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Abstract—Information fusion is a key step in multimodal bio-
metric systems. Fusion of information can occur at different levels
of a recognition system, i.e., at the feature level, matching-score
level, or decision level. However, feature level fusion is believed
to be more effective owing to the fact that a feature set contains
richer information about the input biometric data than the
matching score or the output decision of a classifier. The goal of
feature fusion for recognition is to combine relevant information
from two or more feature vectors into a single one with more
discriminative power than any of the input feature vectors. In
pattern recognition problems, we are also interested in separating
the classes. In this paper, we present Discriminant Correlation
Analysis (DCA), a feature level fusion technique that incorporates
the class associations into the correlation analysis of the feature
sets. DCA performs an effective feature fusion by maximizing the
pairwise correlations across the two feature sets, and at the same
time, eliminating the between-class correlations and restricting
the correlations to be within the classes. Our proposed method
can be used in pattern recognition applications for fusing features
extracted from multiple modalities or combining different feature
vectors extracted from a single modality. It is noteworthy that
DCA is the first technique that considers class structure in feature
fusion. Moreover, it has a very low computational complexity
and it can be employed in real-time applications. Multiple sets of
experiments performed on various biometric databases, and using
different feature extraction techniques, show the effectiveness of
our proposed method, which outperforms other state-of-the-art
approaches.

Index Terms—multimodal biometric identification, feature
level fusion, class structure, discriminant correlation analysis.

I. INTRODUCTION

B IOMETRIC identifiers are distinctive and measurable

characteristics used to label and describe individuals.

Some of the well-known biometrics used for human identi-

fication are fingerprints, face, ear, iris, voice and DNA. Most

of the real-world biometric systems, so-called unimodal, rely

on the evidence of a single source of biometric information.

Multimodal biometric systems, on the other hand, fuse multi-

ple sources of biometrics information to make a more reliable

recognition. Fusion of the biometrics information can occur at
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different stages of a recognition system. In case of feature level

fusion, the data itself or the features extracted from multiple

biometrics are fused. Matching-score level fusion consolidates

the scores generated by multiple classifiers pertaining to

different modalities. Finally, in case of decision level fusion the

final results of multiple classifiers are combined via techniques

such as majority voting [1]–[3].

Feature level fusion is believed to be more effective than the

other levels of fusion because the feature set contains richer

information about the input biometric data than the matching

score or the output decision of a classifier. Therefore, fusion

at the feature level is expected to provide better recognition

results [3]–[5]. However, matching-score level fusion and

decision level fusion are more popular in the literature and

there is not much research on feature level fusion. The reason

is the difficulty of feature level fusion in cases where the

features are not compatible, e.g., eigen-coefficients of faces

and minutiae set of fingerprints, or when commercial biometric

systems do not provide access to the feature sets (nor the

raw data), which they use in their products [3]. The goal

of the feature fusion for recognition is to combine relevant

information from two or more feature vectors into a single

one, which is expected to be more discriminative than any of

the input feature vectors.

Two well-known and typical feature fusion methods are:

serial feature fusion [6] and parallel feature fusion [7], [8].

Serial feature fusion works by simply concatenating two sets

of feature vectors into a single feature vector. Obviously, if the

first source feature vector, x, is p-dimensional and the second

source feature vector, y, is q-dimensional, the fused feature

vector, z, will be (p+q)-dimensional. Parallel feature fusion,

on the other hand, combines the two source feature vectors

into a complex vector z=x+iy (i being an imaginary unit).

Note that if the dimensions of the two input vectors are not

equal, the one with the lower dimension is padded with zeros.

Recently, feature fusion based on Canonical Correlation

Analysis (CCA) [9] has attracted the attention in the area

of multimodal recognition. CCA-based feature fusion uses

the correlation between two sets of features to find two sets

of transformations such that the transformed features have

maximum correlation across the two feature sets, while being

uncorrelated within each feature set. This method is described

in details in Section II. Recently, CCA-based methods have

become popular and other related and improved methods have

also been proposed [10]–[14].
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Kettenring [15] proposed a generalized extension of CCA

for several sets of variables. Nielsen [16] improved Kettenrings

method to present a multiset canonical correlation analysis

(MCCA), which can be used to analyze relationships between

more than two sets of variables. Although Kettenrings and

Nielsens methods [15], [16] are able to analyze multi-group

variables, they do not demonstrate the integral relation among

the multi-set variables, and the constraints do not guarantee

that the transformed variables are statistically uncorrelated

[12]. Recently, Yuan et al. [17] proposed a multi-set integrated

canonical correlation analysis (MICCA) framework for the

multi-set problems. MICCA can distinctly express the integral

correlation among multi-set features. However, it follows an

iterative approach, which reduces its efficiency.

Most recently, sparse representation has attracted the interest

of many researchers, both for reconstructive and discrimina-

tive tasks [18]–[20]. The assumption is that a query sample

belonging to a specific class can be represented with a linear

combination of the training samples from that class. Therefore,

it aims to find a sparse vector having non-zero elements only

in the indices corresponding to that class. As indicated in the

definition of feature level fusion, “the feature sets originating

from multiple biometric algorithms are consolidated into a

single feature set” [21]. Although not following this definition

in building a single feature set that can be used by any

classifier, Joint Sparse Representation Classification (JSRC)

[22] is considered as a feature level fusion technique. JSRC

builds multiple corresponding dictionaries each using training

samples of a modality. Having a query consisting of multiple

modalities, it aims to find joint sparse vectors that share the

same sparsity pattern and have non-zero values only in the

indices corresponding to a mutual class in multiple modalities.

That is, training samples of the same class from the different

modalities are used to reconstruct the query data. Bahrampour

et al. [23] improved the performance of this method by using

a multimodal task-driven dictionary learning algorithm.

In this paper, we propose a feature fusion method that

considers the class associations in feature sets1. Our method,

called Discriminant Correlation Analysis (DCA), eliminates

the between-class correlations and restricts the correlations to

be within classes. DCA has the characteristics of the CCA-

based methods in maximizing the correlation of corresponding

features across the two feature sets and in addition decorrelates

features that belong to different classes within each feature

set. To the best of our knowledge, no other feature fusion

method in the literature considered the class structure, and

our method is the first to incorporate the class structure into

the feature level fusion. It is worth mentioning that our method

does not have the small sample size (SSS) problem faced by

the CCA-based algorithms. Moreover, we propose a multiset

method to generalize DCA to be applicable to more than two

sets of variables. Multiset Discriminant Correlation Analysis

(MDCA) follows a cascade approach and applies DCA on two

sets of variables at a time. Extensive experiments performed on

several multimodal biometric databases verify the effectiveness

of our proposed method, which outperforms the state-of-the-

1A preliminary version of this work appeared in ICASSP 2016 [24].

art feature level fusion techniques2.

