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Abstract

Nearest neighbor classification expects the class con-
ditional probabilities to be locally constant, and suf-
fers from bias in high dimensions We propose a lo-
cally adaptive form of nearest neighbor classification
to try to finesse this curse of dimensionality. We use
a local linear discriminant analysis to estimate an ef-
fective metric for computing neighborhoods. We de-
termine the local decision boundaries from centroid
information, and then shrink neighborhoods in direc-
tions orthogonal to these local decision boundaries,
and elongate them parallel to the boundaries. There-
after, any neighborhood-based classifier can be em-
ployed, using the modified neighborhoods. The poste-
rior probabilities tend to be more homogeneous in the
modified neighborhoods. We also propose a method
for global dimension reduction, that combines local
dimension information. In a number of examples, the
methods demonstrate the potential for substantial im-
provements over nearest neighbour classification.

Introduction
We consider a discrimination problem with d classes
and N training observations. The training ob-
servations consist of predictor measurements x =
(zl,z2,...zp) on p predictors and the known class
memberships. Our goal is to predict the class mem-
bership of an observation with predictor vector x0

Nearest neighbor classification is a simple and ap-
pealing approach to this problem. We find the set
of K nearest neighbors in the training set to x0 and
then classify x0 as the most frequent class among the
K neighbors. Nearest neighbors is an extremely flex-
ible classification scheme, and does not involve any
pre-processing (fitting) of the training data. This can
offer both space and speed advantages in very large
problems: see Cover (1968), Duda & Hart (1973), 
McLachlan (1992) for background material on nearest
neighborhood classification.

Cover & Hart (1967) show that the one nearest
neighbour rule has asymptotic error rate at most twice
the Bayes rate. However in finite samples the curse
of dimensionality can severely hurt the nearest neigh-
bor rule. The relative radius of the nearest-neighbor

sphere grows like r 1/p where p is the dimension and
r the radius for p = 1, resulting in severe bias at the
target point x. Figure 1 illustrates the situation for a
simple example.

Figure 1: The vertical strip denotes the NN region using
only the X coordinate to find the nearest neighbor for the
target point (solid dot). The sphere shows the NN region
using both coordinates, and we see in this case it has ex-
tended into the class 1 region (and found the wrong class
in this instance).

Our illustration here is based on a 1-NN rule, but the
same phenomenon occurs for k-NN rules as well. Near-
est neighbor techniques are based on the assumption
that locally the class posterior probabilities are con-
stant. While that is clearly true in the vertical strip
using only coordinate X, using X and Y this is no
longer true.

The techniques outlined in the abstract are designed
to overcome these problems. Figure 2 shows an exam-
ple. There are two classes in two dimensions, one of
which almost completely surrounds the other. The left
panel shows a nearest neighborhood of size 25 at the
target point (shown as origin), which is chosen to 
near the class boundary. The right panel shows the
same size neighborhood using our discriminant adap-
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Figure 2: The leJt panel shows a spherical neighborhood
containing ~5 points. The right panel shows the ellipsoidal
neighborhood found by the DANN procedure, also contain-
ing ~5 points. The latter is elongated along the true decision
boundary, and flattened orthogonal to it.

tive nearest neighbour procedure. Notice how the mod-
ified neighborhood extends further in the direction par-
allel to the decision boundary. As we will see in our
simulation studies, this new neighborhood can often
provide improvement in classification performance.

While the idea of local adaptation of the nearest
neighbour metric may seem obvious, we could find few
proposMs along these lines in the literature. A sum-
mary of previous work in given in section .

Discriminant adaptive nearest
neighbors

Our proposal is motivated as follows. Consider first a
standard linear discriminant (LDA) classification pro-
cedure with K classes. Let B and W denote the be-
tween and within sum of squares matrices. In LDA
the data are first sphered with respect to W, then the
target point is classified to the class of the closest cen-
troid (with a correction for the class prior membership
probabilities). Since only relative distances are rele-
vant, any distances in the complement of the subspace
spanned by the sphered centroids can be ignored. This
complement corresponds to the null space of B.

