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Abstract— In this paper, a series of advances in elastic graph
matching for facial expression recognition are proposed. More
specifically, a new technique for the selection of the most discrim-
inant facial landmarks for every facial expression (discriminant
expression-specific graphs) is applied. Furthermore, a novel
kernel-based technique for discriminant feature extraction from
graphs is presented. This feature extraction technique remedies
some of the limitations of the typical Kernel Fisher Discriminant
Analysis (KFDA) which provides a subspace of very limited
dimensionality (i.e., one or two dimensions) in two-class problems.
The proposed methods have been applied to the Cohn-Kanade
database in which very good performance has been achieved in
a fully automatic manner.

Index Terms— Elastic graph matching, expandable graphs,
Fisher’s Linear Discriminant Analysis, kernel techniques.

I. I NTRODUCTION

During the past two decades, facial expression recognition
has attracted a significant interest in the scientific community,
as it plays a vital role in human centered interfaces. Many
applications such as virtual reality, video-conferencing, user
profiling, customer satisfaction studies for broadcast and web
services and smart environments construction require efficient
facial expression recognition in order to achieve the desired
results [1], [2].

Several research efforts have been made regarding facial
expression recognition. The facial expressions under exami-
nation were defined by psychologists as a set of six basic
facial expressions (anger, disgust, fear, happiness, sadness and
surprise) [3]. The interested reader may refer to [4], [5], [6]
and in the references therein for facial expression recognition
methods. A more recent survey for facial expression recogni-
tion can be found in [7]. Fully automatic facial expression
recognition is a difficult task, since it requires robust face
and facial landmarks detection and tracking of the specific
facial landmarks that participate in the development of the
various facial expressions. That is, recognition performance
highly depends on the robust detection and/or tracking of
certain landmarks upon the facial area (e.g., eye, lip tracking
e.t.c). In many cases, in order to reduce the effect of false
facial landmarks detection and their erroneous tracking, one
or more parts of the preprocessing are performed manually. In
[6], manual facial landmark annotation of the Candide grid
[8] is performed in neutral images. The preselected facial
landmarks on the neutral image are tracked until the image
reaches its highest expression intensity. Then, the deformation
of these landmarks with respect to the neutral state, throughout
the facial expression evolvement, is used for facial expression
recognition. In [9], manual facial landmark selection has been

performed in every facial expression image. In other cases
facial landmark detection has been performed using special
equipment[10], for instance when infrared cameras have been
used for robust eye detection. A method that could achieve
fully automatic facial expression recognition is the Elastic
Graph Matching (EGM) algorithm [11].

EGM [12] has been initially proposed for arbitrary object
recognition from images and has been a very popular topic of
research for various facial image characterization applications.
In EGM, a reference object graph is created by overlaying
a rectangular elastic sparse graph on the object image and
then calculating a Gabor wavelet bank response at each graph
node. This way, a feature vector is assigned to every node,
the so-calledjet. The graph matching process is implemented
by a stochastic optimization of a cost function which takes
into account both jet similarities and grid deformations. A
two stage coarse-to-fine optimization procedure suffices for
the minimization of such a cost function.

A lot of research has been conducted in order to boost the
performance of EGM for face recognition, face verification,
facial expression recognition and sex determination [13]-[25].
In [14], the graph structure has been enhanced by introducing
a stack like structure, the so-calledbunch graph, and has been
tested for face recognition. For every node in the bunch graph
structure, a set of jets has been measured for different instances
of a face (e.g., with open or closed mouth, open or shut eyes).
This way, the bunch graph representation could cover a variety
of possible changes in the appearance of a face. In [15], the
bunch graph structure has been used for determining facial
characteristics, such as beard, the presence of glasses, or even
a person’s sex.

In [17], EGM has been proposed and tested for frontal
face verification. A variant of the typical EGM, the so-called
morphological elastic graph matching(MEGM), has been
proposed for frontal face verification and tested for various
recording conditions [18]-[20]. In [18], [20], the standard
coarse- to-fine approach proposed in [17] for EGM has been
replaced by a simulated annealing method that optimizes a
cost function of the jet similarity measures subject to node
deformation constraints. Another variant of EGM has been
presented in [21], where morphological signal decomposition
has been used instead of the standard Gabor analysis [17].
EGM with Gabor jets for facial expression recognition has
been proposed in [11], [26], [27], [28], [29].

Discriminant techniques have been employed in order to
enhance the classification performance of EGM. The use
of linear discriminant techniques at the feature vectors for
the extraction of the most discriminating features has been
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proposed in [17], [18], [20]. Several schemes that aim at
weighting the graph nodes according to their discriminatory
power have also been proposed in [18], [20], [25], [30]. A
combined discriminant scheme has been proposed in [22],
where discriminant analysis has been employed in every step
of elastic graph matching for face verification. The use of
Fisher’s Linear Discriminant Analysis (FLDA) for discrim-
inant feature selection in the graphs for facial expression
recognition has been proposed in [11]. In [11], [29], FLDA
has been applied in a graph-wise manner (i.e., the feature
vectors that have been used in FLDA were the set of graph
jets), contrary to the methods in [18], [20], [22], where
node-specific discriminant transforms have been calculated.
Moreover, a series of discriminant techniques in graph-based
representations with Gabor features have been proposed in [9].
The methods in [9] have some resemblance with EGM but
have not implemented an elastic graph matching procedure
since landmark selection and matching has been manually per-
formed. In [23], [24] novel robust Gabor-based features have
been proposed and novel wrapping elastic graph matching
procedure has been introduced which is robust against rotation
and scaling. Moreover, in [23] a novel kernel based method
for feature extraction has been proposed and used for face
recognition.

Finally, in [31] a method for face recognition has been
proposed which follows a similar strategy to the one used
in this paper. That is, face recognition is treated as a two
class problem in order to extract discriminant Gabor-based
features using Adaboost. To apply the AdaBoost they have
introduced the intra-face and extra-face difference space in
the Gabor feature space and converted the multiclass problem
to a corresponding two-class. In addition, to deal with the
imbalance between the amount of the positive samples and
that of the negative samples, a re-sampling scheme has been
adopted to choose the negative samples.