This paper is organized as follows: Section II describes the

CCA-based feature level fusion method and its properties.

Section III presents our proposed discriminant correlation

analysis method. The implementation details and experimental

results on several databases are presented in Section IV.

Finally, Section V concludes the paper.

II. FEATURE-LEVEL FUSION USING CANONICAL

CORRELATION ANALYSIS

Canonical correlation analysis (CCA) is one of the valuable

multi-data processing methods, which has been widely used to

analyze the mutual relationships between two sets of variables.

Suppose that X ∈ R
p×n and Y ∈ R

q×n denote two matrices,

each contains n training feature vectors from two different

modalities. That is, for each sample, two feature vectors with

p and q dimensions are extracted from the first and second

modalities, respectively.

Let Sxx ∈ R
p×p and Syy ∈ R

q×q denote the within-sets

covariance matrices of X and Y and Sxy ∈ R
p×q denote

the between-set covariance matrix (note that Syx = ST
xy). The

overall (p+q)× (p+q) covariance matrix, S, contains all the

information on associations between pairs of features:

S =

(
cov(x) cov(x,y)

cov(y,x) cov(y)

)

=

(
Sxx Sxy

Syx Syy

)

. (1)

However, the correlation between these two sets of feature

vectors may not follow a consistent pattern, and thus, under-

standing the relationships between these two sets of feature

vectors from this matrix is difficult [25]. CCA aims to find the

linear combinations,
∗
X= W T

x X and
∗

Y= W T
y Y , that maximize

the pair-wise correlations across the two feature sets:

corr(
∗
X ,

∗
Y ) =

cov(
∗
X ,

∗
Y )

var(
∗
X).var(

∗
Y )

, (2)

where cov(
∗
X ,

∗
Y ) =W T

x SxyWy , var(
∗
X) =W T

x SxxWx and var(
∗

Y

) = W T
y SyyWy . Maximization is performed using Lagrange

multipliers by maximizing the covariance between
∗
X and

∗
Y

subject to the constraints var(
∗
X) = var(

∗
Y ) = 1. The transfor-

mation matrices, Wx and Wy, are then found by solving the

eigenvalue equations [25]:

{

S−1
xx SxyS−1

yy SyxŴx = R2Ŵx

S−1
yy SyxS−1

xx SxyŴy = R2Ŵy

, (3)

where Ŵx and Ŵy are the eigenvectors and R2 is the diagonal

matrix of eigenvalues or squares of the canonical correlations.

The number of non-zero eigenvalues in each equation is

d = rank(Sxy)≤min(n,p,q), which will be sorted in decreasing

order, r1 ≥ r1 ≥ . . .≥ rd . The transformation matrices, Wx and

Wy , consist of the sorted eigenvectors corresponding to the

non-zero eigenvalues.
∗
X ,

∗
Y∈ R

d×n are known as canonical

variates. For the transformed data, the sample covariance

matrix defined in Eq. (1) will be of the form:

2The MATLABr source code for the proposed DCA method is provided
at http://www.mathworks.com/matlabcentral/fileexchange/55405.
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∗
S=

















1 0 . . . 0 r1 0 . . . 0

0 1 . . . 0 0 r2 . . . 0
...

. . .
...

. . .

0 0 . . . 1 0 0 . . . rd

r1 0 . . . 0 1 0 . . . 0

0 r2 . . . 0 0 1 . . . 0
...

. . .
...

. . .

0 0 . . . rd 0 0 . . . 1

















.

The above matrix shows that the canonical variates have

nonzero correlation only on their corresponding indices. The

identity matrices in the upper left and lower right corners show

that the canonical variates are uncorrelated within each feature

set.

As defined in [9], feature-level fusion is performed either

by concatenation or summation of the transformed feature

vectors:

Z1 =

( ∗
X∗
Y

)

=

(
W T

x X

W T
y Y

)

=

(
Wx 0

0 Wy

)T (
X

Y

)

, (4)

or

Z2 =
∗
X +

∗
Y=W T

x X +W T
y Y =

(
Wx

Wy

)T (
X

Y

)

, (5)

where Z1 and Z2 are called the Canonical Correlation Discrim-

inant Features (CCDFs).

III. INCORPORATING CLASS STRUCTURE IN

MULTIVARIATE CORRELATION ANALYSIS

The feature fusion method described in the previous section

has two disputable issues. The first issue is encountered in

case of a small sample size problem. In many real world

applications, the number of samples is usually less than the

number of features (n< p or n< q). This makes the covariance

matrices singular and non-invertible. Therefore, we will face

a major problem in inverting the Sxx and Syy matrices used

in Eq. (3). A solution to overcome this issue is to reduce

the dimensionality of the feature vectors before applying

CCA. Therefore, a two stage PCA + CCA approach can be

considered [10].

The second issue in CCA-based approaches is their negli-

gence of the class structure among samples. CCA decorrelates

the features, but in pattern recognition problems, we are

also interested in separating the classes. The dimensionality

reduction approaches based on Linear Discriminant Analysis

(LDA) [26] consider this matter by finding projections that

best separate the classes. However, a two stage LDA + CCA

will not be an effective solution due to the fact that the

transformation applied by the second stage, i.e., CCA, will not

preserve the properties achieved by the first stage, i.e., LDA.

Therefore, we need transformations that not only maximize

the pair-wise correlations across the two feature sets, but also

simultaneously separate the classes within each set of features.

In this section, we present a solution to achieve this goal.

Correlation analysis and discriminant analysis have been

previously used in a combined way in [27] and [28]. However,

the problem definition and the presented methods are totally

different from our problem setting and proposed technique.

These methods do not consider the problem of multimodal

recognition or feature level fusion, which is the problem dis-

cussed in our paper. In [27] and [28], the correlation analysis

is used for the cross-domain matching problem in unimodal

recognition systems. For example, [27] proposes a cross-view

face recognition system, where the query face image is in a

different view angle than the one given for enrollment. In the

cross-domain matching problem, the correlation analysis aims

to extract the correlated features from feature vectors of the

different domains.

