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Nearest neighbor classification expects the class conditional prob
abilities to be locally constant, and suffers from bias in high di
mensions We propose a locally adaptive form of nearest neighbor 
classification to try to finesse this curse of dimensionality. We use 
a local linear discriminant analysis to estimate an effective met
ric for computing neighborhoods . We determine the local decision 
boundaries from centroid information, and then shrink neighbor
hoods in directions orthogonal to these local decision boundaries, 
and elongate them parallel to the boundaries. Thereafter , any 
neighborhood-based classifier can be employed, using the modified 
neighborhoods. We also propose a method for global dimension 
reduction, that combines local dimension information. We indicate 
how these techniques can be extended to the regression problem. 

1 Introduction 

We consider a discrimination problem with J classes and N training observations . 
The training observations consist of predictor measurements x:::: (Xl,X2," .xp) on 
p predictors and the known class memberships . Our goal is to predict the class 
membership of an observation with predictor vector Xo 

Nearest neighbor classification is a simple and appealing approach to this problem. 
We find the set of J{ nearest neighbors in the training set to Xo and then classify 
Xo as the most frequent class among the J{ neighbors. 

Cover & Hart (1967) show that the one nearest neighbour rule has asymptotic 
error rate at most twice the Bayes rate. However in finite samples the curse of 



410 T. HASTIE, R. TIBSHIRANI 

dimensionality can severely hurt the nearest neighbor rule. The relative radius of 
the nearest-neighbor sphere grows like r 1/ p where p is the dimension and r the 
radius for p = 1, resulting in severe bias at the target point x. Figure 1 (left panel) 
illustrates the situation for a simple example. Nearest neighbor techniques are 

, , 

Figure 1: In the left panel, the vertical strip denotes the NN region using only horizontal 

coordinate to find the nearest neighbor for the target point (solid dot). The sphere shows 
the NN region using both coordinates, and we see in this case it has extended into the 
class 1 region (and found the wrong class in this instance). The middle panel shows 

a spherical neighborhood containing 25 points, for a two class problem with a circular 
decision boundary. The right panel shows the ellipsoidal neighborhood found by the DANN 

procedure, also containing 25 points. The latter is elongated in a direction parallel to the 
true decision boundary (locally constant posterior probabilities), and flattened orthogonal 

to it. 

based on the assumption that locally the class posterior probabilities are constant. 
While that is clearly true in the vertical strip using only the vertical coordinate, 
using both this is no longer true. Figure 1 (middle and right panels) shows how we 
locally adapt the metric to overcome this problem, in a situation where the decision 
boundary is locally linear . 

2 Discriminant adaptive nearest neighbors 

Consider first a standard linear discriminant (LDA) classification procedure with 
J{ classes. Let Band W denote the between and within sum of squares matrices . 
In LDA the data are first sphered with respect to W, then the target point is 
classified to the class of the closest centroid (with a correction for the class prior 
membership probabilities). Since only relative distances are relevant, any distances 
in the complement of the subspace spanned by the sphered centroids can be ignored. 
This complement corresponds to the null space of B. 

We propose to estimate Band W locally, and use them to form a local metric that 
approximately behaves like the LDA metric. One such candidate is 

1: W-1BW- 1 

W-l/2(W-l/2BW-l/2)W-l/2 

W-1/ 2B*W- 1/ 2. (1) 

where B* is the between sum-of-squares in the sphered space. Consider the action 
of 1: as a metric for computing distances 

(x - xo?1:(x - xo) : (2) 
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• it first spheres the space using W; 

• components of distance in the null space of B* are ignored; 

• other components are weighted according to the eigenvalues of B* when 
there are more than 2 classes - directions in which the centroids are more 
spread out are weighted more than those in which they are close 

Thus this metric would result in neighborhoods similar to the narrow strip in fig
ure l(left figure): infinitely long in the null space of B, and then deformed appro
priately in the centroid subspace according to how they are placed. It is dangerous 
to allow neighborhoods to extend infinitely in any direction, so we need to limit this 
stretching. Our proposal is 

W-l/2[W-l/2BW-l/2 + d]W- 1/ 2 

W-l/2[B* + d]W- 1/ 2 (3) 

where f. is some small tuning parameter to be determined. The metric shrinks 
the neighborhood in directions in which the local class centroids differ, with the 
intention of ending up with a neighborhood in which the class centroids coincide 
(and hence nearest neighbor classification is appropriate). Given E we use perform 
K-nearest neighbor classification using the metric (2). 

