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Discretiled light-cene quantization of electrodynamics

Alex C. Kalloniatis
Max Pla-nch Ins-titut fur Kernphysik, D 89-099 IIeidelberg I, Germany

David G. Robertson
Department of Physics, The Ohio State University, Columbus, Ohio $3810

(Received 27 May 1994)

Discretized light-cone quantization of (3+1)-dimensional electrodynamics is discussed, with care-
ful attention paid to the interplay between gauge choice and boundary conditions. In the zero longi-
tudinal momentum sector of the theory of general gauge fixing is performed, and the corresponding
relations that determine the zero modes of the gauge field are obtained. One particularly natural
gauge choice in the zero mode sector is identified, for which the constraint relations are simplest
and the fields may be taken to satisfy the usual canonical commutation relations. The constraints
are solved in perturbation theory, and the Poincare generators P" are constructed. The efFect of
the zero mode contributions on the one-loop fermion self-energy is studied.

PACS number(s): 11.10.Ef, 11.10.Gh, 12.20.Ds

I. INTRODUCTION

Light-cone quantization, or more properly quantiza-
tion on a null plane [1], seems to ofFer several advan-
tages over the more traditional equal-time quantization
for a nonperturbative treatment of field theories. There
are arguments, for example, that certain Lorentz boosts
are in the kinematical subgroup and that the vacuum
structure is simpler. There has recently been consid-
erable effort devoted to exploiting these advantages in
the context of a Tamm-DancofF-style solution of Beld
theory [2,3]. For an overview of this work with many
references, see Ref. [4]. This approach has been strik-
ingly successful in two spacetime dimensions [5—12], and
encouraging results have also been obtained recently in
four-dimensional models [13—16]. For a coinplete attack
on four-dimensional QCD to be feasible, however, many
technical obstacles remain to be overcome.

A particularly simple &amework for actual calculations
is that of "discretized" light-cone quantization (DLCQ),
in which the theory is defined on a light-cone "torus"
[5]. It then possesses a discrete momentum-space basis,
which regulates in&ared divergences and is ready-made
for numerical analysis. The goal of this approach is to
give a controllable formulation of a quantum field theory
in terms of a Hamiltonian eigenvalue equation and then
to solve it, in general, numerically.

Certain formal aspects of this approach, however, are
not yet completely under control. One such area concerns
the zero modes (in the Fourier sense) of bosonic fields.
To illustrate the basic problem, let us consider a self-
interacting scalar field in 1+1 dimensions, for which the
Euler-Lagrange equation is

(48 8+ + m )p = —AqP.

(Our notational conventions are summarized in Ap-
pendix A.) After imposing periodic boundary conditions

on the finite interval —L & x & L, we can expand the
Beld in discrete Fourier modes with momenta k+ = "&,
n an even integer. We then project out the zero mode
(n = 0) by integrating both sides of the equation over
the entire interval, obtaining

m'p = —AP — d* (3Pp + &p ).
2L

(1.2)

Here p is the zero mode and y is the complementary
0

"normal mode" part: p:—p —p. The important thing
to note is that the time (x+) derivative has dropped out
due to the chosen boundary conditions. The zero mode
is therefore a constrained field for which we cannot spec-
ify independent quantum commutation relations [17—20].

0
Furthermore, P is needed for the computation of, e.g. , the
Poincare generators. The nonlinear operator constraint
(1.2) must therefore be solved before the Hamiltonian
can even be written down.

There is a striking simplincation that occurs elsewhere
in the theory, however: The Fock vacuum is an exact
eigenstate of the full Hamiltonian. This follows &om
light-cone momentum (P+) conservation and the obser-
vation that the zero mode does not correspond to a de-

gree of freedom —that is, there is no P+ = 0 quantum in
the theory. The bare vacuum is thus the only state in the
theory with P+ = 0 a.nd must therefore be an exact eigen-
state of the full Hamiltonian. This is a highly desirable
feature if we wish to have a constituent picture of rela-
tivistic bound states and describe, for example, a baryon
as primarily a three-quark state plus a few higher Fock
states in the manner of Tamm and Dance In equal-
time quantization, where the physical vacuum state is
an infinite superposition of states with arbitrarily large
numbers of bare quanta, it would be extremely difBcult to
describe a baryon in this fashion. In this case a sensible
constituent description would be in terms of "quasiparti-
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50 DISCRETIZED LIGHT-CONE QUANTIZATION OF ELECTRODYNAMICS 5263

cles," perhaps corresponding loosely to the quarks of the
constituent quark model. These would be complicated
collective excitations above the physical vacu»m state.
The difficulty here, of course, is that without knowledge
of the full solution of the theory we have no idea how to
connect these quasiparticle states to the bare states (in
terms of which the Hamiltonian is easily formulated).

In DLCQ the problein of the vacuum is apparently
shifted to that of obtaining solutions to the constraint
equations for the zero modes. Some preliminary sup-
port for this view is provided by considering the model of
Eq. (1.1) with m ( 0, in which case we anticipate spon-
taneous breakdown of the refiection symmetry P m —P.
Here we find [21—23] that there are multiple solutions
to the constraint (1.2), and we must choose one to use
in formulating the theory. This choice is analogous to
what in conventional language we would call the choice
of vacuum state. The various solutions contain c-number
pieces which produce the possible vacuum expectation
values of P. The properties of the strong-coupling phase
transition in this model are also reproduced, including its
second-order nature and a reasonable value for the crit-
ical coupling [23,24]. (For an earlier study of this phase
transition in DLCQ without the zero mode, see [25].) So
in some cases, at least, physics which we normally asso-
ciate with the vacuum can be manifested in these zero
modes, in a formalism where the vacuum state itself is
simple.

