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ABSTRACT

Motivation: Inferring lengths of inherited microsatellite alleles with

single base pair resolution from short sequence reads is challenging

due to several sources of noise caused by the repetitive nature of

microsatellites and the technologies used to generate raw sequence

data.

Results: We have developed a program, GenoTan, using a discretized

Gaussian mixture model combined with a rules-based approach to

identify inherited variation of microsatellite loci from short sequence

reads without paired-end information. It effectively distinguishes

length variants from noise including insertion/deletion errors in homo-

polymer runs by addressing the bidirectional aspect of insertion and

deletion errors in sequence reads. Here we first introduce a homopo-

lymer decomposition method which estimates error bias toward inser-

tion or deletion in homopolymer sequence runs. Combining these

approaches, GenoTan was able to genotype 94.9% of microsatellite

loci accurately from simulated data with 40x sequence coverage

quickly while the other programs showed590% correct calls for the

same data and required 5�30� more computational time than

GenoTan. It also showed the highest true-positive rate for real data

using mixed sequence data of two Drosophila inbred lines, which was

a novel validation approach for genotyping.

Availability: GenoTan is open-source software available at http://gen

otan.sourceforge.net.
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Supplementary Information: Supplementary data are available at
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1 INTRODUCTION

Since many inherited variants of microsatellite loci are known to

be associated with several human diseases such as colorectal can-

cers and various neurological disorders (Sutherland and Richards,

1995), the variants can act as important biomarkers to identify

risk of disease development. The advent of next generation

sequencing (NGS) technologies allows for a robust comparison

of large numbers of microsatellite loci from several individuals in a

quick and cost-effective way (McIver et al., 2011) which then

allows the discovery and use of microsatellites as biomarkers or

causative agents of disease. Unfortunately, inferring precise

lengths of inherited microsatellite alleles with single base-pair reso-

lution from short sequence reads remains a challenge due to the

repetitive nature of microsatellites and the technologies used to

generate raw sequence data. Homopolymer sequences, which are

the most dominant class in the microsatellite family, are especially

difficult to analyze. In this article, we discovered that460% of

microsatellite loci showing variants in a human genome contain

homopolymer sequences (46 bases), which underscores the im-

portance of properly calling the genotype for this class of poly-

morphism. Repetitive sequences often result in insertion/deletion

(INDEL) sequencing errors at homopolymers and incorrect map-

ping of sequence reads (Minoche et al., 2011). Compounding the

issue, biological or technological mutants at microsatellite loci due

to individual cell mutation or PCR amplification artifacts are also

frequently observed. Substitution errors (sequencing or biologic-

ally derived) in the repeat sequences themselves also greatly affect

the quality of alignment. A few methods such as SAMtools (Li

et al., 2009), GATK (McKenna et al., 2010) and Dindel (Albers

et al., 2011) can be used to genotype microsatellite loci with single

base-pair resolution without paired-end information, but they

have been principally designed to identify short INDELs in

non-repeat sequences. Although lobSTR (Gymrek et al., 2012)

has been developed to profile short tandem repeat loci, it is limited

to only analyzing 2�6-mer motif repeat loci. Recently, RepeatSeq

(Highnam et al., 2012) has been developed to genotype microsat-

ellite loci, but it does not provide a training module to adjust

parameters to different sequence data conditions. The genotyping

programs, including Dindel, employ local alignment-based meth-

ods and assume mainly sequencing errors cause the INDEL errors

if the mapping quality is high. However distant variants at micro-

satellite loci often fool mapping programs into assigning high

quality scores to incorrectly mapped reads when the sequence

reads from the repeat loci are very different from the reference

sequence, which results in incorrect genotyping. Especially,

accuracies of genotyping programs using a Bayesian approach

are significantly affected by a few incorrectly mapped reads

(Supplementary Material). Individual cell mutations and polymer-

ase chain reaction (PCR) amplification errors also frequently alter

lengths of reported microsatellites resulting in falsely calling geno-

types different from the inherited alleles. In addition, as homopo-

lymer sequences induce not only INDEL errors, but also

substitution errors during sequencing (Supplementary Fig. S1)

and INDEL errors in reads containing homopolymers are*To whom correspondence should be addressed.
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frequently recurrent in other reads mapped to the same locus

(Supplementary Fig. S2), local alignment-based approaches

often fail to correctly identify inherited alleles. Further, the pro-

grams weight the final call towards the reference sequence, which

may result in an artificial selection against novel (non-reference)

allele calls since mapping or alignment algorithms are mostly

biased to the reference sequence.

Long homopolymers frequently induce false-positive allele

calls and it is challenging to distinguish them from true variants.