Although a lot of research has been conducted for feature
selection and discriminant node weighting in elastic graphs,
not much have been done concerning the type of graphs that
is more appropriate for face recognition, face verification and
facial expression recognition. The sparse graph that has been
used for face representation in the literature is:

• either an evenly distributed graph placed over a rectan-
gular image region [17], [18], [20], [21], [30]

• or a graph that is placed on preselected nodes that
correspond to some fiducial facial points (e.g., nose, eyes,
etc.) [11], [14], [15], [26], [27], [28], [29].

Intuitively, one may think that graphs with nodes placed at
pre-specified facial landmarks may perform better than the
rectangular graphs. However, such graphs are more difficult to
be automatically applied, since they require a detection module
to find the precise coordinates of the facial landmarks in the
reference images or, in many cases, manual landmark anno-
tation [9], [11], [14]. On the contrary, an evenly distributed
rectangular graph is easier to be handled automatically, since
only a face detection algorithm is required to find an initial
approximation of the rectangular facial region [17], [18], [20],
[21], [30]. Figure 1 shows the two different types of facial

graphs used in elastic graph matching algorithms. In [32], an
algorithm that finds the optimal discriminant graph structure
has been proposed (optimal according to a discriminant cri-
terion). The graphs proposed in [32] have nodes placed at
discriminant facial landmarks. It has been shown in [32] that
these graphs can be found in a fully automatic manner and
have better performance then the typical rectangular graphs in
face verification.

In this paper, we meticulously study the use of EGM for
facial expression recognition. More specifically, the contribu-
tions of this paper are:

• The motivation and application of morphological filters
in order to deal with the problem of facial expression
recognition.

• The application of expression-specific graphs with nodes
placed at discriminant landmarks. In order to apply
such graphs, we introduce a discriminant analysis that
produces a graph whose nodes correspond to the most
discriminant facial landmarks for a particular expression.

• The introduction of a novel kernel-based method for both
graph-wise and node-wise discriminant feature selection
and its application for facial expression recognition. The
main contribution of the proposed kernel-technique, is
that it tries to remedy some of the limitations of the kernel
methods based on the Fisher’s discriminant criterion that
provide very limited number of features in two class
problems (i.e., the so-called Kernel Direct Discriminant
Analysis (KDDA) provides only one discriminant pro-
jection [33] and the so-called Complete Kernel Fisher
Discriminant Analysis (CKFDA) [34] only two discrim-
inant dimensions in two class problems). These spaces
of very limited number of dimensions may prove to be
insufficient for correctly representing the samples. The
proposed approach discovers a low dimensional space
with the number of dimensions to be proportional to the
number of training samples.

The proposed method, unlike the methods in [6] and [9], is
fully automatic. That is, there is no need to manually locate
the face and/or manual annotate facial landmarks. The facial
expression recognition problem is a challenging one because
different individuals display the same expression differently.
Selecting the most relevant features and ignoring unimportant
features is a key step for the solution of this problem. The
proposed method, selects automatically the best facial land-
marks for every facial expression. That is, the discriminant
analysis learns automatically the discriminant landmarks for
every facial expression, unlike the method in [11] where the
fiducial grid has been found by manually locating various
landmarks of each facial image.

The rest of the paper is organized as follows. In Section II,
the application of elastic graph matching algorithm for fa-
cial expression recognition is discussed. In Section III, the
algorithm for learning discriminant expression-specific graphs
structures is proposed. In Section IV the novel discriminant
analysis with kernels for feature extraction is introduced.
Experimental results using the Cohn-Kanade database [35]
are described in Section V. Finally, conclusions are drawn
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in Section VI.

II. ELASTIC GRAPH MATCHING FOR FACIAL EXPRESSION

RECOGNITION

A. Graph Selection for Facial Expression Representation

In the first step of the EGM algorithm, a sparse graph that
is suitable for facial expression representation is selected [11],
[14], [17], [18], like the ones depicted in Figure 1. Afterwards,
the reference facial image or images are selected in order to
build the reference samples for every facial expression. Two
types of reference graphs have been considered in this work.
The first graph uses only the mean facial expression image
as the reference facial expression graph. The mean facial
expression image for each of the expressions is depicted in
Figure 2.

Fig. 2. The mean images of each facial expression for the posers of the
Cohn-Kanade database. From left to right the mean image of anger, disgust,
fear, happiness, sadness, surprise are depicted.

Another alternative for building the reference graph for
every facial expression, is the bunch graph setup. In the
reference bunch graph instead of one jet per node, a set (bunch)
of jets is stored that can model different instances of jets for
a facial expression. In Figure 3, the two alternatives regarding
the choice of the reference facial expression graph are picto-
rially described. The reference graph that is constructed using
the mean images has been significantly outperformed in our
experiments by the bunch graph thus, we will refer only to
the bunch graph from now onwards.

B. Multiscale Image Analysis

The facial image region is analyzed and a set of local
descriptors is extracted at each graph node. Analysis is usually
performed by building an information pyramid using scale-
space techniques. In the standard EGM, a 2D Gabor based
filter bank has been used for image analysis [12]. The output
of multiscale morphological dilation-erosion operations or the
morphological signal decomposition at several scales is a non-
linear alternative of the Gabor filters for multiscale analysis.
Both methods have been successfully used for facial image
analysis [18], [20], [21], [36]. In the morphological EGM this

information pyramid is built using multiscale morphological
dilation-erosions [37]. Given an imagef(x) : D ⊆ Z2 → <,
where Z is the set of integers and< is the set of and a
structuring functiong(x) : G ⊆ Z2 → <, the dilation
of the imagef(x) by g(x) is denoted by(f ⊕ g)(x). Its
complementary operation, the erosion, is denoted by(fªg)(x)
[18]. The multiscale dilation-erosion pyramid of the image
f(x) by gσ(x) is defined in [37], whereσ denotes the
scale parameter of the structuring function. In [18] it was
demonstrated that the choice of the structuring function does
not lead to statistically significant changes in the classification
performance. However, it affects the computational complexity
of feature calculation.

