08 24 362 13 51.55 479 85 82.3 117 72
i09 28 480 13 84.1 626 113 127.1 146 100
i10 32 550 13 134.25 722 133 165.6 172 120
i11 36 605 13 213.9 783 139 232.1 178 126
i12 40 883 15 295.8 844 136 293.7 −39 121
i13 50 1167 72 736.15 1191 257 555.2 24 185
i14 60 1406 76 1500.8 1535 363 876.9 129 287

Berth occupancy rate reflects the degree of occupancy of vessels at berths. The calcula-
tion of the berth occupancy rate in this paper is as follows:

BOR =
∑n

i=0(Ocli ×Octi)

L× T
(24)

where BOR is berth occupancy rate. Ocli and Octi are the lengths of berths occupied by
vessel i and occupied time of vessel i. L is the length of berth and T is the planning period.

The berth occupancy rate can be derived from information such as berthing time,
start time, vessel length and handling time of the solution. As shown in Figure 7, the LNS
algorithm can effectively improve the berth occupancy rate. Due to the limited resources of
continuous berths and QCs, there are fluctuations in berth occupancy. Figure 8 shows the
solution obtained by the LNS for the instance i13. It can be seen that the resources of the
port are effectively utilized.
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34.86% 34.80%
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Figure 7. Comparison of the berth occupancy rate of the LNS and GA-RM.
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Figure 8. Best solution obtained by the LNS for instance i13.

5. Conclusions

From a practical point of view, the BACASP allocation solution solved in this paper
realizes the full utilization of port berth and QC resources on the premise of ensuring
the service level and idleness reduction, which is conducive to avoiding ship congestion,
improving the competitiveness of the port and exerting the maximum economic benefits
for ports.

In this paper, the BACASP considers the non-crossing constraints of QCs, the mutual
interference between QCs and the impact of berthing position on handling time. The final
solution meets all constraints, and the allocation scheme is close to real-time operations.

The effect of different operator combinations has significant differences in solving
the BACASP within the LNS algorithm in this work. Compared with the deep greedy
repair operator, slack sorted repair operator can obtain higher-quality solutions in a shorter
time. From the CPU time with different operator combinations in Section 4.3.1. The slack
sorted repair operator saves 59.9% of the computing time. In this paper, the BACASP is
transformed into a discrete optimization problem by a new discretization strategy. The
effective search of solution can be obtained by the LNS with the BCB strategy. Compared
with the traditional continuous optimization combined with GA, the proposed method
is more effective and can ensure the efficiency and stability of the solution. In addition,
the berth and quay crane allocation scheme obtained by the LNS reduces the stay time of
vessels and improves the occupancy rate of berth resources.

This study has opened up several directions for future research. First, this study
mainly focuses on the BACASP in a certain environment, but there are some uncertain
factors in port such as unscheduled vessels and breakdown of QCs, which deserves further
investigations. Second, although the LNS has been confirmed to be able to achieve high-
quality solutions for the BACASP, the gap between the obtained solution and the optimal
solution is unknown. As such, it will be interesting to develop accurate and efficient exact
methods, such as branch-and-price and branch-and-cut, to achieve optimal solutions for
the BACASP.
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Abbreviations
The following abbreviations are used in this manuscript:

BACAP Berth Allocation and Crane Assignment Problem
BACASP Berth Allocation and Crane Assignment Specific Problem
BCB Backtracking comparison-based
LNS Large neighborhood search
Re Related destroy operator
Ra Random destroy operator
De Deep greedy repair operator
Sl Slack sorted repair operator
QC Quay crane
N Set of vessels, the number of vessels n = |N|
G Set of QCs, the number of quay cranes g = |G|
L Length of the quay given as a multitude of 1-m sections
ai Expected time of arrival of vessel i ∈ N
li Length of vessel i ∈ N
di Due time of vessel i ∈ N.
bi Desired berthing position of vessel i ∈ N
mi Quay crane hours demand of vessel i ∈ N
qmin

i Lower bound on the number of QCs that can serve vessel i ∈ N simultaneously
qmax

i Upper bound on the number of QCs that can serve vessel i ∈ N simultaneously
α Interference exponent of cranes.
β Berth deviation factor.
M A large positive number
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22. Türkoğulları, Y.B.; Taşkın, Z.C.; Aras, N.; Altınel, İ.K. Optimal berth allocation and time-invariant quay crane assignment in
container terminals. Eur. J. Oper. Res. 2014, 235, 88–101. [CrossRef]

23. Agra, A.; Oliveira, M. MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem.
Eur. J. Oper. Res. 2018, 264, 138–148. [CrossRef]

24. Thanos, E.; Toffolo, T.; Santos, H.G.; Vancroonenburg, W.; Berghe, G.V. The tactical berth allocation problem with time-variant
specific quay crane assignments. Comput. Ind. Eng. 2021, 155, 107168. [CrossRef]

25. Bouzekri, H.; Alpan, G.; Giard, V. Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem
in tidal ports with multiple quays. Eur. J. Oper. Res. 2021, 293, 892–909. [CrossRef]

26. Ayvaz, D.; Topcuoglu, H.R.; Gurgen, F. Performance evaluation of evolutionary heuristics in dynamic environments. Eur. J. Oper.
Res. 2012, 37, 130–144. [CrossRef]

