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Abstract—In this paper, a series of advances in elastic graph performed in every facial expression image. In other cases
matching for facial expression recognition are proposed. More facial landmark detection has been performed using special
specifically, a new technique for the selection of the most discrim- equipment[10], for instance when infrared cameras have been

inant facial landmarks for every facial expression (discriminant . .
expression-specific graphs) is applied. Furthermore, a novel used for robust eye detection. A method that could achieve

kernel-based technique for discriminant feature extraction from fully automatic facial expression recognition is the Elastic
graphs is presented. This feature extraction technique remedies Graph Matching (EGM) algorithm [11].

some of the limitations of the typical Kernel Fisher Discriminant EGM [12] has been initially proposed for arbitrary object
Analysis (KFDA) which provides a subspace of very limited yqcqgnition from images and has been a very popular topic of

dimensionality (i.e., one or two dimensions) in two-class problems. . . N L
The proposed methods have been applied to the Cohn-Kanade research for various facial image characterization applications.

database in which very good performance has been achieved inIn EGM, a reference object graph is created by overlaying

a fully automatic manner. a rectangular elastic sparse graph on the object image and
Index Terms—Elastic graph matching, expandable graphs, then calcglatlng a Gabor wavelet bgnk response at each graph
Fisher's Linear Discriminant Analysis, kernel techniques. node. This way, a feature vector is assigned to every node,

the so-calledet. The graph matching process is implemented
by a stochastic optimization of a cost function which takes
into account both jet similarities and grid deformations. A
During the past two decades, facial expression recognitiomo stage coarse-to-fine optimization procedure suffices for
has attracted a significant interest in the scientific communitihe minimization of such a cost function.
as it plays a vital role in human centered interfaces. Many A lot of research has been conducted in order to boost the
applications such as virtual reality, video-conferencing, usperformance of EGM for face recognition, face verification,
profiling, customer satisfaction studies for broadcast and wedzial expression recognition and sex determination [13]-[25].
services and smart environments construction require efficiént[14], the graph structure has been enhanced by introducing
facial expression recognition in order to achieve the desiradstack like structure, the so-callbdnch graphand has been
results [1], [2]. tested for face recognition. For every node in the bunch graph
Several research efforts have been made regarding fasiacture, a set of jets has been measured for different instances
expression recognition. The facial expressions under exarof-a face (e.g., with open or closed mouth, open or shut eyes).
nation were defined by psychologists as a set of six bagibis way, the bunch graph representation could cover a variety
facial expressions (anger, disgust, fear, happiness, sadnessadmibssible changes in the appearance of a face. In [15], the
surprise) [3]. The interested reader may refer to [4], [5], [Bunch graph structure has been used for determining facial
and in the references therein for facial expression recognitioharacteristics, such as beard, the presence of glasses, or even
methods. A more recent survey for facial expression recogmi-person’s sex.
tion can be found in [7]. Fully automatic facial expression In [17], EGM has been proposed and tested for frontal
recognition is a difficult task, since it requires robust fackace verification. A variant of the typical EGM, the so-called
and facial landmarks detection and tracking of the specificorphological elastic graph matchinMEGM), has been
facial landmarks that participate in the development of tigroposed for frontal face verification and tested for various
various facial expressions. That is, recognition performanoecording conditions [18]-[20]. In [18], [20], the standard
highly depends on the robust detection and/or tracking obarse- to-fine approach proposed in [17] for EGM has been
certain landmarks upon the facial area (e.g., eye, lip trackingplaced by a simulated annealing method that optimizes a
e.t.c). In many cases, in order to reduce the effect of falsest function of the jet similarity measures subject to node
facial landmarks detection and their erroneous tracking, odeformation constraints. Another variant of EGM has been
or more parts of the preprocessing are performed manually.dresented in [21], where morphological signal decomposition
[6], manual facial landmark annotation of the Candide gridas been used instead of the standard Gabor analysis [17].
[8] is performed in neutral images. The preselected faciBIGM with Gabor jets for facial expression recognition has
landmarks on the neutral image are tracked until the imageen proposed in [11], [26], [27], [28], [29].
reaches its highest expression intensity. Then, the deformatioiscriminant techniques have been employed in order to
of these landmarks with respect to the neutral state, througheahance the classification performance of EGM. The use
the facial expression evolvement, is used for facial expressioh linear discriminant techniques at the feature vectors for
recognition. In [9], manual facial landmark selection has bed¢he extraction of the most discriminating features has been
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proposed in [17], [18], [20]. Several schemes that aim gtaphs used in elastic graph matching algorithms. In [32], an
weighting the graph nodes according to their discriminatoglgorithm that finds the optimal discriminant graph structure

power have also been proposed in [18], [20], [25], [30]. Aas been proposed (optimal according to a discriminant cri-
combined discriminant scheme has been proposed in [2@ion). The graphs proposed in [32] have nodes placed at
where discriminant analysis has been employed in every stipcriminant facial landmarks. It has been shown in [32] that

of elastic graph matching for face verification. The use dhese graphs can be found in a fully automatic manner and
Fisher's Linear Discriminant Analysis (FLDA) for discrim-have better performance then the typical rectangular graphs in

inant feature selection in the graphs for facial expressidace verification.
recognition has been proposed in [11]. In [11], [29], FLDA In this paper, we meticulously study the use of EGM for

has been applied in a graph-wise manner (i.e., the featfseial expression recognition. More specifically, the contribu-
vectors that have been used in FLDA were the set of grapbns of this paper are:

jets), contrary to the methods in [18], [20], [22], where
node-specific discriminant transforms have been calculated’
Moreover, a series of discriminant techniques in graph-based
representations with Gabor features have been proposed in [9].
The methods in [9] have some resemblance with EGM but®
have not implemented an elastic graph matching procedure
since landmark selection and matching has been manually per-
formed. In [23], [24] novel robust Gabor-based features have
been proposed and novel wrapping elastic graph matching
procedure has been introduced which is robust against rotatior
and scaling. Moreover, in [23] a novel kernel based method
for feature extraction has been proposed and used for face
recognition.