We should perhaps emphasize that, apart &om the
question of whether or not vacuum expectation values
arise, solving the constraint equations really amounts to
determining the Hamiltonian (and other Poincare gener-
ators). In general, P becomes very complicated when
the zero mode contributions are included; this is in some
sense the price we pay to achieve a formulation with a
simple vacuum. The other Poincare generators appar-
ently also receive contributions Rom the zero modes, and
it becomes important to check whether the supposedly
kinematical ones, P+ and P', remain kinematical when
the zero modes are included. As we shall see, this is not
always guaranteed to be the case.

When considering a gauge theory, there is another
"zero mode" problem associated with the choice of gauge
in the compactified case. This subtlety, however, is not
particular to the light cone; indeed, its occurrence is quite
familiar in equal-time quantization on a torus [28]. In the
present context, the difBculty is that the zero mode in A+
is in fact gauge invariant, so that the light-cone gauge
A+ = 0 cannot be reached. Thus we have a pair of in-
terconnected problems: first, a practical choice of gauge
and, second, the presence of constrained zero modes of

II. GAUGE FIXING AND THE
ZERO-MOMENTUM MODES

With the standard Lagrangian density for electrody-
namics)

C = 4iF""F„„—+ g(iP —m)Q, (2.1)

the equations of motion are the familiar Dirac equation

('P )O =0- (2 2)

and Maxwell's equation

B„F""= gJ", (2.3)

where D„=8„+igA„and J" =:Qp"Q:. Written out
explicitly in terms of the various gauge Geld components
and the spinor projections defined in Appendix A, these
become

(2iB+ —gA )Q+ ——[ in'8; + mP + gn'A—;]Q, (2.4)

(2iB —gA+)g = [—in*8; + mP + gn'A;]@+, (2.5)

28+8 A+ —2(8 ) A —28 8~A~ —8~A+ = gJ+,

(2.6)

the gauge field. In two recent papers [29,30], these prob-
lems were separated and consistent gauge-fixing condi-
tions were introduced to allow isolation of the dynamical
and constrained fields. In the present paper we shall
generalize the gauge fixing described in Ref. [30] and
construct the Poincare generators in perturbation the-
ory. Our aim is to study the types of operators induced
by the zero modes and to examine their effects on the
perturbative renormalization of this theory.

We begin in the next section by reviewing the approach
laid out in Ref. [30] and separating the constrained zero
modes kom the dynamical degrees of &eedom within a
general gauge fixing. We obtain the relations that de-
fine the constrained operators and show that there is a
unique choice of gauge in the zero mode sector for which
the naively kinematical operators P retain their free-
field forms, so that the usual (free-field) commutation
relations can be employed. In Sec. III we solve the con-
straints in perturbation theory and construct the Hamil-
tonian to lowest nontrivial order. In Sec. IV we study
the efFects of the zero mode contributions on the one-loop
fermion self-energy. Some discussion and our conclusions
are presented in Sec. V.

It may be possible to think of the discretization as a cutoH'
which removes states with 0 ( p+ ( m/L and the zero mode
contributions to the Hamiltonian as effective interactions that
restore the discarded physics. We shall not pursue this idea
in detail here, except to note that from the light-cone pomer-
counting analysis of Wilson [26,27j it is clear that there will
be a huge number of allowed operators.

28+8 A —2(8+) A+ —28+8~A~ —B~A = gJ
(2.7)

(48+8 —8~)A*+ 8;8+A+ + 8;8 A + 8;B~A' = gJ*.

(2 8)
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Observe that in the traditional treatment, choosing the
light-cone gauge A+ = 0 enables Eq. (2.6) to be solved for
A . In any case the spinor projection g is constrained
and determined by Eq. (2.5).

Discretization is achieved by putting the theory in a
light-cone "box," with —I~ & x' & L~ and —I & x
1., and imposing boundary conditions on the fields. The
choices of boundary conditions are constrained by the
need to be consistent with the equations of motion. Be-
cause the gauge field couples to a fermion bilinear, which
is necessarily periodic in all coordinates, A„must be
taken to be periodic in both x and x~. We have more
Qexibility with the Fermi 6eld, and it is most convenient
to choose this to be periodic in z~ and antiperiodic in
x . This eliminates the zero longitudinal momentum
mode while still allowing an expansion of the field in a
complete set of basis functions.

The functions used to expand the fields may be taken
to be plane waves, and for periodic 6elds these will of
course include zero-momentum modes. Let us define, for
a periodic quantity f, its longitudinal zero mode

{f)o=
~

dz f(z, »)21 (2.9)

and the corresponding normal mode part

(2.10)

We shall further denote the "global zero mode" —the
mode independent of all the spatial coordinates —by (f):

L Lg
{f)—:— dz d zif(z, zi).

—L —Lg
(2.11)

Finally, the quantity which will be of most interest to us
is the "proper zero mode, " defined by

(2.12)

0 0—0~A+ = gJ+, (2.13)

By integrating over the appropriate direction(s) of
space, we can project the equations of motion onto the
various sectors. Previous work on the formulation of
/ED in DLCQ [13,31] has been implicitly carried out
in the normal mode sector, and many of these results
may be carried over without modification. The global
zero mode sector requires some special treatment and,
in fact, turns out to be irrelevant for the perturbative
calculations we shall present here. A brief description of
its features and a proof that it can be ignored to low-
est nontrivial order in perturbation theory are given in
Appendix B.