The reasons for homopolymer error occurrence are different for

each sequencing technology. The pyrosequencing technology uti-

lized by 454 Life Sciences generates high-signal intensity for a

repeating sequence of a single-base type then base-calling soft-

ware estimates the number of bases in the sequence proportional

to that intensity (Supplementary Fig. S3A). As a result, this tech-

nology shows a higher rate of INDEL sequencing errors than

other sequencing technologies. Sanger sequencing and Illumina

sequencing technologies employ a dye-terminator-sequencing

method which shows a significantly lower INDEL error rate.

However, this sequencing approach also shows increased

INDEL error rate as homopolymer length in sequence reads in-

creases. In Sanger sequencing, intensities from repetitive bases

often merge to make a continuously high-signal peak or affect

intensities of neighborhood peaks, thus the boundaries or heights

of peaks for individual bases that compose the repeat become

ambiguous (Supplementary Fig. S3B). Base-calling programs

(Ewing et al., 1998) for this method use spacing information

estimated from unambiguous peaks to identify the number of

repetitive bases from the merged intensities and can predict

more or fewer bases than the actual number of bases. Ilumina

sequencing also has been reported to generate homopolymer-

related errors in the study of this article (Supplementary Fig.

S4) and other studies (Albers et al., 2011), and it may be

caused by several noise factors (Erlich et al., 2008) such as lag-

ging or leading of nucleotide extension.
In this article, we utilize a Gaussian distribution to compensate

for a common characteristic of several different sequencing tech-

nologies, in which INDEL events at a single nucleotide repeat are

caused by incorrect signal intensities and the chances of insertion

errors and deletion errors in a repeat are proportional (when the

rate of insertion errors increases, deletion errors also increases)

(Supplementary Fig. S5). Bidirectional INDELs have also been

observed from mutations at microsatellite loci caused by poly-

merase slippage during DNA replication (Xu et al., 2000). To

fully address this issue, we have combined the discretized

Gaussian mixture model with a rules-based approach to geno-

type length variation of microsatellites loci from short-sequence

reads. The genotyping method is composed of two regression

steps (Fig. 1A and C) and a homopolymer decomposition step

(Fig. 1B), which effectively filters out noise reads resulting in low

false-positive and false-negative rates.

2 METHODS

2.1 Discretized Gaussian mixture distribution

When three or more allele candidates are detected from sequence reads

mapped to a microsatellite locus in a reference sequence of a diploid

genome, the simplest approach to decide the genotype of the locus is to

choose two alleles with the highest read frequencies. The frequencies of

reads containing the two different alleles are then compared to test

whether the genotype of the locus is homozygous or heterozygous.

If the ratio of the read count of the lower read frequency allele to the

read count of the higher read frequency allele is larger than a given cutoff

ratio [generally 0.25 (¼ 0.2/0.8)], the locus is determined to be heterozy-

gous. Otherwise, the locus is determined as homozygous and the reads

containing the lower read frequency allele are regarded as noise from

sequencing or PCR amplification errors, individual cell mutation, mis-

alignment or mis-mapping. The most frequently observed noise source is

homopolymer errors. Homopolymer errors are observed not only at

single long-homopolymers sequences, but also at repeats of motifs con-

taining short homopolymers. Since the homopolymer error in microsat-

ellite sequences alters their lengths in the sequence reads, the observed

ratio of read counts supporting two different alleles at a single locus

containing a long homopolymer may be different from the ratio of gen-

omic DNA fragments derived from the alleles. This inconsistency can be

addressed by using a discretized Gaussian distribution if we assume that

the probability of invalid signal intensities generated by sequencing ma-

chines for target nucleotides follows a continuous distribution and we

only observe values discretized by base-calling programs. Since probabil-

ities of insertion and deletion errors in a sequence are proportional, they

can be calculated from the cumulative distribution function of the

Gaussian distribution. Let lL be the length of a candidate allele L at a

target locus and let x be the observed length of the microsatellite sequence

with INDEL errors in a read mapped to the locus with an assumption in

which the length x is derived from the original length lL. Let FL(t) and

fL(t) denote the distribution and the density functions of a Gaussian

random variable with mean lL and variance �L
2, respectively. Then the

probability mass function pL(x) of x is

pLðxÞ ¼ PðX ¼ xjlL, �
2
LÞ ¼

1

1� FLð0:5Þ

Z xþ0:5

x�0:5

fLðtÞdt ð1Þ

where x¼ 0, 1, 2, . . . , and 1/(1 –FL(0.5)) is a scale factor (Supplementary

Material, Rescaling the Gaussian cumulative distribution function

section).

For the heterozygous loci with allele lengths, lL1 and lL2, we can use the

mixture distribution of the Equation (1) as follows

gðxÞ ¼ gðx;L1,L2, �
2
L1, �

2
L2, �Þ ¼ � � pL1

ðxÞ þ ð1� �Þ � pL2
ðxÞ ð2Þ

Where � is the unknown mixture proportion parameter for reads derived

from one of the two alleles, regardl555ess of the repeat sequence length x.