Finally, in [31] a method for face recognition has been
proposed which follows a similar strategy to the one used
in this paper. That is, face recognition is treated as a two
class problem in order to extract discriminant Gabor-based
features using Adaboost. To apply the AdaBoost they have
introduced the intra-face and extra-face difference space in
the Gabor feature space and converted the multiclass problem
to a corresponding two-class. In addition, to deal with the
imbalance between the amount of the positive samples and
that of the negative samples, a re-sampling scheme has been
adopted to choose the negative samples.

Although a lot of research has been conducted for feature
selection and discriminant node weighting in elastic graphs,

The motivation and application of morphological filters
in order to deal with the problem of facial expression
recognition.

The application of expression-specific graphs with nodes
placed at discriminant landmarks. In order to apply
such graphs, we introduce a discriminant analysis that
produces a graph whose nodes correspond to the most
discriminant facial landmarks for a particular expression.
The introduction of a novel kernel-based method for both
graph-wise and node-wise discriminant feature selection
and its application for facial expression recognition. The
main contribution of the proposed kernel-technique, is
that it tries to remedy some of the limitations of the kernel
methods based on the Fisher’s discriminant criterion that
provide very limited number of features in two class
problems (i.e., the so-called Kernel Direct Discriminant
Analysis (KDDA) provides only one discriminant pro-
jection [33] and the so-called Complete Kernel Fisher
Discriminant Analysis (CKFDA) [34] only two discrim-
inant dimensions in two class problems). These spaces
of very limited number of dimensions may prove to be
insufficient for correctly representing the samples. The
proposed approach discovers a low dimensional space
with the number of dimensions to be proportional to the
number of training samples.

not much have been done concering the type of graphs thal "€ Proposed method, unlike the methods in [6] and [9], is
is more appropriate for face recognition, face verification arjfllly automatic. That is, there is no need to manually locate
facial expression recognition. The sparse graph that has b, face and/or manual annotate facial landmarks. The facial

used for face representation in the literature is:

expression recognition problem is a challenging one because

) o different individuals display the same expression differently.
« either an evenly distributed graph placed over a rectagg|ecting the most relevant features and ignoring unimportant

gular image region [17], [18], [20], [21], [30]

features is a key step for the solution of this problem. The

- or a graph that is placed on preselected nodes thhposed method, selects automatically the best facial land-
correspond to some fiducial facial points (e.g., N0se, eYegarks for every facial expression. That is, the discriminant

etc.) [11], [14], [15], [26], [27], [28], [29].

analysis learns automatically the discriminant landmarks for

Intuitively, one may think that graphs with nodes placed &very facial expression, unlike the method in [11] where the
pre-specified facial landmarks may perform better than tfigucial grid has been found by manually locating various
rectangular graphs. However, such graphs are more difficultli@dmarks of each facial image.

be automatically applied, since they require a detection moduleThe rest of the paper is organized as follows. In Section II,
to find the precise coordinates of the facial landmarks in tllee application of elastic graph matching algorithm for fa-

reference images or, in many cases, manual landmark anci@a expression recognition is discussed. In Section Ill, the
tation [9], [11], [14]. On the contrary, an evenly distributedlgorithm for learning discriminant expression-specific graphs
rectangular graph is easier to be handled automatically, sireteuctures is proposed. In Section IV the novel discriminant
only a face detection algorithm is required to find an initisdhnalysis with kernels for feature extraction is introduced.
approximation of the rectangular facial region [17], [18], [20]Experimental results using the Cohn-Kanade database [35]
[21], [30]. Figure 1 shows the two different types of faciahre described in Section V. Finally, conclusions are drawn



in Section VI. information pyramid is built using multiscale morphological
dilation-erosions [37]. Given an imaggx) : D C 22 — R,
Il. ELASTIC GRAPH MATCHING FOR FACIAL ExPRESSION Where Z is the set of integers anit is the set of and a
RECOGNITION structuring functiong(x) : G C 22 — R, the dilation
of the imagef(x) by g(x) is denoted by(f @& ¢)(x). Its

complementary operation, the erosion, is denotefflayy) (x)

. In _the first SteP of the EG_M algorithm, a sparse graph th t8]. The multiscale dilation-erosion pyramid of the image
is suitable for facial expression representation is selected [1 1’X) by g¢,(x) is defined in [37], wheres denotes the

[14], [17], [18], like the ones depicted in Figure 1. Afterwardsg.aie narameter of the structuring function. In [18] it was

the reference facial image or images are selected in orderyig,strated that the choice of the structuring function does
build the reference samples for every facial expression. TWy eaq to statistically significant changes in the classification
types of reference graphs have been considered in this WQIK o rmance. However, it affects the computational complexity

A. Graph Selection for Facial Expression Representation

The first graph uses only the mean facial expression ima@?feature calculation.
as the reference facial expression graph. The mean faci
expression image for each of the expressions is depicted
Figure 2.