We propose to estimate B and W locally, and use
them to form a local metric that approximately be-
haves like the LDA metric. One such candidate is

= W-IBW-1

= W-1/2(W- 1/2BW- 1/2)W-I/2

= W-I/2B*W-t /2. (i)

where B* is the between sum-of-squares in the sphered
space. Consider the action of ~ as a metric for com-
puting distances (x - x0)T~(x -- x0):

* it first spheres the space using W;

¯ components of distance in the null space of B* are
ignored;

¯ other components are weighted according to the
eigenvalues of B* when there are more than 2 classes
-- directions in which the centroids are more spread
out are weighted more than those in which they are
close

Thus this metric would result in neighborhoods sim-
ilar to the narrow strip in figure 2: infinitely long in
the null space of B, and then deformed appropriately
in the centroid subspace according to how they are
placed. It is dangerous to allow neighborhoods to ex-
tend infinitely in any direction, so we need to limit this
stretching. Our proposal is

= W-~/2[W-V2BW-I/~ +eI]W-x /2

= W-X/~[B* +el]W-1/~ (2)
where e is some small tuning parameter to be deter-
mined. The metric shrinks the neighborhood in direc-
tions in which the local class centroids differ, with the
intention of ending up with a neighborhood in which
the class centroids coincide (and hence nearest neigh-
bor classification is appropriate). With this goal in
mind one can think of iterating the procedure, and
thus successively shrinking in directions in which the
class centroids do not coincide.

Here is a summary of the proposal.

Discriminant Adaptive Nearest Neighbor Classifier

O. Initialize the metric ~ = I, the identity matriz.
1. Spread out a nearest neighborhood of KM points

around the test point x0, in the metric ~,,.

2. Calculate the weighted within and between sum of
squares matrices W and B using the points in the
neighborhood (see formula (8 below).

3. Define a new metric ~,, = W-~/~[W-1/2BW-~/2 +
eI]W-- 1[2.

4. Iterate steps 1, 2, and 3.
5. At completion, use the metric ~ for K-nearest neigh-

bor classification at the test point x0.

The metric (2) can be given a more formal justifica-
tion. Suppose we are classifying at a test point x0 and
find a single nearest neighbor X according to a metric
d(X, x0). Let p(j]x) be the true probability of class 
at point x.

We consider the Chi-squared distance

which measures the distance (appropriately weighted)
between the true and estimated posteriors. Small
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r(X, x0) implies that the misclassification error rate
will be close to the asymptotic error rate for INN,
which is achieved when X = x0 or more generally when
p(jlX) = p(jlxo). We show that the first term in 
metric (2) approximates r(X, x0).

Assuming that in the neighborhood xlj has a Gaus-
sian distribution with mean pj and covariance E, we
obtain by a simple first order Taylor approximation

p(jIX) ~ p(jlx0) p( jlxo)(#j - p) T~[~-l(x -- X0)
(4)

where # = ~j p(jlx0)pj. Plugging this into (3) we 

J

,’(X,x0) ~ Ep(jlx0) [(#j - #)TE-I(x 2 (5)
j=l

Thus the approximately best distance metric is
E-I ~j p(j[xo)(pj - p)(pj p)TE-I. Es timating E
by W and ~j p(jlxo)(l~j -#)(Pi by B givesthe
first term in the metric (2).

By allowing prior uncertainty for the class means Pi,
that is, assume pj ,.~ N(v/, eI) in the sphered space, 
obtain the second term in the metric (2).

Details of the implementation
Define a weight function at x0 by

k(x, x0; h) -- x0)ll). (6)
Here E0 is an initial non-negative metric (often I), and
Ch is a symmetric real-valued function depending on a
parameter h. We use a lri-cube function defined over a
K-nearest neighborhood NK(x0) of x0. Formally, 
define di = IIE1/2(xi -xo)ll, h maxiegK(xo)di and
define

k(xi, xo; h) = [1 (ddh)3]aI(Id l < (7)
Let B(xo; Eo, h) and W(xo; Eo, h) be the weighted

between and within class sum of squares matrices,
where the weights assigned to the ith observation are
given by wi = k(xi, xo; Eo, h). That is,

J

U( 0; r,0, h) - -
j=l

Eyi=j ,oi (8)~j -- EiN I Wi

E;=I Eyi:j Wi(Xi -- :Xj)(XI -- ~j)T
W(x0; ~0, h) 

EN=I wi

(9)
where 2j is the weighted mean of the Nj observations
in the jth group. Finally, we let B(x0;E0, h) and
B(x0; E0, h) determine the metric E in (2).