Thus we concentrate our attention on the proper zero
mode sector, in which the equations of motion become

law, is a constraint which determines the proper zero
mode of A+ in terms of the current J+:

0 j 0
A+ =g J+.

Og
(2.16)

[Note that the integral operator (8&) is well defined
in this sector [30].] Equations (2.14) and (2.15) then

0 0
determine the zero modes A and A'.

Equation (2.16) is clearly incompatible with the strict
light-cone gauge A = 0, which is most natural in light-
cone analyses of gauge theories. Here we encounter a
common problem in treating axial gauges on compact
spaces [28], which has nothing to do with light-cone quan-
tization per se. The point is that any x -independent
part of A+ is in fact gauge invariant, since, under a gauge
transformation,

A+ m A++28 A, (2.i7)

where A is a function periodic in all coordinates. 2 Thus it
is not possible to bring an arbitrary gauge field configura-
tion to one satisfying A+ = 0 via a gauge transformation,
and the light-cone gauge is incompatible with the chosen
boundary conditions. The closest we can come is to set
the normal mode part of A+ to zero, which is equivalent
to

(2.is)

This condition does not, however, completely fjLx the
gauge —we are free to make arbitrary x -independent
gauge transformations without undoing Eq. (2.18). We

may therefore impose further conditions on A„ in the
zero mode sector of the theory.

To see what might be useful in this regard, let us con-
sider solving Eq. (2.15). We begin by acting on Eq. (2.15)

0
with 0;. The transverse field A' then drops out, and we

0
obtain an expression for the time derivative of A+:

0.
0+2 =g t9 J ~ (2.19)

(2.20)

Now the operator (8' —8;8~ jD&~) is nothing more than
the projector of the two-dimensional transverse part of

0 0
the vector fields A' and J'. No trace remains of the longi-

tudinal projection of the field (8;Bz/8&z)A~ in Eq. (2.20).

[This can also be obtained by taking a time derivative
of Eq. (2.16) and using current conservation to reexpress
the right-hand side in terxns of J .] Inserting this back
into Eq. (2.15), we then find, after some rearrangexnent,

0 0 0 0
2(B+) A+ —B~—A —28;8+A' = gJ (2.i4)

—~A +0;8+4 +0;0&A = gJ . (2.15)

We first observe that Eq. (2.13), the projection of Gauss'

The gauge transformation must also preserve the boundary
conditions on the other Belds; thus, e.g. , A x is not in

general allowed. See, however, Appendix B.
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0 1 0.
A' = —g 2 J'+8;rp(z+, z~),

J
(2.21)

where y must be independent of x, but is otherwise ar-
0

bitrary. Imposing a condition on, say, 8;A will uniquely
determine y.s In Ref. [30], for example, the condition

8;A' =0 (2.22)

was proposed as being particularly natural. This choice,
taken with the other gauge conditions we have imposed,
has been called the "compactification gauge. " In this
case,

0 .
&p = g 8;J*. (2.23)

Of course, other choices are also possible. For example,
we might generalize Eq. (2.23) to

0.
p = o.'g

(82 )
2 8~J, (2.24)

with o. a real parameter. The gauge condition corre-
sponding to this solution is

This refIects precisely the residual gauge freedom with re-
spect to x -independent transformations. To determine
the longitudinal part, an additional condition is required.

More concretely, the general solution to Eq. (2.20) is

0
the final constraint [Eq. (2.14)] to determine A . Using

Eqs. (2.19) and (2.25), we find that Eq. (2.14) can be
written as

0 0 1 0 .
A = —gJ —2o.g, +, J'.

Bg
(2.28)

(2.29)

After using the equations of motion to express t9+J' in
terms of the dynamical 6elds at x+ = 0, this may be

0
straightforwardly solved for A by inverting the 8&2. In

0
what follows, however, we shall have no need of A . It
does not enter the Hamiltonian, for example; as usual, it
plays the role of a multiplier to Gauss' law [Eq. (2.15)],
which we are able to implement as an operator identity.

Now, since difFerent choices for y merely correspond
to difFerent gauge choices in the zero mode sector, we

expect that physical quantities should be independent of
the specific y we choose [i.e., for the family of solutions
defined by Eq. (2.24) physical quantities should be inde-
pendent of the parameter a]. It may be, however, that
particular choices for p lead to particularly simple for-
mulations. It is instructive in this regard to examine the
naively kinematical Poincare generators P+ and P', and
check whether they remain kinematical when the zero
mode contributions are included.

The operators P" are de6ned by

0 18;A' = —g(1 —a) 2 8;J'. (2.25) where we take for the energy-moment»m tensor the
gauge-invariant form

1 0. 0.
A(z~) = —

2 g(1 —n) 2
8;J'+8;B* .

J J
(2.26)

This is somewhat unusual in that A(z~) involves the
sources as well as the initial 6eld configuration, but this
is perfectly acceptable. More generally, y can be any
(dimensionless) function of gauge invariants constructed
from the fields in the theory, including the currents J+.
For our purposes Eq. (2.25) suffices.

We now have relations de6ning the proper zero modes
of A'.