_aéuch morphological operations can highlight and capture
irﬁbortant information for key facial features such as eyebrows,
eyes, nose tip, nostrils, lips, face contour, etc. but can be
affected by different illumination conditions and noise [18].
To compensate for these conditions, the normalized multiscale
dilation-erosion is proposed for facial image analysis. It is
well known that the different illumination conditions affect
the facial region in a non uniform manner. However, it can
be safely assumed that the illumination changes are locally
uniform inside the area of the structuring element used for
multiscale analysis. The proposed morphological features are
calculated by subtracting the mean value of the intensity of the
image f inside the area of the structuring element from the
corresponding maximum (dilation) or minimum (erosion) of
the area. Formally, the normalized multiscale morphological
analysis is given by:

(f ®g0)(x) —m_(f,x,Go) if 0>0
(F x00)(x) = I oo
Fig. 2. The mean images of each facial expression for the posers of the (f ©910) (%) = my(f,x,Gy) if 0<0

Cohn-Kanade database. From left to right the mean image of anger, disgust, (1)
fear, happiness, sadness, surprise are depicted. wherem_(f,x,G,) and m(f,x,G,) are the mean values

of the imagef(x —z), x —ze D and f(x+2z), x+2z €D

Another alternative for building the reference graph fonside the support area of the structuring elemgnt= {z <
every facial expression, is the bunch graph setup. In te: ||z|]| < o}, respectively. Another implementation for
reference bunch graph instead of one jet per node, a set (buribl) operatorsn (f,x,G,) and m_(f,x,G,) would be the
of jets is stored that can model different instances of jets foredian of the values of the image inside the support area of
a facial expression. In Figure 3, the two alternatives regarditfte structuring element. The output of these morphological
the choice of the reference facial expression graph are picaperations forms the jej(x'), at the graph nodé that is
rially described. The reference graph that is constructed usilegated in image coordinates:
the mean images has been significantly outperformed in our ., ;v _ . . !
experiments by the bunch graph thus, we will refer only to 36<) (—f(*(f*g;&zl(;c ) ~('}g*gal))(§§)§af(x ), (2)
the bunch graph from now onwards. 9o B G -a '

where A is the number of different scales used. The vari-
ous scales of Normalized Morphological Multiscale Analysis
o A (NMMA) can highlight various facial characteristics that are
The facial image region is analyzed and a set of locgbicylar important for facial expression development, like
descriptors is extracted at each graph node. Analysis is usugj|y shape of the mouth, teeth, eyebrows, furrows e.t.c. Some
performed by building an information pyramid using scal&syamples that verify the above statement can be found in

space techniques. In the standard EGM, a 2D Gabor baggdre 4, where the different scales of NMMA are shown for
filter bank has been used for image analysis [12]. The outQikerent facial parts and facial expressions.

of multiscale morphological dilation-erosion operations or the

morphological signal decomposition at several scales is a non- ]

linear alternative of the Gabor filters for multiscale analysi&- Matching Procedure

Both methods have been successfully used for facial imagerhe next step of EGM is to match the reference graph
analysis [18], [20], [21], [36]. In the morphological EGM thison the test facial expression image in order to find the

B. Multiscale Image Analysis



correspondences of the reference graph nodes on the fest< 7" andT > 0 is a scalar that controls the maximum
image. This is accomplished by minimizing a cost functiotranslation of the graph. Finally; denotes a local perturbation
that employs node jet similarities while preserving at the samé the graph nodes. The choices »fin (5) anddmax in (6)
time the node neighborhood relationships. Let the subscrigtentrol the rigidity/plasticity of the graph [17], [18]. Another
t andr denote a test and a reference facial image (or graph)ternative for handling rotation and scaling using Gabor based
respectively. Thel.; norm between the feature vectors at théeatures is the method proposed in [24], [23].
[-th graph node of the reference and the test graph is used a$he optimization problems in (5) and (6) are valid only
a similarity measure between jets, i.e.: when the reference facial expression graph contains one jet
N NV IO ol per node. When the reference facial expression graph contains
Crlilx), i0x)) = [liGe) = 30x)l 3) more that one jet per node, i.e. the case of bunch graph, the
Let V be the set of all graph vertices of a certain facialost function in (5) should be reformulated as
image. For the rectangular graphs, all nodes, except from the
boundary nodes, have exactly four connected nodesHi(dt Cn({x;}) = ZH},{n{Cf(j(Xi)aij (XA Ca(xt,xt)
be the four-connected neighborhood of ndddn order to lev lev )

?huea?;g|t2§ dr;oggfgrer:]gaf;i%%rngtjség!atlonsh|ps using a metr{ﬁhere jB,, (x.) is the jet ofm-st jet of the bunch of thé-th

node for the facial expression graphIn the same manner,

Ca(xt,xt) = > |I(x} —xb) - (xf —x8)|l.  (4) the constrained optimization in (6) can be reformulated to:
§EH(D) . . . .
o . , Dy(r) = Y ey ming, {Cr(j(x}),jB,, (xL))} subject to
The objective is to find a set of verticds!(r),l € V} in xt = AxL + 65, [|61]] < dmax
the test image that minimizes the cost function: (8)

! N . In order to avoid a time consuming elastic matching procedure,
C{xi}) = Z{Cf(*](xt)"](x’“)) +ACa(x, %)} (5) we first initialize the graph position using a face detector and

' lev afterwards we study for small scaling, rotation and translation
The jet of thel-th node that has been produced after the,anges for a finest matching. After the matching procedure,
matching procedure of the reference facial expression grapk,e distanceD, (r) can be used as a quantitative measure for

(r = {angerdisgustfear, happinesssadnessurprisg) to the - e similarity of a reference facial expression graph with a test
facial expression image is denoted ag(x!(r)). This notation

is used due to the fact that different facial expressionssult mage.

to different test jetg(x!(r)). Thus, the jet of thé-th node of

the test facial expression graplis a function of the reference  !ll. FINDING DISCRIMINANT EXPRESSIONSPECIFIC
facial expression graph. The notationj(x.) is used only GRAPH STRUCTURES

when thel-th node is in a preselected position of a facial pg has peen already discussed, the graphs that have been

image. L . used for face representation in EGM algorithms have been
In [18], the optimization of (5) has been implemented as @her rectangular graphs or graphs with nodes manually

simulated annealing procedure that imposes globgl translat'tggced at prespecified landmarks. It cannot be proven that
of the graph and local node deformations. In this paper, flese graphs are optimal for the examined applications i.e.,
order to deal with face translation, rotation and scaling, tgce recognition/verification and facial expression recognition.
following optimization problem: In [32], it has been shown that graphs with nodes placed at
Dy(r) = >, {Cr((x}),j(xL))} subject to 5 the discriminant facial landmarks for every person perform
xt = AxL +6&;, |16]] < dmax, ®) significantly better than the rectangular graphs. We will try to

is solved using simulated annealing, as well. The ma#ix find the opt|mal graph setup for 1_‘aC|aI expression recognition
tgaks (optimal under some criterion optimization).

is an Euclidean transformation matrix and can be express
as A = TRS, assuming, before the initialization of the

optimization procedure, that the center of the mass of the Mmeasuring the Significance of Each Node
graph coincides with the center of the coordinate system axes.