Such morphological operations can highlight and capture
important information for key facial features such as eyebrows,
eyes, nose tip, nostrils, lips, face contour, etc. but can be
affected by different illumination conditions and noise [18].
To compensate for these conditions, the normalized multiscale
dilation-erosion is proposed for facial image analysis. It is
well known that the different illumination conditions affect
the facial region in a non uniform manner. However, it can
be safely assumed that the illumination changes are locally
uniform inside the area of the structuring element used for
multiscale analysis. The proposed morphological features are
calculated by subtracting the mean value of the intensity of the
imagef inside the area of the structuring element from the
corresponding maximum (dilation) or minimum (erosion) of
the area. Formally, the normalized multiscale morphological
analysis is given by:

(f ? gσ)(x) =





(f ⊕ gσ)(x)−m−(f,x, Gσ) if σ > 0
f(x) if σ = 0

(f ª g|σ|)(x)−m+(f,x, Gσ) if σ < 0
(1)

where m−(f,x,Gσ) and m+(f,x,Gσ) are the mean values
of the imagef(x− z), x− z ∈ D and f(x + z), x + z ∈ D
inside the support area of the structuring elementGσ = {z ∈
G : ||z|| < σ}, respectively. Another implementation for
the operatorsm+(f,x,Gσ) and m−(f,x,Gσ) would be the
median of the values of the image inside the support area of
the structuring element. The output of these morphological
operations forms the jetj(xl), at the graph nodel that is
located in image coordinatesxl:

j(xl) = ((f ? gσΛ)(xl), . . . , (f ? gσ1)(x
l), f(xl),

(f ? gσ−1)(x
l), . . . , (f ? gσ−Λ)(xl)). (2)

where Λ is the number of different scales used. The vari-
ous scales of Normalized Morphological Multiscale Analysis
(NMMA) can highlight various facial characteristics that are
particular important for facial expression development, like
the shape of the mouth, teeth, eyebrows, furrows e.t.c. Some
examples that verify the above statement can be found in
Figure 4, where the different scales of NMMA are shown for
different facial parts and facial expressions.

C. Matching Procedure

The next step of EGM is to match the reference graph
on the test facial expression image in order to find the
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correspondences of the reference graph nodes on the test
image. This is accomplished by minimizing a cost function
that employs node jet similarities while preserving at the same
time the node neighborhood relationships. Let the subscripts
t andr denote a test and a reference facial image (or graph),
respectively. TheL2 norm between the feature vectors at the
l-th graph node of the reference and the test graph is used as
a similarity measure between jets, i.e.:

Cf (j(xl
t), j(x

l
r)) = ||j(xl

r)− j(xl
t)||. (3)

Let V be the set of all graph vertices of a certain facial
image. For the rectangular graphs, all nodes, except from the
boundary nodes, have exactly four connected nodes. LetH(l)
be the four-connected neighborhood of nodel. In order to
quantify the node neighborhood relationships using a metric,
the local node deformation is used:

Cd(xl
t,x

l
r) =

∑

ξ∈H(l)

||(xl
t − xl

r)− (xξ
t − xξ

r)||. (4)

The objective is to find a set of vertices{xl
t(r), l ∈ V} in

the test image that minimizes the cost function:

C({xl
t}) =

∑

l∈V
{Cf (j(xl

t), j(x
l
r)) + λCd(xl

t,x
l
r)}. (5)

The jet of the l-th node that has been produced after the
matching procedure of the reference facial expression graphr
(r = {anger, disgust, fear, happiness, sadness, surprise}) to the
facial expression imaget, is denoted asj(xl

t(r)). This notation
is used due to the fact that different facial expressionsr result
to different test jetsj(xl

t(r)). Thus, the jet of thel-th node of
the test facial expression grapht is a function of the reference
facial expression graphr. The notationj(xl

r) is used only
when the l-th node is in a preselected position of a facial
image.

In [18], the optimization of (5) has been implemented as a
simulated annealing procedure that imposes global translation
of the graph and local node deformations. In this paper, in
order to deal with face translation, rotation and scaling, the
following optimization problem:

Dt(r) =
∑

l∈V{Cf (j(xl
t), j(xl

r))} subject to
xl

t = Axl
r + δl, ||δl|| ≤ δmax,

(6)

is solved using simulated annealing, as well. The matrixA
is an Euclidean transformation matrix and can be expressed
as A = TRS, assuming, before the initialization of the
optimization procedure, that the center of the mass of the
graph coincides with the center of the coordinate system axes.
The matrix S = diag{a1, a2, 1} is a scaling matrix with
1 − a < a1 < 1 + a, 1 − a < a2 < 1 + a and a > 0 is
a scalar that controls the maximum and minimum scaling of
the graph. The matrixR is the rotation matrix

R =




cos θ −sinθ 0
sinθ cosθ 0

0 0 1


 where−θ1 < θ < θ1 with

θ1 is a scalar term that controls the maximum degree of
rotation of the graph. Finally,T is a translation matrixT =


0 0 T1

0 0 T2

0 0 1


 for the graph with−T < T1 < T , −T <

T2 < T and T > 0 is a scalar that controls the maximum
translation of the graph. Finally,δl denotes a local perturbation
of the graph nodes. The choices ofλ in (5) andδmax in (6)
control the rigidity/plasticity of the graph [17], [18]. Another
alternative for handling rotation and scaling using Gabor based
features is the method proposed in [24], [23].

The optimization problems in (5) and (6) are valid only
when the reference facial expression graph contains one jet
per node. When the reference facial expression graph contains
more that one jet per node, i.e. the case of bunch graph, the
cost function in (5) should be reformulated as

CB({xl
t}) =

∑

l∈V
min

m
{Cf (j(xl

t), jBm
(xl

r))}+λ
∑

l∈V
Cd(xl

t,x
l
r)

(7)
wherejBm(xl

r) is the jet ofm-st jet of the bunch of thel-th
node for the facial expression graphr. In the same manner,
the constrained optimization in (6) can be reformulated to:

Dt(r) =
∑

l∈V minm{Cf (j(xl
t), jBm(xl

r))} subject to
xl

t = Axl
r + δl, ||δl|| ≤ δmax.

(8)
In order to avoid a time consuming elastic matching procedure,
we first initialize the graph position using a face detector and
afterwards we study for small scaling, rotation and translation
changes for a finest matching. After the matching procedure,
the distanceDt(r) can be used as a quantitative measure for
the similarity of a reference facial expression graph with a test
image.

