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Abstract—A discriminant formulation of top-down visual saliency, intrinsically connected to the recognition problem, is proposed. The

new formulation is shown to be closely related to a number of classical principles for the organization of perceptual systems, including

infomax, inference by detection of suspicious coincidences, classification with minimal uncertainty, and classification with minimum

probability of error. The implementation of these principles with computational parsimony, by exploitation of the statistics of natural

images, is investigated. It is shown that Barlow’s principle of inference by the detection of suspicious coincidences enables

computationally efficient saliency measures which are nearly optimal for classification. This principle is adopted for the solution of the

two fundamental problems in discriminant saliency: feature selection and saliency detection. The resulting saliency detector is shown

to have a number of interesting properties, and acts effectively as a focus of attention mechanism for the selection of interest points

according to their relevance for visual recognition. Experimental evidence shows that the selected points have good performance with

respect to 1) the ability to localize objects embedded in significant amounts of clutter, 2) the ability to capture information relevant for

image classification, and 3) the richness of the set of visual attributes that can be considered salient.

Index Terms—Visual saliency, interest point detection, coincidence detection, visual recognition, object detection from cluttered

scenes, infomax feature selection, saliency measures, natural image statistics.

Ç

1 INTRODUCTION

BIOLOGICAL vision systems have a remarkable ability to
recognize objects under adverse conditions, such as

highly cluttered scenes. The use of saliency mechanisms is
believed to play an important role in this robustness to
clutter. They make salient locations “pop-out,” driving
attention to the appropriate regions of the visual field [1],
[2]. This enables organisms to focus their limited perceptual
resources on the most pertinent subsets of the sensory
stimuli, facilitating subsequent visual processing. In the
biological world, vision systems rarely need to perform an
exhaustive scan of a scene in order to detect an object
of interest.

Saliency has been extensively studied in both the
biological and computer vision literatures over the last
decades. In biological vision, most research addresses the
understanding of how attentional mechanisms work, either
through psychophysics experiments in psychology or
through neural recordings in neurophysiology. Although

a tremendous amount of knowledge about saliency has
been amassed in this way, this literature is not rich in
computational models. When such models are proposed,
they tend to focus on high-level justifications for specific
attention mechanisms and do not necessarily translate into
computer vision algorithms. Although there are notable
exceptions, such as the pioneering models of [3], [4], [5], [6],
which have been shown useful for computer vision [7], [8],
[9], they frequently lack a formal justification, based on a
unifying computational principle for saliency. In the absence
of clearly defined optimality criteria, it is difficult to
evaluate, in an objective sense, the goodness of the
proposed algorithms or develop a computational theory,
and algorithms, for optimal saliency.

In computer vision, most saliency research has focused on
the extraction of image locations, called interest points, which
exhibit some mathematically well-defined properties, e.g.,
stability under geometrical transformations. These saliency
detectors have been widely adopted in applications such as
object tracking and recognition, and more recently, learning
object detectors from weakly supervised (unsegmented)
training examples [10], [11], [12], [13], [14], [15], [16], [17].
In these applications, saliency is often justified as a pre-
processing step that saves computation and improves
robustness, facilitating the design of subsequent stages.Most
saliency detectors in this category have clearly defined
optimality criteria, which can be divided into two major
classes. The first, and most popular, treats saliency detection
as the optimal detection of specific visual attributes. Most
detectors in this class have roots in the areas of structure-
from-motion and tracking. The most prevalent examples are
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edges and corners [18], [19], but there have also been
proposals for other low-level attributes, e.g., contours [20],
[21], local symmetries [22], [23], and blobs [24]. These
detectors can often be embedded in scale-space [25], to
achieve invariance with respect to transformations such as
scaling or affine mappings [26], [27]. The second class of
detectors strives to be optimal with respect to more generic
criteria, such as image complexity. For example, Yamada and
Cottrell [28] define saliency by the variance of Gabor filter
responses overmultiple orientationswhile Sebe andLew [29]
equate saliency to the absolute value of the coefficients of a
wavelet image decomposition, and Kadir and Brady [30] to
the entropy of the distribution of local intensities. Thesemore
generic principles aremore flexible than those tied to specific
visual features. They could declare as salient any of the low-
level attributes discussed above, depending on the image
under consideration.

Although both computational formulations have been
widely adopted in object recognition, they do not tie the
optimality of saliency judgements to the recognition goal. In
result, the detected salient locations do not necessarily co-
occur with the objects to be detected. This limitation is
illustrated in Fig. 1a, for a scene containing people and a
car, among other visual concepts (road pavement, trees,
etc.). Fig. 1b shows the salient locations, extracted from the
image, by the Harris-Laplacian detector [26]. These loca-
tions are equally distributed over cars, people, and other
concepts. For a recognizer of “cars” or “people,” they are
far from optimal, as the set of salient locations is far greater
than the area occupied by the objects of interest. For a
“pavement” detector, they are catastrophic: Most regions of
interest are not considered salient and are discarded before
detection ever takes place. In general, definitions of saliency
divorced from the recognition problem cover the gamut
between computational inefficiency and catastrophic fail-
ure. This has motivated various researchers to argue that
saliency offers no advantage over either dense sampling or
random subsampling of image locations [13], [31], [32].

Such conclusions are, however, difficult to reconcile with
the predominant roles of attention and saliency in biological
vision. The most likely explanation is that biology resorts to
two complementary saliency mechanisms: a bottom-up
stimulus-driven component and a top-down stage driven by
recognition goals [1], [2]. While the bottom-up component is
emulated by the computer vision detectors, the top-down
mechanisms are not. Top-down mechanisms can be seen as
weak classifiers that drive attention to the regions of the

visual field which are relevant for the recognition problem.
This is illustrated in Figs. 1c and 1d, which present the
saliency maps produced by the top-down saliency detector
proposed in this work, when the tasks are, respectively, to
detect cars and people. Themain advantage of tying saliency
to the recognition goal is that saliency judgements become
significantly more adaptive, only highlighting image areas
relevant for recognition. The same detector can produce
significantly different saliency judgements for the same
image, depending on what is to be detected.

In this work, we propose a discriminant principle for top-
down saliency, denoted by discriminant saliency, which is
intrinsically connected to the recognition problem.We start from
the intuition that, for recognition, the salient features of a
visual class are those that best distinguish it from all other visual
classes of recognition interest. This intuition translates natu-
rally into a computational principle for the design of top-down
saliency detectors: classification with minimal expected
probability of error. It is shown that this principle is closely
related to a number of previously proposed principles for
the organization of perceptual systems: maximization of
information transmission across perceptual layers (infomax)
[33], [34], [35], inference by detection of suspicious coin-
cidences [36], and classification with minimal uncertainty.
For visual saliency, these principles equate optimal features
to those maximally informative of presence/absence of the
target class in the field of view, whose observation is most
suspicious in the absence of the target class, or which
minimize the uncertainty about that presence/absence.

