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We make predictions for the production and decays of Xð2900Þ states, and their possible charged
partners, in Bþ and B0 decays, considering a number of competing models for the states, including triangle
diagrams mediated by quark exchange or pion exchange, and resonance scenarios including molecules and
tetraquarks. Assuming only isospin symmetry and the dominance of color-favored weak decays, we find
characteristic differences in the predictions of the different models. Future experimental studies can
therefore discriminate among the competing interpretations for the states.
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I. INTRODUCTION

The LHCb collaboration has recently reported a very
prominent structure in the D−Kþ spectrum in Bþ →
DþD−Kþ decays [1,2]. In an amplitude model in which
the structure is described by Breit-Wigner resonances, their
fit includes two states, X0ð2900Þ with JP ¼ 0þ,

M ¼ 2.866� 0.007� 0.002 GeV; ð1Þ

Γ ¼ 57� 12� 4 MeV; ð2Þ

and X1ð2900Þ with JP ¼ 1−,

M ¼ 2.904� 0.005� 0.001 GeV; ð3Þ

Γ ¼ 110� 11� 4 MeV: ð4Þ

The D−Kþ decay implies the exotic flavor structure uds̄c̄.
If confirmed as genuine resonances, the states could be
interpreted as exotic hadrons of either a molecular or
tetraquark nature [3–19]. But as noted in the experimental
analysis, and discussed elsewhere [20–22], a more prosaic
explanation is also possible: the states could arise through
triangle diagrams with D̄�K� → D−Kþ or D̄1K → D−Kþ
scattering.
Our own contribution to this discussion has been to

demonstrate that the more prosaic possibility can give a

good fit to experimental data [21]. The more exciting
interpretation with exotic resonances, however, gives a
marginally better fit to data, though we cannot really
discriminate between the two.
The situation is very different compared to another

candidate with exotic flavor, the Xð5568Þ observed at
the DØ experiment [23]. We and others showed that both
the triangle mechanism and more exotic molecular or
tetraquark interpretations hopelessly fail in that case
[24,25]. Subsequent experiments searched for, and did
not find, Xð5568Þ [26–29].
In this paper we do not advocate a particular model for

the Xð2900Þ states, but instead give predictions for experi-
ment which can discriminate among models. We also
derive more general predictions which apply to all models.
We notice, for example, that as well as the discovery

mode Bþ → DþX;X → D−Kþ, the Xð2900Þ states may
also be seen in Bþ → DþX;X → D̄0K0. Experimental
observation of the latter mode could discriminate among
models, since its branching fraction compared to the
discovery mode differs according to the nature of the states.
In addition to the above two modes, the Xð2900Þ states

could also be seen in B0 → D0X;X → D−Kþ and
B0 → D0X;X → D̄0K0. Once again, predictions for these
other modes depend on the nature of the Xð2900Þ states,
and so offer useful experimental tests.
Depending on their nature, the Xð2900Þ states may also

be accompanied by charged partners in Bþ → D0Xþ;
Xþ → D̄0Kþ or B0 → DþX−; X− → D−K0. The existence
or otherwise of these partners, and their branching frac-
tions, can further discriminate among models.
Our arguments are very simple and only rely on physical

principles which are demonstrably satisfied by experimen-
tal data, namely that color-favored topologies dominate B
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meson decay, and that strong interaction vertices approx-
imately satisfy isospin symmetry.
While this paper was in preparation, we noticed another

paper which also discusses predictions for the Xð2900Þ
states in B decays [22]. Our approach and conclusions are,
however, different. Chen et al. derive relations which apply
in the particular case that the Xð2900Þ states are resonances
with fixed isospin, either I ¼ 0 or I ¼ 1. Here we addi-
tionally consider the case of mixed isospin, as well as
several variations on the alternative scenario in which the
states arise through triangle diagrams. We also derive a
number of more general results that apply to all models.
Where the physics of our paper overlaps with theirs, we

reach different conclusions. Whereas Chen et al. quote
B → DX branching fractions, we point out there is no way
to extract such branching fractions from the current
experimental data. Instead we derive lower limits, con-
cluding that the B → DX branching fractions are larger by
at least a factor of two compared to those of Chen et al.
Furthermore, whereas the branching fractions for B →

DX cannot be obtained directly, those of B → DX;X →
D̄K can. We give formulas for these in our model, and
quantify the predictions in terms of fit fractions. Some of
these predictions are universal whereas others can dis-
criminate among models.
In Sec. II we introduce the basic idea, identifying the

dominant weak decay topology and its implications for the
production of the Xð2900Þ states. In Secs. III and IV we
derive relations among the matrix elements for B →
D̄X; X → D̄K transitions, firstly identifying general results,
and then specializing to other results which apply sepa-
rately to the different models. From these relations among
matrix elements we derive, in Sec. V, predictions for
experimental fit fractions, identifying in particular any
modes that are particularly useful for discriminating among
models. In Sec. VI we derive lower limits on the B → DX
branching fractions, valid only for the resonance interpre-
tation. We conclude in Sec. VII.

II. WEAK DECAY TOPOLOGIES

In terms of quark flavors, the Bþ → DþD−Kþ transi-
tion is

ub̄ → ðcd̄Þðdc̄Þðus̄Þ;

and so arises from a Cabibbo-favored weak transition b̄ →
c̄ðcs̄Þ along with the creation of a dd̄ pair from the strong
interaction. Using flavor considerations we may relate this
transition to others where the created pair is uū rather than
dd̄, and where the initial state is B0 rather than Bþ.
We thus consider the flavor structure for decays of a

generic B ¼ qb̄ state (either Bþ ¼ ub̄ or B0 ¼ db̄), and in
which the pair created by the strong interaction is an
isoscalar mixture nn̄ ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

. As a reminder, we

summarize the quark flavor compositions of the hadrons
involved:

B0 ¼ db̄; Bþ ¼ ub̄; ð5Þ

D0 ¼ cū; Dþ ¼ cd̄; ð6Þ

D− ¼ dc̄; D̄0 ¼ uc̄; ð7Þ

K0 ¼ ds̄; Kþ ¼ us̄: ð8Þ
The possible transitions are shown in Fig. 1. Topologies (1)
and (3) involve “external” W emission, whereas topologies
(2) and (4) have “internal” W emission. Since they are
observed in Bþ → DþX, the Xð2900Þ states can only be
produced via either of topologies (1) or (2), since only these
have an outgoing Dþ meson (taking n ¼ d). In each case
the remaining two legs of the diagram combine to form the
Xð2900Þ states.
Reference [30] also identified the roles of what we call

topologies (1) and (2), although their discussion has a very
different focus from ours. They notice a charge asymmetry
in B → DD̄K decays and explain this as an effect of
interference between topologies (1) and (2).
We notice, however, a critical difference between the two

topologies: whereas (1) is color-favored, (2) is color-sup-
pressed. Empirically in two-body B decays the branching

fractions for color-favored transitions, such as D̄ð�ÞDð�Þ
s

and D̄ð�ÞDsJ, overwhelmingly dominate those of color-
suppressed transitions, such as ηcKð�Þ, J=ψKð�Þ, and
χcJKð�Þ. (Some examples are shown on the right axis of
Fig. 3—note the logarithmic scale.) We therefore assume
that the production of Xð2900Þ states is also dominated by
the color-favored topology (1).
We further assume that the strong-pair creation vertex

respects isospin, meaning that theDK pair has isospin zero.
With this assumption, we obtain the following flavor
decompositions for the three-body states arising from Bþ

and B0 decays, respectively,

jϕþi ¼ 1ffiffiffi
2

p ðjDþD̄0K0i − jD0D̄0KþiÞ; ð9Þ

jϕ0i ¼ 1ffiffiffi
2

p ðjDþD−K0i − jD0D−KþiÞ: ð10Þ

Notice that the compositions are related by the replace-
ment D̄0 → D−.
Recalling that the Xð2900Þ states are observed in

Bþ → DþX, from (9) we conclude that they are produced
via the component with flavor D̄0K0. As an example we
show in the left panel of Fig. 2 a diagram corresponding
to Bþ → DþX;X → D−Kþ, via topology (1). We empha-
size that the intermediate state in the loop has flavor D̄0K0,
not D−Kþ. However we make no assumption about the
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other quantum numbers of the intermediate state; in
particular, it could correspond to D̄�0K�0 or D0

1K
0, or

some linear combination of any states with this flavor
combination.
Other production and decay modes are also possible. In

particular, for Bþ decays we identify the following proc-
esses:

Bþ → DþX; X → D−Kþ; ð11Þ

Bþ → DþX; X → D̄0K0; ð12Þ

Bþ → D0Xþ; Xþ → D̄0Kþ: ð13Þ

The first two arise from the first term in ϕþ. Here the
Xð2900Þ states are produced via an intermediate state with
flavor D̄0K0, and decay either into D−Kþ (as in their
discovery mode) or D̄0K0. These are shown in the left panel
of Fig. 2.
The third process comes from the second term in ϕþ.

Here the possible charged partners of the Xð2900Þ states
would be produced through an intermediate state with

FIG. 1. Possible topologies for the decay of a B ¼ qb̄ state via the Cabibbo-favored transition b̄ → c̄ðcs̄Þ along with the creation of an
isoscalar nn̄ ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

pair.

FIG. 2. Production of Xð2900Þ states (left) and their possible charged partner states (right) in Bþ decays. The labels “D̄ð�Þ0Kð�Þ0” on
the intermediate states refer to flavor only; the states could include any possible spin or orbital configurations such as D̄�0K�0 or D0

1K
0.
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flavor D̄0Kþ, and would decay into D̄0Kþ. (See the right
panel of Fig. 2.)
The three analogous processes in B0 decays are

B0 → D0X; X → D̄0K0; ð14Þ

B0 → D0X; X → D−Kþ; ð15Þ

B0 → D̄þX−; X− → D−K0: ð16Þ

Referring to Eq. (10), in this case the neutral Xð2900Þ states
would be produced through an intermediate state with
flavor D−Kþ, and the charged states through D−K0.
Our key observation is that the matrix elements for all of

these processes are related. We distinguish relations which
are very general (Sec. III) from those which depend on the
model for the Xð2900Þ states and so can be used to
discriminate among them (Sec. IV).

III. GENERAL RESULTS

As noted above, we will assume that the production of
the Xð2900Þ states and their possible partners is driven by
the color-favored topology, such that the flavor composi-
tion of the intermediate three-body stateDD̄K state is given
by Eqs. (9) and (10) for Bþ and B0 decays, respectively.
The D̄K components in those wave functions combine, as
in Fig. 2, to generate the Xð2900Þ states, which are
observed in another (in general, different) D̄K combination.
We emphasize that only the flavor of the intermediate D̄K
state is specified; it could correspond, for example, to
D̄�K�, D̄1K, or some linear combination of these or other
states with the same flavor.
We introduce an operator O to effect the transition from

the intermediate “D̄K” state to the final D̄K state (the
rectangle in Fig. 2). Clearly, the nature of the Xð2900Þ
states is intimately related to the properties of the operator
O. We later consider the different models and their
corresponding operators. In this section we instead derive
more general results which apply to all models and which
require minimal assumptions for O.
We denote the flavor part of the matrix element for a

generic transition of the type

B → DX; X → D̄K; ð17Þ

as

hD½D̄K�jOjBi: ð18Þ

For Bþ (B0) decays, this is the matrix element of the
operator O between the intermediate state ϕþ (ϕ0) and the
final DD̄K state, noting that O acts only the D̄K compo-
nents of each. For the transitions in Eqs. (11)–(16) we have,
respectively,

hDþ½D−Kþ�jOjBþi ¼ 1ffiffiffi
2

p hD−KþjOjD̄0K0i; ð19Þ

hDþ½D̄0K0�jOjBþi ¼ 1ffiffiffi
2

p hD̄0K0jOjD̄0K0i; ð20Þ

hD0½D̄0Kþ�jOjBþi ¼ −
1ffiffiffi
2

p hD̄0KþjOjD̄0Kþi; ð21Þ

hD0½D̄0K0�jOjB0i ¼ −
1ffiffiffi
2

p hD̄0K0jOjD−Kþi; ð22Þ

hD0½D−Kþ�jOjB0i ¼ −
1ffiffiffi
2

p hD−KþjOjD−Kþi; ð23Þ

hDþ½D−K0�jOjB0i ¼ 1ffiffiffi
2

p hD−K0jOjD−K0i: ð24Þ

Note the following relation

hDþ½D−Kþ�jOjBþi ¼ −hD0½D̄0K0�jOjB0i; ð25Þ

from which, using experimental data from the Xð2900Þ
discovery mode (left-hand side), we will later predict the fit
fraction for a new production and decay mode (right-
hand side).
We now impose the further assumption, which is still

very general and which applies to almost all the models we
consider later, that the operator O is a scalar with respect to
isospin symmetry. For D̄K states coupled to total isospin I
and third component I3, the operator satisfies