In our method, we incorporate the class structure, i.e.,

memberships of the samples in classes, into the correlation

analysis, which helps in highlighting the differences between

classes and at the same time maximizing the pair-wise cor-

relations between features across the two feature sets. This

helps fusing the relevant information captured by different

modalities in multimodal recognition systems. Our proposed

approach, called Discriminant Correlation Analysis (DCA), is

described below.

A. Feature-Level Fusion Using Discriminant Correlation

Analysis

Let’s assume that the samples in the data matrix are col-

lected from c separate classes. Accordingly, the n columns

of the data matrix are divided into c separate groups, where

ni columns belong to the i th class (n = ∑
c
i=1 ni). Let xi j ∈ X

denote the feature vector corresponding to the j th sample in

the i th class. x̄i and x̄ denote the means of the xi j vectors

in the i th class and the whole feature set, respectively. That

is, x̄i =
1
ni

∑
ni
j=1 xi j and x̄ = 1

n ∑
c
i=1 ∑

ni
j=1 xi j =

1
n ∑

c
i=1 nix̄i. The

between-class scatter matrix is defined as

Sbx(p×p)
=

c

∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T = ΦbxΦT
bx , (6)

where

Φbx(p×c)
= [

√
n1(x̄1 − x̄),

√
n2(x̄2 − x̄), . . . ,

√
nc(x̄c − x̄)] . (7)

If the number of features is higher than the number of

classes (p ≫ c), it is computationally easier to calculate the

covariance matrix as (ΦT
bxΦbx)c×c

rather than (ΦbxΦT
bx)p×p

. As

presented in [29], the most significant eigenvectors of ΦbxΦT
bx

can be efficiently obtained by mapping the eigenvectors of

ΦT
bxΦbx. Therefore, we only need to find the eigenvectors of

the c× c covariance matrix ΦT
bxΦbx.

If the classes were well-separated, ΦT
bxΦbx would be a

diagonal matrix. Since ΦT
bxΦbx is symmetric positive semi-

definite, we can find transformations that diagonalize it:

PT (ΦT
bxΦbx)P = Λ̂ , (8)

where P is the matrix of orthogonal eigenvectors and Λ̂ is the

diagonal matrix of real and non-negative eigenvalues sorted in

decreasing order.
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Let Q
(c×r)

consist of the first r eigenvectors, which corre-

spond to the r largest non-zero eigenvalues, from matrix P.

We have:

QT (ΦT
bxΦbx)Q = Λ

(r×r)
. (9)

The r most significant eigenvectors of Sbx can be obtained

with the mapping: Q → ΦbxQ [29]:

(ΦbxQ)T Sbx (ΦbxQ) = Λ
(r×r)

. (10)

Wbx =ΦbxQΛ−1/2 is the transformation that unitizes Sbx and

reduces the dimensionality of the data matrix, X , from p to r.

That is:

W T
bx Sbx Wbx = I , (11)

X ′
(r×n)

=W T
bx(r×p)

X
(p×n)

. (12)

X ′ is the projection of X in a space, where the between-

class scatter matrix is I and the classes are separated. Note

that there are at most c − 1 nonzero generalized eigenval-

ues; therefore, an upper bound on r is c − 1 [30]. Other

upper bounds for r are the ranks of the data matrices, i.e.,

r ≤ min(c−1,rank (X) ,rank (Y )).

Similar to the above approach we solve for the second

feature set, Y , and find a transformation matrix Wby, which uni-

tizes the between-class scatter matrix for the second modality,

Sby and reduces the dimensionality of Y from q to r:

W T
by Sby Wby = I , (13)

Y ′
(r×n)

=W T
by(r×q)

Y
(q×n)

. (14)

The updated Φ′
bx and Φ′

by are non-square r × c or-

thonormal matrices. Although S′bx = S′by = I, the matrices

Φ′
bx

T
Φ′

bx and Φ′
by

T
Φ′

by are strict diagonally dominant matrices
(
∀i : |aii|> ∑ j 6=i |ai j|

)
, where the diagonal elements are close

to one and the non-diagonal elements are close to zero. This

makes the centroids of the classes have minimal correlation

with each other, and thus, the classes are separated.

Now that we have transformed X and Y to X ′ and Y ′, where

the between-class scatter matrices are unitized, we need to

make the features in one set have nonzero correlation only

with their corresponding features in the other set. To achieve

this, we need to diagonalize the between-set covariance matrix

of the transformed feature sets, S′xy = X ′Y ′T . We use singular

value decomposition (SVD) to diagonalize S′xy :

S′xy(r×r)
=U ΣV T ⇒ UT S′xy V = Σ . (15)

Note that X ′ and Y ′ are of rank r and S′xy(r×r)
is nondegener-

ate. Therefore, Σ is a diagonal matrix whose main diagonal

elements are non-zero. Let Wcx =UΣ−1/2 and Wcy =V Σ−1/2,

we have:

(UΣ−1/2)T S′xy (V Σ−1/2) = I , (16)

which unitizes the between-set covariance matrix, S′xy. Now,

we transform the feature sets as follows:

∗
X=W T

cx X ′ =W T
cx W T

bx
︸ ︷︷ ︸

X =Wx X , (17)

∗
Y=W T

cy Y ′ =W T
cy W T

by
︸ ︷︷ ︸

Y =Wy Y . (18)

(a) (b)

Fig. 1. Visualization of covariance matrices (black color represents zero
values and the elements with higher values are illustrated brighter). (a)

Covariance between features (
∗
X

∗
X

T
). (b) Covariance between samples (

∗
X

T ∗
X).

where Wx = W T
cx W T

bx and Wy = W T
cy W T

by are the final transfor-

mation matrices for X and Y , respectively.

It can be easily shown that the between-class scatter matri-

ces of the transformed feature sets are still diagonal; hence,

the classes are separated. The between-class scatter matrix for
∗
X is calculated as:

∗
Sbx = W T

cx W T
bx Sbx Wbx

︸ ︷︷ ︸
Wcx . (19)

From Eq. (11), W T
bx Sbx Wbx = I and since U is an orthogonal

matrix, we have:

∗
Sbx = (UΣ− 1

2 )T (UΣ− 1
2 ) = Σ−1 . (20)

Similarly, we can show that
∗
Sby = Σ−1 , which is diagonal.

