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Abstract—We present a heuristic method for learning error correcting output

codes matrices based on a hierarchical partition of the class space that maximizes

a discriminative criterion. To achieve this goal, the optimal codeword separation is

sacrificed in favor of a maximum class discrimination in the partitions. The creation

of the hierarchical partition set is performed using a binary tree. As a result, a

compact matrix with high discrimination power is obtained. Our method is validated

using the UCI database and applied to a real problem, the classification of traffic

sign images.

Index Terms—Multiple classifiers, multiclass classification, visual object

recognition.
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1 INTRODUCTION

THE task of supervisedmachine learning can be seen as the problem
of finding an unknown function CðxÞ given the training set of
example pairs < xi; CðxiÞ > . CðxÞ is usually a set of discrete labels.
For example, in face detection, CðxÞ is a binary function
CðxÞ 2 fface; nonfaceg, in optical digit recognitionCðxÞ 2 f0; . . . ; 9g.

In order to address the binary classification task many
techniques and algorithms have been proposed: decision trees,
neural networks, large margin classification techniques, etc. Some
of those methods can be easily extended to multiclass problems.
However, some other powerful and popular classifiers, such as
AdaBoost [5] and Support Vector machines [3], do not extend to
multiclass easily. In those situations, the usual way to proceed is to
reduce the complexity of the multiclass problem into multiple
simpler binary classification problems.

There are many different approaches for reducing multiclass to
binary classification problems. The simplest approach considers the
comparison between each class against all the others. This produces
Nc binary problems, where Nc is the number of classes. Other
researchers suggested the comparison of all possible pairs of classes
[6], resulting in an NcðNc � 1Þ=2 set of binary problems. Dietterich
and Bakiri [8] presented a general framework in which the
classification is performed according to a set of binary error
correcting output codes (ECOC). In this approach, the problem is
transformed in n binary classification subproblems, where n is the
error correcting output code length n 2 fNc; . . . ;1g. Then, the
output of all classifiers must be combined—traditionally using
Hamming distance. The approach of Dietterich and Bakiri was
improved byAllwein et al. [7] by introducing anuncertainty value in
the ECOCdesign and exploring alternatives formixing the resulting
outputs of the classifiers. In particular, they introduced loss-based
decoding as awayofmerging the classifiers. Recently, Passerini et al.
[2] proposed a new decoding function that combines the margins
through an estimate of the class conditional probabilities. ECOC

strategies have beenproven to be quite competitivewith/better than
other multiclass extensions of SVM and Adaboost [15], [16].

Although most of the improvements in error correcting output
codes have been made in the decoding process, little attention has
been paid to the design of the codes themselves. Crammer and
Singer in [1] were the first to report improvements in the design of
the codes. However, the results were rather pessimistic since they
proved that the problem of finding the optimal discrete codes is
computationally intractable since it is NP-complete.

It is our purpose in this paper to reopen the problem of designing
the discrete ECOC by proposing a heuristic method that not only
gives an efficient and effectivemethod for ECOCdesign, but leads to
compact codes of Nc � 1 bits (binary problems).

The method we propose renders each column of the output
code matrix to the problem of finding the binary partition that
divides the whole set of classes so that the discriminability
between both sets is maximum. The criterion used for achieving
this goal is based on the mutual information between the feature
data and its class label. Since the problem is defined as a discrete
optimization process, we propose using the floating search method
as a suboptimal search procedure for finding the partition that
maximizes the mutual information. The whole ECOC matrix is
created with the aid of an intermediate step formulated as a binary
tree. With this formulation, we ensure that we decompose the
multiclass problem into Nc � 1 binary problems.

The paper is divided in the following sections: Section 2 provides
a brief introduction to error correcting output codes, Section 3
describes the discriminant ECOC technique as well as the theory of
the methods involved in its creation. Section 4 shows empirical
results of the proposed method and Section 5 concludes the paper.

2 ERROR CORRECTING OUTPUT CODES

Error correcting output codes were born as a general framework for
handling multiclass problems [8]. The basis of this framework is to
create a codeword for each class (up to Nc codewords). Arranging
the codewords as rows of a matrix, they define the “coding
matrix” M , where M 2 f�1; 1gNc�n and n is the code length.