Notice that equations (8) and (2) produce a mapping
S0 -* E, say E = g(E0). An approach we explore 

to start with E0 = I (the identity matrix) and iterate
this procedure. The result is a metric E for use in
a nearest neighbor classification rule at x0. In our
examples we try either a single step of this procedure,
or larger number of iterations.

Some remarks about the DANN metric
It is natural to ask whether the mapping g(.) has 
fixed point, and if it does, whether an iteration of the
form E ,-- g(E) converges to it. These questions seem
difficult to answer in general. To get some insight,
it is helpful to consider an equivalent form of the it-
eration. At each step we take a spherical neighbor-
hood around the test point, estimate the metric I3, and
then transform the predictors via x"~’~ = El/2x°ta. At
completion we use a spherical nearest neighbor rule in
the final transformed space. It is easy to show that
this procedure is equivalent to the one given above. If
the metrics estimated in j iterations are El, E2, ̄  ¯ ¯ Ej,
then the effective metric for the original coordinates is
El12v,112 v,112~, v.112 v, ll2 vdl2

j "-~j-1 "’’z"2 ~lZ~2 "’’~j-l~j "
Expressed in this way, the fixed points of the itera-

tion satisfy W-1BW-1 + eW-l = cI. In particular
a fixed point occurs when B is zero and W is pro-
portional to the identity matrix, in the space of the
transformed coordinates.

In practice we find it more effective to estimate only
the diagonal elements of W, and assume that the off
diagonal elements are zero. This is especially true if
the dimension of the predictor space is large, as there
will be insufficient data locally to estimate the O(p2)
elements of W. With the diagonal approximation,
the two forms of the algorithm are not equivalent: we
use the version that transforms the space at each step
since a diagonal approximation makes most sense in
the transformed coordinates.

If the predictors are spatially or temporally related,
we might use a penalized estimate of W that down-
weights components of the covariance that correspond
to spatially noisy signals (Hastie, Buja & Tibshirani
1994). A related approach is to pre-filter the predictors
using a smooth basis, and then operate in the reduced
domain.

In the final neighborhood we perform K nearest
neighbor classification. An alternative approach would
be to use discriminant analysis to perform the classi-
fication, using the locally determined parameters. We
are currently investigating this approach.

Choice of tuning parameters

The DANN procedure has a number of adjustable tun-
ing parameters:

KM : the number of nearest neighbors in the neighborhood
NKM (x0) for estimation of the metric;

K : the number of neighbors in the final nearest neighbor
rule;

e : the "softening" parameter in the metric.
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Test set or cross validation could be used to estimate
an optimal values for these parameters. In the exam-
ples in the next section we instead use fixed choices.
The value of Km must be reasonably large since the
initial neighborhood is used to estimate a covariance:
we use KM = max(N/5, 50). To ensure consistency
one should take KM to be a vanishing fraction of N,
and should also use larger values for higher dimensional
problems. A smaller number of neighbors is preferable
for the final classification rule to avoid bias: we used
K = 5, and compared it to standard 5 nearest neigh-
bors. Note that the metric (2) is invariant under non-
singular transformations of the predictors, and hence
it makes sense to consider fixed values of e. After some
experimentation, we found that the value e = 1 works
well, and we use this value in the examples below.

Dimension Reduction using Local

Discriminant Information

So far our technique has been entirely "memory
based", in that we locally adapt a neighborhood about
a query point at the time of classification. Here we
describe a method for performing a global dimension
reduction, by pooling the local dimension information
over all points in the training set. In a nutshell we con-
sider subspaces corresponding to eigenvectors of the
average local between sum-of-squares matrices.

