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Discretized Approaches to Schematization∗

Maarten Löffler† Wouter Meulemans‡

(a) (b) (c) (d)

Figure 1: Discretized schematization. (a) Simple polygon P to be schematized (Switzerland). (b) Grid graph G
placed on P . (c) Simple cycle S in G that best resembles P . (d) S is a rectilinear schematization of P .

Abstract

For both the Fréchet distance and the symmetric dif-
ference, we show that finding the simple polygon S re-
stricted to a grid that best resembles a simple polygon
P is NP-complete, even if: (1) we require that S and P
have equal area; (2) we require turns to occur in a spec-
ified sequence for the Fréchet distance; (3) we permit S
to have holes for the symmetric difference.

1 Introduction

Cartographic maps are an important tool for explor-
ing, analyzing and communicating data in their geo-
graphic context. Effective maps show information as
prominently as possible. In schematic maps, abstrac-
tion is taken to “extreme” levels, representing complex
geographic elements with only few line segments. This
highlights the primary aspects and avoids an “illusion of
accuracy” [15]: the schematic appearance is a visual cue
of distortion, imprecision or uncertainty. However, the
low complexity must be balanced with recognizability.

Schematic maps tend to be stylized by constraining
the permitted geometry. Orientations of line segments
are often restricted to a small set C. The typical exam-
ple is a schematic transit map, in which all segments are
horizontal, vertical or a 45-degree diagonal. A central
problem in schematization is the following: given a sim-
ple polygon P , compute a simple C-oriented polygon S
with low complexity and high resemblance to P .

Here we investigate a discretized approach to schema-
tization, characterized by placing a grid graph G over
P that models our geometric style and requiring the
boundary of S to coincide with a simple cycle in G
(Fig. 1). Though it restricts the solution space, this
approach readily offers some benefits.

∗An early version of this work appeared on arXiv [13].
†Utrecht University, the Netherlands, m.loffler@uu.nl
‡Eindhoven University of Technology, the Netherlands,
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• It can easily model a variety of constraints, even
combining different geometry types.

• It promotes the use of collinear edges and provides
a uniformity of edge lengths.

• Simplicity enforces a minimal width for narrow
strips in P , leading to automated exaggeration—
a main cartographic operator [16] for avoiding an
undesirable visual collapse (see Fig. 2).

• It makes areas easy to assess [5] or subdivide [14].

Contributions. Focusing on grid graphs (a grid of unit
squares), we consider two similarity metrics: the Fréchet
distance and the symmetric difference. In Section 3
we prove that the problem is NP-complete under the
Fréchet distance, even if we require area preservation
and restrict valid solutions to those with a specific se-
quence of left and right turns. In Section 4 we prove that
the problem is NP-complete also under the symmetric
difference, even if we require area preservation and we
permit the solution to be a polygon with holes. Though
the problems are similar in setup, the very different na-
tures of the metrics require different reductions.

ε

Figure 2: Discretization with simplicity (mid) exagger-
ates the narrow strip in Thailand (left). Result with a
visual collapse, computed using [4] (right).
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Related work. We highlight the most relevant related
work; for a more complete treatment refer to [13]. Re-
cently, schematizing geographic regions has gained in-
creasing attention, e.g. [4, 17]. Our discretized ap-
proach is similar in nature to the octilinear schematiza-
tion technique of Cicerone and Cermignani [6], though
simplicity is of no concern in their work. A grid graph
always admits a solution with Hausdorff distance at
most 3

√
2/2 and Fréchet distance at most (β +

√
2)/2,

for β-narrow polygons [2]. Minimizing the Hausdorff
distance is NP-complete even on a grid graph [2].

Our problem using the Fréchet distance closely resem-
bles “map matching”, with applications in GIS [1, 11]
Wylie and Zhu [18] prove independently that our prob-
lem is NP-hard under the discrete Fréchet distance,
however, without requiring a simple input polygon nor
a grid graph. A stronger result—with a simple in-
put curve and a grid graph—follows directly from our
proofs.

On the dual graph, the problem under the symmet-
ric difference is a specialization of the known NP-hard
maximum-weight-connected-subgraph problem [8, 12].
Our results readily imply that this dual problem remains
NP-hard even in a constrained geometric setting.

2 Preliminaries

Polygons. A polygon P is defined by a cyclic sequence
of vertices in R

2. We use |P | to refer to the area of
polygon P and ∂P for its boundary. A polygon is simple

if no two edges intersect, except at common vertices.