From the point of view of learning, the matrix M is interpreted
as a set of n binary learning problems, one for each column. Each
column defines a partition of classes (coded by +1, -1 according to
their class membership). As a result of the outputs of the n binary
classifiers (dichotomies from now on) a code is obtained for each
data point in the test set. This code is compared with the base
codewords of each class defined in the matrix M and the data
point is assigned to the class with the “closest” codeword.

A generalization of this process is provided in [7]. The main
difference in terms of the coding matrix is that it is taken from a
larger set M 2 f�1; 0; 1gNc�n. In this approach, some entries in the
matrix M can be zero indicating that a particular class is not
significative for a given dichotomy. In practical applications, this
means that each dichotomy omits all examples for which M ¼ 0.
As we mentioned before, the codeword is formed by applying the
different dichotomies to a given instance x and concatenating the
results from each of the dichotomies. If we denote fðxÞ ¼
ðf1ðxÞ; . . . ; fnðxÞÞ the vector of predictions for the sample x, the
combination of the n outputs assigns one of the Nc labels. The
simplest way of decoding a vector fðxÞ is the Hamming decoding.
This method looks for the minimum distance dHðMðr; :Þ; fðxÞÞ
between the prediction and the codewords:

ŷy ¼ argminr ðdHðMðr; :Þ; fðxÞÞÞ;

dHðMðr; :Þ; fðxÞÞ ¼
X

n

s¼1

1� signðMðr; sÞfsðxÞÞ

2

� �

;

where signðzÞ is þ1 if z > 0, �1 if z < 0 and 0 otherwise. Mðr; :Þ
designates the codeword r in the matrix and ŷy 2 f1; . . . ; Ncg is the
predicted label.

Table 1 provides two examples of M matrices applied to a four
class problem. Ci is the class label and hi is the dichotomy learner.
In the case of one-against-all classification, M is an Nc �Nc matrix
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in which all diagonal elements are set to +1 while the rest are set to
-1. In the case of all-pairs classifiers, M is an Nc �NcðNc � 1Þ=2
matrix in which each column is set to zero except for a given pair.
One of the pair elements is set to 1 and the other to -1.

Several other heuristics for creating ECOC matrices are
proposed in [8] and [7] such as sparse random codes and dense
random codes. In the dense random codes, each element in the code
is chosen uniformly at random from the set fþ1;�1g. Allwein et al.
[7] suggested an optimal length of 10log2ðNcÞ bits per code. The
dense matrix is created by choosing the matrix that has the largest
minimum Hamming decoding distance among each pair of
codewords in the matrix—the matrix with trivial and complemen-
tary codes is discarded. The second random approach—sparse
random codes—takes its values from the pool fþ1; 0;�1g. Each
element of the coding matrix is 0 with probability 1

2
and �1 or 1

with probability 1
4
each. The length of the sparse codeword is set to

15log2ðNcÞ. Again, we choose the matrix with the largest minimum
Hamming decoding distance considering that no trivial or
complementary codes are present.

All these codification strategies are defined independently of
the data set and satisfy two properties:

. Row separation. Each codeword should be well-separated
in Hamming decoding distance from each of the other
codewords.

. Column separation. Each column hi should be uncorrelated
withall the other columnshj; j 6¼ i. This property is achieved
if the Hamming decoding distance between a column and
the rest—including their complementaries—is large.

Up to now, the priority when designing ECOC matrices was set
in the codeword separation. Our approach trades part of the error
correcting capabilities for classifier performance in each dichotomy.

3 DISCRIMINANT ECOC

Discriminant ECOC is born as an answer to three demands: First, a
heuristic for the design of the ECOC matrix, second, the search for
high-performance classification using the minimum number of
classifiers, and, third, a tool to describe the classification domain in
terms of class dependencies. We have seen in the previous section
that one-against-all and dense random codes, on one hand, and all-
pairs and sparse random codes on the other, are classic examples
for binary and ternary valued ECOC designs, respectively. Our
approach relaxes the fixed topologies of the matrices of the one-
against-all and all-pairs strategies by allowing the classes to
organize in maximally discriminant sets. Besides, we consider that
this meaningful organization helps in keeping the number of
classifiers low—as opposed to the high number of classifiers
needed for the random strategies to show good performance. As a
result of these specifications, we define the discriminant ECOC.