Consider first how linear discriminant analysis
(LDA) works. After sphering the data, it concentrates
in the space spanned by the class means ~j or a reduced
rank space that lies close to these means. If ~ denote
the overall mean, this subspace is exactly the princi-
pal component hyperplane for the data points ~j - ~,
weighted by the class proportions.

Our idea to compute the deviations :~j i locally in
a neighborhood around each of the N training points,
and then do an overall principal components analysis
for the N x J deviations. Here are the details. Let xi (i)
be the mean of class j vectors in a neighborhood of the
ith training point, and ~(i) be the overall mean. All
means are weighted by the local class membership pro-
portions zr1 (i), j = 1,..., d. Let xi(i) = xj (i) - 
the local centroid deviations. We seek a subspace that
gets close in average weighted squared distance to all
N x J of these. Denoting by U (p x J) an orthonormal
basis for the k < p dimensional subspace,we minimize
the criterion

N J

ass(u) uuT) (0,
i=1 j=l

or the total weighted residual sum of squares. It is
not hard to show that minimizing RSS(U) amounts
to maximizing

tr UT B(i) 

where the B(i) are the local between sum of squares
matrices. This latter problem is solved by finding
the largest eigenvectors of the average between sum
of squares matrix ~1 B(i)/N.

LDA a~l Lo~l Subspac~ -- K = 25

L
J 2222

|1 " 2 22 9
1 I1 I

I

I 1 12//"

Figure 3: [Left Panel] Two dimensional gaussian data with
two classes and correlation 0.65. The solid lines are the
LDA decision boundary and its equivalent subspace for clas-
sification. The dashed lines were produced by the local pro-
cedure described in this section. [Right panel] Each line
segment represents the local between information centered
at that point.

Figure 3 shows a simple illustrative example. The
two classes are Gaussian with substantial within class
covariance between the two predictors Xl and X2. In
the left panel, the solid line is the Gaussian decision
boundary that optimally separates the classes. The
orthogonal vector labeled S is a one dimensional sub-
space onto which we can project the data and perform
classification. Using the knowledge that the data are
Gaussian, it is the leading discriminant direction. The
broken lines are the boundaries and equivalent sub-
space produced by our procedure. In the right panel,
each line segment represents the local between infor-
mation centered at that point. Our procedure uses a
principal components analysis of these N x J line seg-
ments to produce the broken line subspace in the left
panel.

To allow combination of the local between informa-
tion in a meaningful way, notice that we have not
sphered the data locally before computing the mean
deviations. A justification for this is that any local
spherical window containing two classes, say, will have
approximately a linear decision boundary orthogonal
to the vector joining the two means.

Figure 4 shows the eigenvalues of the average be-
tween matrix for an instance of a two class, 4 dimen-
sional sphere model with 6 noise dimensions. The de-
cision boundary is a 4 dimensional sphere, although
locally linear (full details of this example are given in
the next section). For this demonstration we randomly
rotated the 10 dimensional data, so that the dimen-
sions to be trimmed are not coordinate directions. The
eigenvalues show a distinct change after 4 (the correct
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Figure 4: The eigenvalues of the average between matrix
for the 4D sphere -I- 6 noise variable problem. Using these
first four dimensions followed by our DANN nearest neigh-
bor routine, we get better performance than 5NN in the real
4D subspaee.

dimension), and using our DANN classifier in these
four dimensions actually beats ordinary 5NN in the
known four dimensional sphere subspace.

It is desirable to automate the dimension reduction
operation. Since our local information is based on
spherical neighborhoods (potentially in high dimen-
sions), we find an iterative approach most success-
ful. We apply this procedure in the full space, and
use cross-validated DANN to find the best nested sub-
space (with a built in bias towards larger subspaces).
We then successively repeat these operations in the
new subspaces, until no further reduction is deemed
suitable by CV. Using DANN in this final subspace is
what we have labelled sub-DANN in the boxplots of
figures 5.