Fig. 1(a) shows the covariance between features in a

transformed feature set (
∗
X

∗
X

T
), which is a strict diagonally

dominant matrix. Black color represents zero values and the

elements with higher values are brighter. The results show

that the correlation between different features in an individual

feature set is minimal. On the other hand, Fig. 1(b) shows

the covariance between samples in a transformed feature set

(
∗
X

T ∗
X). Being a block diagonal matrix, Fig. 1(b) clearly shows

that the samples have higher correlation with only the ones in

the same class.

Similar to the CCA method, feature level fusion can be

performed either by concatenation or summation of the trans-

formed feature vectors, as shown in Eqs. (4) and (5). However,

the summation method has the advantage of lower number of

dimensions, while the change in recognition results is very

small. In our experiments, we use the summation method,

shown in Eq. (5), for both CCA and DCA approaches.

B. Multiset Discriminant Correlation Analysis

Multiset Discriminant Correlation Analysis (MDCA) gen-

eralizes DCA to be applicable to more than two sets of

features. Here, we assume that we have m sets of features,

Xi ∈ R
pi×n, i = 1,2, . . . ,m, which are sorted by their rank,

that is rank(X1)≥ rank(X2)≥ . . .≥ rank(Xm). MDCA applies

DCA on two sets of features at a time. Based on the approach

presented in the previous section, the maximum length of

the fused feature vector is min(c−1,rank (Xi) ,rank (X j)). In
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Fig. 2. Multiset discriminant correlation analysis techniques for five sample
sets with rank(X1)> rank(X2)> rank(X3)> rank(X4) = rank(X5).

order to maintain the maximum possible length of the fused

feature vector, in each step, the two feature sets with the

highest ranks will be fused together. For example, in the first

step, X1 and X2, which have the highest ranks, will be fused.

The result of the fusion of X1 and X2 will be fused with the

next highest rank feature set, i.e., X3, and so on. If there exists

feature sets with equal ranks, they can be fused together at any

time. We choose the length of the fused feature vector, r, to

be equal to min(c−1,rank(Xi),rank(X j)).
Fig. 2 shows an example framework of MDCA for five fea-

ture sets with rank(X1)> rank(X2)> rank(X3)> rank(X4) =
rank(X5). In the first step of MDCA, we fuse X1 and X2, which

have the highest ranks. X4 and X5, which have equal ranks,

will be also fused together The length of the X12 is expected

to be greater than the length of the X45. Therefore, in the next

step, X3 is fused with X12. In this way, we keep the maximum

possible length for the fused feature vector in every step. The

expected, possibly shorter, feature vector length can be deter-

mined in the final step, r ≤min(c−1,rank (X123) ,rank (X45)).

IV. EXPERIMENTS AND ANALYSIS

In this paper, we present several sets of experiments to

demonstrate the performance of our proposed feature level

fusion technique. We devise experiments for combining dif-

ferent features extracted from a single modality as well as

combining feature vectors extracted from different biomet-

ric modalities. Section IV-A shows experimental results for

combining different feature vectors extracted from a single

modality. Additionally, Sections IV-B, IV-C, and IV-D present

experiments on the fusion of different biometric modalities.

In Section IV-B, experiments are performed on fusing features

from frontal/near-frontal face, profile/near-profile face, and ear

modalities extracted from West Virginia University (WVU)

database [31]. Similarly, in Section IV-C, experiments are

conducted on fingerprint and iris modalities from Multimodal

Biometric Dataset Collection, BIOMDATA [32]. Section IV-D

presents experiments on fusing information from weak bio-

metric modalities, i.e., periocular, mouth, and nose regions,

extracted from face images in AR face database [33]. Section

IV-E evaluates the scalability of the proposed DCA method in

Fig. 3. Sample face images of a subject in AR database (Top row: first
session; Bottom row: second session).

dealing with new subjects that are not seen during the training.

Finally, as an example of the applicability of the proposed

approach to other applications, Section IV-F shows how the

proposed method helps to improve the accuracy of sketch to

mugshot matching.

A. Unimodal Multi-Feature Fusion

In this section, we present experiments to show the effec-

tiveness of the proposed method in combining feature sets

extracted from a single modality. We evaluated our algorithms

on a set of 100 subjects from AR face database [33], [34].

The AR face database consists of frontal face images with

varying facial expressions and illumination. Fig. 3 shows

sample images of one subject in the AR database. The face

images are captured in two sessions. In this experiment, seven

images of each subject from the first session are used for

training and seven images from the second session are used

for testing.

Three different features are extracted from these images.

These features include Gabor wavelet features [35], Histogram

of Oriented Gradients (HOG) [36], and Speeded-Up Robust

Features (SURF) [37]. We employ forty Gabor filters in five

scales and eight orientations. Since the adjacent pixels in

an image are usually correlated, the information redundancy

can be reduced by downsampling the feature images that

result from Gabor filters [35], [38]. In our experiments, the

feature images are downsampled by a factor of five. HOG

features, on the other hand, are extracted in 5× 5 cells for

nine orientations. We use the UOCTTI variant for the HOG

presented in [39]. UOCTTI variant computes both directed

and undirected gradients as well as a four dimensional texture-

energy feature, but projects the result down to 31 dimensions

(27 dimensions corresponding to different orientation chan-

nels, 9 contrast insensitive and 18 contrast sensitive, and 4

dimensions capturing the overall gradient energy in square

blocks of four adjacent cells)3. Finally, we extract SURF

features from 68 keypoints in every image. These points are

the facial landmarks detected by fitting an Active Appearance

Model (AAM) to the face images. A 64-dimensional feature

vector is extracted from each point and the final feature vector

is constructed by concatenating the feature vectors of all

keypoints. A simple minimum distance classifier is used for

classification, in which one minus the sample linear correlation

between observations is used as the distance.

3VLFeat open source library is used to extract the HOG features [40].
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Fig. 4. Accuracy of the unimodal biometric systems using Gabor and HOG
features on AR face database.
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Fig. 5. Accuracy of the unimodal biometric systems using Gabor and SURF
features on AR face database.
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Fig. 6. Accuracy of the unimodal biometric systems using Gabor, SURF and
HOG features on AR face database.