We shall refer to this as the "generalized compactification
gauge. " An arbitrary gauge Beld con6guration B" can
be brought to one satisfying Eq. (2.25) via the gauge
function

T""= F""F"p —gJ—"A" + i Qp" 8"Q —g""l:, (2.30)

with 8 given in Eq. (2.1). Equation (2.30) differs by the
addition of a total divergence Rom what we obtain by
a straightforward application of Noether's theorem. For
P+ the relevant component is

T++ = 4(8 A*„)2+4(8 A„')(8;A+) + (8;A+)
—gJ+A++ 4ivg+8 @+. (2.31)

The first and last terms in (2.31) just give the usual nor-
mal mode contribution to P+. The second term vanishes
upon integration in x . Finally, the remaining two terms
combine, after a transverse integration by parts, to give
a contribution to P+:

0 . 1A' = —g le
88~ ot9qB~

(2.27)
0 0 0

dx d z~A+ —0 A+ —gJ+ . (2.32)

0
as well as A+ [Eq. (2.16)]. All that remains is to use

This vanishes upon implementing the constraint (2.13).
Thus P+ remains kinematical, even with the zero modes
present.

For the P' we require

We could also refuse to completely fix the gauge and treat
y as a degree of freedom. It would be unphysical, however,
and would have to be removed by restricting to a suitable
physical subspace. See Ref. [32j for an example of this type
of construction in a continuum formulation.

T+* = —(8~A+) (8 A+') —(8 A+.)(8;A')

+(B~A+) (8,A') —gJ+A*+. (2.33)

where we have omitted the purely normal mode contri-
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d x~ 0;A+ i9+A++O~A~ . (2.34)

Clearly, P' will contain zero mode contributions, and
hence will be "interacting, " unless

0 0
t9+A++ 0~A~ = 0. (2.35)

This corresponds to taking n = 0 in (2.27). Interestingly,
this condition amounts to a zero mode projection of the
Lorentz gauge condition

bution and terms that vanish upon integration. The last
two terms cancel upon integration by parts and applica-
tion of the constraint (2.13). The first two combine to
give a contribution to P':

for ir g 0, and we can simply compute these by inverting
the redefinition (2.39) and using the known commutation
relations for g+. All of this is not really necessary, how-

ever. The point is that cMerent values of o. are physically
equivalent; they are just related by redefinitions of Q+.
What is special about a = 0 [or, more generally, p = 0
in Eq. (2.21)] is that this is the unique choice for which
simple commutation relations among the fields are pos-
sible. Thus it is most sensible to take o. = 0 &om the
very beginning, and for the remainder of the paper this
is what we shall do.

It is perhaps also worth noting that o. = 0 results in
0

the simplest constraint relation for A [see Eq. (2.28)
and the discussion following Eq. {3.1)]. Indeed, in this
case all of the constrained zero modes satisfy

O„A" = 0. (2.36) (2.41)

What does it mean for P' to not have the same form
as in &ee-field theory? In this case it will be impossible
to realize the Heisenberg equation

[v)+, P'] = iB;Q+— (2.37)

with a simple anticommutation relation between @+ and

g+. In order to obtain Eq. (2.37) through O(g2), we
would have to take

{2.38)

with the O(g2a) term in (2.38) chosen so that the part
of [g+, P'] coming from the interacting terms in P' is
canceled by contribution &om the &ee-Geld part of P'
and the O(g2a) piece of the anticommutator.

In fact, we could determine the required anticommuta-
tion relation as follows. Consider the theory with a. = 0,
where since the P' have their usual &ee-6eld forms the
standard canonical anticommutator for g+ is the cor-
rect one. Now perform a redefinition of @+ that corre-
sponds to the gauge transformation that would take us
from a = 0 to n g 0, specifically

which has a pleasing symmetry.
Our next task is to solve the constraint relations for

the determined Gelds and construct the dynamical op-
erators. As a prelude to the next section, let us briefly
remark that, because the transverse currents themselves
depend on A', the structure of Eq. (2.27) is somewhat
more complicated than a 6rst glance reveals. Nonpertur-
bative solutions to these constraints have so far proved
difFicult to obtain. Nevertheless, an important f]Lrst step
toward understanding the implications of the zero modes
is to examine them in perturbation theory. Thus we shall

0
now pursue a perturbative solution for the A'. This is
equivalent to a Fredholm iterative treatment [30].

III. PERTURBATIVE FORMULATION

We now wish to solve the constraint relations (2.16),
(2.27), and (2.28) for the zero modes and compute the
dynamical operators of the theory. The components of
1"are given in terms of Q~ by

(3.1a)

—igA pl (2.39) (3.1b)

with

(2.40)

It is straightforward to check that when written in terms
of Q+, the P~ have the same forms they would have if
we had started with cr g 0 in Eq. (2.27). In particular,
the P' acquire a term equal to (2.34).4 Thus g+ satisfies
the commutation relations necessary to obtain Eq. (2.37)

We are being somewhat cavalier here about issues of oper-
ator ordering, etc. , which afFect the precise form of the 6eld
rede6nition (2.39).

From these and an inspection of the constraint equation
(2.5) for @,we can easily identify which zero modes
are simple and which are difBcult to compute. The 6eld
0
A+ is trivially obtained from Eq. (2.16), since it depends
only on the dynamical part of the Fermi field @+. The

0 0
transverse 6elds A' are more complicated, since J' de-

0 0
pends on both A' and A+. Thus Eq. (2.27) actually

0
determines A implicitly, and obtaining a general solu-

tion for A' is quite difBcult in the quanti~m theory. In
some sense this is to be expected, however: The com-
plexity normally associated with the vacuum state when

quantizing on a spacelike surface has to go somewhere.
0 0

Finally, A will be as difEcult to determine as the A' un-

less a = 0; using Eq. (2.4) to express the x+ derivative
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0
of J' in terms of the 6elds on x+ = 0 will introduce A
into the right-hand side of Eq. (2.28). If a = 0, however,
then Eq. (2.28) allows a straightforward computation of
0 0
A in terms of g+, A„', and A'. In this case the only ap-

0
proximations necessary to calculate A are those needed

0
for the computation of A'.