III. F INDING DISCRIMINANT EXPRESSION-SPECIFIC

GRAPH STRUCTURES

As has been already discussed, the graphs that have been
used for face representation in EGM algorithms have been
either rectangular graphs or graphs with nodes manually
placed at prespecified landmarks. It cannot be proven that
these graphs are optimal for the examined applications i.e.,
face recognition/verification and facial expression recognition.
In [32], it has been shown that graphs with nodes placed at
the discriminant facial landmarks for every person perform
significantly better than the rectangular graphs. We will try to
find the optimal graph setup for facial expression recognition
tasks (optimal under some criterion optimization).

A. Measuring the Significance of Each Node

In the following, m(X ) denotes the mean vector of a set
of vectorsX and N(X ) its cardinality. WhenX is a set of
scalar values their mean will be denoted asm(X ) and their
variance asσ2(X ). Let Fl(r) and F̃l(r) be the sets for the
jets of thel-th node that correspond to facial expression intra-
class matchings (i.e., the graph jets that have been produced by
matching the reference facial expression graphr to all images
of the same facial expression class) and to facial expression
inter-class matchings (i.e., the graph jets that have been
produced by matching the reference facial expression graph
r to the images of the other facial expressions), respectively.
In order to define the similarity of a test jetj(xl

t(r)) to the
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class of jets of the facial expressionr for the same node, we
use the following norm:

cl
t(r) = ||j(xl

t(r))−m(Fl(r))||2 (9)

which is actually the Euclidean distance of a sample to
the mean of the facial expression classr and is one of
most commonly employed measures in pattern recognition
applications.

Let Cl(r) and C̃l(r) be the sets of local similarity values
cl
t(r) that correspond to the facial expression intra-class and

inter-class samples, respectively. A possible measure for the
discriminant power of thel-th node for the facial expression
r is the Fisher’s discriminant ratio [38]:

pl
1(r) =

(m(Cl(r))−m(C̃l(r)))2

σ2(Cl(r)) + σ2(C̃l(r)))
. (10)

In [18], [20] it has been proposed to weight the graph nodes
after the elastic graph matching using the coefficientspl

1(r) in
order to form a similarity measure between graphs. Another
possible measure of the discriminant power of a graph node
is the following:

pl
2(r) =

1
N(C̃l(r))

∑
cl

t(r)∈C̃l(r)
cl
t(r)

1
N(Cl(r))

∑
cl

t(r)∈Cl(r)
cl
t(r)

. (11)

The measure (11) increases when the inter-class similarity
measures for thel-th graph node are of high values and/or the
local similarity measures for the intra-class similarity measures
are of low values. The measures defined in (10) and in (11) are
heuristic indicators for the discriminant power of every node.

Now, by summing the discriminant coefficients for a certain
graph setupg we have:

Eg(r) =
1
L

L∑

l=1

pl(r) (12)

whereL is the total number of nodes. This is the mean of all
the discriminant measures and is a characteristic measure for a
particular graph setup of the facial expressionr. As described
in [32], the previous analysis leads to an optimization proce-
dure in order to find the graphg that has the maximumEg(r).
The desired properties (constraints) of the graphg apart from
having maximumEg(r) are:
• The graph should have a relatively small number of nodes

so that the elastic graph matching procedure has low
computational cost.

• The nodes should not be very close to each other in
order to avoid redundant use of the same discriminant
information.

Formally, the above optimization problem can be written as:

ǵ = arg maxg Eg(r) subject to
||xl

r − xj
r|| ≥ ∆, ∀ l, j nodes withl 6= j

L = constant
(13)

where∆ is a preselected threshold that controls the density
of the graph.

In order to solve the constraint optimization procedure we
assume that the optimal solution is a sub-graph of the∆-
rectangular graph (i.e., the graph with nodes placed at every∆

pixels). An iterative algorithm that uses expandable graphs is
proposed in order to find the discriminant graph. We assume
that the nodes that have high discriminant values should be
placed in facial regions that are indeed discriminant for the
specific facial expression. These facial regions should be better
represented. This can be achieved by expanding certain nodes
that possess the highest discriminant power. In the following,
the steps of the proposed algorithm are described in more
detail. This procedure should be repeated for all six facial
expressions in order to find the most discriminant graph for
each one.

Let the initial graph that containsL vertices at the first
iteration i ← 1. Let Bi be the set of graph vertices at thei-th
iteration. The algorithm has the following steps:

Step 1. Match the reference graph of the facial expression
r to all intra-class and inter-class images.

Step 2. For each nodel, calculate the measurepl(r).
Step 3. Select a subset of the nodes with the higher dis-

criminant value that have not been already expanded
and expand them. The nodes that lie in the perimeter
of the graph can be expanded only inside the facial
region. Figure 5 describes pictorially this step for the
rectangular graph of anger.

New node

New node

New node
New node

Expand Node

Fig. 5. Expanding the graph.

Step 4. Verify that the inserted nodes do not violate the
graph sparseness criterion. That is, erase the new
nodes that violate the criterion||xl

r−xj
r|| < ∆, ∀ l, j

(for the rectangular graphs used in this work, this
is equivalent with checking if some of the inserted
nodes have already been examined). The set of the
final inserted nodes in thei-th iteration is denoted as
Ai.

Step 5. Match locally the nodes ofAi in all the intra-
class and inter-class facial expression images. Let
k ∈ Ai be an inserted node and̃xk

t be the initial
coordinate vector for the nodek in a test imaget.
The local matching procedure is the outcome of the
local search:

x̀k
t (r) = arg minxk

t
Cf (j(xk

t ), j(xk
r )) subject to

||xk
t − x̃k

t || ≤ δmax
(14)
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wherex̀k
t (r) is the final coordinate vector that gives

the jet j(x̀k
t (r)).

Step 6. For each nodek ∈ Ai, calculate its discriminant
valuepk(r).

Step 7. Let Ci = Ai ∪ Bi. Order the nodes inCi according
to their discriminant power and obtain a graphgi+1

by keeping only theL nodes with the highest dis-
criminant power. The setBi+1 contains the nodes of
gi+1.

Step 8. If (Egi+1(r)−Egi
(r)) > τ theni ← i+1 and goto

Step 4 else stop.