It is also assumed that the associated parameters �L1
2 and �L2

2 are both

unknown. These parameters can be estimated by an NLS regression func-

tion (Supplementary Material, Pseudo code applying the Nonlinear

Least-Squares regression section).

If the sequence reads mapped to a same microsatellite locus contain

INDEL errors, the number of observed lengths of the microsatellite at the

locus would be �2. Because the inherited alleles are unknown, all

observed lengths are allele candidates. We then apply the g(x) function

for each combination of two allele candidates (two same candidates for

homozygous genotype), calculate the squared error of each combination,

and select the allele pair, L1
* and L2

*, that generates the minimum

squared error as follows

GðL�1,L
�
2Þ ¼ argmin

all candidates

Xb
x¼a

ðox � gðx;L1,L2, �̂
2
L2, �̂

2
L2, �̂ÞÞ

2

( )
ð3Þ

where ox is an observed proportion of reads containing a length x micro-

satellite sequence, a is the minimum observed length minus a fixed amount

k, and b is the maximum observed length plus k, where k is set to be five as

default value. This is necessary because the g(x) function generates output

values for all possible sequence lengths, the comparison between observed

proportions and expected proportions need to be extended beyond the
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minimum and maximum observed lengths. Therefore, the boundaries of

the calculation are extended by an additional value k.

As an example, suppose that we have 2, 8 and 4 mapped reads con-

taining microsatellite sequences with lengths 14, 15 and 16 bases, respect-

ively, at a locus. The list of possible genotype candidates G(lL1, lL2) for the

locus are G(14, 14), G(14, 15), G(14, 16), G(15, 15), G(15, 16) and G(16,

16). In the example, the observed minimum and maximum lengths are 14

and 16, respectively, and the observed and expected values from the

Equation (3) are compared for x ranging from 9 to 21. While the

observed ratio of read counts between the highest read frequency allele

(lL1¼ 15) and the second highest read frequency allele (lL2¼ 16) is 0.5

(¼ 4/8), the read ratio of those two alleles estimated by the NLS function

was 0.163 (¼ (1– �)/�¼ 0.14/0.86) (Fig. 1A). The difference between the

two estimated ratios may result in a different decision for the genotype

calls, depending on the cutoff ratio to determine if the second highest read

frequency allele candidate is noise.

2.2 Preprocessing

We provide two additional PERL scripts along with GenoTan for the

preprocessing of data. The first script searches for microsatellite loci and

the second script realigns sequence reads mapped to the microsatellite

loci. GenoTan takes a reference file, a list of microsatellite loci and

BAM/SAM format files containing mapping results as input. If users

do not submit a microsatellite list, GenoTan searches pure microsatellite

loci from the reference. For users who want to use TRF (Benson 1999),

an additional PERL script to convert the TRF results to the microsatellite

list is available in our software package. For each locus, it then chooses

allele candidates which satisfy three conditions: (i) at least two reads

supporting the same allele candidate overlap at least three bases for

both flanking sequences and they are not technical duplications (same

mapping position and same sequence); (ii) microsatellite sequences of at

least two reads supporting the same allele candidate have fewer than 10%

mismatches in their length; and (iii) a consensus sequence of the reads

span at least five bases at both flanking sequences. GenoTan then com-

pares the genotype candidates to find the most likely genotype.

2.3 Two-step estimation

The whole process of genotyping consists of a two-step estimation

(Fig. 1). In the first step, rough estimates find the candidate genotypes

of microsatellite loci using the regression model described by the previous

Fig. 1. Two regression steps to identify inherited genotypes of microsatellite loci. (A) The first regression step using the NLS (non-linear least square)

fitting method. GenoTan tests all available genotype candidates at each locus using the regression method with the observed read counts and chooses one

producing the least square error. If the chosen genotype candidate is heterozygous, it is tested using a rule-based approach with the estimated parameters;

�, �1 and �2 to determine whether one of two peaks is due to noise. (B) From the called genotypes of all loci, �a, �b, �a and �b, which are used to calculate

! and �, are estimated using the homopolymer decomposition method. At each locus, each allele candidate has a new length adjusted by !, and the

length is used as a mean of the second regression step; � is used to estimate pseudo counts to be added to the training vector with the observed read

counts. (C) The second regression step. All genotype candidates at each locus are tested again with the adjusted means and pseudo counts; the rule-based

method is used to choose a genotype for the locus.
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section and the method at ‘decision process to finalize genotyping call’

decides genotypes. In the second step, the regression method requires two

additional parameters which are estimated from the results of the first

regression step. The first parameter, !L, represents error bias toward

deletion or insertion depending on the homopolymer length in an allele

candidate L. Since the Gaussian distribution has a symmetric form, the

Equation (1) generates symmetric probabilities for deletion and insertion

errors for any allele, which does not fit real data. It can be adjusted by

adding additional parameters !L1 and !L2 to �1 and �2, respectively, as

follows (Supplementary Fig. S6)

fL1ðtÞ � Nð�1 ¼ lL1 þ !L1, �
2
1 ¼ �

2
L1Þ,

fL2ðtÞ � Nð�2 ¼ lL2 þ !L2, �
2
2 ¼ �

2
L2Þ:

ð4Þ

Then, Equations (1) and (2) can generate different probabilities for dele-

tion and insertion errors depending on the homopolymer length in L1 or

L2. To estimate !L for each allele candidate L, we use a homopolymer

decomposition method which decomposes a given microsatellite sequence

into a set of homopolymers and then estimates parameters from the set

(Supplementary Material, Homopolymer decomposition section for

detail).