Grid graphs. A grid graph G = (V,E) is a plane graph
with all vertices positioned at integer coordinates within
a rectangular region, with edges being all unit-length
segments connecting pairs of vertices at distance 1.

Cycles. A cycle in a graph is a (cyclic) sequence of
adjacent vertices; a cycle is simple if the sequence does
not contain a vertex more than once. A simple cycle in a
grid graph corresponds to a simple rectilinear polygon.

Faces. G has two types of faces: cells (unit squares),
and an outer face. A set of faces in G is said to be
connected if the corresponding induced subgraph of the
dual graph G∗ is connected; it is simply connected if the
remaining faces are also connected. A simply connected
face set corresponds to a simple rectilinear polygon.

Fréchet distance. Let BP : S1 → ∂P continuously map
the unit circle onto the boundary of P . Let Ψ denote the
set of all orientation-preserving homeomorphisms on S1.
The Fréchet distance between two polygons, dF(P,Q),
is defined as infψ∈Ψ maxt∈S1 ‖BP (t)−BQ(ψ(t))‖, where
‖ · ‖ denotes the Euclidean distance.

Symmetric difference. The symmetric difference be-
tween two polygons P and Q is defined as the area cov-
ered by precisely one of the polygons: dSD(P,Q) = |(P∪
Q)\(P ∩Q)| = |P ∪Q|− |P ∩Q| = |P |+ |Q|−2 · |P ∩Q|.

3 Using the Fréchet distance

Theorem 1 Let G be a grid graph, let P be a sim-

ple polygon and let ε > 0. It is NP-complete to decide

whether G contains a simple cycle C with dF(C,P ) ≤ ε.

We focus here on sketching a proof that it is indeed
NP-hard. We assume ε = 3.5 throughout this proof.

We reduce from planar monotone 3-SAT [7]: the
problem to decide whether a 3CNF formula F with
clauses of either fully positive or fully negative literals
is satisfiable, where F is embedded such that all vari-
ables lie on a single horizontal line, and clauses are posi-
tioned above (positive) or below (negative) this line and
are connected to the variables using 1-bend orthogonal
leaders (Fig. 3). We construct a simple polygon P and
a grid graph G such that G contains a simple cycle C
with dF(C,P ) ≤ 3.5 if and only if F is satisfiable. The
construction, and therefore G, has polynomial complex-
ity. Below, we sketch the necessary gadgets which lead
to the construction shown in Fig. 4.

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

Figure 3: Instance of the constrainted 3CNF formula F .

3.1 Gadgets

We first review the shared general idea of all gadgets
and their visual encoding in the corresponding figures.
GraphG is shown by a grid of thin light-gray lines. Each
gadget contains a part of P called the local curve (red),
ending in two gates (red dots). To reason about gadgets,
we also use a corresponding cycle in G which we call
the path boundary (black) and a curve area containing
the local curve (gray-filled). The gadgets interact via
vertices and edges on shared path boundaries. There is
no interaction based on the local curve: it is used only
to force choices in using edges of G.

Pressure. If a cycle exists in the complete graph, a
local path within or on the path boundary must have
Fréchet distance at most 3.5 to the local curve. The
local path “claims” its vertices: these can no longer
be used by another gadget. This results in pressure

on the other gadget to use a different path, if shared
vertices (on the path boundary) are used. To support
reasoning about interaction, a gadget has pressure ports

(green): a sequence of edges on the path boundary that
may be shared with another gadget. A port may receive

pressure, indicating that the shared vertices may not be
used in the gadget for its local path. Similarly, it may
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x1 x2 x3
x4

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

sp

sn

tp

tn

Figure 4: Construction sketch with gadgets for the formula in Fig. 3. Gadgets specify an area in which part of P is
located (gray rectangle) and in which part of C must lie (black polygon). They interact via shared boundaries of the
black polygons. The red lines connect the various gadgets to obtain a simple polygon, its interior is slightly shaded;
the curves within the gadgets are abstracted.

give pressure, indicating that the shared vertices may
not be used by an adjacent gadget.

Propagation gadget. A propagation gadget has exactly
two ports. The gadget does not admit a path if both
ports receive pressure. If one port receives pressure,
the other must give pressure: in other words, it prop-
agates pressure. The gadgets can be constructed with
any length that is at least 12. Fig. 5 shows one of length
(height) 12. The length of the gadget determines where
its gates appear: on opposite sides for odd-length and
on the same side for even-length gadgets. The complex-
ity of the local curve is linear in its length.