Figure 6 shows the optimal graphs derived from the pro-
posed procedure for the Cohn-Kanade database [35] using
Normalized morphological features, respectively. All images
have been aligned for visualization purposes. As can be seen
from these images the nodes of the optimal graphs for the
morphological features are upon facial areas that correspond
to furrows, frows, lips etc. which are landmarks that are
considered discriminant for the classification of facial expres-
sions. The main for the graphs not being symmetric is that
in many cases facial expressions maybe not be symmetric in
many persons. The asymmetry clue of facial expressions has
been commented and used for face recognition in [39]. The
interested reader may refer to [40], [39] and in references
therein for more detail concerning the asymmetry of facial
expressions. The other reason is that the method is applied in
a fully automatic manner, thus this procedure may have intro-
duced additional asymmetries to the graphs. Moreover, we can
incorporate symmetric constraints in the proposed algorithm
in order to satisfy symmetry in the derived graphs. This can
be accomplished, when expanding a node, by expanding its
symmetric in the left or right part of the face, as well. The
same procedure can be followed when erasing a node. In the
fully automatic scenario, that has been followed in this paper,
the best results has been produced by graphs like the ones
showed in Figure 6.

The elastic graph matching procedure of the new graphs is
performed using the minimization procedure indicated in the
optimization problem (6). The optimization problem (6) uses
global Euclidean transformation (ie, using rotation, translation
and scaling) of the graph. That is, the components cannot
be transformed independently but only as part of the entire
graph. In the second step, every node can be locally matched
(deformed) independently as imposed by the optimization
problem (6).

IV. A N OVEL TWO-CLASS KERNEL DISCRIMINANT

ANALYSIS FOR FEATURE EXTRACTION

We can improve the performance of the new graph by
imposing discriminant analysis to the jets of the nodes or to
the whole graphs as in [18], [20], [11]. To do so, two strategies
can be considered:

1) Graph-wise feature extraction. In this case the feature
vector is the whole graph that is comprised of all jets
and the algorithm learns for every facial expression one
discriminant transform. Such a strategy has been applied
in [11] for facial expression recognition.

2) Node-wise feature extraction. In this case the algorithm
learns node-specific discriminant transforms for every
facial expression. This strategy is motivated by the fact
that every graph node is a local expert that contains
its own discriminant power. Such a strategy has been
followed in [18], [22], where person and node-specific
discriminant transforms have been learned for every
node.

In the following we will formulate a novel non-linear dis-
criminant feature extraction method that can be applied in
both strategies. An optimization procedure is used that is
inspired from the optimization of Fisher’s criterion in [41].
The advantage of choosing a similar optimization procedure
to [41] is that it does not require matrix inversions contrary to
other optimization procedures [42], [34]. The main limitation
of the discriminant analysis based on Fisher’s optimization
problem in [41], [42], [34] is that for two class problems
it produces only one discriminant direction contrary to the
proposed criterion that provides a set of discriminant directions
with its number to be proportional to the number of training
samples.

Our aim is to find a discriminant feature extraction trans-
form Ψ (in most casesΨ serves as a dimensionality reduction
matrix). In order to make use of kernel techniques the original
input space is projected to an arbitrary-dimensional spaceF
(the spaceF usually has the structure of a Hilbert space [43],
[44]). To do so, letφ : y ∈ <M −→ φ(y) ∈ F be a nonlinear
mapping from the input space<M to the Hilbert spaceF .
In the Hilbert space, we want to find linear projections to a
low-dimensional space with enhanced discriminant power. The
discriminant power of the new space is often defined in respect
to a discriminant optimization criterion. This discriminant
criterion defines an optimization problem which gives a set
of linear projections inF (linear inF is non-linear in<M ).

A linear subspace transformation ofF onto a K-
dimensional subspace, which is isomorphic to<K , is a matrix
Ψ = [ψ1, . . . , ψK ] with xi ∈ F . The new projected vector
ý ∈ <M , of the vectory, is given by:

ý = ΨT φ(y) = [ψT
1 φ(y), . . . , ψT

Kφ(y)]T . (15)

The dimensionality of the new space is usually much smaller
than the dimensionality ofF and the dimensionality of the
input space<M (i.e., K ¿ M ). The matrix multiplication in
(15) is computed indirectly (i.e., without explicit calculation
of φ) using dot-products in the Hilbert spaceF [33], [34],
[45].

Prior to developing the new optimization problem, we
will introduce some notation that will be used throughout
this Section. Let that the training set be separated into two
disjoint classesY and Ỹ. In our case, the classY represents
the facial expression intra-class samples and the classỸ
denotes the facial expression inter-class samples. For notation
compactness, letn = N(Y ∪ Ỹ). The intra-class vectorsyi

be denoted asρi (yi ∈ Y), while the inter-class samplesyi

be denoted asκi (yi ∈ Ỹ). Let alsoρ̄ = 1
N(Y)

∑N(Y)
i=1 φ(ρi),

κ̄ = 1
N(Ỹ)

∑N(Ỹ)
i=1 φ(κi) andm̄ = 1

n

∑n
i=1 φ(yi) be the mean

vectors ofY, Ỹ and total mean of vectors in the Hilbert space
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F . Any function k satisfying the Mercer’s condition can be
used as a kernel. The dot product ofφ(yi) andφ(yj) in the
Hilbert space can be calculated without having to evaluate
explicitly the mappingφ(·) ask(yi,yj) = φ(yi)T φ(yj) (this
is also known as the kernel trick [43], [44]). Typical kernels
are the polynomial and Radial Basis Function (RBF) kernels:

k(x,y) = φ(x)T φ(y) = (xT y + 1)d (16)

k(x,y) = φ(x)T φ(y) = e−γ(x−y)T (x−y)

whered is the degree of the polynomial andγ controls the
spread of the Gaussian kernel.

The criterion that is used in this paper, will be formed
using a simple similarity measure in the Hilbert spaceF . This
measure quantifies the similarity of a given feature vectory
to the classr in the subspace spanned by the columns of the
matrix Ψ = [ψ1 . . . ψK ], with ψi ∈ F . The L2 norm in the
reduced space spanned by the columns ofΨ is used as a
similarity measure:

ĉ(y) = ||ΨT (φ(y)− ρ̄)||2 = tr[ΨT (φ(y)− ρ̄)(φ(y)− ρ̄)T Ψ]
(17)

which is actually the Euclidean distance of a projected sample
to the projected mean of the reference classY. This distance
should be small for the samples of the classY and big for the
samples of the class̃Y.