Examples

The methods

In the following examples we compare several classifi-
cation approaches:

¯ LDA--linear discriminant analysis

¯ reduced LDA--linear discriminant restricted to the
(known) relevant subspace, where appropriate.

¯ 5-NN: 5 nearest neighbor classification

¯ reduced 5-NN

¯ DANN-- Discriminant adaptive nearest neighbor,
one iteration.

¯ iter-DANN-- Discriminant adaptive nearest neigh-
bor, five iterations.

¯ sub-DANN-- Discriminant adaptive nearest neigh-
bor, with automatic subspace reduction. This is de-
scribed in section .

For all methods, the predictors were first standard-
ized so as to have zero mean and unit variance over the
training set, and the test set predictors was standard-
ized by the corresponding training mean and variance.
The training and test set sizes were 200 and 500, unless
indicated otherwise.

The problems

1. 2 Dimensional Gaussian with 1.~ Noise.Two Gaus-
sian classes in two dimensions (X1,X2) separated
by 2 units in X1. The predictors have variance (1,2)
and correlation 0.75. The additional 14 predictors
are independent standard Gaussians.

2. Unstructured with 8 Noise. There are 4 classes each
with 3 spherical bivariate normal subclasses, hav-
ing standard deviation 0.25. The means of the 12
subclasses were chosen at random (without replace-
ment) from the integers [1, 2,... 5] x [1, 2,...5]. Each
training sample had 20 observations per subclass, for
a total of 240 observations. The additional 8 predic-
tors are independent standard Gaussians.

3. 4 Dimensional Spheres with 6 Noise. In this exam-
ple there are 10 predictors and 2 classes. The last 6
predictors are noise variables, with standard Gaus-
sian distributions, independent of each other and the
class membership. The first four predictors in class
1 are independent standard normal, conditioned on
the radius being greater than 3, while the first four
predictors in class 2 are independent standard nor-
mal without the restriction. The first class almost
completely surrounds the second class in the four di-
mensional subspace of the first four predictors. This
example was designed to see if DANN could improve
upon nearest neighbors in the presence of noise vari-
ables.

4. 10 Dimensional Spheres. As in the previous exam-
ple there are 10 predictors and 2 classes. Now all 10
predictors in class 1 are independent standard nor-
mal, conditioned on the radius being greater than
22.4 and less than 40, while the predictors in class
2 are independent standard normal without the re-
striction. In this example there are no pure noise
variables, the kind that a nearest neighbor subset
selection rule might be able weed out. At any given
point in the feature space, the class discrimination
occurs along only one direction. However this direc-
tion changes as we move across the feature space and
all variables are important somewhere in the space.
The first class almost completely surrounds the sec-
ond class in the full ten-dimensional space.

Discussion of results

The results for the simulated examples are summarized
in Figures 5.

DANN seems to do as well as 5-NN across the board,
and offers significant improvements in problems with
noise variables. DANN does not do as well as reduced
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Figure 5: Boxplots of error rates over ~0 simulations.
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Figure 6: Relative error rates ol the methods across the
8 simulated problems. In the top panel the error rate has
been divided by the error rate 5-NN, on a simulation by
simulation basis. In the bottom panel we have divided by
the error rate ol LDA.

Spectral band 1 Speclml band 2 Spectral band 3

nearest neighbors in problems 1 and 3: this is not sur-
prising since in effect we are giving the nearest neigh-
bor rule the information that DANN is trying to infer
from the training data. A nearest neighbor method
with variable selection might do well in these problems:
however this procedure can be foiled by by rotating the
relevant subspace away from the coordinate directions.

On the average there seems to be no advantage in
carrying out more than one iteration of the DANN pro-
cedure. The subspace DANN procedure is the over-
all winner, producing big gains in problems admitting
global dimension reduction.

The top panel of Figure 6 shows error rates relative
to 5-NN, accumulated across 8 x 20 simulated problems
(these 4 and another 4 described in Hastie & Tibshirani
(1995). The bottom panel shows the rates relative 
LDA.

We see that DANN is 20-30% better than 5-NN on
the average, and is at most 20% worse. DANN is also
better than LDA on the average but can be three times
worse (in problem 2).