The propagation works due to a local curve that
zigzags back and forth, with a distance over 2ε = 7 be-
tween the endpoints of the zigzags. Hence, the middle of
the gadget must be crossed for each zigzag. By placing
the right number of zigzags, and having the first and last
at exactly distance 3.5 from the ports, we achieve that
one of the ports must be overlapped by a local path.
The positioning of the first and last further ensure that
all edges of one port must be used. This is illustrated in
Fig. 5: since the dotted variants do not work, the solid
ones must be used. Taking an extra grid cell upwards to
reach the endpoint leads to pressure on the other side,
in which case the entire other port must be covered.

Clause gadget. A clause gadget is illustrated in Fig. 6.
It has fixed dimensions. The gadget admits a local path
only if one of its ports does not receive pressure. Any
local path causes pressure on at least one port; for each
port there is a path that causes pressure only on that
port. The lack of external pressure on a port indicates
that the value of the corresponding variable satisfies the
clause. There is no local path that avoids all three ports:

if all ports receive pressure, none of the variables satisfy
the clause and the gadget does not admit a local path.

The construction roughly consists of three zigzags,
with one extra spike nested inside the middle one. This
extra spike is the crucial element: it can be positioned
inside any of the other three zigzags (since ε is 3.5),
mimicking that (at least) one of three variables satisfies
the clause. The middle zigzag and the spike reach down
to approximately the same y-coordinate. In particular,
to cover the endpoints of the zigzag or spike, the local

13

12

3.5

3.5

7

Figure 5: A propagation gadget. Specification and local
curve (top left). Local paths with pressure on exactly
one port (right). The first three endpoints (open dots)
can be reached with the solid subpaths (purple), but
not with the dotted variants (bottom left).
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2 9 2

6

11

2

Figure 6: The specification and local curve (top left) of
a clause gadget. The other three figures illustrate local
paths; each gives pressure on at least one port.

path must reach down to distance 3 above the port.
Without the spike inside, the zigzag can be reached by
going to exactly this distance. However, if the spike
is inside it, the middle zigzag is forced down one more
space. The extra cover from the right zigzag propagates
this towards the port. This extra cover is necessary due
to the convexity of the Euclidean distance: without it,
the outer zigzags must reach at least as far down as the
middle one, when the spike is inside it; this would cover
any potential port intended for the middle zigzag.

The curve area extends slightly outside of the path
boundary. Hence, local paths exist with Fréchet dis-
tance at most 3.5 that lie outside the path boundary.
However, this would claim more beyond the indicated
ports, only further restricting any other nearby gadgets.

Variable gadget. Variable gadgets are obtained by
making a cycle of propagation gadgets, such that they
must all find a local path in the same direction. This di-
rection readily represents the truth value of the variable,
which can be transferred to other propagation gadgets.

3.2 Construction with gadgets

We now construct polygon P based on formula F
(Fig. 4). First, we place all variable gadgets next to one
another, in the order determined by F , with a distance
of 11 between consecutive variables. This placement en-
sures that the ports of variables start on an even and
end on an odd x-coordinate.

Using the y-coordinates in the embedding of F , we

sort the positive clauses to define a positive order

〈c1, . . . , ck〉. We place the gadget for clause cj such that
the bottom side of its path boundary is at a distance
13 + 24(j − 1) above the variables. Analogously, we
use a negative order to place the negative clauses be-
low the variables. Horizontally, the clause gadgets are
placed such that the right side of the path boundary
lines up with the right side of the appropriate port on
the variable gadget of the middle literal. Finally, we
place propagation gadgets for each link in F to connect
the clause and variable gadgets.

Any overlap in the curve areas would imply that
the provided embedding for F—which structures the
layout—is not planar. Thus, all gadgets have disjoint
curve areas: local curves do not intersect.

Connecting gadgets. We have composed the various
gadgets in polynomial time. However, we do not yet
have a simple polygon. We must “stitch” the local
curves together (in any order) to create polygon P . To
this end we first create two subcurves: Pp for the vari-
ables, positive clause gadgets and their propagation gad-
gets; and Pn for the negative clause gadgets and their
propagation gadgets. Fig. 4 visually illustrates the con-
struction of these three subcurves, each with endpoints
s∗ and t∗, and how to connect them.

Proving the theorem. We now have a simple poly-
gon P ; with G implicitly defined as a large enough grid
graph. We must argue that the complexity is polyno-
mial and that F is satisfiable if and only if a simple
cycle C exists in G with dF(C,P ) ≤ 3.5. We sketch the
main argument of the proof.