The discriminant measure used is the following:

J(Ψ) = 1
N(Ỹ)

∑
y∈Y ĉ(y)− 1

N(Y)

∑
y∈Ỹ ĉ(y)

= 1
N(Ỹ)

∑
κ ||ΨT (φ(κ)− ρ̄)||2−

1
N(Y)

∑
ρ ||ΨT (φ(ρ)− ρ̄)||2

= 1
N(Ỹ)

tr[
∑

κ ΨT (φ(κ)− ρ̄)(φ(κ)− ρ̄)T Ψ]−
1

N(Y) tr[
∑

ρ ΨT (φ(ρ)− ρ̄)(φ(ρ)− ρ̄)T Ψ]
= tr[ΨT WΦΨ]− tr[ΨT BΦΨ]
= tr[ΨT (WΦ −BΦ)Ψ]

(18)
where tr[.] is the trace operator and the matricesW and B
are given by:

WΦ = 1
N(Ỹ)

∑
κ(φ(κ)− ρ̄)(φ(κ)− ρ̄)T and

BΦ = 1
N(Y)

∑
ρ(φ(ρ)− ρ̄)(φ(ρ)− ρ̄)T .

(19)

The discriminant measure (18) increases when the samples of
the classỸ are far from the center of the classY and/or when
the samples of the classY are close to their center.

By additional requiringψT
mψm = 1, we can formulate the

discriminant criterion for feature extraction as:

max J(Ψ) = tr[ΨT (WΦ −BΦ)Ψ]
=

∑K
m=1 ψT

m(WΦ −BΦ)ψm

subject toψT
mψm − 1 = 0 m = 1, · · · ,K.

(20)

The optimal Ψ can be found by the saddle point of the
Lagrangian:

L(ψm, λm) =
K∑

m=1

ψT
m(WΦ −BΦ)ψm − λm(ψT

mψm − 1)

(21)

with λm be the Lagrangian multipliers. According to the KKT
conditions we have:

∇L(ψm, λ)|ψ=ψo
= 0 ⇔

((WΦ −BΦ)− λmI)ψm = 0, m = 1, · · · ,K ⇔
(WΦ −BΦ)ψm = λmψm

(22)
which means that the Lagrangian multipliersλm are the eigen-
values ofWΦ−BΦ and the vectorsψm are the corresponding
eigenvectors. By substituting (22) to (20) the criterionJ(Ψ)
can be reformulated as:

J(Ψ) =
K∑

m=1

ψT
m(WΦ−BΦ)ψm =

K∑
m=1

λmψT
mψm =

K∑

k=1

λm.

(23)
Thus,J(Ψ) is maximized when the columns of the matrixΨ
are composed of thed largest eigenvectors ofWΦ −BΦ.

Since the matricesWΦ andBΦ are of arbitrary dimension,
it is not possible to calculate them directly in practice. We will
combine the theory in [41], [34], [46] to find a robust and time
efficient solution of the defined optimization problem. Fist, let
us define the matrixSΦ as:

SΦ = N(Ỹ)WΦ + N(Y)BΦ

=
∑

κ(φ(κ)− ρ̄)(φ(κ)− ρ̄)T

+
∑

ρ(φ(ρ)− ρ̄)(φ(κ)− ρ̄)T

=
∑

y∈Y∪Ỹ(φ(y)− ρ̄)(φ(y)− ρ̄)T

=
∑L

i=1 µ̃iµ̃
T
j = ΦsΦT

s

(24)

whereµ̃i = φ(yi)− ρ̄ andΦs = [µ̃1 . . . µ̃n]. It can be easily
proven that the matrixSΦ is compact, self-adjoint and positive
operator inH , thus its eigenvector system forms a basis ofH
1. Let the two complementary spacesB andB⊥ spanned by
the orthonormal eigenvectors that correspond to the non-null
and the null eigenvalues ofSΦ (the columns of the matrices
Φs and Φ̃s, respectively). Every vectorψm can be written,
in a unique manner, asψm = γm + δm, or equivalently as
ψm = Φsζm + Φ̃sηm, whereγm = Φsζm ∈ B and δm =
Φ̃sηm ∈ B⊥. Moreover, the spaceB is isomorphic to<n−1

(i.e, ζm ∈ <n−1 ), and theB⊥ to theH minus then − 1
dimensions. Equation (22) can be expanded as

(WΦ −BΦ)Φsζm = λm(Φsζm + Φ̃sηm) (25)

by multiplying with ΦT
s we have:

(ΦT
s WΦΦs −ΦT

s BΦΦs)ζm = λmζm (26)

and by multiplying withΦ̃T
s we have:

0 = λmηm. (27)

Thus, theηm do not play any role in the optimization problem.
The above analysis is similar to the one presented in [34],
where it has been shown that the space of the vectorsηm does
not play any role in the optimization of the Fisher discriminant
ratio with kernels.

Summarizing, it has been shown that only the firstL (with
L ≤ n − 1) positive eigenvalues ofSΦ are of interest to

1The matrixSΦ is not to be confused with the total scatter matrix. InSΦ

the intra class mean is subtracted from all the training vectors, while in the
total scatter matrix case the total mean vector is subtracted from the training
vectors
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us. These eigenvectors can be indirectly derived from the
eigenvectors of the matrixΦT

s Φs (L×L). Let λs
i andci(i =

1 . . . L) be thei-th eigenvalue and the corresponding eigen-
vector ofΦT

s Φs, sorted in ascending order of eigenvalues. It’s
true that(ΦsΦT

s )(Φs$i) = λs
i (Φsci). Thus,$i = Φsci are

the eigenvectors ofSΦ. In order to remove the null space of
SΦ, the first L ≤ n − 1 eigenvectors (given in the matrix
Π = [$1 . . . $L] = ΦsC, whereC = [c1 . . . cL]), whose
corresponding eigenvalues are non zero, should be calculated.
Thus,ΠT SΦΠ = Λs, with Λs = diag[λs

1
2 . . . λs

L
2], a L× L

diagonal matrix. The orthonormal eigenvectors ofSΦ are the
columns of the matrix:

Π1 = ΦsΠΛs
−1/2. (28)

After projecting all the training vectors toΠ1 the optimiza-
tion problem reduces to finding the eigenvectors ofW − B
whereW = ΠT