%'e shall now construct a perturbative solution to
Eq. (2.27) and study the structure of the theory to low-
est nontrivial order. This requires constructing the Ham-
iltonian through terms of Q(g2), which in turn corre-

( i a—*B; + mP) @+.
2'KB

(3.2)

Inserting the Fourier expansion of the field Q+, we then
find that the (normal-ordered) proper zero mode of the
transverse current is given to this order by

0
sponds to taking the C7(g) solution for A*. We obtain

0 ~

this simply by setting g = 0 in the current J' or, in other
words, by using the zeroth or-der expression for g

) p &2g(&—2s ' kg) + e 2q(E2a ' kJ )
Ql

( ~- i) i gt g, + ( ~-&i)*i
eh& -sg -ea (3.3)

where the prime on the snm indicates that terms with k~ = k& are to be excluded [i.e., the global zero mode is
0 0

removed as per Eq. (2.12)j. We then obtain A' at G(g) by inserting (3.3) into Eq. (2.27). Of course, A+ is obtained
simply by substituting the expansion of v)+ into Eq. (2.16). Neither of these expressions for the zero modes themselves
is particularly illuminating, however, and we do not display them.

0 0
With the A' and A+ in hand, we can now construct the Hamiltonian through O(g2). For this we need

T+ = (B A ) + (B+(A+)p) + 2F* F*~+g(J (A+)o —2J'A') —4@ (iB vP ) +2' ( ia'B—;+mP)v/&++ H.c.,

(3.4)

where we have discarded terms that will not contribute when integrated. Now the contribution from the normal mode
part of the theory may be found in various discussions of /ED in DLCQ, for example in Refs. [13,31). In Appendix B
we discuss the contributions &om the global zero modes and show they are unnecessary to this order at least. Thus
we display here only the parts of P arising &om the proper zero modes:

P— & g&
—g2 & g.Ai 2 & g.A~ 2+ A+ 2 2gJ~A~+ gJ A+ 4 ( )t zQ ( )

+2@ (—ia'B; + mP)g+ + H.c. (3.5)

Here @~ l is the second-order correction to the dependent
Fermi field, which comes entirely from the zero modes:

g
2 0 ~ $ 0 .

dz dz~ J' 2J'
2

(3.8)

@~ l = —ga'(A')p Thus the complete contribution to P at this order from
the proper zero modes reduces to

+g(A+) p . (—ia'B; + mP) g+.

(3.6)

g2 o. I o. o ] o
dz d'» J*,J' —-J-, J+z 2

g=0
(3.9)

0 . 0
dx d x~ 2

OA~ —
2

OA'

+(B+A+) —2gJ'A' (3 7)

in Eq. (3.5) may be combined to give

It turns out that all the terms in Eq. (3.5) involving Q
cancel among themselves. Furthermore, after implement-
ing the constraints, the terms

where we have used Eq. (2.13) to express A+ in terms of
J+

It is now a straightforward (if tedious) exercise to in-
sert the Fourier expansion of g+ into Eq. (3.9) and ex-
press P& in the Fock representation. We obtain new
four-fermion operators, as well as fermion bilinears which
arise when the four-point terxns are brought into nor-
mal order (as usual, c-number contributions that result
are discarded so that (O~P ~0) = 0). These latter terms
have been called "self-induced inertias" in the literature,
since they have the Fock space structure of a mass terxn.
One Gnal comment is warranted before we present the
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explicit terms. The operators J and J+ in Eq. (3.9)
do not commute. Therefore the last term in Eq. (3.9) is
non-Hermitian as it stands. This operator-ordering am-
biguity is treated by symmetrization:

four-fermion operators and the self-inertias:

Pg ——P~ + P~ + P + P, + P,,-;, (3.ii)

(3.iO)

The results are conveniently grouped into four sets of

where P& and P& are the m-independent contributions
from the first and second terms in Eq. (3.9), respectively,
P and P, are all contributions proportional to m and

m, respectively, and P,,-,. is the full self-inertia contribu-
tion. We Gnd

PT ——2—) ' ) '
+ +, ', ,"2,'", ,2(kg —k~). (pg —p~)e2, e'2, (k'p' +k' p')b, i+(k'p +k' p")8,

i.t Lt L i. X( )

+d,qb,„,d, i, bg„b„, „„,„+d,qd, d, i, d i„b„,t t , (2) , (2) (3.12)

2 L.~ l.ij4g & I Je+ Je+ p+ p+ (2) t t , (&)
'(k+)2

'

(

'
I )2

b a'b& pb &b&p~a' —i p —p' b a'd &pb Ld —&p'~i.'—
e,k,k' t,p,p' J

—sk tp' —~k tp k' —k~,p' — + —sk —tp —~k —tp' k~ —k~,p~ —p~
t t , (2) , (2) (3.13)

,b'b be"
(k+)2 (

& )2 sk' tp' +b—&P k~ —kJ )pJ pg sk' tp + p—' k' —k&,p' —pJ
s,k, k' t,p,p' PL Pg

—k tp' ~" tp k' —k,p' —p —k —tp ~k' —tp' k~
t t , (2) t t , , (2) (3.14)

2g m . )., bi, +,i, +8p+,p+2 2

(k+) 2
s,J,k' t,p,p'

1 t t (2) i t (2)
b.ebs, b~b~p-~~ —., —.+b.ad ipbad ~p~a-. .„p. p.