OjðD̄KÞI3I i ¼ λIjðD̄KÞI3I i: ð26Þ

Namely, it conserves I and I3 and, from the Wigner-Eckart
theorem, its eigenvalues λI depend on I, but not I3. In this
way we can express the flavor dependence of all transitions
in terms of two parameters, λ0 and λ1.
The states in this isospin basis are

jðD̄KÞ00i ¼
1ffiffiffi
2

p ðjD̄0K0i − jD−KþiÞ; ð27Þ

jðD̄KÞþ1 i ¼ jD̄0Kþi; ð28Þ

jðD̄KÞ01i ¼
1ffiffiffi
2

p ðjD̄0K0i þ jD−KþiÞ; ð29Þ

jðD̄KÞ−1 i ¼ jD−K0i; ð30Þ

where the superscript labels the electric charge, which is
equivalent to I3.
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From the preceding equations we find

hDþ½D−Kþ�jOjBþi ¼ −hD0½D̄0K0�jOjB0i ¼ λ1 − λ0
2

ffiffiffi
2

p ;

ð31Þ

hDþ½D̄0K0�jOjBþi ¼ −hD0½D−Kþ�jOjB0i ¼ λ1 þ λ0
2

ffiffiffi
2

p ;

ð32Þ

hD0½D̄0Kþ�jOjBþi ¼ −hDþ½D−K0�jOjB0i ¼ −
λ1ffiffiffi
2

p : ð33Þ

The first of these recovers the previous relation. The other
two are additional relations among new production and
decay modes for the Xð2900Þ states and their possible
charged partners. We translate these relations into fit
fractions in Sec. V.

IV. DISCRIMINATING AMONG MODELS

At this point the six production and decay modes of the
Xð2900Þ states and their charged partners are expressed in
terms of the eigenvalues λ1 and λ0 of the operator O. We
now consider various models for the Xð2900Þ states, which
effectively fixes O and its eigenvalues, and gives further
relations among the six production and decay modes. These
relations are specific to each model, and so give exper-
imental tests which can discriminate among possible
interpretations of the Xð2900Þ states.
The results (which we explain further below) are

summarized in Table I. In the first row we give the general
expressions for the matrix elements (31)–(33). The remain-
ing entries in the table, which give the corresponding
matrix elements for particular models, can be obtained from
these general expressions by specifying λ1 and λ0.
We consider two classes of model. Firstly, the Xð2900Þ

states could arise due to triangle diagrams, through scatter-
ing processes such as D̄�K� → D−Kþ or D̄1K → D−Kþ.

We consider a number of possible models for the scattering
process: quark exchange (Sec. IVA), pion exchange
(Sec. IV B), and effective field theory interactions
(Sec. IV C). In these cases, the operator O represents a
direct scattering process from an intermediate flavor state
(such as D̄0K0) to a final state (such as D−Kþ). We are
assuming in these scenarios that the interactions are
sufficiently weak as to be described by the perturbative,
one-loop triangle diagram.
In the second class of models, the Xð2900Þ states are

resonances with I ¼ 0, I ¼ 1 or mixed isospin (Sec. IV D).
Our results do not distinguish the dynamical origin of these
resonances which could be, for example, molecular or
tetraquark in nature. Unlike the triangle diagram scenario,
here the interactions are strong and nonperturbative. In this
setup the operator O does not represent a direct scattering,
but instead projects out the isospin components of the
intermediate state (such as D̄0K0) and final state (such
as D−Kþ).
Note that the same interactions we consider for the

triangle scenario—quark exchange, pion exchange, and
effective field theory interactions—could, if sufficiently
strong, give rise to resonances. We are making no claim as
to which scenario (triangle versus resonance) is most
relevant to each type of interaction. The reason we consider
different interactions separately within the triangle scenario
is just that, in that case, they each have a different pattern of
production and decay branching fractions. In the resonance
scenario, on the other hand, the pattern of branching
fractions is sensitive to the isospin of the state, but not
to the underlying interactions.

A. Triangle with quark exchange

The scattering of mesons can be understood as arising
from the pair-wise interactions of their quark constituents
[31–34]. In this approach the color structure of the
interaction potential demands quark exchange (QE)
between the mesons. Hence the flavor dependence is given
by an operator Q satisfying

TABLE I. Matrix elements for B → DX;X → D̄K transitions in various models. For an explanation of the entry marked ð�Þ, see
Eqs. (48) and (49) and the subsequent text.

Model Operator
hDþ½D−Kþ�jOjBþi

¼ −hD0½D̄0K0�jOjB0i
hDþ½D̄0K0�jOjBþi

¼ −hD0½D−Kþ�jOjB0i
hD0½D̄0Kþ�jOjBþi

¼ −hDþ½D−K0�jOjB0i
General O λ1−λ0

2
ffiffi
2

p λ1þλ0
2
ffiffi
2

p − λ1ffiffi
2

p

Triangle, QE Q 1ffiffi
2

p 0 − 1ffiffi
2

p

Triangle, OPE τ1 · τ2
ffiffiffi
2

p
− 1ffiffi

2
p − 1ffiffi

2
p

Triangle, EFT T
ffiffiffi
2

p
C1

C0−C1ffiffi
2

p − C0þC1ffiffi
2

p

Resonance, I ¼ 0 P0 − 1

2
ffiffi
2

p 1

2
ffiffi
2

p 0

Resonance, I ¼ 1 P1
1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1ffiffi
2

p

Resonance, I mixed Pθ
1

2
ffiffi
2

p ðsin2 θ − cos2 θÞ 1

2
ffiffi
2

p ðsin θ � cos θÞ2 ð�Þ
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QjD−Kþi ¼ jD̄0K0i; ð34Þ

QjD̄0K0i ¼ jD−Kþi; ð35Þ

QjD̄0Kþi ¼ jD̄0Kþi; ð36Þ

QjD−K0i ¼ jD−K0i: ð37Þ

The matrix elements in this model are shown in Table I.
These can be obtained directly from above, or by using the
general expressions, noting that the relevant eigenvalues are
λ1 ¼ 1 and λ0 ¼ −1.
We note two interesting features of this model, which can

be tested in experiment. Firstly, in Bþ → DþX decays the
Xð2900Þ states should appear in X → D−Kþ (consistent
with experiment) but not X → D̄0K0. The pattern is
opposite for B0 → D0X, for which the Xð2900Þ states
would appear in X → D̄0K0 but not X → D−Kþ. Recalling
Eqs. (9) and (10), notice that the final states which arise
from the triangle mechanism are not produced directly via
the color-favored mechanism; on the other hand, states
which are produced directly via the color-favored mecha-
nism are forbidden through the triangle mechanism.
A second interesting feature is that the triangle diagrams

would also produce charged analogs of the Xð2900Þ
signals. Comparing the first and last columns, the modes
Bþ → D0Xþ; Xþ → D̄0Kþ and B0 → DþX−; X− → D−K0

would have the same rate as the Xð2900Þ discovery mode.
(We translate this into fit fractions in Sec. V.)
As noted above, we are assuming here that the inter-

actions are sufficiently weak as to be described by the
perturbative, one-loop triangle diagram. If quark-exchange
interactions are strong enough to generate a resonance, the
results of Sec. IV D apply.