The matrix S = diag{a:,as, 1} is a scaling matrix with In the following, m(X’) denotes the mean vector of a set
l—a<a <l+al Ca < 4 <1+aanda > 0is ©Of vectorsd and N(X) its cardinality. Whent is a set of

a scalar that controls the maximum and minimum scaling SF2/&" value32 their mean will be denotedragY) and their
the graph. The matriR. is the rotation matrix variance ass“(X). Let Fi(r) and F;(r) be the sets for the

cosl —sind 0 jets of thel-th node that correspond to facial expression intra-
R = sinf cosd 0 | where—6;, < 6 < 0, with class matchings (i.e., the graph jets that have been produced by
0 0 1 matching the reference facial expression graphb all images
6, is a scalar term that Controls the maximum degree ef the same facial expression class) and to facial expression
rotation of the graph. FinallyI' is a translation matrixI’ = inter-class matchings (i.e., the graph jets that have been
0 0 T produced by matching the reference facial expression graph

0 0 T, | for the graph with—T < Ty < T, —T < r to the images of the other facial expressions), respectively.
0 0 1 In order to define the similarity of a test jgtx!(r)) to the



class of jets of the facial expressierfor the same node, we pixels). An iterative algorithm that uses expandable graphs is
use the following norm: proposed in order to find the discriminant graph. We assume
. that the nodes that have high discriminant values should be
ci(r) - "J(Xi(r)) —m(Fi(r))|P ©) placed in facial regions thatgare indeed discriminant for the
which is actually the Euclidean distance of a sample &pecific facial expression. These facial regions should be better
the mean of the facial expression classand is one of represented. This can be achieved by expanding certain nodes
most commonly employed measures in pattern recognititiat possess the highest discriminant power. In the following,
applications. the steps of the proposed algorithm are described in more
Let C;(r) and C;(r) be the sets of local similarity valuesdetail. This procedure should be repeated for all six facial
cl(r) that correspond to the facial expression intra-class aagpressions in order to find the most discriminant graph for

inter-class samples, respectively. A possible measure for t®ch one.
discriminant power of thé-th node for the facial expression Let the initial graph that containg vertices at the first

r is the Fisher’s discriminant ratio [38]:

Loy (G = miG(r)))
B = ) + @)

iterationi < 1. Let B; be the set of graph vertices at th¢h
iteration. The algorithm has the following steps:

(10) Step 1 Match the reference graph of the facial expression

r to all intra-class and inter-class images.

In [18], [20] it has been proposed to weight the graph nodesStep 2 For each nodé, calculate the measué(r).

after the elastic graph matching using the coefficights) in
order to form a similarity measure between graphs. Another
possible measure of the discriminant power of a graph node
is the following:

1 ~ l
() = NG Leyrecr) (1) (11)
> A

N(C(r)) Lech(r)eCi(r) “t

The measure (11) increases when the inter-class simila
measures for théth graph node are of high values and/or th
local similarity measures for the intra-class similarity measur
are of low values. The measures defined in (10) and in (11)
heuristic indicators for the discriminant power of every nodjf

Now, by summing the discriminant coefficients for a certai
graph setupy we have:

L
Eyr) =7 00) (12)
=1

whereL is the total number of nodes. This is the mean of all

the discriminant measures and is a characteristic measure for a

particular graph setup of the facial expressiom\s described
in [32], the previous analysis leads to an optimization proce-

dure in order to find the grappthat has the maximuri, (r).  Fig. 5.

The desired properties (constraints) of the grgppart from
having maximumg,(r) are:

« The graph should have a relatively small number of nodes
so that the elastic graph matching procedure has low
computational cost.

o The nodes should not be very close to each other in
order to avoid redundant use of the same discriminant
information.

Formally, the above optimization problem can be written as:

g = argmaxg E,(r) subject to
l[x! —x7|| > A,V 1, j nodes withl # j (13)
L = constant

where A is a preselected threshold that controls the density
of the graph.

In order to solve the constraint optimization procedure we
assume that the optimal solution is a sub-graph of e
rectangular graph (i.e., the graph with nodes placed at e¥ery

Step 3 Select a subset of the nodes with the higher dis-

criminant value that have not been already expanded
and expand them. The nodes that lie in the perimeter
of the graph can be expanded only inside the facial
region. Figure 5 describes pictorially this step for the

rectangular graph of anger.

New node

New node

Expanding the graph.

Step 4. Verify that the inserted nodes do not violate the

graph sparseness criterion. That is, erase the new
nodes that violate the criterighx’. —x7|| < A,V 1, j

(for the rectangular graphs used in this work, this
is equivalent with checking if some of the inserted
nodes have already been examined). The set of the
final inserted nodes in theth iteration is denoted as

A

Step 5 Match locally the nodes of4; in all the intra-

class and inter-class facial expression images. Let
k € A; be an inserted node and’ be the initial
coordinate vector for the node in a test image.