1 WΦΠ1 andB = ΠT
1 BΦΠ1.

A. Feature Extraction from the Two-Class Kernel Procedure

We can now summarize the training procedure of the
proposed algorithm:

Step 1. Calculate the non-zero eigenvalues and the eigen-
vectors ofΦT

s Φs and project each facial vectory
as:

ΠT
1 φ(y) = (ΠΛs

−1/2)T ΦT
s φ(y)

= (ΠΛs
−1/2)T [µ̃1 . . . µ̃n]T φ(y)

= (ΠΛs
−1/2)T ([φ(y1) . . . φ(yn)]T φ(y)

−[ρ̄ . . . ρ̄]T φ(y))
= (ΠΛs

−1/2)T ([φ(y1) . . . φ(yn)]T φ(y)
− 1

N(Y)1nN(Y)[φ(ρ1) . . . φ(ρN(Y))]T φ(yi))
= (ΠΛs

−1/2)T ([k(y1,y) . . . k(yn,y)]T

− 1
N(Y)1nN(Y)[k(ρ1,y) . . . k(ρN(Y),y)])

(29)
where1n1n2 is a n1 × n2 matrix of ones.

Step 2. In the new space calculateW and B. Perform
eigenanalysis toW − B and obtain a set ofK or-
thonormal eigenvectors. The eigenvectors are stored
in a matrixΞ ∈ <(n−1)×K .

After following these steps the discriminant projection for
a test vectory is given by:

ý = (ΠΛs
−1/2Ξ)T ([k(y1,y) . . . k(yn,y)]T

− 1
N(Y)1nN(Y)[k(ρ1,y) . . . k(ρN(Y),y)]) (30)

the number of dimensions of the discriminant vectorsý ∈ <K

is K ≤ n− 1.

V. EXPERIMENTAL RESULTS

The Cohn-Kanade database [35] was used for the facial
expression recognition in 6 basic facial expressions classes
(anger, disgust, fear, happiness, sadness and surprise) . This
database is annotated with FAUs. These combinations of FAUs
were translated into facial expressions according to [47], in
order to define the corresponding ground truth for the facial
expressions.

For learning the reference bunch graphs and discriminant
transforms we have used 80% of the data while the remaining

TABLE I

RECOGNITION RATE FOR THE TESTEDFEATURES.

Features Graph Structure Recognition Rate
Gabor-based Rectangular 84.1%

Normalized Morphological Rectangular 85.5%

20% have been used for testing. More specifically, all image
sequences contained in the database are divided into 6 classes,
each one corresponding to one of the 6 basic facial expressions
to be recognized. Five sets containing 20% of the data for each
class, chosen randomly, are created. One set containing 20%
of the samples for each class is used for the test set, while the
remaining sets form the training set. After the classification
procedure is performed, the samples forming the testing set
are incorporated into the current training set, and a new set of
samples (20% of the samples for each class) is extracted to
form the new test set. The remaining samples create the new
training set. This procedure is repeated five times. The average
classification accuracy is the mean value of the percentages of
the correctly classified facial expressions. In order to decide
which of the six facial classes a test facial image belongs to,
the six reference facial expression graphs are matched to the
test images and the one with the minimum distance is the
winner class.

We have conducted three series of experiments. In the first,
we wanted to measure the way the choice of the multiscale
analysis affects the recognition performance. In the second,
we evaluated the use of grids placed in discriminant facial
landmarks for both Gabor-based graphs and Morphological
graphs. Finally, we have explored the contribution of the pro-
posed discriminant analysis with respect to the performance.

A. Experiments with Different Multiscale Analysis

We have implemented a Gabor-based elastic graph matching
approach similar to the one applied in [11], [29] as well
as the proposed elastic graph matching procedure with the
normalized morphological features. For the Gabor features,
6 orientations and 5 scales have been considered giving a
total of 30 features per node, while for the morphological
features 9 scales have been considered with a total of 19
features. The graphs that have been used have been8 × 8
evenly distributed graphs, like the ones depicted in Figure 1.
Table I summarizes the experimental results. As can be seen
the normalized morphological features perform better than the
Gabor-based.

B. Experiments with Different Graph Structures

We have conducted experiments using the optimal graph
structures that have been derived from the algorithm in Section
III. All the tested approaches are fully automatic since only
a face detector is needed in order to initialize the graph. Af-
terwards, elastic graph matching is applied for a finest match-
ing. Thus, we have conducted no experiments with graphs
placed at manually selected facial landmarks like the ones
proposed in [11]. The facial expression recognition rates for
the rectangular graph structures and the discriminant structures
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TABLE II

RECOGNITION RATE FOR THETESTEDFEATURES.

Features Graph Structure Recognition Rate
Gabor-based Rectangular 84.1%
Gabor-based Discriminant Graph Structure 90.5%

Normalized Morphological Rectangular 85.5%
Normalized Morphological Discriminant Graph Structure 91.8%

learned from the proposed approach for both Gabor-based and
morphological-based graphs are summarized in Table II. As
can be seen, the proposed discriminant graphs outperform
the rectangular graphs for both Normalized Morphological
features and Gabor-based features. Hence, these graphs have
indeed captured landmarks that are discriminant for facial
expression recognition.

C. Experiments with Various Discriminant Analysis and
Strategies

Finally, we have conducted experiments in order to eval-
uate the performance of facial expression recognition using
the proposed discriminant analysis. For comparison reasons,
we have implemented a Gabor-based elastic graph matching
approach with the typical FLDA classifier in the same manner
as proposed in [11], [29]. The main limitation of the FLDA
discriminant analysis and its kernel alternatives [33], [34],
[41] is that it gives only one or two discriminant projection
in two class problems. That is, the so-called Direct Kernel
Discriminant Analysis (DKDA) gives only one discriminant
vector [33] and the so-called Complete Kernel Discriminant
Analysis (CFKDA) [34] two discriminant vectors. This is
obviously a limitation in the search for discriminant features.
The proposed discriminant analysis gives up ton discriminant
dimensions, wheren is the number of training samples.

We applied the proposed discriminant analysis, described
in Section IV, and KFDA [41] using both node-wise and
graph-wise discriminant transforms. Figure 7 (a) shows the
recognition performance of the proposed discriminant analysis
for both Gabor-based and morphological features using poly-
nomial kernels with degrees from 1 to 4 for the graph-wise
strategy. We have experimented with polynomial kernels with
degrees more than 4 but we have seen no further improvement
in performance. As can be seen, the proposed discriminant
analysis outperforms the KFDA.