A satisfying assignment is derived from C by inspect-
ing the local paths of the variable gadgets: is the pres-
sure clockwise or counterclockwise? Similarly, a satisfy-
ing assignment leads to a cycle in G, by concatenating
the appropriate local paths given with the gadgets.

Let n denote the number of variables, and m the num-
ber of clauses in formula F . Variable gadgets have width
linear in their degree and are placed with O(1) distance
between them: the entire width is bounded by O(n+m).
Variable and clause gadgets have constant height and
are placed with O(1) distance between them: the en-
tire height is bounded by O(m). Hence, the polygon’s
coordinates remain polynomial.

4 Using the symmetric difference

Theorem 2 Let G be a grid graph, let P be a sim-

ple polygon and let D > 0. It is NP-complete to de-

cide whether G contains a connected face set S with

dSD(S, P ) ≤ D.

Here we focus on sketching a proof to show that the
problem is NP-hard.

We reduce from the rectilinear Steiner tree problem

[9]: given a set X of n points in R
2, is there a tree T
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of total edge length at most L that connects all points
in X, using only horizontal and vertical line segments?
Vertices of T are not restricted to X. An optimal re-
sult must be contained in graph H(X) corresponding to
the arrangement of horizontal and vertical lines through
each point in X [10]; H(X) is illustrated in Fig. 7(a).
We call a vertex of H(X) a node if it corresponds to a
point in X and a junction otherwise. As the problem is
scale invariant, we assume L = 1 and thus all edges in
H(X) must be shorter than 1.

We transform point set X into a grid graph G, a
polygon P and a value D > 0. We construct G such that
each cell corresponds to a vertex (node-cell or junction-
cell), an edge (edge-cell), or a bounded face (face-cell)
of H(X); see Fig. 7(b). Polygon P is constructed to
partially overlap all cells, except for the face-cells. To
structure P we use a skeleton ς, a tree spanning the
non-face-cells in the dual of G.

Weights. The symmetric difference between P and a
face set S = {c1, c2, . . .} may be computed as |P | +∑
c∈S(|c| − 2 · |P ∩ c|), since the faces in S are interior-

disjoint. As |c| = 1, we define the weight of a cell c in G
as w(c) = 1−2 · |P ∩c|. Hence, the symmetric difference
is |P | +

∑
c∈S w(c). We set the desired weight w(c) for

cell c to: − 3
4 if c is a node-cell; 0 if c is a junction-cell;

‖e‖/2 if c is an edge-cell, where ‖e‖ is the length of the
corresponding edge e in H(X); and 1 if c is a face-cell.

Given w(c) for cell c, the area of overlap A(c) is |P ∩
c| = 1−w(c)

2 . Every cell is covered by A(c) area of P ; |P |
equals

∑
c∈GA(c). We call P ∩ c the local polygon of c.

We set D = |P | − 3
4n+ 1

2 = (
∑
c∈GA(c)) − 3

4n+ 1
2 .

Designing cells. We design every cell such that the
desired weight is achieved. For a face-cell, w(c) = 1 and
A(c) = 0: P does not overlap this cell. For all other
cells the local polygon covers a fraction of its interior, as
determined by A(c). Skeleton ς dictates how to connect
the local polygons; we ensure that at least the middle
25% of the shared edge (the connector) is covered. A
local polygon never touches the corners of its cell.

Node- and junction-cells may have up to four neigh-

(a) (b) (c)

Figure 7: Sketch of the reduction. (a) Graph H(X)
where X is given by dark points. (b) Grid graph
G: node-cells are black, junction-cells white, edge-cells
gray; face-cells are hatched. (c) Constructed polygon P
with respect to G.

bors in ς. A node-cell has weight − 3
4 ; A(c) = 7

8 . A
junction-cell has weight 0; A(c) = 1

2 . The local polygon
can easily touch the connectors while covering exactly
the prescribed area, see Fig. 8(a–b).

An edge-cell has weight ‖e‖/2 and thus should cope
with weights between 0 and 0.5; A(c) lies between 1

4
and 1

2 . Any edge-cell has degree 1 or 2 in ς; if it has
degree 2, the neighboring cells are on opposite sides.
The local polygon for A(c) = 1

4 is a rectangular shape
that touches exactly the necessary connectors; we widen
this shape to cover the precise area needed if A(c) > 1

4 .
This is illustrated in Fig. 8(c).

Proving the theorem. The reduction is polynomial, as
P has O(1) complexity in each of the O(n2) cells. What
remains is to prove equivalence of the answers.