Image Classification Example

Image scene classification is an important and difficult
problem. The example we consider here is classifying
satellite images of an area of the earth’s surface into
land and vegetation type. Other examples include clas-
sification of X-rays, such as mammograms, into normal
or calcified into normal or cancerous regions.

Figure 7 shows four spectral bands of a section of
land, two in the visible spectrum (red and green)

Spectral band 4 Land use (Actual) Land use (Predicted)

Figure 7: The first four images are the satellite images
in the four spectral bands. The fifth image is the known
classification, and the final image is the classification map
produced by linear discrlmlnant analysis.

N N N

N X N

N N N

A Pixel and its 8 neighbors

Figure 8: The pixel intensities of the 8-neighbors of a pixel
(and itself) are used as features for classification
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and two in the infra red spectrum. These data are
taken from the STATLOG projects archive (Michie,
Spigelhalter & Taylor 1994)1. The goal is to clas-
sify each pixel into one of 7 land types: red soil,
cotton, vegetalion stubble, mixture, grey soil, damp
grey soil, very damp grey soil. We extract for each
pixel its 8-neighbors, as depicted in figure 8, giving us
(8+ 1)x 4 = 36 features (the pixel intensities) per pixel
to be classified. The data come scrambled, with 4435
training pixels and 2000 test pixels, each with their
36 features and the known classification. Included in
figure 7 is the true classification, as well as that pro-
duced by linear discriminant analysis. Figure 9 shows

STATLOG results

8
<5

CART
ALLOCSO

RBF

LVQ

K-NN

)AN 
i i i

2 4 6

LDA

SMARTogistic

QDA
NewlDC4.5

Nueral

i i t i

8 10 12 14

Method

Figure 9: Misclassification results of a variety of classifi-
cation procedures on the satellite image test data (taken
from Michie et al. (1994)).

the results reported in Michie et al. (1994) for a va-
riety of classifiers; they reported the best result for
5-NN classification. Included in the figure is the result
for DANN, which has outperformed 5-NN. We also ran
the subspace version of DANN, and figure 10 shows the
sequence of of test-error results as a function of sub-
space size. Again, a low-dimensional subspace actually
improves the misclassification error.

Discussion
We have developed an adaptive form of nearest neigh-
bor classification that can offer substantial improve-
ments over standard nearest neighbors method in some
problems. We have also proposed a method that uses
local discrimination information to estimate a subspace
for global dimension reduction.

Short & Fukanaga (1980) proposed a technique close
to ours for the two class problem. In our terminology
they used our metric with W = I and e = 0, with B

1The authors thank C. Taylor and D. Spiegelhalter for
making these images and data available
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Figure 10: Miscla.ssification results as a function of sub-
space size, for the satellite image data

determined locally in a neighborhood of size KM. In
effect this extends the neighborhood infinitely in the
null space of the local between class directions, but
they restrict this neighborhood to the original KM ob-
servations. This amounts to projecting the local data
onto the line joining the two local centroids. In our
experiments this approach tended to perform on aver-
age 10% worse than our metric, and we did not pursue
it further. Short & Fukanaga (1981) extended this 
J > 2 classes, but here their approach differs even
more from ours. They computed a weighted average
of the J local centroids from the overall average, and
project the data onto it, a one dimensional projection.
Even with e = 0 we project the data onto the sub-
space containing the local centroids, and deform the
metric appropriately in that subspace. Myles & Hand
(1990) recognized a shortfall of the Short and Fukanaga
approach, since the averaging can cause cancellation,
and proposed other metrics to avoid this. Although
their metrics differ from ours, the Chi-squared moti-
vation for our metric (3) was inspired by the metrics
developed in their paper. We have not tested out their
proposals, but they report results of experiments with
far more modest improvements over standard nearest
neighbors than we achieved.

Friedman (1994) proposes a number of techniques for
flexible metric nearest neighbor classification. These
techniques use a recursive partitioning style strategy
to adaptively shrink and shape rectangular neighbor-
hoods around the test point. Friedman also uses de-
rived variables in the process, including discriminant
variates. With the latter variables, his procedures have
some similarity to the discriminant adaptive nearest
neighbor approach.