The second parameter, �L, represents a variance of the prior probabil-

ity distribution of read proportions for x derived from an allele candidate

L. To apply the homopolymer effect to the NLS regression, we use dif-

ferent pseudo counts for different repeats based on the parameter. A data

vector for the NLS regression is initialized to 0 and pseudo counts (posi-

tive fractions) estimated from the g(x; lL1, lL2, �L1, �L2, 0.5) function in

which the parameters are {�1
2
¼ �L1, �2

2
¼ �L2, �¼ 0.5} are added to the

vector (Supplementary Material, Pseudo code applying the Nonlinear

Least-Squares regression section). The parameter �L for each allele can-

didate L is also estimated by the homopolymer decomposition method.

(The NLS regression function to estimate �L1, �L2 and � requires as input

a data vector containing the observed read proportions for length x

microsatellite sequences. These estimated parameters are then used to

calculate the probability of each x to be observed in a read at a locus.

Recall that, the probability varies depending on the length of the homo-

polymer in the microsatellite sequence. Since the first regression step uses

only the read proportions to estimate �L1, �L2 and �, the estimated values

of the parameters are always the same regardless of the lengths of homo-

polymers in alleles, if two or more different loci have different repeat

sequences but contain the same proportions of reads. However, we

have observed that the probability of the INDEL error increases with

long homopolymer repeats, so we use pseudo counts for different

repeats.)

Instead of the numbers of reads, sums of mapping probabilities of

reads containing length x microsatellite sequences are added to the

vector. If mapping probabilities of reads are high, their sum is near

the number of the reads. Then, the values in the vector are converted

to the proportions. If �L1 and �L2 are large and the number of total reads

is small, the values in the vector get dispersed and the NLS function

estimates large �L1 and �L2. But when the number of total reads is big,

the effect of �L1 and �L2 becomes small.

2.4 Decision process to finalize genotyping call

The most probable genotype for a given set of sequence reads mapped to

a locus is decided by the Equation (3). But the equation shows a tendency

to call heterozygous genotypes, because the Gaussian mixture model is a

better fit to the training data when more distributions are mixed.

However, since reads supporting one or both predicted alleles may be

from noise including individual cell mutation, PCR amplification error,

sequencing error and mis-mapping, an evaluation method is necessary.

We use a rule-based approach to choose alleles and to decide the homo-

zygosity of each locus because the frequencies of INDEL error reads

derived from mis-mapping, PCR amplification error and individual cell

mutation are more difficult to measure than that from the sequencing

error. The rule-based approach also offers users an opportunity to adjust

the boundary parameters to filter ambiguous loci, while most statistical

approaches, including Bayesian approaches, adhere to strict decisions with

limited user control (Supplementary Material, Limitation of the Bayesian

approach considering only sequencing errors for INDEL genotyping sec-

tion). For this approach, we assign a confidence score to each allele instead

of calculating the probability of a genotype (a two allele set) for a locus.

The probability of each allele can be generated by the Equation (1) as

pL1(lL1) or pL2(lL2) if we assume the read frequencies from two different

alleles at the heterozygotic locus are not correlated. However DNA frag-

ments from two paired chromosomes have the same probability of being

sequenced and the read frequencies of two alleles would tend to be similar.

If the proportion of reads for an allele candidate Llow with lower read

frequency is too small compared to that for another allele candidate

Lhigh with higher read frequency (e.g. 0.1 versus 0.9), we may conclude

that the reads for the allele candidate Llow are from noise and the locus is

homozygous. Considering this condition, we multiply the ratio of �low
to �high and the output of pLlow (lLlow), where �low is the output of

MIN{�, 1 – �} and �high is the output of MAX{�, 1 – �}. The confidence

scores of two allele candidate are then defined by

Chigh ¼ pLhigh
ðlLhigh
Þ,Clow ¼

�low
�high

pLlow
ðlLlow
Þ: ð5Þ

In the final tabulation, an allele candidate from the predicted genotype is

removed when its confidence score is lower than a given cutoff value (0.35

for Lhigh and 0.25 for Llow) (Supplementary Fig. S7). When only confi-

dence score of Llow is lower than the cutoff value, GenoTan generates a

partial genotype call for the locus in which only one allele is called while

the other allele is reported as unknown. GenoTan only reports the geno-

type of the locus as homozygous when the number of reads supporting

the selected allele is44 and its confidence score is �0.9. The confidence

score of the second allele, Lhigh2, at a homozygous locus is calculated by

Chigh2 ¼ Chigh1 � ½1� 0:5ðread count supporting LhighÞ� ð6Þ

where [0.5n] represents the probability of the other unobserved allele exists

when n reads support the selected allele.