There are several details that we briefly describe here and in more detail in Hastie 
& Tibshirani (1994): 

• B is defined to be the covariance of the class centroids, and W the pooled 
estimate of the common class covariance matrix. We estimate these locally 
using a spherical, compactly supported kernel (Cleveland 1979), where the 
bandwidth is determined by the distance of the KM nearest neighbor. 

• KM above has to be supplied, as does the softening parameter f. . We some
what arbitrarily use KM = max(N /5,50); so we use many more neighbors 
(50 or more) to determine the metric, and then typically K = 1, ... ,5 
nearest neighbors in this metric to classify. We have found that the metric 
is relatively insensitive to different values of 0 < f. < 5, and typically use 

f. = 1. 

• Typically the data do not support the local calculation of W (p(p + 1)/2 
entries), and it can be argued that this is not necessary. We mostly resort 
to using the diagonal of W instead, or else use a global estimate. 

Sections 4 and 5 illustrate the effectiveness of this approach on some simulated and 
real examples. 

3 Dimension Reduction using Local Discriminant 

Information 

The technique described above is entirely "memory based" , in that we locally adapt 
a neighborhood about a query point at the time of classification. Here we describe a 
method for performing a global dimension reduction, by pooling the local dimension 
information over all points in the training set . In a nutshell we consider subspaces 
corresponding to eigenvectors oj the average local between sum-oj-squares matrices. 

Consider first how linear discriminant analysis (LDA) works. After sphering the 
data, it concentrates in the space spanned by the class centroids Xj or a reduced 
rank space that lies close to these centroids. If x denote the overall centroid, this 
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subspace is exactly a principal component hyperplane for the data points Xj - X, 
weighted by the class proportions, and is given by the eigen-decomposition of the 
between covariance B. 

Our idea to compute the deviations Xj - x locally in a neighborhood around each of 
the N training points, and then do an overall principal components analysis for the 
N x J deviations. This amounts to an eigen-decomposition of the average between 

sum of squares matrix 2:~1 B (i) / N. 
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Figure 2: [Left Panel] Two dimensional gaussian data with two classes and correlation 

0.65. The solid lines are the LDA decision boundary and its equivalent subspace for classi
fication, computed using both the between and (crucially) the within class covariance. The 

dashed lines were produced by the local procedure described in this section, without knowl
edge of the overall within covariance matrix. [Middle panel] Each line segment represents 
the local between information centered at that point. [Right panel] The eigenvalues of the 
average between matrix for the 4D sphere in 10D problem. Using these first four dimen

sions followed by our DANN nearest neighbor routine, we get better performance than 5NN 

in the real 4D subspace. 

Figure 2 (left two panels) demonstrates by a simple illustrative example that our 
subspace procedure can recover the correct LDA direction without making use of 
the within covariance matrix. Figure 2 (right panel) represents a two class problem 
with a 4-dimensional spherical decision boundary. The data for the two classes lie 
in concentric spheres in 4D, the one class lying inside the other with some overlap (a 
4D version of the same 2D situation in figure 1.) In addition the are an extra 6 noise 
dimensions, and for future reference we denote such a model as the "4D spheres in 
lOD" problem. The decision boundary is a 4 dimensional sphere, although locally 
linear. The eigenvalues show a distinct change after 4 (the correct dimension), and 
using our DANN classifier in these four dimensions actually beats ordinary 5NN in 
the known 4D discriminant subspace. 

4 Examples 

Figure 3 su·mmarizes the results of a number of simulated examples designed to test 
our procedures in both favorable and unfavorable situations. In all the situations 
DANN outperforms 5-NN. In the cases where 5NN is provided with the known lower
dimensional discriminant subspace, our subspace technique subDANN followed by 
DANN comes close to the optimal performance. 
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Figure 3: Boxplots of error rates over 20 simulations. The top left panel has two gaussian 
distributions separated in two dimensions, with 14 noise dimensions . The notation red-LDA 

and red-5NN refers to these procedures in the known lower dimensional space. iter-DANN 

refers to an iterated version of DANN (which appears not to help), while sub-DANN refers 

to our global subspace approach, followed by DANN. The top right panel has 4 classes, each 
of which is a mixture of 3-gaussians in 2-D; in addition there are 8 noise variables. The 
lower two panels are versions of our sphere example . 