J

—sk' tP ki k p~ p Sk tP sk' tP' k&(2)'d bt d b h —d d d d b (3.i5)

2

e,k,p

bt„b,„+dt„d,p . (3.16)

For completeness we also display P+ and P', which for
o. = 0 have the usual kinematical forms:

P+ = ) p+ bt b,p+ dt„d,„+) k+at„„api„(3.17)

Heisenberg equations reduce to the appropriate Geld

equations and that the Poincare algebra is correctly ob-
tained. We therefore have a valid representation of the
dynamics defined by the equations of motion (2.4)—(2.8).

IV. FERMION SELF-ENERGY

P' = ) p' bt b,p+dt d,p +) k'at„„aug, . (3.18)
+~P A, k

It is straightforward to check that through G(g2) all

We shall now examine the effects of the zero mode
contributions on the one-loop fermion self-energy in this
theory. In Ref. I20] it was found that the zero mode con-
tributions to P included a counterterm that removed a
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certain noncovariant, quadratic divergence in the fermion
self-energy (eigenvalue of P ) in a Yulmwa theory. We
wish to see whether the same thing happens in QED.

The fermion self-energy is not the only quantity to
which P& contributes at Q(g2), of course. The various
four-fermion operators in P& will certainly contribute to
tree-level scattering amplitudes. There will also be di-
vergent contributions to the e+e p vertex, and hence to
the charge renormalization, at lowest order. A complete
discussion of the effects of the new terms in P on the

one-loop renormalization of this theory wiO be presented
elsewhere [33].

Let us first discuss the contributions to the fermion
self-energy coming from the normal mode sector of the
theory. These can essentially be taken from the work
of Tang, Brodsky, and Pauli [13,31], with one caveat to
be mentioned below. There are two contributions, one
coming &om one-fermion —one-photon intermediate states
(hP~ ) and one coming from the self-inertia terms in the
Hamiltonian (hP2 ). We find

8P,
n —1

q~ q=2, 4)...

„(„' )
n (qg —~ng) +q pg + ", (q~ —&n~)

n2(qg —&ng)2+ q2pg
(4.1)

bP2
. t ™.

L. ). ). („),
q& ~—])3)

1 1 1 1
+ — +(a+m)~ 2 q(n —q) q(a+q))' (4.2)

J"= —,'[0 v"0] (4 3)

(see, for example, [34]) or, equivalently, of properly sym-
metrizing products of noncommuting operators in the
construction of P [35].

Now each of these contributions is separately quadrat-
ically divergent in a transverse momentum cutoff'. In a
continu»m formulation, with a suitable (Lorentz covari-
ant) regulator, these quadratic divergences cancel and we

recover the expected logarithmic singularity. Here, how-
ever, the coefficient of 2 &, g for ~q~~ -+ oo is

1 2a„—= -2 ) +
n(n —q) q2

1
+2 (n- m)s

W

1 1+ +
q(n —q) q(n + q)

1

(n+ m)'

(4 4)

where (nn /L, n~n /L~) is the momentum of the fermion,

a = ~4, and Py = (mL~/m)2. The caveat is that in
obtaining Eq. (4.2) we have symmetrized the self-inertias
given in Refs. [13,31] under b ++ d. This is the effect of
using the explicitly C-odd form of the current

Finally, let us consider the contribution &om the new
self-inertia terms (3.16), which is the sole effect of the
zero modes at this order. These give

fl (p+)' „.(k~-»)'

x 2m —(k~+ p~) —2m*„e' 2, (k*p'+ k'p'),

(4.6)

which is quadratically divergent for ~k~~ ~ oo:

bP
aL 1

(4.7)

V. DISCUSSION

The corresponding correction to 6 is therefore —~, so
that the noncovariant part of the quadratic divergence
is in fact canceled when the zero modes are included.
The quadratic divergence proportional to ~ survives,
unlike in the continuum, but this may be removed by
a redefinition of the fermion mass. Its occurrence can
presumably be traced to the violation of parity that is a
generic feature of DLCQ [20].

The s»ms in Eq. (4.4) may be evaluated explicitly to give

1
n2

2 ln2
(4.5)

Thus without the zero modes the fermion self-energy
contains a quadratically divergent piece proportional to

&
+&, . This would of course need to be removed by a

counterterm, but one which cannot correspond simply to
the redefinition of a parameter in the Lagrangian. In
contrast, the part proportional to ~ can be interpreted
as a correction to the fermion mass.

We have shown how to perform a general gauge fixing
of Abelian gauge theory in DLCQ and cleanly separate
the dynamical &om the constrained zero-longitudinal-
momentum fields. The various zero mode fields must
be retained in the theory if the equations of motion are
to be realized as the Heisenberg equations. We have fur-
ther seen that taking the constrained fields properly into
account renders the ultraviolet behavior of the theory
more benign, in that it results in the automatic genera-
tion of a counterterxn for a noncovariant divergence in the
fermion self-energy in lowest-order perturbation theory.
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Additional effects of the zero mode contributions to P
for example on the charge renormalization, are currently
under study [33].