3.1 Design of the Discriminant ECOC

The goal of this work is to find a compact—in terms of codeword

length—matrix M with high discriminative power. The general

algorithm can be described as follows:

General procedure

. Create the Column Code Binary Tree—recursively, find the
most discriminant binary partition of each parent node
class set—f}1

k; }
2
kg—using floating search with fast quadratic

mutual information criterion.
. Assign to the column k of matrix M the code obtained by

the partition f}1
k; }

2
kg.

The first step is the creation of the Column Code Binary Tree
(CCBT),where each node of the tree defines a partition of the classes.
The partition at each nodemust satisfy the condition of being highly
separable in terms of discrimination. This division is obtained as the
result of the maximization of the quadratic mutual information
between the data x and the labels created for such partition d. The
algorithm used for the discrete maximization is the floating search
method, which will be introduced in the next section.

Table 2 shows the basic algorithm for creating the code column
binary tree (CCBT). In the algorithm, d is a discrete random
variable, so that, given a binary partition f}1

k; }
2
kg of the set Sk,

f}1
k; }

2
kg ¼ BP ðSkÞ, d is defined in the following terms,

d ¼ dðx; BP ðSkÞÞ ¼
1 if x 2 CijCi 2 }1

k

�1 if x 2 CijCi 2 }2
k:

8

<

:

The tree must be seen as a means to finding the codewords. The
second step is the process of filling the ECOC matrix. The final
matrix M is composed by the codes obtained at each node—except
for the leaves. Those codes are placed as columns in the coding
matrix, Mð:; iÞ. In order to create each column code, we use the
relationship between a parent node and its children. Therefore,
given a certain class Cr and the class set associated to node k: f}1

k [
}2
kg (where }1

k and }2
k are the sets of classes for each one of the

children of the node k, respectively), matrix M is filled as follows:

Mðr; iÞ ¼

0 if Cr =2 }i

þ1 if Cr 2 }1
i

�1 if Cr 2 }2
i :

8

>

>

>

>

<

>

>

>

>

:

Note that the number of columns—n—coincides with the number
of internal nodes. It is easy to see that, in any binary tree, the
number of internal nodes is Nc � 1 given that the number of leaves
is Nc. Therefore, by means of the CCBT, we can assure that the
codeword will have length Nc � 1.

Fig. 1 shows an example of a CCBT for eight classes. On the right
side of the figure, we show the resulting discriminant ECOCmatrix.
The white squares are +1, black squares are -1, and gray squares
have 0 value. Observe, for instance, that column N5 corresponds to
the partition }1

5 ¼ fc5; c6g and }2
5 ¼ fc2g. On the other hand, if we

look at the rows of thematrix, the codeword associated to class 6 (c6)
is fþ1; 0;�1; 0;�1; 0;þ1g.

From a more general point of view, the creation of the ECOC
matrix is only one of the parts involved in the multiclass
classification technique. The other two remaining parts to be
defined are the dichotomy learning technique and the decoding
strategy. In this paper, we have chosen decision trees and AdaBoost
[5] as base classifiers for each dichotomy. The chosen decoding
metric is the Euclidean distance to the codewords.1Moreover, it can
be shown that Euclidean andHamming decodingdistances have the
same performance for standard ECOC strategies.
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TABLE 1
Example of the M Matrices for a 4-Class Problem
(a) 1-against-All matrix and (b) All-Pairs Matrix