5 Image Classification Example 

Here we consider an image classification problem. The data consist of 4 LANDSAT 
images in different spectral bands of a small area of the earths surface, and the goal 
is to classify into soil and vegetation types. Figure 4 shows the four spectral bands, 
two in the visible spectrum (red and green) and two in the infra red spectrum. 
These data are taken from the data archive of the STATLOG (Michie et al. 1994)1. 
The goal is to classify each pixel into one of 7 land types: red soil, cotton, vegetation 

stubble, mixture, grey soil, damp grey soil, very damp grey soil. We extract for each 
pixel its 8-neighbors, giving us (8 + 1) x 4 = 36 features (the pixel intensities) per 
pixel to be classified. The data come scrambled, with 4435 training pixels and 2000 
test pixels, each with their 36 features and the known classification. Included in 
figure 4 is the true classification, as well as that produced by linear discriminant 
analysis. The right panel compares DANN to all the procedures used in STATLOG, 
and we see the results are favorable. 

1 The authors thank C. Taylor and D. Spiegelhalter for making these images and data 

available 
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Figure 4: The first four images are the satellite images in the four spectral bands. The 
fifth image represents the known classification, and the final image is the classification 
map produced by linear discriminant analysis. The right panel shows the misclassification 
results of a variety of classification procedures on the satellite image test data (taken from 
Michie et al. (1994)). DANN is the overall winner. 

6 Local Regression 

Near neighbor techniques are used in the regression setting as well. Local polynomial 
regression (Cleveland 1979) is currently very popular, where, for example, locally 
weighted linear surfaces are fit in modest sized neighborhoods. Analogs of K-NN 
classification for small J{ are used less frequently. In this case the response variable 
is quantitative rather than a class label. 

Duan & Li (1991) invented a technique called sliced inverse regression, a dimen
sion reduction tool for situations where the regression function changes in a lower
dimensional space. They show that under symmetry conditions of the marginal 
distribution of X, the inverse regression curve E(XIY) is concentrated in the same 
lower-dimensional subspace. They estimate the curve by slicing Y into intervals, 
and computing conditional means of X in each interval, followed by a principal 
component analysis. There are obvious similarities with our DANN procedure, and 
the following generalizations of DANN are suggested for regression: 

• locally we use the B matrix of the sliced means to form our DANN metric, 
and then perform local regression in the deformed neighborhoods . 

• The local B(i) matrices can be pooled as in subDANN to extract global 
subspaces for regression. This has an apparent advantage over the Duan & 
Li (1991) approach: we only require symmetry locally, a condition that is 
locally encouraged by the convolution of the data with a spherical kernel 2 

7 Discussion 

Short & Fukanaga (1980) proposed a technique close to ours for the two class 
problem. In our terminology they used our metric with W = I and ( = 0, with 
B determined locally in a neighborhood of size J{M. In effect this extends the 

2We expect to be able to substantiate the claims in this section by the time of the 
NIPS995 meeting. 

14 
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neighborhood infinitely in the null space of the local between class directions, but 
they restrict this neighborhood to the original KM observations. This amounts 
to projecting the local data onto the line joining the two local centroids. In our 
experiments this approach tended to perform on average 10% worse than our metric, 
and we did not pursue it further. Short & Fukanaga (1981) extended this to J > 2 
classes, but here their approach differs even more from ours. They computed a 
weighted average of the J local centroids from the overall average, and project 
the data onto it, a one dimensional projection. Myles & Hand (1990) recognized 
a shortfall of the Short and Fukanaga approach, since the averaging can cause 
cancellatlOn, and proposed other metrics to avoid this, different from ours. 

Friedman (1994) proposes a number of techniques for flexible metric nearest neigh
bor classification (and sparked our interest in the problem.) These techniques use 
a recursive partitioning style strategy to adaptively shrink and shape rectangular 
neighborhoods around the test point. 
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