We investigate how these principles can be implemented
with computational parsimony by exploiting known proper-
ties of natural image statistics. It is shown that Barlow’s
principle of inference by detection of suspicious coincidences [36]
enables computationally efficient saliency measures that are
nearly optimal in the minimum probability of error sense.
Barlow’s principle is then used to derive computationally
efficient algorithms for the two fundamental operations of
discriminant saliency: feature selection and saliency detection.
Experimental evaluation on object recognition tasks shows
that the resulting top-down saliency detector can effectively
act as a focus-of-attention mechanism, capable of pruning
away bottom-up salient locations which are irrelevant for
recognition. It is shown that this pruning improves the
performance of state-of-the-art object recognition systems in
terms of both localization and classification accuracy.
Finally, we show that discriminant saliency can adapt to a
rich set of visual attributes.
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Fig. 1. Bottom-up versus top-down saliency. (a) A scene with a car, people, trees, and pavement. (b) Salient points detected by a (bottom-up) Harris-

Laplacian detector. (c) and (d) Saliency maps generated by a top-down saliency detector trained to detect (c) cars and (d) people. Bright pixels flag

locations of high saliency.
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The remainder of the paper is organized as follows:
Section 2 introduces discriminant saliency and reviews its
relations to previously proposed computational principles
for perception. The implementation of feature selection and
saliency detection under constraints of computational
parsimony is then discussed in Section 3. The proposed
saliency detector is introduced in Section 4 and an
experimental evaluation of its performance is discussed in
Section 5. Finally, some conclusions are drawn in Section 6.

2 SALIENCY PRINCIPLES

We start by introducing the concept of discriminant
saliency and relating it to previous principles for the
organization of perceptual systems.

2.1 Discriminant Saliency

Discriminant saliency is rooted in a decision-theoretic
interpretation of perception. Under this interpretation,
perceptual systems evolve to produce decisions about the
state of the surrounding environment that are optimal in a
decision-theoretic sense, e.g., that have minimum probability
of error. To achieve this goal, discriminant saliency is
defined with respect to two classes of stimuli: a target class
and a null hypothesis, composed of all the stimuli that are not
salient. The locations of the visual field that can be classified,
with greatest confidence, as containing target stimuli are
denoted as salient. This definition of saliency is applicable to
a broad set of problems. For example, different specifications
for target stimuli and null hypothesis enable its specializa-
tion to both bottom-up and top-down saliency. We have
previously studied discriminant saliency in the context of
bottom-up saliency detection, by combining it with center-
surround image processing, and shown that the resulting
detector is biologically plausible and replicates various
results from the psychophysics of human saliency [37],
[38]. In this work, we consider the implementation of top-
down discriminant saliency and its benefits for recognition.

For this, we define top-down saliency detection with
respect to a one-versus-all classification problem, where
target stimuli are drawn from an object class of interest and
the null hypothesis is composed of the stimuli drawn fromall
other object classes that make up the recognition problem.
Visual stimuli are not measured directly, but through their
projection onto a set of basis functions, or visual features.
These features can be seen as matched detectors to certain
attributes of the visual stimulus. The features that best
discriminate between target and null hypotheses are deemed salient.
These are matched detectors to the salient attributes of the
target. Salient locations are then defined as the locations of the
visual fieldwhere the classification of the visual stimulus into
target and nontarget can be made with highest confidence.

When compared to bottom-up saliency, this definition
has three interesting properties. First, by definition of target
and null hypotheses, it makes saliency contingent upon the
recognition problem, tuning it to the image attributes that
best distinguish target from other object classes. Second, for
a given object class, the saliency of a set of visual attributes
changes with the recognition context. As the null hypothesis
varies, so do the attributes that determine saliency. This is
consistent with biological perception. For example, as

illustrated in Fig. 2, when a white fox is viewed against a
forest, its color is salient and recognition is easy. On the
other hand, when the fox is presented against white snow,
color is no longer a salient attribute and recognition becomes
very difficult. Third, and perhaps most importantly, dis-
criminant saliency translates easily into an optimality
criterion for the design of saliency algorithms. This design
consists of two steps. The first is an optimal feature selection
problem: the identification of the visual features that
optimally discriminate between target and null hypothesis.
The second is an optimal decision-making problem: the
identification of the locations, in the visual field, where the
presence of these features can be most confidently attributed
to the target class. Both feature discrimination and classifi-
cation confidence can be quantified in various ways, most of
which are directly connected to previously proposed
principles for the organization of perceptual systems.

2.2 The Minimum Bayes Error (BE) Principle

For a classification problem defined by a feature space X
and a random variable Y that assigns x 2 X to one of
M classes, i 2 f1; . . . ;Mg, the minimum probability of
classification error is achieved by the Bayes classifier [39]

g�ðxÞ ¼ argmax
i

PY jXðijxÞ: ð1Þ

This probability of error is denoted as the Bayes error

L� ¼ 1� Ex½max
i

PY jXðijxÞ�; ð2Þ

where Ex is the expectation with respect to PXðxÞ. Since
1) the Bayes error depends only on X , 2) it lower bounds the
probability of error of any classifier on X , and 3) there is at
least one classifier (the Bayes classifier) that achieves this
lower bound, minimization of Bayes error is a natural
optimality criteria for feature selection. Its minimization is,
however, difficult due to the nonlinearity of the maxð�Þ
operator in (2).

To relate the minimization of Bayes error to other
discriminant principles, we note that PY jXðijxÞ can be
interpreted as a measure of confidence with which x can be
assigned to class i.Defining cðxÞas the confidencemeasure for the
classification of x, it follows that under Bayes decision theory

c�ðxÞ ¼ max
i

PY jXðijxÞ: ð3Þ

The (optimal) decision rule is then to select the class of
highest confidence, and optimal feature selection corre-
sponds to the choice of X which maximizes the expected
confidence on the classification decisions, EX½cðxÞ�. Under
Bayes decision theory this expected confidence is
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Fig. 2. Feature saliency depends on the viewing context.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 15, 2009 at 11:10 from IEEE Xplore.  Restrictions apply.



C� ¼ EX½c
�ðxÞ� ¼ EX½maxiPY jXðijxÞ�; ð4Þ

and its maximization is equivalent to the minimization of

the Bayes error.

2.3 Relaxation and the Principle
of Minimum Uncertainty

The analysis above suggests a procedure to obtain consistent

decision rules and feature selection costs: Define a con-

fidence measure cðxÞ, a feature selection cost EX½cðxÞ�, and a

decision rule which selects the class of highest confidence.

One possibility to eliminate the nonlinear maxð�Þ operator

inherent to the Bayes error is to relax it, replacing

maxðlog p; logð1� pÞÞ by meanðlog p; logð1� pÞÞ ¼ p log pþ

ð1� pÞ logð1� pÞ. We refer to this procedure as a relaxation

to the mean. Noting that the Bayes decision rule is identical to

g0ðxÞ ¼ argmax
i

logPY jXðijxÞ; ð5Þ

the application of relaxation (to the mean) to this rule leads

to the confidence measure

c0ðxÞ ¼ �HðY jX ¼ xÞ; ð6Þ

where HðY jX ¼ xÞ ¼ �
P

i PY jXðijxÞ logPY jXðijxÞ is the en-

tropy of the class label Y given the observation X ¼ x. We

say that c0ðxÞ is consistent with Bayes decision rule, up to a

relaxation to the mean. In this case, the expected confidence

EX½HðY jX ¼ xÞ� ¼ �HðY jXÞ is the negative of the poster-

ior entropy of Y given X. Under this criterion, the optimal

X is the one which minimizes the uncertainty of the

classification decision, where uncertainty is measured in the

standard information theoretic sense (entropy). It follows

that uncertainty minimization is equivalent to the mini-

mization of Bayes error, up to a relaxation to the mean.