3 RESULTS

Our method (GenoTan) was compared to GATK (v1.6.9 with

‘-T UnifiedGenotyper -glm INDEL’), Dindel (v1.01 with options

in Supplementary Materials), SAMtools (v0.1.18 with the

‘varFilter’ post-filter) and RepeaSeq (v0.7.2) in genotyping per-

formance using four different test sets including simulated data,

mixed sequence data of two Drosophila inbred lines, sequence

data of a single Drosophila inbred line and sequence data of a

human sample. For the performance test, we compared INDEL

lengths in microsatellite loci identified by the programs ([allele

length]¼ [reference length] – [INDEL length]). In simulated data-

sets, true positive alleles do not have INDELs at multiple pos-

itions in their sequences. Partial genotypes called by GenoTan

were counted as the homozygous calls to follow the traditional

classification of the other programs. lobSTR could not be

included in most tests since its target loci were limited (only

analyzing 2�6-mer motif repeat loci).

3.1 Performance test with simulated data

The first dataset was simulated data created as sequence reads of

a single individual diploid genome. The reference sequence for

this data was created from the human chromosome 1 (build 37)
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after removing all repeat sequences identified by RepeatMasker

(http://repeatmasker.org), and microsatellites of 1�8-mer motifs

with 8�48 bases in length (4�25 repeats of a motif in a sequence)

were inserted at 20 700 loci, one for every 140 bases of the ref-

erence sequence. The loci included 300 replicates of each micro-

satellite in which each 100 replicates were used for non-reference

alleles of homozygous loci, reference/non-reference alleles of het-

erozygous loci and two different non-reference alleles of hetero-

zygous loci, respectively. For each locus, three different read sets

in 10, 20 and 40x sequence coverage were generated, and all

reads overlapped at least 7 bases with both flanking sequences

of the microsatellite locus. Then, INDEL/substitution errors de-

pending on the homopolymer contexts of alleles were inserted at

random positions of read sequences (Supplementary Table S1).
GenoTan (with ‘-L off’ which turns off the normalization of

read counts using the allele lengths) achieved the highest overall

performances in all coverages (Fig. 2A and Supplementary

Table S2), most notably for the non-reference homozygous loci

(Fig. 2B). In this test, GATK and SAMtools did not predict

NR/NR (non-reference/non-reference) heterozygous genotypes

and RepeatSeq did not predict NR homozygous genotypes cor-

rectly, while GenoTan identified homozygous, heterozygous

R/NR (reference/non-reference) and heterozygous NR/NR

genotypes with very high correct rate (97.4%, 93.5% and

93.7% with 40x coverage, respectively) (Fig. 2B, C and D).

Dindel showed slightly higher correct rate (94.6 % versus

93.5%) than GenoTan in calling R/NR heterozygous loci with

40x coverage presumably due to Dindel’s algorithm favoring ref-

erence allele calls. For allele level comparison, GenoTan had very

low rates of missed and wrong allele calls for both homozygous

(Fig. 2E) and heterozygous loci (Fig. 2F) at all coverage depths.

At error abundant loci, GenoTan showed low rates of missed

and wrong allele calls compared to the other programs

(Supplementary Figures S8, S9 and S10).

3.2 Performance test with mixed sequence data of two

Drosophila inbred lines

To evaluate the performance of GenoTan for diploid genome

datasets, the second dataset was created by merging sequence

reads of two different Drosophila inbred lines RAL-365 and

RAL-375 [SRA: SRX000537, SRA:SRX000538] (Illumina 36

cycle single-end sequencing) downloaded from the SRA website

(http://www.ncbi.nlm.nih.gov/sra). From the datasets, the

sequence coverage averaged 23x, which was sufficient to make

reliable allele calls for many loci. The reference genome sequence

was NCBI release_5_30 of Drosophila melanogaster. A list of

microsatellite loci was generated from the reference by searching

microsatellites of 1�8-mer motifs with a minimum three in

repeat number and a minimum 10 bases (10 bases for 1- and

2-mer, and 12 bases the other motifs) in length. When a distance

of two loci was510 bases, they were merged into a single locus.

The original Drosophila inbred line study (Mackay et al., 2012)

also analyzed microsatellite genotypes, but we did not use the

data since many allele calls from the study for our target loci

were inconsistent with our read alignments (the data is not

shown).