The local matching procedure is the outcome of the
local search:

xF(r) = arg min, Cr(j(xF),j(x*)) subject to

|[xF — x}|] < dmax
(14)



wherex¥(r) is the final coordinate vector that gives 2) Node-wise feature extraction. In this case the algorithm

the jetj(xF(r)). learns node-specific discriminant transforms for every
Step 6. For each nodé: < A;, calculate its discriminant facial expression. This strategy is motivated by the fact
value p* (7). that every graph node is a local expert that contains
Step 7. Let C; = A; U B;. Order the nodes id; according its own discriminant power. Such a strategy has been
to their discriminant power and obtain a gragh followed in [18], [22], where person and node-specific
by keeping only thel. nodes with the highest dis- discriminant transforms have been learned for every
criminant power. The sd8; ,; contains the nodes of node.
Git1- In the following we will formulate a novel non-linear dis-
Step 8 If (Ey,,, () — E,,(r)) > 7 theni < i41 and goto criminant feature extraction method that can be applied in
Step 4 else stop. both strategies. An optimization procedure is used that is

Figure 6 shows the optimal graphs derived from the prinspired from the optimization of Fisher’s criterion in [41].
posed procedure for the Cohn-Kanade database [35] usiflte advantage of choosing a similar optimization procedure
Normalized morphological features, respectively. All imagese [41] is that it does not require matrix inversions contrary to
have been aligned for visualization purposes. As can be sagher optimization procedures [42], [34]. The main limitation
from these images the nodes of the optimal graphs for thé the discriminant analysis based on Fisher’s optimization
morphological features are upon facial areas that correspgablem in [41], [42], [34] is that for two class problems
to furrows, frows, lips etc. which are landmarks that aré produces only one discriminant direction contrary to the
considered discriminant for the classification of facial expreproposed criterion that provides a set of discriminant directions
sions. The main for the graphs not being symmetric is thaith its number to be proportional to the number of training
in many cases facial expressions maybe not be symmetricsamples.
many persons. The asymmetry clue of facial expressions ha®ur aim is to find a discriminant feature extraction trans-
been commented and used for face recognition in [39]. THerm ¥ (in most case® serves as a dimensionality reduction
interested reader may refer to [40], [39] and in referencesatrix). In order to make use of kernel techniques the original
therein for more detail concerning the asymmetry of faci@put space is projected to an arbitrary-dimensional spgace
expressions. The other reason is that the method is appliedtire spaceF usually has the structure of a Hilbert space [43],
a fully automatic manner, thus this procedure may have intr#4]). To do so, letp : y € RY — ¢(y) € F be a nonlinear
duced additional asymmetries to the graphs. Moreover, we gaapping from the input spac&? to the Hilbert spaceF.
incorporate symmetric constraints in the proposed algorithim the Hilbert space, we want to find linear projections to a
in order to satisfy symmetry in the derived graphs. This cdaw-dimensional space with enhanced discriminant power. The
be accomplished, when expanding a node, by expanding discriminant power of the new space is often defined in respect
symmetric in the left or right part of the face, as well. Théo a discriminant optimization criterion. This discriminant
same procedure can be followed when erasing a node. In thigerion defines an optimization problem which gives a set
fully automatic scenario, that has been followed in this pap@f linear projections inF (linear in F is non-linear inRR*M).
the best results has been produced by graphs like the oneA linear subspace transformation of onto a K-
showed in Figure 6. dimensional subspace, which is isomorphid6, is a matrix

The elastic graph matching procedure of the new graphs¥ = [v,,..., %] with x; € F. The new projected vector
performed using the minimization procedure indicated in thee R, of the vectory, is given by:
optimization problem (6). The optimization problem (6) uses , T T T T
global Euclidean transformation (ie, using rotation, translation y=¥00y) =[¥1 ¢¥), - oW (15)
and scaling) of the graph. That is, the components canfidie dimensionality of the new space is usually much smaller
be transformed independently but only as part of the entilean the dimensionality ofF and the dimensionality of the
graph. In the second step, every node can be locally matchegut spacer™ (i.e., K < M). The matrix multiplication in
(deformed) independently as imposed by the optimizati¢m5) is computed indirectly (i.e., without explicit calculation

problem (6). of ¢) using dot-products in the Hilbert spacgé [33], [34],
[45].
IV. A NOVEL TWO-CLASS KERNEL DISCRIMINANT Prior to developing the new optimization problem, we
ANALYSIS EOR FEATURE EXTRACTION will introduce some notation that will be used throughout

this Section. Let that the training set be separated into two

. we can Improve the perfgrmance .Of the new graph b isjoint classesy and ). In our case, the clas¥ represents
imposing discriminant analysis to the jets of the nodes or Re facial expression intra-class samples and the clss

tcgivézoi;eogg?g:;g? in [18], [20], [11]. To do so, two Strateg'edsenotes the facial expression inter-class samples. For notation
N ) ) compactness, let = N(Y U Y). The intra-class vectorg;
1) Graph-wise feature extraction. In this case the featupg denoted ap, (y; < )), while the inter-class samples;

vector is the whole graph that is comprised of all jet§e genoted as.: (v ¢ ). Let alsop = ~ N() _
and the algorithm learns for every facial expression one i (i ) P= N 2=t OPy).