27. Duan, J.; Liu, Y.; Zhang, Q.; Qin, J. Combined Configuration of Container Terminal Berth and Quay Crane considering Carbon
Cost. Math. Probl. Eng. 2021, 2021, 6043846. [CrossRef]

28. Ji, B.; Yuan, X.; Yuan, Y. Modified NSGA-II for solving continuous berth allocation problem: Using multiobjective constraint-
handling strategy. IEEE Trans. Cybern. 2017, 47, 2885–2895. [CrossRef]

29. Han, X.L.; Lu, Z.Q.; Xi, L.F. A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic
arrival and handling time. Eur. J. Oper. Res. 2010, 207, 1327–1340. [CrossRef]

30. Zhang, X.; Sun, B.; Sun, J.; Gou, Z. The berth and quay cranes integrated scheduling based on redundancy policy. In Proceedings
of the 2014 33rd Chinese Control Conference (CCC), Nanjing, China, 28–30 July 2014; Volume 2014, pp. 7595–7600.

31. Rodriguez-Molins, M.; Ingolotti, L.; Barber, F.; Salido, M.A.; Sierra, M.R.; Puente, J. A genetic algorithm for robust berth allocation
and quay crane assignment. Prog. Artif. Intell. 2014, 2, 177–192. [CrossRef]

32. Shang, X.T.; Cao, J.X.; Ren, J. A robust optimization approach to the integrated berth allocation and quay crane assignment
problem. Transp. Res. Part E Logist. Transp. Rev. 2016, 94, 44–65. [CrossRef]

33. Correcher, J.F.; Alvarez-Valdes, R. A biased random-key genetic algorithm for the time-invariant berth allocation and quay crane
assignment problem. Expert Syst. Appl. 2017, 89, 112–128. [CrossRef]

34. Chen, L.; Shen, J.; Qin, L.; Chen, H. An improved ant colony algorithm in continuous optimization. J. Syst. Sci. Syst. Eng. 2003, 12,
224–235. [CrossRef]

35. Mauri, G.R.; Ribeiro, G.M.; Lorena, L.A.N.; Laporte, G. An adaptive large neighborhood search for the discrete and continuous
berth allocation problem. Comput. Oper. Res. 2016, 70, 140–154. [CrossRef]

36. Pacino, D.; Van Hentenryck, P. Large neighborhood search and adaptive randomized decompositions for flexible jobshop
scheduling. In Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22
July 2011; Volume 102, pp. 1997–2002.

37. Grangier, P.; Gendreau, M.; Lehuédé, F.; Rousseau, L.M. A matheuristic based on large neighborhood search for the vehicle
routing problem with cross-docking. Comput. Oper. Res. 2017, 84, 116–126. [CrossRef]

38. Shaw, P. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing Problems. 1997, pp. 1–12. Available
online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.1273&rep=rep1&type=pdf (accessed on 5 March 2022).

39. Ropke, S.; Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows
Transp. Sci. 2006, 40, 455–472. [CrossRef]

40. Chakraborti, S.; Van der Laan, P.; Bakir, S.T. Nonparametric control charts: An overview and some results. J. Qual. Technol. 2001,
33, 304–315. [CrossRef]

http://dx.doi.org/10.1016/j.tre.2008.03.001
http://dx.doi.org/10.1007/s10489-013-0462-4
http://dx.doi.org/10.1016/j.aei.2016.04.006
http://dx.doi.org/10.1016/j.tre.2017.06.013
http://dx.doi.org/10.1016/j.aei.2021.101252
http://dx.doi.org/10.1016/j.cie.2009.08.002
http://dx.doi.org/10.1016/j.ejor.2013.10.015
http://dx.doi.org/10.1016/j.ejor.2017.05.040
http://dx.doi.org/10.1016/j.cie.2021.107168
http://dx.doi.org/10.1016/j.ejor.2020.12.056
http://dx.doi.org/10.1007/s10489-011-0317-9
http://dx.doi.org/10.1155/2021/6043846
http://dx.doi.org/10.1109/TCYB.2017.2669334
http://dx.doi.org/10.1016/j.ejor.2010.07.018
http://dx.doi.org/10.1007/s13748-014-0056-3
http://dx.doi.org/10.1016/j.tre.2016.06.011
http://dx.doi.org/10.1016/j.eswa.2017.07.028
http://dx.doi.org/10.1007/s11518-006-0132-8
http://dx.doi.org/10.1016/j.cor.2016.01.002
http://dx.doi.org/10.1016/j.cor.2017.03.004
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.1273&rep=rep1&type=pdf
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1080/00224065.2001.11980081

	Introduction
	Problem Description
	Notation
	Model of BACASP

	Methodology
	Framework of Solution Method
	Main Technique
	Discretization Strategy
	Destroy Operators
	Repair Operators
	BCB Strategy
	Acceptance Criteria


	Numerical Experiments
	Generation of Instances
	Parameter Setting
	Computational Results on the First Set of Instances
	Analysis of Operators
	Analysis of BCB Strategy
	Analysis of LNS Algorithm

	Computational Results on the Second Set of Instances

	Conclusions
	References