2.4 Infomax and Barlow’s Principle of Suspicious
Coincidences

Using the well-known property that

IðY ;XÞ ¼ HðY Þ �HðY jXÞ; ð7Þ

where

IðX;Y Þ ¼
X

i

Z

PX;Y ðx; iÞ log
PX;Y ðx; iÞ

PXðxÞPY ðiÞ
dx ð8Þ

is the mutual information between class label Y and feature

vector X and

HðY Þ ¼ �
X

i

PY ðiÞ logPY ðiÞ

is the class entropy, and the fact that HðY Þ does not depend
on X, it follows that uncertainty minimization is equivalent
to selecting the features that have largest mutual informa-
tion with the class label [40], [41], [42], [43]. This is
frequently referred to as the infomax criteria, due to its
connections to the infomax principle for the organization of
perceptual systems, a principle of long traditions in
cognitive science [33], [34], [35]. The underlying confidence
measure,

c00ðxÞ ¼ IðY ;X ¼ xÞ ¼
X

i

PY jXðijxÞ log
PX;Y ðx; iÞ

PXðxÞPY ðiÞ
; ð9Þ

is a relaxation (to the mean) of the decision rule

g00ðxÞ ¼ argmax
i

log
PY ;Xði;xÞ

PY ðiÞPXðxÞ
: ð10Þ

This decision rule was proposed by Barlow as the
fundamental computation of cerebral cortex [36]. He argued
that a nerve cell “represents a hypothesis about the sense
organs it connects with” and “the multitude of nerve cells in
sensory pathways constantly test a multitude of hypotheses
about the environment.” He then equated the cortex to a
detective that “makes inductive inferences about the
environment” by “looking out for suspicious coincidences.
The occurrence of two events A and B is suspicious if they
occur jointly more often than what would be expected from
the probabilities of individual occurrence, i.e., P ðA;BÞ �
P ðAÞP ðBÞ.” “The cortical neurons in a region share
amongst themselves the task of detecting the coincidences
that occur on the input fibers of that region.” In computer
vision, the detection of suspicious, or nonaccidental coin-
cidences has been proposed as a principle for perceptual
organization by various authors [44], [45].

It follows from the equivalence between infomax and
uncertainty minimization that infomax is equivalent to the
minimization of Bayes error, up to a relaxation to the mean.
The different combinations of decision rule, confidence
measure, and feature selection cost are summarized in
Table 1. It is quite interesting that, although the decision
rules of Bayes and Barlow are different (one minimizes error
probability, the other seeks maximally suspicious coin-
cidences), their relaxation produces identical feature selec-
tion costs (up to the constant HðY Þ which does not depend
on x). In this sense, they are identical for feature selection.

3 LEARNING SALIENT FEATURES

Since the goal of top-down saliency is to identify regions for
further processing, it should be computationally efficient.
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Decision Rules, Confidence Measures, and Feature Selection Costs
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This implies that the selection of optimally discriminant
features should itself be subject to constraints of computa-
tional parsimony. We investigate how to enforce such
constraints by exploiting statistical properties of natural
image features.

3.1 Natural Image Statistics
and Computational Efficiency

One appealing property of infomax feature selection
and a substantial advantage over minimum Bayes error
is its potential for computational parsimony. Defining
X1;k ¼ ðX1; . . . ; XkÞ, (8) can be rewritten as

IðY ;XÞ ¼
X

k

IðY ;XkÞ

þ
X

k

½IðXk;X1;k�1jY Þ � IðXk;X1;k�1Þ�;
ð11Þ

where

IðX;Y jZÞ ¼
X

i

Z

PX;Y ;Zðx; i; zÞ log
PX;Y jZðx; ijzÞ

pXjZðxjzÞpY jZðijzÞ
dxdz:

ð12Þ

The terms IðXk;Y Þ quantify the discriminant information
conveyed by each feature and the terms IðXk;X1;k�1jY Þ �
IðXk;X1;k�1Þ quantify the discriminant information con-
tained in feature dependencies [43]. This can be combined
with Attneave’s hypothesis [34] that perception is tuned to
the environment to achieve substantial reductions in
complexity. Of particular interest is a known statistical
property of band-pass features, such as wavelet coefficients,
extracted from natural images: that such features exhibit
strongly consistent patterns of dependency across a very
wide range of natural image classes [46], [47]. For example,
when a natural image is subject to a wavelet decomposition,
the conditional distribution of any wavelet coefficient, given
the state of the colocated coefficient of immediately coarser
scale (known as its “parent”), invariably has a bow-tie
shape [46]. It follows that, while the coefficients are
statistically dependent, their dependencies carry little
information about the image class [43], [46]. Hence, the
second summation of (11) is much smaller than the first and
(8) is well approximated by

IðX;Y Þ �
X

k

IðXk;Y Þ: ð13Þ

Note that this approximation does not assume that the
features are independently distributed, but simply that their
dependencies are not informative about the class. This is a
new feature selection cost and the expectation of a new
confidence measure

c000ðxÞ ¼
X

k

IðY ;Xk ¼ xkÞ; ð14Þ

which results from relaxing (to the mean) the decision rules

g00kðxÞ ¼ argmax
i

log
PY ;Xk

ði; xÞ

PXk
ðxÞPY ðiÞ

; k 2 f1; . . . ; Kg: ð15Þ

Note that this is a set of decision rules which act on the
feature channels individually. We refer to this type of

independent application of a decision rule to each channel
as a marginal decision rule. The adoption of (13) enables two
substantial simplifications. First, because mutual informa-
tion is always positive, a very simple feature selection
strategy is globally optimal when (13) holds [41]: To select
the K optimal features it suffices to 1) order all features by
decreasing IðXk;Y Þ and 2) select the first K. Second, the
terms on the right-hand side of (13) only require marginal
density estimates. As we will see in the next section, these
are extremely simple for bandpass features extracted from
natural images.

3.2 Computational Parsimony
and Suspicious Coincidences

Returning to Table 1, there are two important points to note.
The first is that there is no equivalent to (11) for the feature
selection cost of (4). Due to this, although it would be
possible to define a computationally parsimonious feature
selection cost of the form

C ¼
X

k

EXk
max

i
PY jXk

ðijxkÞ

� �

;

it does not necessarily follow that such a cost would be a
good approximation to (4). In fact, the relaxation of the max
appears to be a necessary condition for the conjunction of
near optimality and computational parsimony. Whether
this relaxation has to be to the mean is, at this point, not
known. Second, while the relaxation of (15) is sufficient for
parsimony, the latter does not necessarily hold for relaxa-
tions of all marginal decision rules. In particular, even
though the maximization of �HðY jXÞ and IðY ;XÞ both lead
to the infomax solution for feature selection, (13) does not
imply that HðY jXÞ �

P

k HðY jXkÞ. Instead, it can be
shown, by application of (7), that it is identical to
HðY jXÞ �

P

k HðY jXkÞ � ðK � 1ÞHðY Þ. The confidence
measure associated with this approximation is still (14)
and not the relaxation of the marginal Bayes decision rules

g�kðxÞ ¼ argmax
i

logPY jXk
ðijxÞ; k 2 f1; . . . ; Kg: ð16Þ

In this way, the constraint of computational parsimony
breaks the connection between infomax feature selection and
relaxations of Bayes decision rule. In fact, among all
decision rules considered so far, only the marginal rules
g00kðxÞ of (15) are consistent (up to a relaxation to the mean)
with (13). For this reason, we believe that the detection of
suspicious coincidences is preferable to the explicit mini-
mization of error probability when there are constraints of
computational parsimony and adopt this principle in the
remainder of the work.