The corresponding results for the node-wise strategy are
shown in Figure 7 b. It can be seen that the node-wise
strategies (i.e., learning a discriminant transform for every
node and for every facial expression) have better performance
than the graph-wise strategies. The best performance that the
proposed system achieved was97.1% and has been measured
when we selected graphs with normalized morphological
filters using the optimal graph structures that have derived
from the algorithm in Section III and applying the proposed
discriminant analysis in a node-wise manner.

TABLE III

COMPARISON OFFACIAL EXPRESSIONRECOGNITION ALGORITHMS IN

THE COHN-KANADE DATABASE .

Method Number of Sequences Number of Classes Recognition Rate
[50] 320 7(6) 88.4(92.1)%
[51] 313 7 86.9%
[52] 313 7 93.8%
[53] 375 6 93.8%
[54] - 6 90.9%
[40] 284 6 93.66%
[55] 374 6 96.26%

Proposed 374 6 97.1%

D. Comparison with State-of-the-Art

Recently, [6] a facial expression recognition system has
been described that has been tested in Cohn-Kanade database
using a similar experimental protocol. The system in [6] has
shown superior performance and has achieved99.7% recogni-
tion rate. The drawback of the system in [6] is that it requires
the Candide grid to be manually placed upon the facial area
and moreover it requires the manual detection of the neutral
state in a video sequence. On the other hand, the proposed
method is fully automatic and does not require the detection
of the neutral state. Moreover, it can be used for both image
and video based facial expression recognition contrary to [6]
that requires the whole video of facial expression development
from the neutral state to the fully expressive image. Finally,
the proposed method can be adjusted to EGM-based tracking
systems like the ones proposed in [48], [49] in order to achieve
facial expression recognition in video sequences.

Apart from the method proposed in [6] a comparison of the
recognition rates achieved for each facial expression with the
state of the art [50], [51], [52], [53], [40], [54], [55], when
six or seven facial expressions were examined (the neutral
state is the seventh facial expression) is depicted at Table III.
The total facial expression recognition of the proposed method
has been97.1% for the six facial expressions. Unfortunately,
there is not a direct method to compare the rates achieved by
other researchers [56]-[55], since their is not standard protocol
(every one uses his own testing protocol). Nevertheless, the
proposed method has achieved the best recognition rate among
the recent state-of-the-art methods. The second best method
has been the one proposed in [55] where a total96.7%
recognition rate has been achieved using a method based
on Local Binary Patterns and SVM classifiers. The main
drawback of the method in [55] is that it is only tested in
perfect manually aligned image sequences and no experiments
in fully automatic conditions have been presented.

VI. CONCLUSION

We have meticulously studied the use of elastic graph
matching for facial expression recognition and motivated the
use of morphological features for facial expression represen-
tation. We have applied a discriminant analysis that learns the
optimal graph structure for every facial expression. Finally,
we have proposed a novel non-linear discriminant analysis
for both graph-wise and node-wise feature selection. We have
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experimented on both Gabor-based and Normalized Morpho-
logical elastic graph matching architectures and we have been
applied them in a fully automatic manner to achieve facial
expression recognition. The experimental results show that
the proposed methods significantly increase the performance
of both Gabor and morphological EGM in facial expression
recognition.
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APPENDIX I
COMPUTATION OFΦT

s Φs

Before proceeding to the expansion we should define the
following matrices:

[K1]i,j = φ(ρi)T φ(ρj) = k(ρi, ρj)
i = 1 . . . N(Y) andj = 1 . . . N(Y)

[K2]i,j = φ(κi)T φ(ρj) = k(κi, ρj)
i = 1 . . . N(Ỹ) andj = 1 . . . N(Y)

[K3]i,j = φ(ρi)T φ(κj) = k(ρi, κj) = KT
2

[K4]i,j = φ(κi)T φ(κj) = k(κi, κj)
i = 1 . . . N(Ỹ) andj = 1 . . . N(Ỹ),

(31)

the matrixK as the total kernel function:

K =
[

K4 K2

K3 K1

]
(32)

and theE as:

E =
[

K2

K3

]
. (33)

The ΦT
s Φs is expanded as:

ΦT
s Φs = [µ̃1 . . . µ̃n]T [µ̃1 . . . µ̃n] = [µ̃T

i µ̃j ] (34)

where

µ̃T
i µ̃j = φ(yi)T φ(yj)− φ(yi)T ρ̄− ρ̄T φ(yj) + ρ̄T ρ̄

= [K]i,j − 1
N(Y)

∑N(Y)
m=1 φ(yi)T φ(ρm)

− 1
N(Y)

∑N(Y)
m=1 φ(ρm)T φ(yj)

+ 1
N(Y)2

∑N(Y)
m=1 φ(ρm)T

∑N(Y)
m=1 φ(ρm)

= [K]i,j − [ 1
N(Y)E1N(Y)n]i,j − [ 1

N(Y)1nN(Y)E]i,j
+[ 1

N(Y)2 1nN(Y)K11N(Y)n]i,j
= [K− 1

N(Y)E1N(Y)n − 1
N(Y)1nN(Y)E

+ 1
N(Y)2 1nN(Y)K11N(Y)n]i,j

(35)
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(a) (b)

Fig. 1. Different types of facial graphs : a) rectangular graph c) graph with nodes at fiducial landmarks.

(a) (b)

Fig. 3. a) The reference anger graph has one jet per node and is built using only the mean facial expression image; b) the reference graph contains a bunch
of jets per node for different instances of anger.
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Fig. 4. NMMA of various facial parts in expressed facial images. The upper left image of every block is a facial part from the original image extracted from
the Cohn-Kanade database. The first nine images of every block starting from the left corner, apart from the upper left one, are the normalized dilated images
and the remaining nine are the normalized eroded images. As can be seen NMMA captures and highlights important facial features like mouth, eyebrows,
eyes and furrows that participate in facial expression development.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. The optimal graphs found using Normalized Morphological-based features for : a) anger b) disgust c) fear d) happiness e) sadness and f) surprise.
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Fig. 7. Recognition rates for various polynomial kernels : a) graph-wise strategies b) node-wise strategies.