B. Triangle with one-pion exchange

Scattering processes D̄�K� → D̄K or D̄1K → D̄K can
also arise from the exchange of light mesons. For D̄�K� →
D̄K the amplitude is presumably dominated by one-pion
exchange (OPE). (There is no pion-exchange diagram
for D̄1K → D̄K.)
In this case the flavor dependence is given by the

operator τ1 · τ2, where τ1 and τ2 act on the mesons with
flavor D̄ and K, respectively. Its eigenvalues are λ1 ¼ 1,
λ0 ¼ −3, from which we obtain the matrix elements in the
third row of the table. The results apply in the limit that
OPE is essentially perturbative; molecular states bound by
OPE would instead be described by the results of
Sec. IV D.
In this scenario all six production and decay modes are

available but, comparing the three columns, the Bþ dis-
covery mode and its B0 analog are larger by a factor of 2 in
amplitude (or 4 in rate) compared to the other modes. (We
give fit fractions in Sec. V.)

Notably, in this model the neutral Xð2900Þ states would
be seen in modes (see the middle column) which are
forbidden by the QE mechanism discussed previously,
specifically Bþ → DþX;X → D̄0K0 and B0 → D0X;X →
D−Kþ. The model also predicts charged analogues of the
Xð2900Þ states (last column).
As well as pions, the exchange of other light mesons is

also possible. In this case the flavor structure is more
complicated; we comment further on this possibility in the
next subsection.

C. Triangle with effective field theory

In the effective field theory (EFT) approach, the D̄�K� →
D̄K scattering amplitude has a long-range contribution
from pion-exchange, and a short-range contribution which
is parametrized by contact terms which, in principle, are fit
to data. (Again, for D̄1K → D̄K there is no pion-exchange
contribution.) In general, the contact terms can include all
operators which respect the appropriate symmetries, such
as the conservation of heavy-quark spin and isospin. Here
we ignore the spin-dependence since we are interested in
relations among scattering processes involving hadrons
with the same spins, but different flavors.
The operators respecting the conservation of isospin are

the unit operator, and the τ1 · τ2 operator discussed in the
previous section. The resulting transition operator therefore
has the form

T ¼ C0 þ C1τ1 · τ2; ð38Þ

where we can think of C0 and C1 as having absorbed the
spin-dependence for the particular scattering process under
comparison. (Note that C1 would include contributions
both from the contact term and long-range pion exchange.)
The eigenvalues in this model are λ1 ¼ C0 þ C1 and

λ0 ¼ C0 − 3C1, from which we obtain the matrix elements
in Table I. Again, the results apply in the limit that the
interactions are perturbative.
Note that the results obtained in this way are equivalent,

algebraically, to the more general results derived in the
previous section. In both cases the matrix elements are
parametrized in terms of two parameters—either λ1 and λ0,
or C1 and C0—and the underlying algebra of the matrix
elements is identical. In this sense the EFT approach is less
predictive than the others.
Nevertheless the chosen parametrization in terms of C1

and C0 may still be useful. The usual EFT philosophy is
that the short-distance physics cannot be derived from the
underlying theory, and is instead parametrized by means of
contact terms which are fit to data. An alternative approach
is to model the short-distance physics, as with the long-
range physics, in terms of meson exchange. In this setup,
the terms C1 and C0 would, respectively, be associated with
the exchange of isovector mesons (π, ρ, etc.) and isoscalar
mesons (σ, η, ω, etc.)

T. J. BURNS and E. S. SWANSON PHYS. REV. D 103, 014004 (2021)

014004-6



Finally we note that the Q operator corresponding to QE
scenario discussed previously is equivalent to the operator
T with C0 ¼ C1 ¼ 1=2.

D. Resonance (molecule or tetraquark)

We now move on to the very different scenario in which
the Xð2900Þ states are resonances. We make no assumption
about their underlying dynamics: for example they could be
molecular in nature or compact objects with constituent
quark or diquark degrees of freedom. As such the results in
this section apply equally to all such models.
To give meaning to the operator O we consider the

example shown in the left panel of Fig. 2, where it mediates
a transition from an intermediate state with flavor D̄0K0 to
the final state with flavor D−Kþ. For a resonance with
flavor wave function X, the matrix element factorizes

hD−KþjOjD̄0K0i ¼ hD−KþjXihXjD̄0K0i; ð39Þ

so that O is a projection operator

O ¼ jXihXj: ð40Þ

This is very different to the previous examples where the
Xð2900Þ states arise due to triangle diagrams. In particular,
the factorization of the matrix element into a product of two
matrix elements is ultimately why, in the resonance
scenario, there is an equivalent factorization of the branch-
ing fractions,

BðB → DX;X → D̄KÞ ¼ BðB → DXÞBðX → D̄KÞ; ð41Þ

whereas the same does not happen in the triangle scenario.
We return to this point in Sec. VI.
If the Xð2900Þ resonances arise from interactions which

respect isospin symmetry, they will have either I ¼ 0 or
I ¼ 1. The corresponding projection operators are

P0 ¼ jðD̄KÞ0ihðD̄KÞ0j; ð42Þ

P1 ¼ 1 − P0 ¼
X
I3

jðD̄KÞI31 ihðD̄KÞI31 j: ð43Þ

The eigenvalues of P0 are λ1 ¼ 0, λ0 ¼ 1, while those of P1

are λ1 ¼ 1, λ0 ¼ 0. From these we obtain the matrix
elements in Table I.
Comparing the first two columns, we note that in both

cases all four production and decay modes of the neutral
Xð2900Þ states are possible and have the same rate,
regardless of their isospin. Hence the observation of modes
other than the discovery mode cannot discriminate between
I ¼ 0 and I ¼ 1, although it could discriminate between
these and the alternative scenario of a triangle diagram with
QE or OPE.