L = N() =
discriminant transform. Such a strategy has been appli€d™ N(lj;) Zifl ¢(k;) andm = . 31, ¢(y;) be the mean
in [11] for facial expression recognition. vectors of), ) and total mean of vectors in the Hilbert space



F. Any function k satisfying the Mercer’s condition can bewith ), be the Lagrangian multipliers. According to the KKT
used as a kernel. The dot productd(fy;) and ¢(y;) in the conditions we have:
Hilbert space can be calculated without having to evaluate  yr(y A _p =0&

explicitly the mappings(+) ask(y,y;) = ¢(y:)T ¢(y;) (this S N _ —1 ...
is also known as the kernel trick [43], [44]). Typical kernels EQVYP B B]?I’)Z,b )\:’""?Q’L’g 0 m=1-.Ke
are the polynomial and Radial Basis Function (RBF) kernels: m mrm (22)

B T T d which means that the Lagrangian multiplierg are the eigen-
k(x,y) = 6(x)" ¢(y) = (x yT+ 1) (16) values of W® —B? and the vectorg),, are the corresponding
k(x,y) = ¢(x)Tp(y) = e 7x7¥) xy) eigenvectors. By substituting (22) to (20) the criterié(®)

) . can be reformulated as:
whered is the degree of the polynomial andcontrols the

K K
spread of the Gaussian kernel. (WP—B®)yp, = P— _ P
The criterion that is used in this paper, will be formed Z el ¥ mz:: mVm ¥ ; "
using a simple similarity measure in the Hilbert sp&ceThis (23)

measure quantifies the similarity of a given feature vegtor Thus,.J(¥) is maximized when the columns of the matix

to the clasg in the subspace spanned by the columns of tiage composed of thé largest eigenvectors aV® — B,

matrix & = |4, ... ], with ¢, € F. The L, norm in the  Since the matrice8W® andB? are of arbitrary dimension,

reduced space spanned by the columnsois used as a it is not possible to calculate them directly in practice. We will

similarity measure: combine the theory in [41], [34], [46] to find a robust and time
efficient solution of the defined optimization problem. Fist, let

y) = €7 (6(y) = p)II> = tr[®T (¢(y) — P)(¢(y) — )" ®] us define the matriB? as:

an ' = NO)W?+ N()B?
which is actually the Euclidean distance of a projected sample _ Z (6(r) — p)((K) — p)T
to the projected mean of the reference classThis distance +ZR(¢(P) p)(o(k) — p)” (24)
should be small for the samples of the clasand big for the _ )
samples of the clas¥. - Z%eytjyfﬁ(y PO(y) ~p)"
The discriminant measure used is the following: =l iy = ®.®f
. . whereft, = ¢(y;) —p and®, = [i1; ... i1,,]. It can be easily
J(®) =55 y 2yey ey) = N(ly) 2yey ey) proven that th(e r21atriS<I’ is comp[aclt, self-z]idjoint and positive
= N(y YT ((k) — p)|>— operator inH , thus its eigenvector system forms a basigof
y) Zp 1T (o(p) — p)||? 1. Let the two corr_rplementary spacBsand B1 spanned by
= L _tr[3, T (¢(k) — p)(b(r) — p)T W] — the orthonormal eigenvectors that correspond to the non-null
N o7 _ T and the null eigenvalues &?® (the columns of the matrices
73’)”[2/’ (¢(p) — P)(0(p) — )" ¥] &, and ®,, respectively). Every vectop,, can be written,

= [ @TW? ] — tr[¥TB? ¥

in a uniqgue manner, ag,, = ~,, + 0, Or equivalently as
— r[®T(W? — B®) @] J Iner, &b = 7 p Y

Y, = ¢, + ®sm,,, Wherey,, = &.(,, € Bandd,, =

(18) P s e i H n—1
. . sM,, € B—. Moreover, the spac8 is isomorphic toR
\;Vrze;\/gﬁ] k|);the trace operator and the matricd and B (e, ¢, e ®n-1), and theB~ to the H minus then — 1
’ dimensions. Equation (22) can be expanded as
Ny 2k(6(K) = p)(6(k) —p)" and (W2 —BH®,(, = An(®C,, +Pom,)  (25)
BY = 103 (6(0) - P)(6(p) — )7 49 " me
N(y) P ' by multiplying with &7 we have:
The discriminant measure (18) increases when the samples of (BTWeD, — ®TBY®,)¢, = A\l (26)
the classy are far from the center of the clagsand/or when -
the samples of the clags are close to their center. and by multiplying with®?" we have:
By additional requiringy," 16, = 1, we can formulate the 0= A7, (27)
discriminant criterion for feature extraction as:
Thus, then,,, do not play any role in the optimization problem.
max J(¥) = tr[¥T(W® — B*) ] The above analysis is similar to the one presented in [34],
=K T (W® —B?)y,, (20) where it has been shown that the space of the veetgreoes
subject tO“lP;CL’lﬂm —1=0m=1,--- K. not play any role in the optimization of the Fisher discriminant

ratio with kernels.
The optimal ¥ can be found by the saddle point of the gummarizing, it has been shown that only the fitswith
Lagrangian: L < n — 1) positive eigenvalues o8® are of interest to

K T > o T 1The matrixS® is not to be confused with the total scatter matrix Sfi
L%, Am) = Z Y (WP =By, — A (Y, 9, — 1) the intra class mean is subtracted from all the training vectors, while in the
m=1 total scatter matrix case the total mean vector is subtracted from the training
(21) vectors



us. These eigenvectors can be indirectly derived from the
eigenvectors of the matri$? @, (L x L). Let A\? andc;(i =

1...L) be thei-th eigenvalue and the corresponding eigen- Features Graph Structure] Recognition Rate
vector of ®T @, sorted in ascending order of eigenvalues. It's Gabor-based Rectangular 84.1%
Normalized Morphological|  Rectangular 85.5%

true that(® @7 ) (®s;) = \j(Psc;). Thus,w; = ®,c; are

TABLE |
RECOGNITION RATE FOR THE TESTED FEATURES.

the eigenvectors o8®. In order to remove the null space of

S®, the first L < n — 1 eigenvectors (given in the matrix

II = [oy...ww] = ®,C, whereC = [¢;...cr]), whose 20% have been used for testing. More specifically, all image
corresponding eigenvalues are non zero, should be calculat&tjuences contained in the database are divided into 6 classes,
Thus, TITS®TI = A, with A, = diagi\;?... 3%, aL x L each one corresponding to one of the 6 basic facial expressions
diagonal matrix. The orthonormal eigenvectorsSdf are the to be recognized. Five sets containing 20% of the data for each
columns of the matrix: class, chosen randomly, are created. One set containing 20%