Figs. 4, 5, and 6 show the experimental results for combin-

ing different feature vectors. Table I shows the maximum rank-

1 recognition rates, over the number of features, obtained using

individual and fused feature vectors. As mentioned before, the

goal is to combine relevant information from the two input

feature vectors into a single vector, which is expected to be

more discriminative than any of the input feature vectors.

TABLE I
MAXIMUM RANK-1 RECOGNITION RATES USING INDIVIDUAL AND FUSED

FEATURE VECTORS (H: HOG, S: SURF, G: GABOR).

Method H S G HG SG HSG

Serial 85.14 81.00 79.57 86.57 81.86 86.57

Parallel 85.14 81.00 79.57 89.43 82.43 -

CCA/MCCA 85.14 81.00 79.57 94.43 91.57 95.14

DCA/MDCA 85.14 81.00 79.57 98.00 95.71 98.71

Therefore, a fusion method that decreases the correlations

between features will be more effective.

As it is clearly seen from the results, serial feature fusion [6]

is not always successful in this regard, and in some cases, the

fused feature vector has even less discriminative power than

the input feature vector. Parallel feature fusion [7], [8] does

not show a more discriminative feature either and in case of

Gabor-SURF fusion, the fused feature vector works almost

similar to the SURF feature vector. Note that the parallel

feature fusion method cannot be applied on more than two sets

of variables; therefore, it is excluded in the third experiment.

For the cases of more than two feature sets, in this paper, we

use Multiset Canonical Correlation Analysis (MCCA) [41] and

MDCA methods.

The CCA-based feature fusion [9] and the proposed DCA

feature fusion methods, on the other hand, work very well

in combining different feature vectors. The reason might be

the fact that these methods reduce the redundant information

between two input feature vectors. Incorporating the class

associations in its analysis, DCA provides a more powerful

feature vector than CCA for the recognition purposes. The

experimental results verify the effectiveness of our proposed

method in comparison with serial, parallel and CCA-based

feature fusion techniques. As mentioned in Section I, the

JSRC [22] and SMDL [23] methods does not combine feature

vectors extracted from multiple modalities into a single fused

feature vector that can be used by any classifier. Therefore,

these methods are not included in this experiment; however,

they will be evaluated in the other experiments presented in

Sections IV-B, IV-C, and IV-D.

B. Multimodal Fusion: WVU Database

1) Experimental Setup: In this set of experiments, we eval-

uate the performance of the proposed algorithm in combining

feature vectors extracted from different biometric modalities

on the WVU database [31]. This database consists of almost

110 seconds long video clips with rates of thirty frames per

second, captured with a camera that rotates around the face.

There are 402 subjects in the database. This database has 55

subjects with eyeglasses, 42 subjects with earrings, 38 subjects

with partially occluded ears, and 2 subjects with fully occluded

ears [42]. For subjects #239, #302, the ears are fully occluded

with the hair, and for subject #308, just small portions of the

ears are visible. Therefore, we exclude these three subjects

and use the remaining 399 subjects in our experiments.

The video clips are captured by rotating a camera around the

face; it starts from the left profile image of the face and ends

at the right profile image. If we assume that the rotation for
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(a) 0◦ (b) 5◦ (c) 10◦ (d) 15◦ (e) 20◦ (f) 25◦

. . .

(g) 60◦ (h) 65◦ (i) 70◦ (j) 75◦ (k) 80◦ (l) 85◦ (m) 90◦

Fig. 7. Different frames of the subject #1 from profile to frontal equally distanced by 5◦.

(a) 0◦ (b) 5◦ (c) 10◦ (d) 15◦ (e) 20◦ (f) 25◦ (g) 30◦ (h) 35◦ (i) 40◦ (j) 45◦

Fig. 8. Profile/near-profile face images detected in different frames.

(a) 45◦ (b) 50◦ (c) 55◦ (d) 60◦ (e) 65◦ (f) 70◦ (g) 75◦ (h) 80◦ (i) 85◦ (j) 90◦

Fig. 9. Frontal/near-frontal face images detected in different frames.

(a) 0◦ (b) 5◦ (c) 10◦ (d) 15◦ (e) 20◦ (f) 25◦ (g) 30◦ (h) 35◦ (i) 40◦ (j) 45◦

Fig. 10. Ear images detected in different frames.

the left profile image is 0◦ and the rotation for the right profile

image is 180◦, the frontal image of the face is in the middle of

the clip, i.e., 90◦ of rotation. For our experiments, we choose

frames that are five degrees of rotation apart. Figure 7 shows

a sample of these frames in the range of 0◦ to 90◦. We extract

three different biometric modalities (frontal/near-frontal face,

ear, and profile/near-profile face) from the above-mentioned

frames. The best exposure of the profile face and the ear is

at 0◦ while the best exposure of the frontal face is at 90◦.

For each modality, we choose ten images with up to 45◦ of

rotation from their best exposure.

The face detection method proposed in [43] is used to

automatically extract frontal and profile faces in each frame.

For each subject, we extract ten profile and near-profile faces

spanning between 0◦ and 45◦, and ten frontal and near-

frontal face images spanning from 45◦ to 90◦ degrees of

rotation. Figures 8 and 9 show the sample profile/near-profile

face and frontal/near-frontal face images extracted from the

corresponding frames shown in Fig. 7.

On the other hand, the ear detection method proposed in

[44] is used to automatically extract the ear regions. The ear

detection method uses the deformable part model to find 17

landmarks on the ear helix and anti-helix. Figure 11(a) shows

these landmarks on a sample ear image. We use the two green

landmarks, the Triangular Fossa and Incisure Intertragica, to

normalize the ear for in-plane pose variations. The normalized

ear is shown in Fig. 11(b). For each subject, we extract ten

ear images spanning between 0◦ and 45◦. Figure 10 shows the

(a) (b)

Fig. 11. Ear normalization for in-plane rotations. (a) Detected Landmarks.
(b) Normalized Ear.

sample ear images extracted from the corresponding frames

shown in Fig. 7.

In our experiments, all the face images are normalized

to 120 × 120 pixels and all ear images are normalized to

120 × 80 pixels. For feature extraction, Gabor features are

extracted in five scales and eight orientations, and similar

to the setting described in Section IV-A, the feature images

are downsampled by a factor of five. The most important

advantage of Gabor filters is their invariance to rotation,

scale, and translation. Furthermore, they are robust against

photometric disturbances, such as illumination change and

image noise [45], [46].