1. The main drawback of Hamming decoding distance is the ambiguity
that appears due to the fact that we are using the zero symbol. Suppose
that we have two codewords that are exactly equal except for two bits.
Codeword A contains the following code fX;X;X;X;X;X;X;X; 0; 0g and
codeword B is coded as fX;X;X;X;X;X;X;X; 1;�1g, where the X are
whatever values we like but the same for both codewords. Assume now
that as a result of our test, we obtain the codeword TEST ¼ fX;X;X;X;
X;X;X;X; 1; 1g. The Hamming decoding values of TEST to A and TEST
to B are exactly the same. This creates an ambiguous choice that is usually
solved by random tie-breaking.
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Recalling the algorithm described in Table 2, a maximization
process is needed to obtain the division of the classes in two sets.
Although looking for the best partition set requires of an
exhaustive search among all possible partitions, due to the
impracticability of this endeavor a suboptimal strategy must be
used. The strategy chosen is the floating search method. The
following subsection details this method that allows the problem
to be computationally feasible.

3.2 Floating Search Methods

The Floating search method [9] was born as a suboptimal sequential
search method for alleviating the prohibitive computation cost of
exhaustive search methods in feature selection. Furthermore, these
methods allowed the search criterion to be nonmonotonic, thus
solving the main constraint of many sequential methods. Floating
searchmethods can be described as a dynamically changing number
of forward steps and backward steps as long as the resulting subsets
are better than the previously evaluated ones at that level. In this
sense, this method avoids nesting effects that are typical of
sequential forward and backward selection while being equally
step-optimal since the best (worst) item is always added (discarded)
to (from) the set. The algorithm presented in Table 3 describes the
top-down approach which is called Sequential Forward Floating

Search (SFFS) algorithm. This one beginswith an empty setX0 and is
filledwhile the search criterion applied to the new set increases. The
most significant item with respect to Xk is added at each inclusion
step. In the conditional exclusion step, the worst item is removed if
the criterion keeps increasing. In our case, Y is the set of classes to be
partitioned. The criterion used for dividing the class set is related to
the discriminability. In particular, we usemutual information to that
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TABLE 2
CCBT Algorithm

Fig. 1. Example of conversion from the binary tree to the ECOC matrix.

TABLE 3
SFFS Algorithm
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effect. Our goal is to maximize the mutual information between the
data in the sets and the class labels created for each subset.

3.3 Fast Quadratic Mutual Information

Mutual information (MI) is a well-known criterion to compute the
amount of information that one random variable tells about another
one. In classification theory, this measure has been shown to be
optimal in terms of class separation [12], [11], allowing to take into
account high-order statistics. MI also bounds the optimal Bayes
error rate. However, mutual information is not widely used due to
the difficulties derived from its computation.

Although evaluating MI in low-dimensional spaces—small
number of features—can be feasible through histograms, it cannot
be easily accomplished in high-dimensional ones due to sparsity of
data. However, Principe et al. [11] presented a feasible method for
computing entropy estimators using Renyi’s formulation when
coupled with Parzen window density estimation. Based on this
method, they heuristically obtained a measure for mutual informa-
tion. This work has been recently modified and extended by
Torkkola [12] by relating mutual information to divergence
measures. Using this extension, the authors provide the base for
computing“quadraticmutual information” ina simple and fastway.

Let x and y represent two random variables and let pðxÞ, pðyÞ
be their respective probability density functions. The mutual
information measures the dependence between both variables and
is defined as follows:

Iðx;yÞ ¼

Z Z

pðx; yÞlog
pðx; yÞ

pðxÞpðyÞ

� �

dxdy: ð1Þ

Observe that mutual information is zero if pðx;yÞ ¼ pðxÞpðyÞ. It is
important to note that (1) can be seen as a Kullback-Leibler
divergence,

Kðf; gÞ ¼

Z

fðyÞlog
fðyÞ

gðyÞ

� �

dy;

where fðyÞ is replaced with pðx; yÞ and gðyÞ with pðxÞpðyÞ.
Alternatively, Kapur and Kesavan argued in [10] that, if our goal

is to find a distribution thatmaximizes orminimizes the divergence,
several axioms can be relaxed and the resulting divergencemeasure
is related toDðf; gÞ ¼