Note that, at this point, we do not have a decision rule for
the observed feature vector x, but the collection of marginal
decisions of (15). This is intuitive: In the absence of
discriminant feature dependencies, the detection of globally
suspicious coincidences simplifies into the detection of
suspicious coincidences in each feature channel. It is also
consistent with the psychophysics of human saliency, where
it is well known that humans can easily detect differences
between targets and distractors along a single dimension
(e.g., different color), but notwhen they require a conjunction
of features (e.g., differences in the conjunction of color and

GAO ET AL.: DISCRIMINANT SALIENCY, THE DETECTION OF SUSPICIOUS COINCIDENCES, AND APPLICATIONS TO VISUAL RECOGNITION 993

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 15, 2009 at 11:10 from IEEE Xplore.  Restrictions apply.



orientation) [48] . Finally, the absence of a holistic decision

rule for x is not problematic for saliency. In general, search

tasks are better served by a graded measure of confidence

cðxÞ on how salient each feature vector x is, than by a hard

binary classification. When considering multiple salient

locations, attention should first be deployed to the location

that can be declared salient with greatest confidence. If the

object is not found there, the location of the next largest

confidence should be inspected, and so forth. This is the

rationale behind all existing saliency detectors, which search

through local maxima of some saliency function [4], [5]. It is

also consistent with the mechanisms of inhibition of return

commonly found in biological vision [3], [49]. A holistic

confidence measure is well defined for the principle of

suspicious coincidences, under parsimony constraints: It

consists of the sum of marginal confidence measures of (14).

3.3 The Generalized Gaussian Distribution (GGD)

Besides (13), a well-known property of the statistics of

natural images can be exploited to increase computational

efficiency: that the probability densities of bandpass image

features extracted from such images are well approximated

by a GGD [47], [50], [51]

PXðx;�; �Þ ¼
�

2��ð1=�Þ
exp �

jxj

�

� ��
( )

; ð17Þ

where �ðzÞ ¼
R1
0

e�ttz�1dt, t > 0, is the Gamma function, � is

a scale parameter, and � is a shape parameter. The parameter

� controls the rate of decay from the peak value and defines a

subfamily of the GGD (e.g., Laplacian when � ¼ 1 or

Gaussian when � ¼ 2). The GGD has various interesting

properties. First, various low-complexity methods exist for

the estimation of the parameters ð�; �Þ, including themethod

of moments [52], maximum likelihood [53], and minimum

mean-square-error [47].We adopt themethod ofmoments in

what follows. The two parameters are estimated from

�2 ¼
�2�ð3�Þ

�ð1�Þ
and � ¼

�ð1�Þ�ð
5
�Þ

�2ð3�Þ
; ð18Þ

where �2 and � are, respectively, the variance and kurtosis

of X,

�2 ¼ EX½ðX � EX½X�Þ2� and � ¼
EX½ðX � EX½X�Þ4�

�4
:

This method has been shown to produce good fits to natural

images [47].
Second, it leads to closed-form solutions for various

information theoretic quantities. For example, when both

PXjY ðxjiÞ and PXðxÞ are well approximated by GGDs, the

mutual information IðX;Y Þ has a closed form. This

follows from

IðX;Y Þ ¼
X

i

PY ðiÞKL PXjY ðxjiÞkPXðxÞ
� �

; ð19Þ

where KL½pkq� ¼
R

pðxÞ log pðxÞ
qðxÞ dx is the Kullback-Leibler

(KL) divergence between pðxÞ and qðxÞ and [53]

KL½PXðx;�1; �1ÞkPXðx;�2; �2Þ�

¼ log
�1�2�ð1=�2Þ

�2�1�ð1=�1Þ

� �

þ
�1

�2

� ��2�ðð�2 þ 1Þ=�1Þ

�ð1=�1Þ
�

1

�1

:

ð20Þ

It can also be shown that

HðXjY ¼ iÞ ¼
1

�i
þ log

2�i�ð
1
�i
Þ

�i
ð21Þ

and

IðY ;X ¼ xÞ ¼ s½gðxÞ� log
s½gðxÞ�

�1

þs½�gðxÞ� log
s½�gðxÞ�

�0

; ð22Þ

where sðxÞ ¼ ð1þ e�xÞ�1 is a sigmoid function, �i ¼ PY ðiÞ is

the prior for class i, and gðxÞ ¼ ðjxj�0
Þ�0 � ðjxj�1

Þ�1 þ T , with T ¼

log
�0�1�1�ð1=�0Þ
�1�0�0�ð1=�1Þ

. We will make use of these closed forms to

derive an efficient implementation of discriminant saliency.

4 DISCRIMINANT SALIENCY

The design of a discriminant saliency detector has two
components: feature selection and saliency detection.

4.1 Feature Selection

We have seen in Section 3.1 that, given a space X of
bandpass features extracted from natural images, the best
K-feature subset can be selected by computing the marginal
mutual informations Mk ¼ IðY ;XkÞ, for all k, and selecting
the K features of largest Mk. The marginal mutual
informations can be computed efficiently with (19) and
(20). One final issue is that none of the feature selection
costs considered so far is asymmetric: in general, discrimi-
nation does not differentiate between situations where
1) the feature is present (strong responses) in the object class
of interest, but absent (weak response) in the null hypoth-
esis and 2) vice versa. Although both cases lead to low
probability of error, feature absence is less interesting for
saliency, which is an inherently asymmetric problem.

However, detecting if a feature is discriminant due to
presence or absence in the class of interest is usually not
difficult. For generalized Gaussian features, it suffices to
note that feature absence produces a narrow GGD, close to a
delta function, while feature presence increases the variance
of the distribution (see Fig. 3 for an example). Since a
narrow GGD has lower entropy than one of larger variance,
discriminant features which are absent from the class of
interest fail the test

HðXkjY ¼ 1Þ > HðXkjY ¼ 0Þ ð23Þ

or, using (21),

log
�1

�0

>
1

�0
�

1

�1

� �

þ log
�ð 1�0Þ�1

�ð 1�1Þ�0

: ð24Þ

Such features should not be considered during feature
selection.