0
The solutions to the constraint relations for the A'

are all physically equivalent, being related by different
choices of gauge in the zero mode sector of the theory.
There is a gauge which is particularly simple, however, in
that the fields may be taken to satisfy the usual canonical
anticommutation relations. This is most easily exposed
by examining the kinematical Poincare generators and
6nding the solution for which these retain their &ee-6eld
forms. The unique solution that achieves this is p = 0
in Eq. (2.21). For solutions other than this one, compli-
cated commutation relations between the 6elds will be
necessary to correctly translate them in the initial-value
surface.

It would be interesting to study the structure of the
operators induced by the zero modes &om the point of
view of the light-cone power-counting analysis of Wilson
[26,27]. As noted in the Introduction, to the extent that
DLCQ coincides with reality, effects which we would nor-
mally associate with the vacuum must be incorporated
into the formalism through the new, noncanonical inter-
actions arising from the zero modes. Particularly inter-
esting is the appearance of operators that are nonlocal
in the transverse directions [Eq. (3.9)]. These are inter-
esting because the strong in&ared effects they presum-
ably mediate could give rise to transverse con6nement
in the effective Hamiltonian for /CD. There is longitu-
dinal con6nement already at the level of the canonical
Hamiltonian; that is, effective potential between charges
separated only in x grows linearly with the separation.
This comes about essentially &om the nonlocality in x
(i.e., the small-k+ divergences) of the light-cone formal-
1SXIl.

It is clearly of interest to develop nonperturbative
methods for solving the constraints, since we are ulti-
mately interested in nonperturbative diagonalization of
P . Several approaches to this problem have recently ap-
peared in the literature [21,23,24] in the context of scalar
field theories in 1+1 dimensions. For /ED with a realis-
tic value of the electric charge, however, it might be that
a perturbative treatment of the constraints could sufBce,
that is, that we could use a perturbative solution of the
constraint to construct the Hamiltonj, an, which would
then be diagonalized nonperturbatively. An approach
similar in spirit has been proposed in Ref. [27], where
the idea is to use a perturbative realization of the renor-
malization group to construct an effective Hamilton-
ian for @CD, which is then solved nonperturbatively.
There is some evidence that this kind of approach might
be useful. Wivoda and Hiller have recently used DLCQ to
study a theory of neutral and interacting charged scalar
fields in 3+1 dimensions [36]. They discovered that in-
cluding four-fermion operators precisely analogous to the
perturbative ones appearing in I& signi6cantly improved
the numerical behavior of the simulation.

The extension of the present work to the case of /CD
is complicated by the fact that the constraint relations
for the gluonic zero modes are nonlinear, as in the P4 the-
ory. A perturbative solution of the constraints is of course

still possible, but in this case, since the effective coupling
at the relevant (hadronic) scale is large, it is clearly de-
sirable to go beyond perturbation theory. In addition,
because of the central role played by gauge 6xing in the
present work, we may expect complications due to the
Gribov ambiguity [37], which prevents the selection of
unique representatives on gauge orbits in nonperturba-
tive treatments of Yang-Mills theory. As a preliminary
step in this direction, work is in progress on the pure glue
theory in 2+1 dimensions [38]. There it is expected that
some of the nonperturbative techniques used recently in
1+1 dimensions [23,24] can be applied.
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APPENDIX A: NOTATION

1. Light-cone coordinates

(A1)

and de6ne p+—:p + p3. The Hermitian operators

(A2)

serve to project out the constrained and dynamical com-
ponents of the Fermi 6eld:

(A.3)

In the Dirac representation of the p matrices,

(1 0 1 0
1 0 1 0 —1

A+

&0 —1 0

(A4)

We de6ne x+—:x +x and take x+ to be the evolution
parameter. We use Latin indices (i, j, . . .) to index trans-
verse components z~ = (z, z ). A contraction of four-
vectors decomposes as A B = 2(A+B +A B+) A'B', —
form which we infer the metric g+ ——g + ——» g

1 11

g = —1, with all other components vanishing. Deriva-
tives are defined by 8~ = 8/Bz+, 8, —:8/Bz'.

We shall also make use of an underscore notation: For
position-space variables we write z = (z, z~), while for
momentum-space variables k—:(k+, k~). Then k

2
~ k+x —kg xg.

We further employ Dirac's notation
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which has two eigenvectors, both with eigenvalue 1: [A'„(z),8+A'„(z')]

X+1/2 ~ 1 & X—1/2 ~ 0
&0) &-I)

(A5) = jg~ $~s~(z —z') — 6~2'(zJ —z' ) . (A14)

These serve as a convenient spinor basis for the expansion
of @+ on the light cone.

These are realized by the Fock space relations

(bgIey b+&st) = (dg$gy d&&i s ) = hest t (3) (A15)

2. Field expansions and commutation relations

The mode expansions of the fields on x+ = 0 take the
form

@+(z) = ) y, 1 b, i,e
'" +-d—t,se' —"'-, (A6)

[a),q, a„, , ] = bye 6

(b, 8 = (d, d) = (b, dt)
= [a, b] = [a, d] = [a, bt] = [a, dt] = 0.