R

ðfðyÞ � gðyÞÞ2dy. As a result, it was proven in
[12] that maximizing Kðf; gÞ is equivalent to maximizing Dðf; gÞ.
Therefore, we can define the quadratic mutual information as,

IQðx;yÞ ¼

Z Z

ðpðx;yÞ � pðxÞpðyÞÞ2dxdy: ð2Þ

The estimation of the density functions of IQ can be done using
the Parzen window estimator. In that case, when combined with
Gaussian kernels, we can use the following property: Let Nðy;�Þ
be a d-dimensional Gaussian function, it can be shown that

Z

Nðy� a1;�1ÞNðy� a2;�2Þdy ¼ Nða1 � a2;�1 þ �2Þ:

Observe that the use of this property avoids the computation of
one integral function.

In our problem, themutual information is computed between the
random variable of the features x and the discrete random variable
associated to the class labels created for a given partition (d). Let us
define the notation for the practical implementation of IQ: Assume
that we have N samples in the whole data set, Jp are the samples of
each class p, Nc stands for the number of classes, xl stands for the
lth feature vector of the data set, and xpk is the kth feature vector of
the set in class p. Then, pðdÞ and pðxjdÞ can be written as:

pðd ¼ pÞ ¼
Jp
N

; pðxjd ¼ pÞ ¼
1

Jp

X

Jp

j¼1

Nðx� xpj; �
2IÞ;

pðxÞ ¼
1

N

X

N

j¼1

Nðx� xj; �
2IÞ:

Expanding (2) and using a Parzen estimate with a symmetric
kernel with width �, we obtain the following equations,

IQðx;dÞ ¼ VIN þ VALL � 2VBTW ;

where

VIN ¼
X

Z

pðx;dÞ2dx ¼
1

N2

X

NC

p¼1

X

Jp

l¼1

X

Jp

k¼1

Nðxpl � xpk; 2�
2IÞ;

VALL¼
X

Z

pðxÞ2pðdÞ2dx ¼
1

N2

X

NC

p¼1

Jp
N

� �2
X

N

l¼1

X

N

k¼1

Nðxl � xk; 2�
2IÞ;

VBTW ¼
X

Z

pðx;dÞpðxÞpðdÞdx ¼
1

N2

X

NC

p¼1

Jp
N

X

N

l¼1

X

Jp

k¼1

Nðxl � xpk; 2�
2IÞ:

ð3Þ

In practical applications, � is usually set to the half of the
maximum distance between samples as proposed by Torkkola
in [12].

4 EXPERIMENTAL RESULTS

In this section, we describe and discuss the experiments we have
performed with data from two different environments. First, we
validate the approach using data from the UCI repository. After-
ward, we apply this approach to a real problem: traffic sign
recognition.

4.1 Validation on UCI Database

To validate our approach, we begin with an analysis using the
standard UCI database [17]. This database is a well-known
database for evaluation and comparison of classifiers. We have
chosen two very popular binary classifiers for these experiments in
order to empirically demonstrate that the advantages of the
method are not related to the base classifier (Adaboost, decision
trees, etc.). The first one, AdaBoost [5], has 40 weak learners per
strong dichotomy (hj). The weak learner is a decision stump [13].
The second one is a decision tree [4] using a purity split criterion
(Gini value) with an early stopping value set at 3. We have selected
from the UCI database the following data sets:

1. abalone,
2. dermatology,
3. e. coli,
4. glass,
5. yeast,
6. iris,
7. vowel-general,
8. balance-scale, and
9. wine.