4.2 Saliency Detection

Under discriminant saliency, all saliency judgments are
based on a measure of classification confidence cðxÞ. As
before, the asymmetric nature of the saliency problem needs
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to be taken into account: feature vectors that can be very

confidently classified as not belonging to the class of interest

should not be declared salient. This is accomplished by

introducing a decision rule which summarily eliminates

such feature vectors. Both the confidence measure and the

decision rule should be consistent with (13). The fact that, in

Table 1, only (14) and (15) satisfy this requirement leads to

the saliency measure

SDðxÞ ¼
X

K

k¼1

SkðxkÞ; ð25Þ

with

SkðxÞ ¼
IðY ;Xk ¼ xÞ; if x 2 Sk;
0; otherwise;

�

ð26Þ

and

Sk ¼ x
PY ;Xk

ð1; xÞ

PY ð1ÞPXk
ðxÞ

>
PY ;Xk

ð0; xÞ

PY ð0ÞPXk
ðxÞ

	

	

	

	

� 


: ð27Þ

This measure has various interesting properties. First, it

implements Barlow’s principle of suspicious coincidences

by 1) identifying features whose appearance in the field of

view is suspiciously coincident with that of the object class

of interest, (27) and 2) equating saliency to the associated

(log) degree of suspicion

SkðxÞ ¼ log
PY ;Xk

ði; xÞ

PY ðiÞPXk
ðxÞ

� �

;

where fðxÞh i ¼
P

i PY jXðijxÞfðxÞ. The overall saliency mea-

sure SDðxÞ is the cumulative degree of suspicion over all

feature channels.
Second, it equates salient features to matched filters for the

detection of the salient visual attributes of the object of

interest. This follows from the facts that 1)Sk canbewritten as

Sk ¼ x PXkjY ðxj1Þ > PXkjY ðxj0Þ
	

	

 �

; ð28Þ

and 2) GGD features which pass the test of (23) have a

narrower PXkjY ðxkj0Þ than PXkjY ðxkj1Þ (see Fig. 3). As a

result, Sk is of the form Sk ¼ x jxj > tkjf g, where tk is a

threshold that depends on the parameters of the two GGDs

and only regions of large magnitude feature response are
salient. This implies that the features are matched to the
visual stimuli considered salient.

Finally, it has an intuitive interpretation as a mechanism
for the allocation of attention. This follows from rewriting Sk as
Sk ¼ x PY jXk

ð1jxkÞ > PY ð1Þ
	

	

 �

. At first analysis, when com-
pared with Bayes decision rule (PY jXk

ð1jxkÞ > 1=2), this
appears suboptimal for low-probability objects. It should,
however, be noted that Bayes decision theory is broader
than we have considered so far. While a threshold of 1=2
minimizes the expected probability of error, this minimum is
of interest only when false positives (spurious detections)
and false negatives (undetected targets) have equal costs.
When this is not the case, the threshold is determined by the
ratio of the costs. In summary, there is no single “optimal”
threshold: Different thresholds are optimal under different
cost structures. A threshold of PY ð1Þ ties the cost structure to
the observer’s prior beliefs on target likelihood, making the
observer more or less conservative according to these beliefs.
Searches for very unlikely targets have a low threshold and
require the inspection of a large number of locations. On the
other hand, many locations are summarily rejected in
searches for very likely targets. If the number of inspected
locations is interpreted as the amount of attention devoted to the
scene, this is an intuitive search behavior: Searches for rare
targets require more attention than searches for frequent ones.
It motivates the use of (25) as a focus-of-attention mechanism.

4.3 Discriminant Saliency as a
Focus-of-Attention Mechanism

In biology, visual saliency usually combines bottom-up and
top-down saliencymechanisms (e.g., [4]). Top-down saliency
can be seen as a focus-of-attentionmechanism, which prunes
away bottom-up salient points in regions unlikely to contain
objects of interest. We have implemented this focus-of-
attention strategy by combining discriminant saliency with
classical bottom-up operators from computer vision. The
details of the resulting top-down interest point detector are
given in Algorithm 1. Locations of bottom-up saliency are
first identified with classic interest point detectors. Top-
down saliency, with respect to the object class of interest, is
then computed with (25). The two saliency channels are
combined by weighing interest points according to the value
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Fig. 3. Illustration of the conditional marginal distributions (GGDs) for the responses of a feature, when (a) it is present (strong responses) in the

object class (Y ¼ 1) but absent (weak responses) in the null hypothesis (Y ¼ 0), or (b) vice versa. Note that the absence of a feature always leads to

narrower GGDs than the presence of the feature.
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ofdiscriminant saliency at their center location. Theweighted

points are finally sortedbydecreasing top-downsaliency and

used for either object localization or image classification, as

discussed in the following section. While pruning interest

points is not the only application of discriminant saliency, it

enables an objective evaluation of the benefits of discriminant

saliency for computer vision. In particular, because interest

points are commonly used in state-of-the-art object recogni-

tion systems, it suffices to measure how the localization/

classification accuracy of the latter varieswith the addition of

top-down attentional pruning.

Algorithm 1 Top-down interest point detection

Training: Given a set of features Xk; k 2 f1; . . . ; Ng, a set of

images T 1 from the target class, a set of images T 0 from the

null hypothesis, and a target number of features K.

for k ¼ f1; . . . ; Ng do

Estimate GGD parameters of PXkjY ðxjiÞ, from responses

of Xk to T i, i 2 f0; 1g, using (18).

Check whether Xk passes the test of (24). If not, discard
Xk and move to feature kþ 1.

Estimate GGD parameters of PXk
ðxÞ, from responses of

Xk to T 0 [ T 1, using (18).

Compute IðXk; Y Þ, using (19) and (20).

end for

Output: return the K features of largest IðXk; Y Þ.

Saliency detection: Given a test image I , a set of K

discriminant features Xk for the target class, and the GGD
parameters of PXkjY ðxjiÞ, i 2 f0; 1g, and PXk

ðxÞ.

Determine a set of interest point locations l1; . . . ; lM , using

standard interest point operators.

for k ¼ f1; . . . ; Kg do

for m ¼ f1; . . . ;Mg do

Compute the response xm of Xk at location lm of I ,

and PXkjY ðxmjiÞ, i 2 f0; 1g, using (17).

Compute SkðxmÞ, using (26), (28), and (22).
end for

end for

for m ¼ f1; . . . ;Mg do

Compute the saliency value at lm with (25).

end for

Output: Return a list of interest points lm ordered by

decreasing discriminant saliency values SDðxmÞ.

5 EXPERIMENTAL EVALUATION

The performance of the proposed discriminant saliency

detector (DSD) was evaluated on a set of weakly supervised

object recognition experiments.

5.1 Experimental Setup

5.1.1 Data Sets

Weakly supervised object recognition addresses the design

of object recognition systems from informally collected

examples. In particular, training examples of the object of

interest are presented against cluttered backgrounds. Two

tasks are usually considered. The first is to determine

whether a given image contains an instance of the object of

interest (classification). The second is to locate the image area

covered by the latter (localization). For both tasks we adopt

the PASCAL2006 data set [54], which contains 10 object

categories: bicycle, bus, car, cat, cow, dog, horse, motorbike,

person, and sheep. It is an interesting data set because the

images were collected with limited control over appearance

and pose of objects and background and many images

contain instances of several classes. It also provides ground

truth for each object, since all images are annotated with

bounding boxes. Although the ground truth was not used

for training, its availability allows objective measurements

of localization accuracy. The images were divided into

training and test sets, according to [54] and the numbers of

images in each set are listed in Table 2. For each category,

we defined a one-versus-all classification problem opposing

the object class under consideration to the others.