We perform three multimodal experiments using WVU

database. These experiments include the fusion of (a) frontal

face and ear, (b) profile face and ear, and (c) all three

modalities. For the first experiment, ten face images of each

subject are randomly paired with ten ear images of the same

subject to create a multimodal dataset of face-ear pairs. Five

randomly chosen pairs are used for training and the remaining
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TABLE II
RANK-1 RECOGNITION RATES OBTAINED BY A KNN CLASSIFIER (K=1)

USING INDIVIDUAL MODALITIES IN WVU DATABASE.

Modality Face Ear Profile Face

Recognition Rate 82.59 79.66 81.71

five are used for testing. In order to validate the robustness

of the experiments, repeated random sub-sampling validation

is applied and the results are averaged over 10 iterations. The

same setting is used for the second and third experiments using

ear-profile pairs and face-ear-profile trios, respectively.

2) Comparison of Methods: The performance of the pro-

posed feature level fusion algorithm is compared with that

of several state-of-the-art feature level, matching score level

and decision level fusion algorithms. The feature level fusion

techniques include the serial feature fusion [6], the parallel

feature fusion [8], the CCA-based feature fusion [9], [41],

and the most recently published JSRC [22] and SMDL [23]

methods. In order to prevent the small sample size problem in

the CCA-based approach, dimensionality reductions based on

Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA) are applied [10], [29]. PCA and LDA are also

used for dimensionality reduction and discriminant analysis

of the results of the serial and parallel methods. Except for

the JSRC and SMDL methods, which are restricted to work

with a sparse representation classifier, all other feature level

techniques use a simple KNN classifier with K = 1, i.e., a

minimum distance classifier, for classification. Here, one mi-

nus the sample linear correlation between observations is used

as the distance. Note that in case of more than two modalities

(Face+Ear+Profile), the parallel feature fusion method cannot

be applied and Multiset-CCA [41] and Multiset-DCA are used.

For matching score level fusion and decision level fusion,

we use Sparse Logistic Regression (SLR) [47] and SVM [48]

techniques. For matching score level fusion, the probability

outputs for each modality of the query samples are added

together to produce the final score values, which are used for

classification. For decision level fusion, on the other hand, the

subject chosen by the maximum number of modalities was

taken to be from the correct class. Following the notation

in [22] and [23], we denote the score level fusion of these

methods as SLR-Sum and SVM-Sum, and the decision level

fusion as SLR-Major and SVM-Major. Moreover, we compare

with the multiclass implementation of the Multiple Kernel

Learning (MKL) algorithm [49].

Table II shows the rank-1 recognition rate for the individual

modalities of face, ear and profile face, and Table III shows the

multimodal fusion results. It is clear that the proposed DCA

technique outperforms the other fusion methods. It is also

shown that the combination of LDA + CCA is not effective for

separating the classes due to the fact that the transformation

applied by the CCA does not preserve the properties achieved

by the LDA.

The complexity of the above-mentioned feature level fusion

algorithms are compared using their run-time values. Table IV

shows the average computation time for each algorithm. Note

that the run-time values are for recognition of one multimodal

face-ear pair in WVU database averaged over multiple runs.

TABLE III
RANK-1 RECOGNITION RATES FOR MULTIMODAL FUSION OF FACE, EAR

AND PROFILE FACE BIOMETRICS IN WVU DATABASE.

Method

Modality
Face+Ear Ear+Profile

Face+Ear

+Profile

SVM-Major 85.09 85.31 87.59

SVM-Sum 94.18 94.42 95.12

SLR-Major 85.92 85.85 88.12

SLR-Sum 94.37 94.63 95.57

MKL 92.51 92.97 94.46

Serial + PCA + KNN 89.14 89.46 92.28

Serial + LDA + KNN 94.23 95.14 95.14

Parallel + PCA + KNN 90.71 90.61 -

Parallel + LDA + KNN 93.38 93.13 -

PCA + CCA/MCCA + KNN 94.10 94.34 97.74

LDA + CCA/MCCA + KNN 94.44 94.89 97.86

JSRC 96.20 97.74 98.74

SMDL 97.24 97.97 99.20

DCA/MDCA + KNN 98.56 99.38 99.85

TABLE IV
AVERAGE RUN-TIME VALUES OF DIFFERENT FEATURE LEVEL FUSION

TECHNIQUES FOR RECOGNITION OF ONE MULTIMODAL FACE-EAR PAIR IN

WVU DATABASE.

Method Run Time (in milliseconds)

Serial + PCA + KNN 19

Serial + LDA + KNN 24

Parallel + PCA + KNN 39

Parallel + LDA + KNN 42

PCA + CCA + KNN 19

LDA + CCA + KNN 21

JSRC 8406

SMDL 7882

DCA + KNN 19

Note that the serial, parallel, CCA and DCA algorithms are

very fast because they only apply the transformations obtained

from the training process. Parallel feature fusion method is

slightly more time consuming because it deals with complex

feature vectors. JSRC and SMDL algorithms, on the other

hand, are very time consuming and cannot be used in real-

time applications.

C. Multimodal Fusion: BIOMDATA Multimodal Biometric

Dataset

In this set of experiments, we use the multimodal biometric

dataset (BIOMDATA) collected in West Virginia University

[32]. This dataset is a comprehensive collection of image

and sound files for six biometric modalities: iris, face, voice,

fingerprint, hand geometry, and palm print, from subjects of

different ethnicity, gender, and age. It is a challenging data

set, as many of the samples suffer from various artifacts such

as blur, occlusion, shadows, and sensor noise, as shown in

Fig. 12. Table V shows the number of subjects and samples

available in each modality. Due to privacy issues related to

identifying individuals, face data is not made available in com-

bination with other modalities; therefore, it cannot be used in a

multimodal experiment. Following the experimental setting in

[22] and [23], we chose iris and fingerprint modalities for our
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TABLE V
BIOMDATA MULTIMODAL BIOMETRIC DATASET.

Biometric Modality # of Subjects # of Samples

Iris 231 3043

Fingerprint 270 7136

Palm 263 673

Hand 219 2837

Voice 240 640

Face 205 1170

Fig. 12. Examples of challenging samples in BIOMDATA database. The
images are corrupted with blur, occlusion, shadows, and sensor noise.