The difference between the I ¼ 1 and I ¼ 0 hypotheses
is that only in the former case would the neutral Xð2900Þ
states be accompanied by charged partners. From the last
column, these modes are enhanced by a factor of 2 in
amplitude (4 in rate) compared to the discovery mode,
raising the realistic prospect of their observation in experi-
ment. (We predict fit fractions in Sec. V.)
A third possibility [for the neutral Xð2900Þ states] is that

isospin is not a good quantum number, and the wave
functions are admixtures of I ¼ 1 and I ¼ 0. This is
most likely to be relevant for the heavier X1ð2900Þ in
the molecular scenario, where unequal admixtures of
D�−K�þ and D̄�0K�0 in the wave function would arise
from mass splittings between the corresponding thresholds.
Such isospin splitting would be significant if the mass
splittings between the thresholds is significant on the scale
of the binding energy. The mechanism is analogous to the
case of Xð3872Þ [35–37], and has also been discussed for
Pcð4457Þ [38–40].
With current experimental uncertainties [on both

Xð2900Þ and K�þ masses] it is not possible to quantify
the scale of any mixing. So instead we consider an arbitrary
mixing angle:

jθi ¼ cos θjðD̄KÞ00i þ sin θjðD̄KÞ01i: ð44Þ

The corresponding projection operator

Pθ ¼ jθihθj ð45Þ

does not satisfy Eq. (26), as it couples I ¼ 0 and I ¼ 1
states. Consequently, the general expressions (in the top
row of Table I) which we used for all other cases cannot be
used in this case. Nevertheless the required matrix elements
can be obtained straightforwardly, for example with
Eqs. (19)–(24) as a starting point. The results are

hDþ½D−Kþ�jOjBþi ¼ 1

2
ffiffiffi
2

p ðsin2 θ − cos2 θÞ; ð46Þ

hD0½D̄0K0�jOjB0i ¼ −
1

2
ffiffiffi
2

p ðsin2 θ − cos2 θÞ; ð47Þ

hDþ½D̄0K0�jOjBþi ¼ 1

2
ffiffiffi
2

p ðsin θ þ cos θÞ2; ð48Þ

hD0½D−Kþ�jOjB0i ¼ −
1

2
ffiffiffi
2

p ðsin θ − cos θÞ2: ð49Þ

Note that whereas the first two relations satisfy Eq. (25), the
second two do not satisfy the analogous relation (32). This
is because whereas Eq. (25) is very general, Eq. (32) relies
on the assumption that the operator conserves I, which it is
not true of Pθ. The violation of Eq. (32) would be an
experimental indication of the mixed isospin nature of the
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Xð2900Þ states, as this does not happen in any other
scenario.
The matrix elements for the mixed isospin case are

shown in the last row of Table I. The entries for (48) and
(49) are indicated with ð�Þ as a reminder that (unlike all
other cases) they do not satisfy the corresponding relation
in the top row of the table.
A neutral state with mixed isospin may or may not have

charged partners, depending on whether, in the absence of
isospin breaking mass splittings, it would be an isosinglet,
or the neutral member of an isotriplet. For this reason we
make no entry in the last column.
So far we have considered matrix elements for the full

transitions B → DX;X → D̄K. For the resonance scenario,
we can in addition consider the separate matrix elements for
production B → DX and decay X → D̄K. This possibility
follows from the factorization (39) and is a consequence of
the projective nature of the operator. The same does not
apply to the triangle scenario, for which it is meaningless to
separate the production and decay.
The production matrix elements (B → DX) are easily

obtained from the results in the table by taking the
appropriate isospin-weighted combinations. For the I¼0
interpretation we have

hDþXjOjBþi ¼ hD0XjOjB0i ¼ 1

2
; ð50Þ

whereas for I ¼ 1,

hD0XþjOjBþi ¼ −
ffiffiffi
2

p
hDþXjOjBþi

¼ −hDþX−jOjB0i

¼
ffiffiffi
2

p
hD0XjOjB0i ¼ −

1ffiffiffi
2

p : ð51Þ

These are consistent with the relations of Ref. [22].
For the isospin-mixed case, from the last two equations,

hDþXjOjBþi ¼ cos θ þ sin θ
2

; ð52Þ

hD0XjOjB0i ¼ cos θ − sin θ
2

; ð53Þ

so the relation between the two is

hDþXjOjBþi ¼ tan

�
θ þ π

4

�
hD0XjOjB0i: ð54Þ

For the decay matrix elements (X → D̄K) the flavor
dependence is given by Clebsch-Gordan coefficients. For
I ¼ 0,

hD̄0K0jXi ¼ −hD−KþjXi ¼ 1ffiffiffi
2

p ; ð55Þ

and for I ¼ 1,

hD̄0KþjXþi ¼ hD−K0jX−i
¼

ffiffiffi
2

p
hD̄0K0jXi ¼

ffiffiffi
2

p
hD−KþjXi ¼ 1: ð56Þ

For the mixed state,

hD̄0K0jXi ¼ cos θ þ sin θffiffiffi
2

p ; ð57Þ

hD−KþjXi ¼ − cos θ þ sin θffiffiffi
2

p ; ð58Þ

so the relation is

hD̄0K0jXi ¼ − tan

�
θ þ π

4

�
hD−KþjXi: ð59Þ

V. FIT FRACTIONS

We now give some quantitative predictions for experi-
ment. The measured fit fractions

fðBþ → DþX;X → D−KþÞ

¼ BðBþ → DþX;X → D−KþÞ
BðBþ → DþD−KþÞ ð60Þ

are

f ¼
� ð5.6� 1.4� 0.5Þ%; X0ð2900Þ
ð30.6� 2.4� 2.1Þ%; X1ð2900Þ

ð61Þ

With the experimental branching fraction BðBþ →
DþD−KþÞ [41] we get the branching fractions in the
numerator,

BðBþ → DþX;X → D−KþÞ

¼
� ð1.23� 0.42� 0.30Þ × 10−5; X0ð2900Þ;
ð6.73� 1.62� 1.60Þ × 10−5; X1ð2900Þ:

ð62Þ

(Note that the same numbers appear in Ref. [22], although
they quote these as BðBþ → DþXÞ rather than
BðBþ → DþX;X → D−KþÞ. They similarly make predic-
tions for other BðB → DXÞ branching fractions. In Sec. VI
we show that BðB → DXÞ fractions are larger by at least a
factor of two compared to those quoted in Ref. [22].)
We can now make predictions for branching fractions

and fit fractions for other modes B → DX;X → D̄K in
terms of the corresponding experimental numbers for
Bþ → DþX;X → D−Kþ. A convenient quantity in this
respect is the ratio of squared matrix elements

R ¼
� hD½D̄K�jOjBi
hDþ½D−Kþ�jOjBþi

�
2

; ð63Þ
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which follows immediately from Table I, and which we
summarize in Table II. The pattern of numbers R is
ultimately what discriminates among the predictions of
different models.
Ignoring small differences due to phase space, the

relations between the predicted modes and the discovery
mode are, for the branching fractions,

BðB → DX;X → D̄KÞ
BðBþ → DþX;X → D−KþÞ ¼ R

τðBÞ
τðBþÞ ; ð64Þ

and for the fit fractions,

fðB → DX;X → D̄KÞ
fðBþ → DþX;X → D−KþÞ

¼ R
τðBÞ
τðBþÞ

BðBþ → DþD−KþÞ
BðB → DD̄KÞ ; ð65Þ

where here τðBÞ is the lifetime of the Bþ or B0 meson under
consideration.
From the preceding two equations, and the R values in