5.1.2 Bottom-up Interest Points

Bottom-up interest points are extracted with three operators

widely used in object recognition: Harris-Laplace (HarrLap)

[26], Hessian-Laplace (HesLap) [26], and difference of

Gausssian (DoG) [24]. The binaries are available from

http://lear.inrialpes.fr/people/dorko/downloads.html.

5.1.3 Candidate Features for Discriminant Saliency

The discriminant saliency detector does not have free

parameters. The only component left to be specified is the

initial pool of bandpass features. We have obtained very

similar results with Gabor filters, Haar wavelets, and the

discrete cosine transform (DCT) [55]. The implementation

discussed here is based on a multiscale extension of the DCT.

Each image is decomposed into a five-level Gaussian

pyramid, and 8� 8 DCT features computed at each location

and scale, for a total of 320 features. The so-called DC

coefficient (average of the image patch) is discarded at all

scales to guarantee lighting invariance. As shown in Fig. 4,

many of the DCT basis functions can be interpreted as

detectors of perceptually relevant image attributes, includ-

ing edges, corners, t-junctions, and spots. The number of

features used by the discriminant saliency detector for each

object class (K in Algorithm 1) is the number of features

that pass the test of (24).
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5.1.4 Preliminary Analysis of Contextual Influences

It is well known that background scenes provide a
substantial amount of contextual information, which can
significantly simplify the recognition task [13], [56], [57].
While, in general, the ability to exploit context is an asset, it
is not the goal of saliency, which aims to identify the objects
themselves. This makes it important to verify that a saliency
detector performs well because it has learned to recognize
the objects of interest, and not the background. In
PASCAL2006, context is a strong cue for the recognition
of some object classes. For example, cows and sheep always
stand on grass, while cars and buses are surrounded by
roads, buildings, or parking lots. To quantify the strength of
these contextual cues, we performed a preliminary image
classification experiment.

The classifier was that proposed in [13] and shown to
achieve state-of-the-art results on PASCAL2006. It combines
the “bag-of-features” image representation with the spatial
pyramid matching technique (and is referred to as the BFSP
classifier). Both its implementation and the selection of all
parameters followed closely [13]. The bag-of-features repre-
sentation is based on a dictionary of visual words, which are
cluster centers of SIFT descriptors extracted at interest points
locations from all training images. K-means was used for
clusteringand thedictionarycontains 3,000visualwords.The
spatial pyramid representation is obtained by 1) repeatedly
subdividing the image into increasingly finer subregions and
2) characterizing each subregion by a histogram of the visual
words found inside it [31]. This representation is combined
with a �2 kernel to train an SVM for each object class. Two
classifiers were implemented. They were identical in every-
thing except the interest point locations: The first used the
bottom-up interest points located inside the ground truth
object bounding box (referred to as BU-GT). The second used
those located outside the box (referred to as BU-BG).

Table 3 presents the classification accuracy obtained for
all classes, as measured by the Area Under ROC Curve (AUC).
It is clear that, in some cases, the contextual cues are quite
strong. For example, cow classification using merely back-
ground points (no object information) is only 3.56 percent
less accurate than that based uniquely on points located
within the ground truth bounding box for the object of
interest. Other classes with strong contextual influences are
car, sheep, and bus. These contextual influences create two
problems for saliency. First, a saliency detector can only

learn to separate object from background if the background
scenes are diverse [58]. If a cow always appears in a patch of

grass, it is impossible to learn that cow and grass are
different visual concepts. For discriminant saliency, this
translates into the selection of features (e.g., grass descrip-

tors) which are discriminant because they enable the
detection of the “object-attached” background (grass), not
the object itself. Note that this is not a problem for

classification (assuming, of course, that the test images
show cows in the same grass patch), but it is a problem for

localization. In this sense, localization is a better measure of
saliency detection performance than image classification.
Second, a feature can be discriminant simply because it is

consistently absent from the “object-attached” background.
This is not a problem for discriminant saliency since such
features are rejected by the test of (23), unless the effect is

overwhelming. For example, the ubiquity of large smooth
regions (grass) in the cow class makes any textured feature

discriminant for its detection. Since the animal body is also
textureless, none of these features is informative for the class
of interest and all features are discarded. In PASCAL2006,

we observed this behavior for the cow and sheep classes. The
fact that discriminant saliency rejects all features is actually
one of its advantages: it indicates that the underlying feature

pool is not rich enough to account for these objects. In this
case, it should contain shape features, which are important

cues for cow or sheep detection. While we could have
pursued an expanded feature set, we felt that this issue is
complementary to the discussion of the paper and elimi-

nated the cow and sheep classes from further consideration.

5.2 Object Localization

We next evaluate the localization accuracy of the combina-
tion of bottom-up interest point detection and top-down

pruning, based on DSD. Note that the goal is not to design a
full-fledged object detection system, but simply to investi-
gate whether salient points are colocated with the objects of

interest. This is accomplished by measuring the percentage
of salient points that land inside the ground truth bounding
boxes available in PASCAL. These experiments only

consider images that contain the object of interest and test
the ability of the saliency detector to behave as a focus of

attention mechanism tuned for object recognition. We refer
to the locations deemed salient by the combination of the
bottom-up and top-down mechanisms as DSD-BU points

and compare their localization to those of various dis-
criminant interest point pruning strategies proposed in
recent years [11], [12], [14], [16], [17], [59], [60]. In particular,

three representative methods are selected for comparison.
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Fig. 4. Some of the basis functions in the DCT feature set.

TABLE 3
Image Classification Accuracy (Percent) of BFSP Classifiers for PASCAL2006
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5.2.1 DVW, LSVM, and pLSA

The discriminative visual words (DVWs) detector [14], [59]
extracts interest points from a set of training images and
describes them by SIFT descriptors [24]. It then estimates
the distribution of these descriptors with a Gaussian
mixture model (GMM) and standard clustering techniques.
Each cluster center is referred to as a visual word.
Discriminant visual words are found with an estimate of
the posterior probability of object i given word w

DðwÞ ¼ PY jW ðijwÞ

¼
# of times that w appeared in images from class i

# of times that w appeared in any image
;

ð29Þ

referred to as the discriminability of word w. The
discriminability of an interest point is quantified by the
posterior probability of the object given the SIFT descriptor
(x) at the point

PY jXðijxÞ ¼
X

w

DðwÞPW jXðwjxÞ;

PW jXðwjxÞ ¼
PXjW ðxjwÞPW ðwÞ

P

w PXjW ðxjwÞPwðwÞ
;

where PW ðwÞ and PXjW ðxjwÞ are the GMM components. We
implemented a DVW detector with the parameters of [14],
using 3,000 visual words learned with K-means.