—1/2 of the samples for each class is used for the test set, while the

II, = ®.,I1A, ) (28) - g, .
remaining sets form the training set. After the classification

After projecting all the training vectors f; the optimiza- procedure is performed, the samples forming the testing set

tion problem reduces to finding the eigenvectorsWif— B  are incorporated into the current training set, and a new set of
whereW = II¥'W?II;, andB = 17 B®I1,. samples (20% of the samples for each class) is extracted to

form the new test set. The remaining samples create the new

A. Feature Extraction from the Two-Class Kernel Procedurdraining set. This procedure is repeated five times. The average

proposed algorithm:

classification accuracy is the mean value of the percentages of
We can now summarize the training procedure of tr}ﬁ
e correctly classified facial expressions. In order to decide
which of the six facial classes a test facial image belongs to,
&e six reference facial expression graphs are matched to the

test images and the one with the minimum distance is the

Step 1 Calculate the non-zero eigenvalues and the eig
vectors of ®7'®, and project each facial vectgr

as. winner class.

O7g(y) = (HAS_l/Q)T<I>ST (y) We have conducted three series of experiments. In the first,
= (A YT [y .. 1) T o(y) we wanted to measure the way the choice of the multiscale
= (HAS_l/Z)T([qb(yl) oy T o(y) analysis affects the recognition performance. In the second,
—[p...pTo(y)) we evaluated the use of grids placed in discriminant facial

(HA —1/2>T<[¢( (yn ]T¢<y) landmarks for both Gabor-based graphs and Morphological
raphs Finally, we have explored the contribution of the pro-
. ( 1/2) ( k(yl, ). k(yn,y )]T posed discriminant analysis with respect to the performance.

A. Experiments with Different Multiscale Analysis

wherel,,,, IS an; x ng matrix of ones. We have implemented a Gabor-based elastic graph matching
Step 2 In the new space calculaf® and B. Perform approach similar to the one applied in [11], [29] as well
eigenanalysis toV — B and obtain a set of{ or- as the proposed elastic graph matching procedure with the
thonormal eigenvectors. The eigenvectors are storadrmalized morphological features. For the Gabor features,
in a matrixE € R—DXK, 6 orientations and 5 scales have been considered giving a

After following these steps the discriminant projection fofotal of 30 features per node, while for the morphological

[
N(y) nN(y)[ (P1,Y)- - (PN(y)(Y)])

a test vectoly is given by: features 9 scales have been considered with a total of 19

the number of dimensions of the discriminant vectprs R

, 12T - features. The graphs that have been used have beer

y = (IIIAS E) ([F(y1,y) - k(yny)] (30) evenly distributed graphs, like the ones depicted in Figure 1.
— 5oy v k(1Y) - K(on ), ¥))) Table | summarizes the experimental results. As can be seen

the normalized morphological features perform better than the

is K <n-—1. Gabor-based.

V. EXPERIMENTAL RESULTS B. Experiments with Different Graph Structures
The Cohn-Kanade database [35] was used for the faciaWe have conducted experiments using the optimal graph

expression recognition in 6 basic facial expressions classtaictures that have been derived from the algorithm in Section
(anger, disgust, fear, happiness, sadness and surprise) . ThiAll the tested approaches are fully automatic since only
database is annotated with FAUs. These combinations of FAbdace detector is needed in order to initialize the graph. Af-
were translated into facial expressions according to [47], tarwards, elastic graph matching is applied for a finest match-
order to define the corresponding ground truth for the facimlg. Thus, we have conducted no experiments with graphs
expressions. placed at manually selected facial landmarks like the ones
For learning the reference bunch graphs and discrimingrboposed in [11]. The facial expression recognition rates for
transforms we have used 80% of the data while the remainitige rectangular graph structures and the discriminant structures



TABLE Il TABLE Il
RECOGNITION RATE FOR THE TESTED FEATURES. COMPARISON OFFACIAL EXPRESSIONRECOGNITION ALGORITHMS IN
THE COHN-KANADE DATABASE.

Features Graph Structure Recognition Rate
Gabor-based Rectangular 84.1% [hethod | Number of Sequences Number of Classe§ Recognition Rate
Gabor-based Discriminant Graph Structurg 90.5% 150] 320 76) 88.4(92.1)%

Normalized Morphological Rectangular 85.5% 5T 313 7 86.9%

Normalized Morphological| Discriminant Graph Structure 91.8% 5 313 7 93.8%

53 375 6 93.8%

[54] - 6 90.9%

[40] 284 6 93.66%

[55] 374 [§ 96.26%

learned from the proposed approach for both Gabor-based ambposed 374 6 97.1%

morphological-based graphs are summarized in Table Il. As
can be seen, the proposed discriminant graphs outperform
the rectangular graphs for both Normalized Morphologicﬁ . .