The number of sequence reads in SRX000538 was reduced so

that an equal number of reads was used for both samples (the

end of SRR001962.fastq was clipped). To create the input for

GenoTan, BWA (Li and Durbin, 2009) and GATK were used to

map the sequence reads to the reference and to realign the reads,

respectively. And microsatellite loci satisfying the following three

conditions were chosen for the performance comparison. First,

at each locus for both samples, the minimum number of reads

supporting an allele and overlapping at least 3 bases to both

flanking sequences of a microsatellite locus was 2. Second, at

each locus for both samples, the number of reads supporting

the second highest read frequency allele candidate was no more

than half of the read supporting the major allele candidate at a

locus. The second condition reduced the number of loci from

possible replicated sequences such as transposon elements,

which might result in incorrect validation. Third, alleles from

one or both samples at the same locus were non-reference alleles.

A total of 3300 loci (770 homozygous and 2530 heterozygous

loci) were selected and the average number of reads completely

covering repeat sequences per locus was 10.9.
Since we filtered out the microsatellite loci in which the num-

bers of reads supporting major allele candidates of each inbred

were ambiguous (see Methods section for the details), we

assumed that all alleles at the test microsatellite loci were clearly

identified. The data does not include reference/reference homo-

zygous loci because we selected loci containing at least one non-

reference allele. GenoTan identified 90.2% of microsatellite loci

correctly while RepeatSeq, GATK and Dindel called 61.7%,

45.9% and 77.9% of loci correctly (Fig. 3A). SAMtools and

GATK had the highest no-call rates (59.9% and 45.4%) presum-

ably because they required a high number of sequence reads

which were consistent with their consensus to call an allele.

GenoTan showed the highest proportion of correct genotype

calls for both homozygous and heterozygous loci in all sequence

coverage (Fig. 3B), but called a slightly higher proportion

(12.3%) of incorrect genotypes for low sequence coverage

(5�10x) heterozygous loci than Dindel (10.6%). Most

Fig. 2. Performance test with simulated data. (A) The proportions of no-

calls, incorrect calls and correct calls for all simulated datasets at different

sequence coverage. (B) The proportions of calls for non-reference homo-

zygous loci. (C) The proportions of calls for reference/non-reference

(R/NR) heterozygous loci. (D) The proportions of calls for non-refer-

ence/non-reference (NR/NR) heterozygous loci. (E) The numbers of cor-

rect, missed and wrong allele calls at homozygous loci. The numbers of

missed and wrong allele calls are shown in negative numbers. (F) The

numbers of correct, missed and wrong allele calls at heterozygous loci
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false-positive alleles called by the genotyping programs, except

GenoTan and RepeatSeq, were reference allele calls (no-INDEL

call) in the incorrect heterozygous genotype calls for homozy-

gous loci. To prevent other programs calling genotypes with se-

quence reads not completely covering microsatellites, we filtered

out the reads and tested RepeatSeq, GATK and Dindel again

(Supplementary Fig. S11), but the programs did not show sig-

nificant improvement.

3.3 Performance test with sequence data of a single

Drosophila inbred line

The third dataset was sequence reads of a single Drosophila

inbred line RAL-301 [SRA: SRX000530] (Illumina 36-cycle

single-end sequencing). This dataset was used to compare the

incorrect genotype calls of the genotyping programs for the

homozygous loci. The reference genome sequence was the same

as that use in the second dataset and the list of microsatellite loci

included additional loci for 8 and 9 base homopolymers. After

BWA mapping and GATK realignment, microsatellite loci sat-

isfying the following three conditions were chosen for the com-

parison. First, the minimum number of reads supporting a same

allele length and overlapping at least three bases to both flanking

sequences of a microsatellite locus was 4. Second, at least one

read completely covering the locus contained INDEL errors or

misalignments in the microsatellite. Third, the number of reads

supporting the second highest read frequency allele candidate

was not more than half of the reads supporting the major

allele candidate at a locus. As a result, a total of 1304 loci

were selected. The average sequence coverage of the whole

genome was 21x and the average number of reads completely

covering a microsatellite (three base overlapping with both flank-

ing sequences of the microsatellite) per locus was 14.9.
GenoTan showed superior performance at the loci covered by

reads supporting multiple allele candidates (Fig. 4A and

Supplementary Fig. S13). Notably, when the number of allele

candidates was �3 at a locus, the proportion of incorrect geno-

types called by the other programs increased while that by

GenoTan decreased. This indicated that the discretized

Gaussian mixture model improved performance at noise-abun-

dant loci. Figure 4B shows proportions of incorrect calls at

microsatellite loci with different motif lengths. We visually

inspected the incorrectly called loci of 2,3-mer motifs and

observed the presence of a few noise reads at each locus, which

might be derived from mis-mapping, PCR amplification error or

individual cell mutation. It was also possible that the reads sup-

porting the major allele candidates of the microsatellite loci were

mis-mapped, but we could not distinguish between these possible

scenarios. The length of a microsatellite allele is also an import-

ant factor that affects the accuracy of genotyping (Fig. 4C), as

the length of the allele gets longer, there are fewer reads com-

pletely spanning the repeat sequence. Especially, because sequen-

cing machines frequently fail to generate sequence reads

including long homopolymers, the rate of reads covering the

homopolymer sequence decreases significantly (Supplementary

Fig. S13). When the length of an allele was �14 bases in the

test data, 2-mer motif microsatellites became dominant because

most homopolymer microsatellites were not covered at a suffi-

cient read depth to call genotypes. Since polymer motif micro-

satellites produced much fewer sequencing errors and higher

sequence coverage than homopolymers, the rate of ‘no-call’

loci dramatically decreased, but most programs became more

sensitive to noise reads (due to PCR amplification error or indi-

vidual cell mutation) at polymer motif microsatellite loci.