Like the DVW detector, the linear support vector machine
(LSVM) selects discriminant visual words [60]. However,
discriminability is measured with a linear SVM which
classifies histograms of visual words. Following [61], the
discriminability of a feature (or visual word) is equated to
the absolute value of the weight given to that word by the
SVM. To account for feature discrimination due to
presence or absence in the object class, the discriminability
of visual words which appear more often in the null
hypothesis than in the target class is set to 0, akin to the
test of (23). During detection, the saliency of an interest
point is measured by the discriminability of the corre-
sponding visual word. We implemented the detector
according to [60], using SIFT feature descriptors and
3,000 visual words learned with K-means.

Probabilistic Latent Semantic Analysis (pLSA) is a topic
discovery method developed in the text analysis literature,
and successfully applied to object categorization [11], [12]. It
models each image as a document of visual words (vectors
of SIFT features). The set of images is equated to a text
corpus and pLSA learns object categories as mixtures of
representative topics for this corpus. Mathematically, an
image (or document d) is represented as a “bag” of visual
words (w) sampled from a hidden topic variable (Z). The
joint distribution is

PW;D;Zðw; d; zÞ ¼ PDðdÞPZjDðzjdÞPW jZðwjzÞ; ð30Þ

where PW jZðwjzÞ and PZjDðzjdÞ are multinomial distribu-
tions. Estimation of the pLSA model involves determining
topic vectors representative of all documents and the
coefficients of each document, i.e., finding topic-specific
word distributions PW jZðwjzÞ and document-specific mixing
proportions PZjDðzjdÞ. This is done with the expectation-
maximization (EM) algorithm [11], [62]. The pLSA model

was originally proposed for unsupervised learning, but it
was shown that, for cluttered data, the learned object topics
are likely to include words representative of background
clutter [11]. To avoid this, we train the model in the
discriminant manner suggested in [11]. A set of “back-
ground” topics is first learned from negative training
images and frozen. The topics representative of each object
class are then learned from the set of images of that class.
One pLSA model is learned for each object category. For the
detection of an object category, bottom-up interest points
are pruned by the topic posterior probabilities, P ðzjw; dÞ, at
these points. Similarly to DVW and LSVM, the visual word
dictionary consisted of 3,000 words learned with K-means.
The number of object and background topics were
determined by cross-validation. Best results were achieved
with seven background and one object topic. This was the
configuration adopted to produce the results reported. The
implementation of pLSA was obtained from http://
www.robots.ox.ac.uk/~vgg/software/pLSA.

5.2.2 Localization Accuracy

The localization accuracy of salient points was measured
with precision/recall (PR) curves. Given a threshold, the
points of saliency above it are classified as “object” and the
remainder as “background.” Denoting the ground truth
bounding box by B, the following quantities are computed
for each object/background assignment:

. True Positive (TP): number of “object” points with
center inside B;

. False Negative (FN): number of “background”
points with center inside B;

. False Positive (FP): number of “object” points with
center outside B.

The recall and precision rates are then defined as

Recall ¼
TP

TP þ FN
; Precision ¼

TP

TP þ FP
: ð31Þ

Localization accuracy is quantified as the average precision
(AP) over the range of recalls.

5.2.3 Results and Discussion

Fig. 5 presents the PR curves of various detectors on
PASCAL2006. A plot is presented for each object category,
comparing the PR curves of the four top-down saliency
detectors (DSD-BU, DVW, LSVM, and pLSA) and the three
bottom-up interest point operators (HarrLap, HesLap, and
DoG). These plots can be most easily understood by noting
that the value of precision at 100 percent recall is roughly
equal to the average percentage of the image area occupied
by the object of interest. This value of precision can thus be
thought of as chance level performance: randomly selected
points will fall within the object bounding box with this
precision, at all levels of recall. It follows that a detector
which is unable to discriminate between object of interest
and background has a roughly constant PR curve, with
precision equal to this value. On the other hand, a detector
with good localization performance has a PR curve
substantially above this constant, at most levels of recall.
The AP of each detector is presented in Table 4, which also
shows the number of features used by the discriminant
saliency detector for each class.
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Three conclusions are supported by these results. First,
all top-down pruning strategies improve the localization
accuracy of bottom-up interest points, especially at low
recall rates, indicating that top-down pruning concentrates
interest points on regions informative of object presence.
However, for all methods other than DSD-BU, precision
drops quickly and is nearly constant at most levels of recall.
This suggests that these detectors respond equally to object
of interest and background. On the other hand, DSD-BU has
much higher precision at most levels of recall, with a drop
in performance only at very high recall levels. This indicates
that DSD-BU is much more likely to produce interest points

colocated with the object of interest. This hypothesis is
confirmed by Fig. 6, where we present saliency maps
produced by DSD. All scenes contain instances from two
object classes, e.g.,

1. “person” and “car,”
2. “person” and “bus,”
3. “motorbike” and “car,” and
4. “person” and “motorbike.”

In each case, the ground truth bounding box is shown (for

reference) around the object of interest, on the left, while the

saliency map for the detection of that object is shown on the
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Fig. 5. Precision-recall of various saliency detectors on PASCAL2006.

TABLE 4
Average Precision-Recall for Various Detectors
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right. It is clear that DSD successfully switches between the
two objects, highlighting the one of interest and suppres-
sing all others.

Second, among the four top-down detectors, DSD-BU
clearly achieves the best localization accuracy. Its median
AP, across the eight object classes, is at least 15 percent
higher than those of DVW, LSVM, and pLSA. This suggests
that all stages of a top-down saliency detector must be
discriminant. The main difference is that, while DSD starts
by selecting discriminant features, DVW, LSVM, and pLSA
cluster interest points. Since neither interest points nor
clustering is discriminant, much of the information of
interest for recognition is eliminated before any discrimi-
nant learning takes place. While visual words are complex
features, this nondiscriminant nature limits their localiza-
tion performance. In fact, Fig. 5 shows that they can perform
substantially worse than a simple orthogonal bandpass
feature decomposition. Discriminant selection from a
poorly discriminant feature set does not guarantee good
classification performance.

Comparing DVW and pLSA, DVW achieves a slightly
better average performance. Again, this suggests an advan-
tage for explicitly discriminant representations. Although
pLSA is trained in a “discriminant” manner, it is intrinsi-
cally a generative model with limited ability to distinguish
objects of interest from clutter. The observation that DVW
also performs somewhat better than LSVM indicates an
advantage of soft (the probabilistic representation of DVW)
over hard (the visual word histogram of LSVM) assignments
of interest points to visual words. Figs. 7 and 8 present
saliency detection examples for the four top-down detectors.
To produce these pictures, the saliency map of each image

was thresholded, and all bottom-up interest points of
subthreshold saliency were eliminated. In all cases, the
threshold was set at the level of 40 percent recall. The top
image in each column of Figs. 7 and 8 presents an object and
its ground truth bounding box. The remaining images of the
column display the interest points whose center falls within
this box in white, and the rest in black. Clearly, points
pruned with DSD are more likely to be colocated with the
target than those pruned with the other methods.

Finally, we note that, although strong contextual influ-
ences exist for some classes, e.g., car and bus, DSD does not
appear to have anyproblems learning features informative to
the object of interest, rather than the background. This
indicates that the consistency of appearance among the
objects in these classes is higher than that of the background,
making object features more discriminant than background
features. This leads to their selection by discriminant
saliency.