features and Gabor-based features. Hence, these graphs vgomparison with State-of-the-Art

indeed captured landmarks that are discriminant for facialRecently, [6] a facial expression recognition system has
expression recognition. been described that has been tested in Cohn-Kanade database

using a similar experimental protocol. The system in [6] has

shown superior performance and has achied@% recogni-

tion rate. The drawback of the system in [6] is that it requires
C. Experiments with Various Discriminant Analysis anéhe Candide grid to be manually placed upon the facial area
Strategies and moreover it requires the manual detection of the neutral

state in a video sequence. On the other hand, the proposed

Finally, we have conducted experiments in order to evakhethod is fully automatic and does not require the detection
uate the performance of facial expression recognition usingthe neutral state. Moreover, it can be used for both image
the proposed discriminant analysis. For comparison reasoasd video based facial expression recognition contrary to [6]
we have implemented a Gabor-based elastic graph matchihgt requires the whole video of facial expression development
approach with the typical FLDA classifier in the same mann#om the neutral state to the fully expressive image. Finally,
as proposed in [11], [29]. The main limitation of the FLDAthe proposed method can be adjusted to EGM-based tracking
discriminant analysis and its kernel alternatives [33], [34%ystems like the ones proposed in [48], [49] in order to achieve
[41] is that it gives only one or two discriminant projectiorfacial expression recognition in video sequences.
in two class problems. That is, the so-called Direct Kernel Apart from the method proposed in [6] a comparison of the
Discriminant Analysis (DKDA) gives only one discriminantrecognition rates achieved for each facial expression with the
vector [33] and the so-called Complete Kernel Discriminastate of the art [50], [51], [52], [53], [40], [54], [55], when
Analysis (CFKDA) [34] two discriminant vectors. This issix or seven facial expressions were examined (the neutral
obviously a limitation in the search for discriminant featurestate is the seventh facial expression) is depicted at Table III.
The proposed discriminant analysis gives umtdiscriminant The total facial expression recognition of the proposed method
dimensions, where is the number of training samples. has beerd7.1% for the six facial expressions. Unfortunately,
We applied the proposed discriminant analysis, describigre is not a direct method to compare the rates achieved by

in Section IV, and KFDA [41] using both node-wise andPther researchers [56]-[55], since their is not standard protocol
graph-wise discriminant transforms. Figure 7 (a) shows tkgvery one uses his own testing protocol). Nevertheless, the
recognition performance of the proposed discriminant analy$oposed method has achieved the best recognition rate among
for both Gabor-based and morphological features using popp.e recent state-of-the-art meth_ods. The second best method
nomial kernels with degrees from 1 to 4 for the graph-wis@®s been the one proposed in [55] where a to@lr%
strategy. We have experimented with polynomial kernels wit§cognition rate has been achieved using a method based
degrees more than 4 but we have seen no further improvem@ft Local Binary Patterns and SVM classifiers. The main

in performance. As can be seen, the proposed discriminghgwback of the method in [55] is that it is only tested in
analysis outperforms the KFDA. perfect manually aligned image sequences and no experiments

The corresponding results for the node-wise strategy a{Pefu"y automatic conditions have been presented.

shown in Figure 7 b. It can be seen that the node-wise
strategies (i.e., learning a discriminant transform for every
node and for every facial expression) have better performancéVe have meticulously studied the use of elastic graph
than the graph-wise strategies. The best performance that iietching for facial expression recognition and motivated the
proposed system achieved w&is1% and has been measuredise of morphological features for facial expression represen-
when we selected graphs with normalized morphologictdtion. We have applied a discriminant analysis that learns the
filters using the optimal graph structures that have derivegtimal graph structure for every facial expression. Finally,

from the algorithm in Section Il and applying the proposede have proposed a novel non-linear discriminant analysis
discriminant analysis in a node-wise manner. for both graph-wise and node-wise feature selection. We have

VI. CONCLUSION
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experimented on both Gabor-based and Normalized Morphy
Ioglcal elastic graph matchlng architectures and we have been expressions: The state of the atEEE Transactions on Pattern Analysis
applied them in a fully automatic manner to achieve facial

expression recognition. The experimental results show tha

the proposed methods significantly increase the performance 1 : ) ; » 2003,
6] I. Kotsia and I. Pitas, “Facial expression recognition in image sequences

of both Gabor and morphological EGM in facial expressio

recognition.
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APPENDIXI
COMPUTATION OF &1,

[10]

Before proceeding to the expansion we should define tHél

following matrices:

[Kil,; = ¢(p)"6(p;) = Kk(pi, pj)
i=1...N(Y)andj=1...N(})
[K2L‘7j = ¢(51)T¢( j~) (”upj)
= N(Y)andj=1...N(Y) (31)
[K3L‘,j = ¢( ) P(kj) = k(pzaK’]) K3
[K4}m» =9¢(k )T¢(""J) = k(ki, Kj) ~
i=1...NQ)andj=1...N(}),
the matrixK as the total kernel function:
K, K
K= [ Ki Kj ] (32)
and theE as:
E- { Ej ] . (33)
The ®7'®, is expanded as:
TP, = [y ) [y ) = [ 1] (34)
where
iy = ¢(yi)T¢<yJ> o(y:)"p—p"o(y;) +p"p
= [Kli; - y) SO b(yi) TSP,

N(y) Yo é(p,) o))
+ 57z Sy 6(p) T 0 é(p,,
= [K]i,; [N(y)ElN(y)n]w
gy Loy Kilvali g
= K - x5 ELvon — woylavo) B
+ x5 Lanv ) KiIv i

(35)
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Fig. 1. Different types of facial graphs : a) rectangular graph c) graph with nodes at fiducial landmarks.
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Fig. 3. a) The reference anger graph has one jet per node and is built using only the mean facial expression image; b) the reference graph contains a bunch
of jets per node for different instances of anger.
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Fig. 4. NMMA of various facial parts in expressed facial images. The upper left image of every block is a facial part from the original image extracted from
the Cohn-Kanade database. The first nine images of every block starting from the left corner, apart from the upper left one, are the normalized dilated images
and the remaining nine are the normalized eroded images. As can be seen NMMA captures and highlights important facial features like mouth, eyebrows,

eyes and furrows that participate in facial expression development.
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Fig. 6. The optimal graphs found using Normalized Morphological-based features for : a) anger b) disgust c) fear d) happiness e) sadness and f) surprise.
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Fig. 7. Recognition rates for various polynomial kernels : a) graph-wise strategies b) node-wise strategies.