3.4 Comparison with two sequencing datasets from a

single human individual

As a final test, we used two sequencing datasets from blood and

saliva samples from a single human individual [SRA:

SRX097307, SRA: SRX097312] (Illumina 101-cycle paired-end

sequencing), which contains 1 499 021 500 and 3 040 306840

reads, respectively. The reads were aligned to the human

genome reference NCBI build 37 by BWA and realigned by

GATK. To create a list of microsatellite loci, TRF (Benson,

1999) was used to search repeat sequences including incomplete

repeat sets. Loci containing at least 10 bases for 1-mer, 12 bases

for 2-mer and 15 bases for 3-, 4-, 5-, 6-mer of pure repeat se-

quences were selected for evaluation. When two microsatellite

loci were within 40 bases, they were merged into one locus. To

check for uniqueness of microsatellite flanking sequences, a 30-

base sequence which included a 25-base flanking sequence and a

5-base microsatellite sequence was extracted from each side of

the microsatellite and mapped by BWA to a reference sequence.

When BWA did not assign the maximum mapping scores (Q37,

Phred quality score) to both flanking sequences of the microsat-

ellite, the microsatellite was removed from the target microsatel-

lite list. As results, we obtained 58245 microsatellite loci in

chromosome 1. Among them, 57603 and 57693 loci were com-

pletely covered by 1 810477 reads of the blood sample and

3 373 598 reads of the saliva samples, respectively. Most of the

reads (1 396921 reads of blood and 2 610205 of saliva) supported

reference alleles. Since it was difficult to distinguish true positive

calls from false-positive calls in genotyping results for the micro-

satellites especially for loci containing homopolymers from a

human genome, we simply measured the number of loci consist-

ent and inconsistent within genotyping results for the two differ-

ent samples using RepeatSeq, GATK, Dindel and GenoTan

(Fig. 5). To analyze the difference, microsatellite loci containing

at least one non-reference allele identified by each program were

compared. The numbers of loci called for only one sample were

Fig. 3. The performance comparison for the mixed sequence data of two

differentDrosophila inbred lines. All microsatellite loci contain at least one

non-reference allele. (A) The proportions of no-calls, incorrect calls and

correct calls for the mixed sequence data. (B) The detailed proportions of

calls at different sequence coverage for homozygous and heterozygous loci

Discretized Gaussian mixture for microsatellite genotyping
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not directly compared because we could not know whether the

genotypes for the same loci in the other sample were called as

homozygous reference allele loci or were not called. RepeatSeq,

GATK, Dindel and GenoTan identified heterozygous alleles

from 11 596, 13640, 16 074 and 14277 loci in both samples, re-

spectively. Though Dindel genotyped the highest number of loci

(12 368 loci) consistently, it also had high number of loci (3706

loci) inconsistently called. The consistency rate of the genotyping

results was measured by [(number of consistent calls)/(number of

consistent calls þ number of inconsistent calls)] and GenoTan

showed the highest consistency rate (0.85) while RepeatSeq,

GATK and Dindel showed 0.39, 0.82 and 0.77, respectively.

3.5 Other comparisons

GenoTan is computationally fast which provides a significant

competitive performance advantage. While GenoTan could

genotype 20 700 loci in the 40x sequence coverage simulated

data in 9m 20 s, GATK and Dindel genotyped them in 57m
40 s and 4h 53m 4 s, respectively. RepeatSeq archived the fastest

speed (15 s), but it showed high false-negative rates in all tests.

The additional comparisons of computational speeds are avail-
able in Supplementary Table S3.

The performance of genotyping programs were compared for
different mapping results generated by two different mapping

programs, BWA and Novoalign (http://novocraft.com).
Simulated sequence reads for the Drosophila reference sequence

were generated by pIRS (Hu et al., 2012) (Supplementary

Material, Performance test with two different mapping program
for simulated data generated by pIRS from the Drosophila

reference section for detail). The genotyping results from
lobSTR for target microsatellite loci were also compared and

evaluated. GATK, DIndel, GenoTan and RepeatSeq had correct

percentages of 79.8%, 92.4%, 91.8% and 53.7% with BWA
mapping, respectively, and 84.3%, 95.6%, 95.4% and 55.0%

with Novoalign mapping. Not relying on these mapping pro-
grams, lobSTR had 2.8% of correct calls. It should be noted

that for RepeatSeq and lobSTR, many genotypes were not

wrong, but were uncalled. High false-negative rate of lobSTR
is consistent with results in the RepeatSeq study (Highnam

et al., 2012). All loci in our test set contained at least one non-
reference allele but lobSTR called only reference alleles for many

loci.