5.3 Image Classification

We have also evaluated the benefits of DSD for image
classification. These experiments were based on the BFSP
classifier described in Section 5.1.4. The classification
accuracy obtained with the original interest points was
compared to that achieved when these points were pruned
by top-down saliency. Table 5 presents the AUC achieved
for the different object classes. Three classification results
are listed for each object category. They were obtained by
varying the set of interest points fed to both K-means
clustering and classifier. The first, labeled “BU,” is the
ensemble of all points generated by the interest point
operators (HarrLap, HesLap, and DoG). This was the set of
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Fig. 6. Saliency maps produced by DSD for various images and objects of interest. Bright pixels flag the most salient image locations.
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points adopted in the original implementation [13]. The
second is the set of DSD-BU points, produced by pruning

these interest points with discriminant saliency. To empha-

size the areas of the objects of interest, saliency maps were

first thresholded, by setting to zero all locations of saliency

smaller than 10 percent of the maximum (measured over

the entire map). The third is the set of interest points that

fall inside the ground truth bounding box (BU-GT). The

three sets are derived from the same pool of interest points,

but result from different pruning strategies: 1) no pruning,

2) discriminant and practical pruning, and 3) perfect but

unrealistic pruning. For completeness, we also include the

results of [13]. Despite a significant effort on our part to

replicate [13], our implementation (BU) did not match these
results. Note, nevertheless, that BU-GT and DSD-BU are

identical to BU up to pruning of interest points, making the

comparison to BU the most relevant.
As expected, the performance of BU-GT is usually the

best. The only exception is the dog class where DSD-BU

actually outperforms BU-GT. In all cases, BU performs the

worst. To quantify the improvements of DSD-BU over BU,

we normalized the gain from BU to DSD-BU by that from

BU to BU-GT, i.e., accuracyðDSD�BUÞ�accuracyðBUÞ
accuracyðBU�GTÞ�accuracyðBUÞ . This measure

reflects the fact that BU-GT is expected to achieve the best

performance (since it is based on perfect object segmenta-

tion) and quantifies the percentage of the gap between BU

and BU-GT which is recovered by DSD-BU. As can be seen

from the last row of Table 5, the median value of this

percentage gain across classes is 14.7. For classes of dog,

motorbike, and horse, DSD-BU recovers more than 36 per-

cent of the gap between BU and BU-GT. These results show

that the proposed discriminant saliency detector captures

relevant information for object classification. Finally, it is

worth pointing out that, for all object classes, DSD pruned

away at least 30 percent of the BU points. As shown in

Table 6, this translates into nonnegligible computational

savings for image classification, where the processing time

is dominated by the search for the visual word closest to the

SIFT descriptor extracted at each interest point (an opera-

tion that we refer to as quantization). As can be seen in the

table, the savings in classification time are proportional to

the percentage of interest points pruned by top-down

saliency (�30 percent). This can be of interest for applica-

tions where computation is limited.

GAO ET AL.: DISCRIMINANT SALIENCY, THE DETECTION OF SUSPICIOUS COINCIDENCES, AND APPLICATIONS TO VISUAL RECOGNITION 1001

Fig. 7. Salient locations at 40 percent recall. Top to bottom: original images (objects marked by their ground truth bounding boxes), salient locations

pruned by DSD, DVW, LSVM, and pLSA. Each circle represents the location and size of a salient point. White (black) indicates that the salient point

falls inside (outside) the ground truth bounding box for the object.
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5.4 Diversity of Salient Visual Attributes

We finalize with a qualitative experiment, based on the
Brodatz texture database [63], which illustrates the diversity
of visual attributes that can be declared salient by discrimi-
nant saliency. Brodatz contains 112 texture classes, each
represented by nine images. These classes include a great
variety of salient attributes (e.g., corners, contours, regular
geometric figures (circles, squares, etc.), texture gradients,
crisp, and soft edges). The database was divided into a
training and a test set, using a setup commonly adopted for
texture retrieval (described in detail in [64]). The salient

features of each class were computed from the training set,
and the test images used to produce all saliency maps. The
process was repeated for all texture classes, on a one-versus-
all setting with each class sequentially considered as the
“one” class. As illustrated in Fig. 9, discriminant saliency has
no difficulty in 1) ignoring highly textured background areas
in favor of a more salient foreground object (two leftmost
images), which could itself be another texture, 2) detecting as
salient a wide variety of shapes, contours of different
crispness and scale, or 3) even assigning strong saliency to
texture gradients (rightmost image). This robustness is a

1002 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

Fig. 8. Salient locations at 40 percent recall. Top to bottom: original images (objects marked by their ground truth bounding boxes), salient locations

pruned by DSD, DVW, LSVM, and pLSA. Each circle represents the location and size of a salient point. White (black) indicates that the salient point

falls inside (outside) the ground truth bounding box for the object.

TABLE 5
Image Classification Accuracy (Percent) of BFSP Classifiers for PASCAL2006
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consequence of the fact that salient features are selected
according to both the class of interest and the set of images in
the all class.

6 CONCLUSION AND FUTURE WORK

We have proposed a novel formulation for top-down
saliency, denoted as discriminant saliency, which is
intrinsically grounded on the recognition problem. Under
this formulation, salient features are those that best
discriminate between visual stimuli drawn from a target
class and those drawn from a null hypothesis, composed of
all other classes of possible recognition interest. Saliency is
then defined as the confidence with which locations in the
visual field can be classified as containing stimuli drawn
from the target class. While both discrimination and
classification confidence can be defined with respect to a
number of previously proposed computational principles
for perceptual organization, we have argued for the
adoption of Barlow’s principle of inference by detection of
suspicious coincidences. In particular, it was shown that the
combination of this principle with known statistical proper-
ties of natural images enables computationally parsimo-
nious implementations of both feature selection and
saliency detection. The resulting discriminant saliency
detector is quite effective as a focus-of-attention mechan-
ism, which can prune the interest points commonly used in
computer vision according to their relevance for recogni-
tion. Experiments were designed to evaluate the benefits of
this focus-of-attention mechanism in object localization and
image classification tasks. In both cases, the addition of
discriminant saliency was shown to improve the perfor-
mance of current state-of-the-art methods.

Regarding future work, a number of questions merit
further exploration. First, it would be interesting to augment
the current saliency detector with a more diverse set of
candidate features. For example, for objects with character-
istic shapes, such as sheep or cows, the addition of contour-
based features (such as adjacent contour segments [65])

should prove beneficial. On the other hand, the feature pool

can be enriched by relying on more sophisticated forms of

feature extraction, such as the complex template features of

[42]. Some preliminary ideas in this direction have been

studied in [66], [67]. The goal is to include feature learning

within themodel-building loop, so as to directly optimize the

overall classification accuracy. The overarching point is that

saliency should always be driven by optimality with respect to

the end task. Second, it would be interesting to design object

recognition systems that rely on discriminant saliency to

precisely segment the object of interest from surrounding

clutter. While we have shown that discriminant saliency is

able to reliably locate objects of interest, it currently does not

produce a finely tuned segmentation mask. This will require

the combination of top-down saliency with bottom-up image

segmentation algorithms and is a topic for future research.
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