(a) (b) (c)

Fig. 13. Preprocessing for iris images. (a) Original iris image from BIOM-
DATA database. (b) Segmented iris area. (c) 25×240 binary iris template.

(a) (b) (c)

Fig. 14. Preprocessing for fingerprint images. (a) Original fingerprint image
from BIOMDATA database. (b) Enhanced image using the method in [50].
(c) Core point of the fingerprint and the region of interest around it.

experiments. All the evaluations are performed on a subset of

219 subjects having samples in both modalities. In total, there

are two iris (left and right eye) and four fingerprint modalities

(thumb and index fingers from both hands).

Fig. 13 shows the preprocessing steps for a sample iris im-

age. We segmented the iris images using the method proposed

in [51]. As shown in Fig. 13(b), the non-iris areas in the

segmented region are removed as noise. Following the segmen-

tation step, iris regions are normalized and 25×240 bit-wise

iris templates are generated by extracting log-Gabor features

using the publicly available source code of Masek and Kovesi

[52]. On the other hand, we enhanced the fingerprint images

using the filtering methods described in [50]. Following the

image enhancement step, the core points of the fingerprints

are detected [53] and Gabor features in eight orientations are

extracted around each detected core point. Fig. 14 shows the

TABLE VI
RANK-1 RECOGNITION RATES OBTAINED BY A MINIMUM DISTANCE

CLASSIFIER USING INDIVIDUAL MODALITIES ON BIOMDATA DATABASE.

Modality Recognition rate

Iris (Left) 51.29

Iris (Right) 57.33

Fingerprint (Left thumb) 78.22

Fingerprint (Left index) 90.10

Fingerprint (Right thumb) 79.60

Fingerprint (Right index) 91.29

TABLE VII
RANK-1 RECOGNITION RATES FOR MULTIMODAL FUSION OF IRIS AND

FINGERPRINT BIOMETRICS IN BIOMDATA DATABASE.

Method

Modality
2 Irises 4 Fingerprints

All 6

Modalities

SVM-Major 62.30 90.14 92.24

SVM-Sum 71.03 93.43 97.51

SLR-Major 61.73 89.23 91.18

SLR-Sum 69.43 93.67 97.09

MKL 68.23 93.28 95.96

Serial + PCA + KNN 62.48 94.46 94.85

Serial + LDA + KNN 70.31 96.22 96.22

Parallel + PCA + KNN 68.22 - -

Parallel + LDA + KNN 72.25 - -

PCA + CCA/MCCA + KNN 78.51 96.32 97.20

LDA + CCA/MCCA + KNN 78.90 96.40 97.51

JSRC 78.20 97.60 98.60

SMDL 83.77 97.56 99.10

DCA/MDCA + KNN 84.16 98.71 99.60

preprocessing steps for a sample fingerprint image.

Four samples randomly chosen from each modality are used

for training and the remaining samples are used for testing.

The recognition results are averaged over five runs. As before,

all experiments, except for the JSRC method, use a minimum

distance classifier. One minus the sample linear correlation

between observations is used as the distance.

Table VI shows the rank-1 recognition rate for the individual

iris and fingerprint modalities, and Table VII shows the mul-

timodal fusion results. We compare the proposed feature level

fusion technique with several state-of-the-art feature level,

matching score level and decision level fusion algorithms

mentioned in Section IV-B2. Experimental results clearly show

that the proposed DCA technique outperforms the other fusion

methods.

D. Multimodal Fusion: AR Face Database

In this set of experiments, we show the applicability of the

proposed MDCA algorithm in fusing information from weak

biometric modalities extracted from face images. These modal-

ities include left and right periocular, mouth, and nose regions,

as shown in Fig. 15. It was shown that the periocular regions,

nose and mouth can be considered as useful biometrics [54]–

[56]; however, they are not as discriminative as the whole face

[22].

We evaluated our algorithms on a set of 100 subjects from

AR face database [33], [34] described in Section IV-A. Similar
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Fig. 15. Face mask used to crop out different modalities.

TABLE VIII
RANK-1 RECOGNITION RATES OBTAINED BY A KNN CLASSIFIER USING

INDIVIDUAL MODALITIES IN AR DATABASE. MODALITIES INCLUDE 1.
LEFT PERIOCULAR, 2. RIGHT PERIOCULAR, 3. NOSE, 4. MOUTH, AND 5.

FACE.

Modality 1 2 3 4 5

Recognition Rate 84.14 84.29 73.57 74.29 90.57

to the setup in [22], seven images of each subject from the first

session are used for training and seven images from the second

session are used for testing. Gabor features in five scales and

eight orientations are extracted from all modalities.

Table VIII shows the rank-1 recognition rates for the indi-

vidual modalities. The major challenge here is to be able to

fuse weak modalities with a strong modality based on the

whole face without deteriorating the accuracy performance

with respect to that of the strong modality [57]. Table IX

shows the recognition rates for different feature level fusion

methods using combinations of different modalities. The re-

sults of fusing all five modalities with other methods including

matching score level and decision level fusion techniques are

presented in Table X. It is obvious that the proposed method

has a higher recognition rate than the other feature level

fusion techniques. Moreover, the results show that adding more

modalities increases the accuracy of the multimodal system

over the performance of all the individual modalities.

E. Scalability of DCA

In this section, we evaluate the scalability of the proposed

method in dealing with new subjects that were not used for

training. The goal is to examine if DCA is trained on a separate

a population of subjects whether the transformation matrices

will still perform well on new subjects. We use a population of

subjects to train DCA and obtain the transformation matrices.

Another population of subjects, which is not used for training,

is used for evaluating the recognition performance.

For this purpose, we use the WVU database [31] with 399

subjects, introduced in Section IV-B. Similar to the experiment

in Section IV-B, three different biometric modalities, i.e., face

(from frames between 45 and 90 degrees), ear and profile

face (from frames between 0 and 45 degrees), are extracted

from these frames. Each time we repeat the experiment, we

randomly select a frame from the specified range for each

modality for each subject to create the multimodal samples.

A multimodal sample is a trio of a face, an ear, and a profile

face image of a subject. Here, we have ten multimodal (face-

ear-profile) samples per subject.