Table II, we may predict branching fractions and fit
fractions for all production and decay channels for the
Xð2900Þ states and their possible partners, in all of the

models considered. In order not to be overwhelmed with
numbers, we give explicit predictions only for the heavier
X1ð2900Þ state; the corresponding numbers for X0ð2900Þ
are smaller by a factor 5.6=30.6. Similarly, we do not quote
numbers for the branching fractions, but instead quote only
fit fractions, since these are the quantities which are directly
measured in experimental amplitude analyses, and which
indicate (more directly than the branching fraction) how
prominent a particular channel will feature in the ampli-
tude fit.
The results are shown in Table III. In the first row we

show the experimental branching fractions BðB → DD̄KÞ,
in units of 10−4, taken from Ref. [41]. The rest of the table
shows the fit fractions fðB → DX;X → D̄KÞ, in percent.
The numbers in the first column are those measured in
experiment; the rest are predictions, obtained from Eq. (65).
Within a given column, all that distinguishes one entry
from another is the number R, which is shown in Table II.
Fractional uncertainties on f are shown in the last row: the
first is from experiment, the rest are obtained by combining
in quadrature the errors on the branching and fit fractions
in Eq. (65).
A striking feature of the table is the magnitude of the fit

fractions in the first two columns compared to all the others.
This is mainly because the corresponding three-body

TABLE II. The ratio R, defined in Eq. (63), for B → DX;X → D̄K transitions in various models. For the entry marked ð�Þ, the upper
and lower signs are for the Bþ and B0 decays, respectively.

Bþ → DþX;X → D−Kþ Bþ → DþX; X → D̄0K0 Bþ → D0Xþ; Xþ → D̄0Kþ

B0 → D0X;X → D̄0K0 B0 → D0X;X → D−Kþ B0 → DþX−; X− → D−K0

Triangle, QE 1 0 1
Triangle, OPE 1 1

4
1
4

Triangle, EFT 1 1
4
ð1 − C0

C1
Þ2 1

4
ð1þ C0

C1
Þ2

Resonance, I ¼ 0 1 1 0
Resonance, I ¼ 1 1 1 4
Resonance, I mixed 1 tan2 ðθ � π

4
Þ ð�Þ

TABLE III. The first row shows the experimental three-body branching fraction BðB → DD̄KÞ, in units of 10−4, from Ref. [41]. The
rest of the table shows fit fractions fðB → DX;X → D̄KÞ in percent. The first column is from experiment, and the remaining columns
are predictions, obtained using Eq. (65). The fractional uncertainty Δf=f is shown in the last row.

Bþ → DþX, B0 → D0X, Bþ → DþX, B0 → D0X, Bþ → D0Xþ, B0 → DþX−,
X → D−Kþ X → D̄0K0 X → D̄0K0 X → D−Kþ Xþ → D̄0Kþ X− → D−K0

BðB → DD̄KÞ 2.2� 0.7 2.7� 1.1 15.5� 2.1 10.7� 1.1 14.5� 3.3 7.5� 1.7
fðB → DX;X → D̄KÞ
Triangle, QE 30.6 23.2 0 0 4.6 8.3
Triangle, OPE 30.6 23.2 1.1 1.5 1.2 2.1
Triangle, EFT 30.6 23.2 1.1ð1 − C0

C1
Þ2 1.5ð1 − C0

C1
Þ2 1.2ð1þ C0

C1
Þ2 2.1ð1þ C0

C1
Þ2

Resonance, I ¼ 0 30.6 23.2 4.3 5.8 0 0
Resonance, I ¼ 1 30.6 23.2 4.3 5.8 18.6 33.4
Resonance, I mixed 30.6 23.2 4.3 tan2 ðθ þ π

4
Þ 5.8 tan2 ðθ − π

4
Þ

Δf=f 0.1 0.53 0.36 0.35 0.41 0.41

DISCRIMINATING AMONG INTERPRETATIONS FOR THE … PHYS. REV. D 103, 014004 (2021)

014004-9



branching fractions BðB → DD̄KÞ are small compared to
the others, which can in turn be partly understood by the
flavor topology. Whereas the three-body transitions Bþ →
DþD−Kþ and B0 → D0D̄0K0 cannot be produced directly
via the color-favored mechanism, the other four transitions
can. This is apparent from Eqs. (9) and (10), and is also
discussed in Ref. [42].
The dramatic prominence of the experimental Xð2900Þ

peak may be understood in this context. We have shown
that the Bþ → DþX;X → D−Kþ transition can occur
through color-favored processes, either through triangle
diagrams or resonant X states. But the experimental back-
ground is comparatively small, because the direct process
Bþ → DþD−Kþ is color suppressed. The combination of
production through color-favored processes with a back-
ground which is color-suppressed implies a large fit
fraction, hence a prominent experimental signal.
With this observation in mind, a comment on our starting

assumption is in order. In setting up our model we have
ignored the contribution from color-suppressed decays, on
the basis that in two-body B decays they are much smaller
(by around a factor of 10) in comparison to color-favored
decays. Naïvely, the numbers in Table III may suggest that
the suppression effect is less substantial in three-body
decays, but this is misleading. As noted, three-body final
states whose direct production is color-suppressed can
nonetheless arise indirectly through color-favored proc-
esses, either through intermediate resonances or triangle
diagrams, and these indirect processes can account for a
substantial part of the three-body branching fraction; as an
example, in the LHCb amplitude analysis [2], the Xð2900Þ
states account for a larger fit fraction than the nonresonant
DþD−Kþ component. Two-body B decays are, by com-
parison, much easier to interpret, and the clear evidence for
substantial color suppression in those cases justifies our
original assumption.
An obvious message of Table III is that the best channel

for studying neutral D̄K resonances is very likely to be the
one already analyzed by LHCb. The experimental fractions
for the discovery mode (first column) are larger than the
predicted fractions for other modes for the neutral Xð2900Þ
states, except in the case that a particular choice of
parameters (C0, C1 or θ) render modes expressed in terms
of these to be larger.
However we also predict, regardless of the model, a very

prominent experimental signal in the B0 → D0X;X →
D̄0K0 mode (second column). The prediction follows from
the general result (25), which relies only the assumption
that production is dominated by color-favored transitions.
Since all of our other predictions rely on the same
assumption, experimental study of B0→D0X;X→D̄0K0

would be a critical test of model assumptions.
The predictions in the remaining columns can be used

to discriminate among models. Although the numbers
are generally smaller, in considering the experimental

feasibility of observing these modes, we note that it is
quite standard in amplitude analyzes to resolve structures
with a fit fraction at level of a few percent—the X0ð2900Þ is
one such example.
Our discussion concentrates on models with an explicit