The properties of the data sets are described in Table 4. The
experiments have been performed using a 10-fold cross-validation
strategy. We compare our approach with all-pairs, one-against-all,
dense random codes, and sparse random codes. In both random
approaches, we have examined 5,000 different matrices. Table 5 and
Table 6 show the results for Adaboost and decision trees,
respectively. The tables display the resulting mean error rate and
the confidence interval at 95 percent; we have tested for statistical
significance using a two-tailed t-test [14]. The tables must be read in
the followingway: There is an *marker on the right side of the result
that achieves the absolute lowest mean error rate. In bold face, the
results with mean error rate not statistically significant from the
highest performance method are highlighted. The table also shows
the mean rank value according to the error rate. An alternate rank
taking into account the confidence interval is displayed in brackets.
The alternate rank considers that all classifierswith amean error rate
not statistically significant from the top ranked method are rated as
first choice.
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Examining the tables, we can see that the DECOC technique not
only provides more compact codes in terms of codeword
length—hence, it reduces the training and test time—but it also
achieves a better overall result and is ranked as the preferred
method in both experiments. This merit is further increased if we
take into account that the only method that can compete fairly—in
terms of complexity—is the one-against-all strategy. Precisely,
looking at the figures of the tables, one can observe that one-
against-all performs very poorly. We must take into account that
this technique easily falls in imbalanced problems, e.g., in the
Abalone or Vowel data sets. Although the experiments show a
very good behavior of our method, other techniques such as

all-pairs and random codes follow very closely and must be taken
into account for extending binary classifiers to multiclass ones.

4.2 Traffic Sign Recognition

The proposed approach was used in an online traffic sign detection
and recognition project for guided navigation. In particular, we are
concerned with the traffic sign recognition part. In this problem, we
have a set of 32 different signs that have to be distinguished. An
example of each class is illustrated in Fig. 2a. We used the five
different approaches to compare the performance in this problem.
The binary base classifier is AdaBoost with 40 decision stumps as
weak learners. The training set was extracted from eight car drive
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TABLE 4
Description of the Data Sets Used in the Experiments

TABLE 5
Error Rate and Confidence Interval at 95 Percent for Several UCI Data Sets Using Adaboost

TABLE 6
Error Rate and Confidence Interval at 95 Percent for Several UCI Data Sets Using Decision Trees
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records at different locations, highways, and local roads. The total
number of examples sums to 2,217. This problem has an additional
difficulty since the number of samples for each class is very different.
Thismeans thatwe are facedwith an imbalanced class problemwith
classes clearly underrepresented. Each extracted sign image mea-
sures 35� 35 pixels. Each pixel is considered as an object feature.
Thus, the feature vector dimensionality is 1; 225. We have used two
different car drive records (data set1 and data set2, corresponding to
a highway and a local road, respectively) as test sets. The total
number of traffic signs in the test records sums to 600. The results
obtained in our experiments are summarized in Table 7. We can
observe that the behavior of the five methods follows the guidelines
obtained in thevalidationof themethodusing theUCIdatasets.Note
the successful performance of the DECOC technique in this real
problem.This success is reinforcedby the fact that our approachuses
only 31 classifiers instead of the 496 classifiers required in the all-
pairs approach; thus, increasing the computational efficiency of the
whole process, training, and test. Fig. 2b shows the discriminant
ECOCmatrix for the signal recognition application alongwith some
partitions of the classes. Thepartitions showncorrespond to the first,
third, sixth, and seventh column of the matrix. Note that, in the first
partition, only the smaller group is displayed—the other group is
composed by the rest of the traffic signs.

5 CONCLUSION

We introduced a new algorithm, discriminant ECOC, for designing
compact error correcting output codes. The result is a multiclass
classifier that runs faster—since it uses fewer classifiers—and
requires less training time, while maintaining—and improving in
some cases—the performance of the rest of ECOC approaches. This
methodology is also the first one to deal successfully with the
problem of the design of application dependent discrete
ECOC matrices. Discriminant ECOC algorithm has been applied
successfully to two problems: First, the UCI database for validation
purposes and, second, to a real computer vision application, traffic
sign recognition. Fromthedifferent experiments,weobserve that the
building process of the ECOCmatrix is of great importance. We can

conclude that the discriminant ECOC design is a very promising
alternative to other ECOCmethods, frequently outperforming most
of them.Our current line of research is centered on the enrichment of
the discriminant ECOC matrix by embedding different tree
structures to form a possible ECOC forest.
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Fig. 2. (a) The 32 different signal classes to recognize. (b) Discriminant ECOC matrix created for the signal recognition system and partitions at the first, third, sixth, and

seventh columns.

TABLE 7
Error Rates for Traffic Sign Recognition
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