4 DISCUSSION

Here we presented GenoTan, a method using a discretized

Gaussian mixture model combined with a rules-based approach

to identify inherited alleles of microsatellite loci from NGS data,
which often contain noise reads caused by substitution/INDEL

sequencing error, PCR amplification error or individual cell
mutation, without paired-end information. It also employs an

additional novel approach, homopolymer decomposition, to es-

timate error bias toward deletion or insertion in homopolymer
runs. Combining these approaches, we were able to successfully

genotype microsatellite loci from both simulated data and real

Fig. 4. Analysis of the incorrect genotype calls for non-reference homozygous loci in a single Drosophila inbred line. An allele supported by the highest

number of reads at a locus was assumed as the inherited allele. ‘No-calls’ of SAMtools (thin gray) were analyzed together. (A) Proportions of incorrect

calls at the loci with several different number of allele candidates. (B) Proportions of incorrect calls at the loci with different lengths of motifs. (C)

Proportions of incorrect calls at the loci with different lengths of the highest read frequency allele (assumed as inherited alleles)

Fig. 5. Comparison of microsatellite loci containing non-reference alleles

identified in two sequence datasets from a single human individual. Two

sequencing datasets from blood and saliva samples from a single human

individual were used to measure the consistency of genotyping results

generated by RepeatSeq, GATK, Dindel and GenoTan. The numbers

in the diagrams are the numbers of microsatellite loci containing at

least one non-reference allele identified by each program for two different

samples. The consistency of the genotyping results generated by each

program was measured by (number of consistent calls)/(number of con-

sistent calls þ nummber of inconsistent calls)
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data quickly without biased calls taken to be references alleles,
while other approaches required 5�30� more computational
time than GenoTan and favored calling reference alleles. In
our experiments, the rule-based approach had better accuracy

in distinguishing noise from inherited alleles at the microsatellite
loci than the Bayesian approach used by GATK and Dindel.
This is because noise reads at the microsatellite loci were derived

not only from sequencing errors, but also from mis-mapping,
PCR amplification error and individual cell mutation, of which
error frequencies are very difficult to measure using statistical

methods. The discretized Gaussian mixture also showed
enhanced performance in reducing noise at noise-abundant loci
covered by sequence reads containing long homopolymers which

often induce substitution and INDEL sequencing errors. Two
programs, lobSTR and RepeatSeq, have been developed to
genotype specifically microsatellites, but since they did not call
genotypes for many loci in our test sets, of which all loci con-

tained at least one non-reference allele and true alleles were
clearly identified, their performance is still unknown. In addition,
RepeatSeq frequently calls more than two alleles for a locus and

may perform better with sequencing data of tumor samples to
search for multiple alleles.
Even though GenoTan has improved performance in control-

ling homopolymer errors, it, like other methods, has limitations.
GenoTan has been designed to detected microsatellite variants
shorter than read lengths, but long microsatellite sequences are
frequently observed and are not addressed by this method. And

it requires high sequence coverage to reliably estimate genotypes.
These two limitations are common to many genotyping pro-
grams and may be reduced by advanced sequencing technologies

producing longer reads and higher coverage than the current
technologies, even if the homopolymer error problems found in
various technologies continue.

Mismapping is also still problematic for genotyping. We visu-
ally inspected the loci incorrectly called by genotyping programs
from Drosophila inbred line sequencing data and observed sev-

eral loci covered by reads which appeared to be mismapped, in
which the true alleles could not be identified. Most genotyping
programs including GanoTan incorporate the mapping quality
scores generated by mapping programs into their methods to

control for incorrectly mapped reads. However relying on the
mapping quality scores could result false positive prediction in
INDEL genotypes, since mapping programs often fail to map

reads containing microsatellite variants and generate incorrect
quality scores. Reducing the effect of incorrectly mapped reads
remains a challenge for genotyping programs.

Since genotyping more complex genomes, such as human, is
significantly more difficult due to the abundance of transposable
elements that interfere with mapping and are commonly asso-
ciated with microsatellite loci, we indirectly compared the per-

formance of genotyping programs for two matched sequencing
datasets (blood and saliva) from a single human individual. With

the human data, GenoTan showed the highest concordance for

these two genotyping tests.
Lastly, GenoTan was designed to call only two alleles as pa-

ternal and maternal alleles, while many alleles could be acquired

after birth especially in tumor cells. The current version treats the

acquired alleles as noise (individual cell mutation), but next ver-

sion should be available to call more than two alleles to address

this issue.
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