prediction for the fit fraction, as opposed to those expressed
in terms of unknown parameters C0, C1 or θ. Our
expressions for the latter cases may be used to constrain
parameters by comparison with future experimental data.
We comment below on other possible experimental and
theoretical constraints on these parameters.
For the other neutral Xð2900Þ modes (columns 3 and 4)

we first recall the striking prediction that in the triangle
scenario with quark exchange, these modes would be
absent. For the other scenarios, even considering the
significant uncertainties (35%) on the numbers, the pre-
dicted fit fractions in the triangle (OPE) and resonance
(I ¼ 0 or I ¼ 1) interpretations are not consistent with one
another. Hence experiment may be able to discriminate
between these possibilities. (The factor of 4 relating the
resonance and triangle scenarios is due to R, see Table II.)
The previous observations can be useful even if only one

or the other of the modes in columns 3 or 4 is measured in
experiment. Measurement of both modes would be even
more revealing. Apart from the case of a resonance with
mixed isospin, the two modes satisfy Eq. (32), and so have
the same R. The relation between the modes is then a fixed
numerical factor (¼ 1.35) which comes from the other
terms in Eq. (65). Measured fit fractions which are
consistent with this ratio, but not with the predictions
for the triangle (OPE) or resonance (I ¼ 0 or I ¼ 1)
scenarios, support the triangle (EFT) scenario. On the
other hand, fit fractions which are not consistent with this
ratio would indicate a resonance of mixed isospin. In
principle, the mixing angle θ could be extracted from
the measured ratio.
We now move to the final two columns, for the charged

partners of the Xð2900Þ states. Absence of these modes
would be a striking signature of the I ¼ 0 resonance
scenario. In all other scenarios the charged modes are
expected, and since their predicted magnitudes differ
considerably between models, experimental measurement
of their fit fractions can discriminate among models. (The
predicted numbers do not overlap despite the significant
uncertainties.) Particularly noteworthy are the very large fit
fractions in the I ¼ 1 resonance scenario. If the Xð2900Þ
states are isovector resonances, as advocated in some
models, they would be extremely prominent in Bþ →
D0Xþ; Xþ → D̄0Kþ and B0 → DþX−; X− → D−K0.
We finally remark on modes which are sensitive to the

parameters C0, C1 or θ. As noted previously, future
experimental measurement of these modes can give con-
straints on the parameters, using the expressions in
Table III. Alternatively, if the parameters can be obtained
from elsewhere, the expressions in Table III can be used to
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give predictions for experiment. With this in mind, we now
give some suggestions for how the ratio C0=C1, and the
mixing angle θ, may be obtained from other experiments,
or from theory.
In principle, the ratio C0=C1 could be determined from

lattice QCD studies of relevant scattering process in several
charge channels, such as D̄�0K�0 → D−Kþ and D̄�0K�0 →
D̄0K0. These inelastic scattering processes have not pre-
viously been studied in lattice QCD; elastic D̄K scattering
is discussed in Refs. [43,44]. The ratio C0=C1 could also
perhaps be deduced from the quark model, where meson
scattering is described in terms of the exchange of light
mesons (such as π, ρ, η). We emphasize that predi-
ctions involving C0=C1 only apply if the interactions are
perturbative.
The mixing angle θ, which applies in the resonance

scenario, could be determined experimentally from the
relative branching fractions of Xð2900Þ decays in various
charge modes. Owing to the factorization discussed pre-
viously, in the resonance scenario the relative decay
branching fractions are independent of the production
mechanism, hence this approach could be useful not only
in B decays. The ratio of D−Kþ and D̄0K0 modes fixes the
mixing angle according to Eq. (59), and similarly for the
corresponding charge combinations in D̄�K and D̄K�. The
angle could also be extracted from the relative fractions of
different charge combinations in three-body final states
D̄Kπ and D̄�Kπ. It may also be possible to predict θ in
models, for example in the molecular scenario where
mixing arises from isospin-violating mass differences
among the constituents; the approach is however limited
by the uncertainties on the Xð2900Þ and K�þ masses.

VI. TWO-BODY BRANCHING FRACTIONS

Finally we give some additional results which apply
only to the resonance scenario. In this case, as noted in
Sec. IV D, the matrix element for B → DX;X → D̄K
factorizes into a product of matrix elements for production
(B → DX) and decay (X → D̄K), which implies a corre-
sponding factorization of the branching fractions, Eq. (41).
We emphasize that this factorization does not apply in

the triangle scenario. It makes no sense physically to
separate “production” (D̄�K or D̄1K loops) and “decay”
(the D−Kþ final state), considering that the origin of the
signal is exactly the interplay of these two processes. We
note also that attempting to impose such a factorization on
the matrix elements leads immediately to algebraic prob-
lems. An extreme example is the triangle scenario with QE,
in which the zero entry in the middle column of Table I
implies that one or the other of the matrix elements for
Bþ → DþX or X → D̄0K0 is zero, and similarly one or the
other of B0 → D0X or X → D−Kþ is zero. This is
obviously inconsistent with the nonzero entry in the left
column. More generally, by considering the general

parametrization of matrix elements from the top row of
Table I, it is easy to see that with the assumption of
factorization, the expressions are only self-consistent if
λ0 ¼ 0 or λ1 ¼ 0, corresponding to the I ¼ 1 and I ¼ 0
resonance scenarios. The mixed isospin states are also
obviously consistent with factorization. The conclusion is
that only resonance scenarios are consistent with a factori-
zation of matrix elements, hence branching fractions.
We thus concentrate exclusively on the resonance

scenarios in this section. Since the branching fractions
factorize, in addition to the previous relations among
BðB → DX;X → D̄KÞ, we get further relations among
BðB → DXÞ and BðX → D̄KÞ separately. These follow
trivially from Eqs. (50)–(59).
Using these, we can get lower limits on BðB → DXÞ. For

concreteness, we assume either I ¼ 0 or I ¼ 1; it is easy to
generalize to the case of mixed isospin which is, however,
less predictive.
For the neutral Xð2900Þ states, the total D̄K branching

fraction is

BðX → D̄KÞ ¼ BðX → D−KþÞ þ BðX → D̄0K0Þ: ð66Þ
Ignoring small differences due to phase space, the fractions
on the right-hand side are equal, implying

BðX → D−KþÞ ¼ 1

2
BðX → D̄KÞ: ð67Þ

Using this in Eq. (62), having factorized the branching
fractions on the left-hand side, we get the production
branching fraction for X1ð2900Þ,