Suppose we have a rectilinear Steiner tree T of length
at most 1 in H(X). We construct a face set S as the
union of all cells corresponding to vertices and edges in
T . By definition of T , this must contain all node-cells
and cannot contain face-cells. As junction-cells have no
weight, the total weight of S is − 3

4n +
∑
e∈T w(ce) =

− 3
4n+ 1

2

∑
e∈T ‖e‖ where ce is the cell of G correspond-

ing to edge e. By assumption
∑
e∈T ‖e‖ ≤ 1: the total

weight is at most − 3
4n+ 1

2 . Thus, the symmetric differ-
ence for S is at most |P | − 3

4n+ 1
2 = D.

Suppose we have a connected face set S in G such
that dSD(S, P ) ≤ D. The total weight is thus D−|P | =
− 3

4n + 1
2 . Since face-cells have weight 1 and only

node-cells have negative weight, being − 3
4 , this can be

achieved only if S contains all node-cells and no face-
cells. In particular, the sum of the weights over all
edge-cells is at most 1

2 . Thus, the subgraph of H(X)
described by the selected cells is connected, contain all
nodes of X, and have total length at most 1. If this
subgraph is not a tree, we can make it a tree, by leaving
out edges (further reducing the total length), until the
subgraph is a tree.

(a) (b) (c)

Figure 8: Local polygons, with connectors as hatched
rectangles. (a) Node-cell, covered for 87.5%. (b)
Junction-cell, covered for 50%. (c) Edge-cell, covered
for 25% (dark) up to 50% (dark and light).
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5 Conclusions

We studied discretized approaches to the construction of
schematic maps, by restricting solutions to grid graph.
This has several advantanges, such as promoting align-
ment and uniformity of edge lengths and avoiding the
risk of a visual collapse. We considered two similarity
metrics: the Fréchet distance and the symmetric differ-
ence. Unfortunately, both turn out to be NP-complete.

Implications. Our reductions imply several further re-
sults; refer to [13] for further details. Relevant for e.g.
area-preserving schematization [4] and cartograms [5],
computing the best area-equivalent shape is also NP-
complete, under both similarity metrics. The Fréchet
-distance variant admits no PTAS and its reduction ex-
tends to the discrete Fréchet distance, as well as to poly-
gons with a given bend profile: the sequence of left and
right bends in counterclockwise order along its bound-
ary. The symmetric difference reduction also works for
a simply connected face set. Finally, the problem re-
mains NP-complete for graphs representing hexagonal
and triangular tilings.

Open problems. In contrast to partial grid graphs [13],
strict monotonicity in the Fréchet distance is crucial for
this reduction with full grid graphs; the problem under
the weak Fréchet distance on full grid graphs remains
open. Moreover, it remains open whether the problem
(general or grid-based) is fixed-parameter tractable—in
e.g. the number of bends in the output polygon—for
either similarity metric.

Though our problem under the Fréchet distance is
now proven NP-complete, the construction requires that
ε is 3.5. For ε < 0.5, the problem becomes trivial to
solve: there is only one feasible sequence of vertices in
G. For partial grid graphs hardness can be proven for
ε = 1 [13]; but what is the complexity with full grid
graphs for ε in between 0.5 and 3.5?

Do realistic input assumptions help to obtain efficient
algorithms? A first result is known [2], finding a cycle
that has Fréchet distance bounded in the “narrowness”
of the input polygon. Can we obtain a complementary
result, where the algorithm’s running time rather than
its Fréchet distance depends on the realism parameter?

Results obtained via the Fréchet distance may locally
deviate more than necessary. Can we extend locally cor-

rect Fréchet matchings [3] to our setting?

Acknowledgments. The authors would like to partic-
ularly thank: Kevin Buchin, Bart Jansen, Arthur van
Goethem, Marc van Kreveld, Aidan Slingsby, and Bet-
tina Speckman for inspiring discussions on the topic of
this paper. W. Meulemans was partially supported by
Marie Sk lodowska-Curie Action MSCA-H2020-IF-2014
656741, the Netherlands Organisation for Scientific Re-
search (NWO) project 639.023.208 and the Netherlands
eScience Center (NLeSC) project 027.015.G02.

References

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching
planar maps. J. Algo., 49:262–283, 2003.

[2] Q. W. Bouts, I. Kostitsyna, M. van Kreveld, W. Meule-
mans, W. Sonke, and K. Verbeek. Mapping polygons
to the grid with small Hausdorff and Fréchet distance.
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