Other recent work that is somewhat related to this
is that of Lowe (1993). He estimates the covariance
matrix in a variable kernel classifier using a neural net-
work approach.

There are a number of ways in which this work might



be generalized. In some discrimination problems, it
is natural to use specialized distance measures that
capture invariances in the feature space. For exam-
ple Simard, LeCun & Denker (1993), IIastie, Simard
& Sackinger (1993), use a transformation-invariant
metric to measure distance between digitized images
of handwritten numerals in a nearest neighbor rule.
The invariances include local transformations of im-
ages such as rotation, shear and stroke-thickness. An
invariant distance measure might be used in a linear
discriminant analysis and hence in the DANN proce-
dare.

Another interesting possibility would be to apply the
techniques of this paper to regression problems. In this
case the response variable is quantitative rather than
a class label. Natural analogues of the local between
and within matrices exist, and can be used to shape
the neighborhoods for near-neighbor and local poly-
nomial regression techniques. Likewise, the dimension
reduction ideas of section can also be applied. There
is a strong connection between the latter and the Sliced
Inverse Regression technique of Duan & Li (1991) for-
subspace identification. We are currently exploring
these directions.

Acknowledgments We thank Jerome Friedman for
sharing his recent work, which stimulated us to embark
on this project, and for many enjoyable conversations.

The second author was supported by a grant from
the Natural Sciences and Engineering Research Coun-
cil of Canada.

References

Cover, T. (1968), Rates of convergence for nearest
neighbor procedures, in ’Proc. Hawaii Inter. Conf.
on Systems Sciences’, Western Periodicals, Honolulu,
pp. 413-415.

Cover, T. & Hart, P. (1967), ’Nearest neighbor pat-
tern classification’, Proc. IEEE Trans. Inform. The-
ory pp. 21-27.

Duan, N. & Li, K.-C. (1991), ’Slicing regression: a link-
free regression method’, Annals of Statistics pp. 505-
530.

Duda, R. O. & IIart, P. E. (1973), Pattern classifica-
tion and scene analysis, Wiley, New York.

Friedman, J. (1994), Flexible metric nearest neighbour
classification, Technical report, Stanford University.

IIastie, T. & Tibshirani, R. (1995), Discriminant adap-
tive nearest neighbor classification, Technical report,
Stanford University Statistics Department.

IIastie, T., Buja, A. & Tibshirani, R. (1994), Penalized
discriminant analysis, To appear, Annals of Statistics.

IIastie, T., Simard, P. & Sackinger, E. (1993), Learn-
ing prototype models for tangent distance, Technical
report, AT& Bell Labs.

Lowe, D. G. (1993), Similarity metric learning for 
variable kernel classifier, Technical report, Dept. of
Comp Sci, Univ. of British Columbia.

McLachlan, G. J. (1992), Discriminant Analysis and
Statistical Pattern Recognition, Wiley, New York.

Michie, D., Spigelhalter, D. & Taylor, C., eds (1994),
Machine Learning, Neural and Statistical Classifica-
tion, Ellis IIorwood series in Artificial Intelligence,
Ellis Horwood.

Myles, J. & Hand, D. J. (1990), ’The multi-class metric
problem in nearest neighbour discrimination rules’,
Pattern Recognition 23, 1291-1297.

Short, 1~. & Fukanaga, K. (1980), A new nearest neigh-
bor distance measure, in ’Proc. 5th IEEE Int. Conf.
on Pattern Recognition’, pp. 81-86.

Short, R. & Fukanaga, K. (1981), ’The optimal
distance measure for nearest neighbor classifica-
tion’, IEEE transactions of Information Theory IT-
27, 622-627.

Simard, P. Y., LeCun, Y. & Denker, J. (1993), Efficient
pattern recognition using a new transformation dis-
tance, in ’Advances in Neural Information Processing
Systems’, Morgan Kaufman, San Mateo, CA, pp. 50-
58.

Hastie 149