(A16)

(A17)

APPENDIX B: THE GLOBAL ZERO MODE
SECTOR

A.'„(z) = ) e'„' ag~e '--+ a„e"-'- (A7) As discussed in Ref. [30], the Gauss law in the global
zero mode sector is just the vanishing of the total charge:

—1 . ; 1
+, —— (l, i), e', = (1, i). —

2
' '

2
(AS)

where 0 = 8LL& is the spatial volume, the spinors y,
are given in Eq. (A5), and the polarization vectors e& are
defined by

: (J+):~phys) = 0, (B2)

(B1)

This is a first-class constraint in the Dirac sense [39].
Thus it can only be realized as a condition on physical
states in the quantum Hilbert space:

These satisfy

A useful relation satisfied by the y, and e& is

(A9)

where normal ordering eliminates the zero-point infinity.
In terms of the Fock operators,

(B3)

y, ,a'a y, = —2e' 2,e„b, , ;
t.-j (A10)

others may be found in Ref. [31). Recall that the gauge
field is taken to be periodic in all coordinates, while the
Fermi field is periodic in x~ and antiperiodic in z . Thus
in Eq. (A6) the sum runs over the allowed momenta e, A:

(B4a)

Consequently, to lowest nontrivial order in the coupling
constant g, charge singlet states are eigenstates of the
global zero modes of the remaining source components:

L' : (J'):= —) . + (b.'sb a —d.'~d a).
s, le

(B4b)

A

Lg'
n' = 0, +1,+2, . . . ,

while in (A7) we have

(A11) This is important for the global sector corresponding to
A+. For this we obtain the following contribution to the
Hamiltonian:

+=q = ) m=2, 4, 6, o ~ ~ P, b = 0 i(vr ) +g(A+)(J ) (B5)

m' = 0, +1,+2, . . . (A12)

The canonical commutation relations to be imposed
are

We observe that (A+) represents a genuine degree of free-
dom coupling to the electron-photon sector. Thus in
lowest-order perturbation theory the Hilbert space can
be constructed in terms of the product states

8+-(*) @' (*')) = (A+)-pb"'(* — ') (A13) 4' @ ~phys), (B6)
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4+ —qual' = E'4,
2 dq

(87)

where @ are stationary wave functions satisfying the
Schrodinger equation

tion. Since the electron-photon, states ]phys) are eigen-
states of this Hamiltonian, we can take matrix elements
of the Hamiltonian and work with a reduced Schrodinger
equation. Evaluating the first-order correction to

y(0)( ) g i~2Eq (88)

with q = A(A+), U =: (J ):, and f the energy density
E/A. We cannot solve this exactly, but perturbation
theory in the coupling sufBces. The free-particle (g = 0)
wave functions are

(@."I@")= f &a@i"(s)@"(s),

we obtain

g~I&I' f

(813)

we see that U = exp(i &"x ) maintains the gauge con-
dition 8 A+ = 0, as well as the other conditions, but
shifts the value of the global zero mode by 2wn/gL:

(A+) m (A+)—
gL

(810)

Note that this U is periodic and, due to its z depen-
dence, is not part of the residual freedom that was left af-
ter introducing the condition 8 A+ = 0. Thus the quan-
tum mechanical particle q transforms as q m q — "O.
We proceed in analogy with Manton's treatment [28] of
the Schwinger model on a circle: The wave function @~ ~

is assigned the boundary condition

y(o)( ) @(o) (811)

Now we choose the first "horizon" corresponding to n =
1. Within this we obtain the discrete spectrum of "m
states, " where m is an integer:

There is in fact a boundary condition on 4. First, we
observe that there is a (rather trivial) Gribov ambigu-
ity in the gauge we employ. Writing the Abelian gauge
transformations in the form

A~ ~ UA~U-'+ Ua~U—.
1

Xg

(814)

This can be written as the derivative with respect to
/2Z„—/28 of a 8 function whose support is empty,
since n P m. Thus the correction vanishes, as does the
unperturbed amplitude. Thus with the system initialized
in a given m state the interactions will not allow a tran-
sition to another state. The eKect is a pure background
that can be ignored as far as the electron-photon theory
is concerned. The reader is referred to Ref. [40] for an
examination of the role of such states in pure glue theory
in 1+1 dimensions.

Let us next discuss (A'). The problein here is that
projection of the Maxwell equations into the global sec-
tor does not yield information about (A'), neither in the
form of a constraint relation nor a dynamical equation of
motion. But the Dirac theory sees it reintroduced into

0
the equation for A.' via the constraint for Q . Physi-
cally, these Belds represent quanta that propagate along
the initial-value surface x+ = 0. It may be, therefore,
that they should be initialized along a surface orthog-
onal to x+ = 0, in a way familiar kom, e.g. , the treat-
ment of massless fields in two spacetime dimensions. This
approach is currently under study. An alternative treat-
ment has been proposed in Ref. [30], in which a mass term
is introduced for (A') only. In this case the global pro-
jection of the equation of motion analogous to Eq. (2.8)
gives

m g4~ )(q) = Ae'~ -q with E
8(2L~)2

(812)

Observe that, as expected on dimensional grounds, the
longitudinal interval length L has canceled in the discrete
values of the energy density. In 1+1 dimensions there is
no longer any length pararoeter left, and so even in the
naive continuum limit one obtains a finite energy density.
In this case of three space dimensions, the naive L~ -+
oo limit collapses all the m states down to zero energy.
On the other hand, we now show that for lowest-order
perturbation theory, even in the finite vol»me transitions
&om any such state to another excitation are suppressed.

The argument rests on the simplicity of the interac-

v'(A') = g(J') (815)

so that (A') becomes constrained. In this approach it is
simple to check that the contributions to P coming from
(A') begin at Q(gs) and so would be irrelevant for the
present work. Lacking a definite prescription for handling
these modes, we shall here simply discard them. It should
be noted that (unlike the other zero modes) omitting (A')
&om the theory does not introduce inconsistencies into
the equations of motion.

Finally, the global zero mode (A ) is set to zero us-

ing the only gauge freedom that remains after the condi-
tions of Sec. II are imposed —that of purely x+-dependent
gauge transformations.
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