We divide the database into two populations with n1 subjects

for training the DCA and n2 subjects for testing the perfor-

mance. Five randomly selected multimodal samples from the

TABLE IX
RANK-1 RECOGNITION RATES FOR MULTIMODAL FUSION OF DIFFERENT

MODALITIES IN AR DATABASE. MODALITIES INCLUDE 1. LEFT

PERIOCULAR, 2. RIGHT PERIOCULAR, 3. NOSE, 4. MOUTH, AND 5. FACE.

Method

Modality {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}

Serial + PCA + KNN 85.57 88.71 90.42 90.71

Serial + LDA + KNN 89.43 92.14 92.86 93.57

PCA+CCA/MCCA+KNN 90.57 92.86 94.43 96.57

LDA+CCA/MCCA+KNN 91.28 92.57 93.71 97.00

JSRC 92.14 92.86 94.43 98.57

SMDL 92.29 92.86 95.14 98.85

DCA/MDCA + KNN 92.71 93.28 97.43 99.14

first population, i.e., training set, are used to calculate the trans-

formation matrices of the DCA. The obtained transformation

matrices are used to transform and fuse the feature sets of

the second population, i.e., testing set. We divide the second

population into gallery and probe sets, which are used for

the evaluation. Five randomly chosen multimodal (face-ear-

profile) samples, for each subject, are used as gallery samples

and the remaining five samples are used as probe.

Each time we repeat the experiment, we separate 99 ran-

domly selected subjects from the database for the test popu-

lation. Then, using the remaining subjects, we conduct three

experiments with different number of training subjects in the

first populations, n1 = 100, 200, 300. In order to validate the

robustness of the experiments, repeated random sub-sampling

validation is applied and the results are averaged over 100

iterations. Fig. 16 shows the rank-1 recognition rate of the

system with different number of training subjects n1. Table

XI shows the maximum recognition rate over the number

of features in each case. The results show that the proposed

algorithm is robust and it still performs well on new unseen

subjects.

Since the maximum number of features is limited to c−1,

c being the number of training subjects, the three diagrams

shown in Fig. 16 have different domains. In case of n1 =
100, we are only limited to 99 features and the maximum

recognition rate achieved by these features is 99.32%. The

other cases use more subjects for training; therefore, not only

the training becomes more robust, but also the number of

features increases, i.e., 199 and 299. This helps achieve higher

recognition accuracies, 99.89% and 99.98%. This phenomenon

is clearly shown in the magnified part of Fig. 16.

F. Sketch to Mugshot Matching

In this section, we present an experiment that shows the

applicability of DCA in improving the accuracy of a sketch

to mugshot matching technique. Matching sketches to facial

photographs is a challenging face recognition problem, which

assists law enforcement to determine the identity of criminals

[58]. Due to the large differences between sketches and

photos and the unknown mechanism of sketch generation, it is

difficult to match photos and sketches because they represent

two different modalities. One way to solve this problem is to

first transform a query sketch into a photo image and then
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TABLE X
RANK-1 RECOGNITION RATES FOR MULTIMODAL FUSION OF ALL MODALITIES IN AR DATABASE.

SVM-Major SVM-Sum SLR-Major SLR-Sum MKL Serial+LDA LDA+MCCA JSRC SMDL MDCA

85.71 92.85 86.85 93.71 93.00 93.57 97.00 98.57 98.85 99.14
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Fig. 16. Scalability of the proposed DCA algorithm using different number
of training subjects and testing on unseen populations.

TABLE XI
MAXIMUM RANK-1 RECOGNITION RATES OVER THE NUMBER OF

FEATURES IN FIG. 16.

n1 100 200 300

Recognition Rate 99.32±0.085 99.89±0.051 99.98±0.012

match the synthesized photo with real photos in the gallery

[59].

In this experiment, we use the publicly available Chinese

University of Hong Kong (CUHK) face photo-sketch dataset

[59]. It includes 188 faces where for each face, there is a

sketch drawn by an artist and a photo taken in frontal pose and

neutral expression. In this database, 88 faces are preselected

for training and the remaining 100 faces are used for testing.

There is no identity overlap between the training and testing

sets. Given a face sketch, we synthesize a pseudo-photo using a

multiscale Markov Random Fields (MRF) model, which learns

the face structure across different scales [59]. The MRF model

is obtained using the training set of 88 photo-sketch pairs.

Pseudo-photos are synthesized for the remaining 100 sketch

images in the testing set of the CUHK database4. Fig. 17

shows a sample face photo-sketch pair and the synthesized

pseudo-photo.

The projection matrices of DCA are obtained using the

training set of 88 photo-sketch pairs. The remaining 100

real photos and the synthesized pseudo-photos are used as

gallery and probe sets, respectively. Similar to the setting

in Section IV-A, we extract Gabor and HOG features from

these images and fuse them using DCA. A simple minimum

distance classifier is used for recognition. Table XII shows the

rank-1 recognition rate and compares the performance with

4For synthesizing, we used the open-source code available from [60].

(a) (b) (c)

Fig. 17. Photo synthesis result: (a) sketch drawn by the artist; (b) real photo;
and (c) pseudo-photo synthesized from the sketch.

TABLE XII
RANK-1 RECOGNITION RATE FOR PHOTO-SKETCH MATCHING IN CUHK

DATABASE.

Method Ref. [59] Ref. [61] DCA

Recognition Rate 96.3 96 100

that of [59] and the most recently published work [61]. The

results show the advantages in fusing different features using

DCA, as it significantly improves the sketch to photo matching

accuracy.

V. CONCLUSIONS

In this paper, we presented a feature fusion technique based

on correlation analysis of the feature sets. Our proposed

method, called Discriminant Correlation Analysis, uses the

class associations of the samples in the analysis. It aims to

find transformations that maximize the pair-wise correlations

across the two feature sets and at the same time, separate

the classes within each set. These characteristics make DCA

an effective feature fusion tool for pattern recognition appli-

cations. Moreover, DCA is computationally efficient and can

be employed in real-time applications. Extensive experiments

on various multimodal biometric databases demonstrated the

efficacy of our proposed approach in the fusion of multimodal

feature sets or different feature sets extracted from a single

modality. In order to apply DCA for face recognition in

unconstrained videos, more work needs to be performed to

make sure that we obtain corresponding information from the

different video clips. We will address this important problem

in our future work.
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