BðBþ → DþXÞ ¼ ð1.35� 0.32� 0.32Þ × 10−4

BðX → D̄KÞ : ð68Þ

Note that, unlike most of our other results, this does not rely
on the assumed dominance of color-favored processes.
There is a similar prediction for BðB0 → D0XÞ, using (50)
and adjusting for the B0 lifetime. Results for X0ð2900Þ are
smaller by 5.6=30.6.
If the neutral X1ð2900Þ belongs to an I ¼ 1 multiplet,

from Eq. (51), the production branching fraction for its
charged counterpart is

BðBþ → D0XþÞ ¼ ð2.69� 0.53� 0.52Þ × 10−4

BðX → D̄KÞ ; ð69Þ

where we emphasize that the decay branching fraction in
the denominator is that of the neutral X1ð2900Þ. Again,
there are similar results for B0 decays, and for X0ð2900Þ.
The preceding equations imply lower limits

BðBþ → DþXÞ > ð1.35� 0.32� 0.32Þ × 10−4; ð70Þ

BðBþ → D0XþÞ > ð2.69� 0.53� 0.52Þ × 10−4; ð71Þ
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meaning that the production branching fractions are at least
a factor of two larger than those quoted in Ref. [22].
In Fig. 3 we plot Eqs. (68) and (69), showing BðBþ →

DþXÞ (solid line) and BðBþ → D0XþÞ (dashed) as a
function of the total D̄K decay branching fraction BðX →
D̄KÞ of the neutral X1ð2900Þ. On the right-hand side of the
plot we show some examples of production branching
fractions for conventional mesons which are also produced
via Cabibbo-favored transitions. It is remarkable that, in the
resonance scenario, the exotic Xð2900Þ states and their
possible charged partners are produced at least as copiously
as many conventional mesons.
With reference to the plot, note it would be quite natural

to have BðX → D̄KÞ ≪ 1, implying very large production
branching fractions BðB → DXÞ. This is because the
quantum numbers of X1ð2900Þ allow for several decays
other than D̄K. In particular, there are two-body modes
D̄�K, D̄K�, and several three-body modes including D̄Kπ
and D̄�Kπ. (The last of these could arise from the decay of
theK� constituent [13].) We also note that the observed D̄K
mode is P wave, whereas the three-body modes are Swave,
suggesting they could account for significant branching
fraction.
In the model of Ref. [13], the D̄K partial widths of

X1ð2900Þ are tiny. They find it impossible to reconcile
these with the X1ð2900Þ width and use this as an argument
against the molecular interpretation. Even if the missing
width could be explained in some other way, there would be
a further problem. The BðX → D̄KÞ fractions are Oð10−5Þ,
which is clearly impossible considering Eq. (68).

Another intriguing comparison is to Xð3872Þ:

BðB → Xð3872ÞKþÞ < 2.6 × 10−4: ð72Þ

Amongst exotic hadrons, Xð3872Þ is the one which has
been studied most thoroughly in experiment. Yet the
X1ð2900Þ has at least comparable, very likely larger,
production branching fraction, suggesting rich possibilities
for further experimental study.
Production branching fractions for X0ð2900Þ will be

somewhat smaller. This is because, as well as the sup-
pression by a factor 5.6=36, we expect BðX → D̄KÞ to be
larger than in the X1ð2900Þ case. The rationale is that the
observed D̄K mode is the only two-body decay allowed by
spin-parity, and since it is S wave, we expect it to account
for significant branching fraction. Additionally, since a
scalar cannot decay to three pseudoscalars, the D̄Kπ mode
which is possible for X1ð2900Þ is not possible for
X0ð2900Þ. The model calculation of Ref. [13] finds
BðX → D̄KÞ ≈ 0.9. Even with this large number, the
resulting production branching fractions (see Fig. 3) are
still in excess of several conventional mesons.

VII. CONCLUSIONS

Understanding the nature of the Xð2900Þ states requires
further experimental study in other production and decay
modes, and a search for their charged partners.
Intriguingly, we find that for the neutral Xð2900Þ states,

the channel with the largest fit fraction is the discovery
mode Bþ→DþX;X→D−Kþ. This is because the Xð2900Þ

FIG. 3. Production branching fractions for the X1ð2900Þ state and its possible charged partner, in the I ¼ 0 or I ¼ 1 resonance
scenarios. The vertical axis shows BðBþ → DþXÞ (solid) and BðBþ → D0XþÞ (dashed), in units of 10−4. The horizontal axis is the total
D̄K decay branching fraction BðX → D̄KÞ of the neutral X1ð2900Þ.
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signal can arise through a color-favored process, mediated
by triangle diagrams or resonances, whereas the exper-
imental background is color suppressed.
Another mode which is large for the same reason is

B0 → D0X;X → D̄0K0. We predict a significant fit fraction
of around 23%, regardless of the nature of the Xð2900Þ
states. Confronting this prediction with experiment would
be a useful test of the central idea in our approach, which is
that production is dominated by color-favored processes.
Among the remaining modes, we have shown that there

are characteristic patterns in production and decay which
discriminate unambiguously between competing models.
The triangle scenario with quark exchange is charac-

terized by the striking prediction that in Bþ → DþX, the
Xð2900Þ states are seen in D−Kþ but not D̄0K0, whereas
in B0 → D0X the pattern reverses, with the states seen in
D̄0K0 but not in D−Kþ. The modes which are forbidden in
this scenario are allowed in the alternative triangle scenario
where the interactions are based on OPE. Their fit fractions,
however, would be smaller than in the resonance scenario.
The two triangle scenarios both imply a charged partner
state, but the predicted fit fractions are sufficiently different
from each other, and from the resonance scenario, that the
experiment could discriminate among the models.
In the resonance scenario, the neutral Xð2900Þ states

have the same fit fractions regardless of whether they are

I ¼ 0 or I ¼ 1. The two possibilities would instead be
distinguished by the existence of a charged partner in the
latter case, which has enormous fit fractions even exceed-
ing that of the observed X1ð2900Þ in its discovery mode.
In this context we suggest the experimental study of
Bþ→D0Xþ;Xþ→D̄0Kþ and B0 → DþX−; X− → D−K0.
If the Xð2900Þ states belong to an isotriplet, their charged
partners would be abundant in these modes.
The neutral Xð2900Þ states could alternatively have

mixed isospin, although this will be difficult to establish
experimentally, unless the mixing angle is very large. The
modes B0→D0X;X→D̄0K0 and B0 → D0X;X → D−Kþ
are useful in this context; deviation of the ratio of their fit
fractions from 1.35 would be a “smoking gun” of a
resonance with mixed isospin.
Finally we note that in the resonance scenario, where

production and decay factorize, the production branching
fractions of BðX → D̄KÞ are very large, comparable to
those of conventional mesons and larger than that of
another exotic state, Xð3872Þ.
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