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Abstract

Negative cooperativity is a phenomenon in which the binding of a first ligand or substrate

molecule decreases the rate of subsequent binding. This definition is not exclusive to

ligand-receptor binding, it holds whenever two or more molecules undergo two successive

binding events. Negative cooperativity turns the binding curve more graded and cannot be

distinguished from two independent and different binding events based on equilibrium mea-

surements only. The need of kinetic data for this purpose was already reported. Here, we

study the binding response as a function of the amount of ligand, at different times, from

very early times since ligand is added and until equilibrium is reached. Over those binding

curves measured at different times, we compute the dynamic range: the fold change

required in input to elicit a change from 10 to 90% of maximum output, finding that it evolves

in time differently and controlled by different parameters in the two situations that are identi-

cal in equilibrium. Deciphering which is the microscopic model that leads to a given binding

curve adds understanding on the molecular mechanisms at play, and thus, is a valuable

tool. The methods developed in this article were tested both with simulated and experimen-

tal data, showing to be robust to noise and experimental constraints.

Author summary

When two successive events occur, it may make sense to know if they affect somehow

each other, particularly if the properties of the second event are modified by the occur-

rence of the first one. Two scenarios lead to the same overall outcome: first, the two events

are identical but they interfere with each other, and second, the two events are indepen-

dent but non identical. The interference caused in the first scenario produces the same

result as having a second event with different properties. Now, let’s name these events

as bindings, the interference as negative cooperativity, and the non-identical events as

independent binding. In this work we focus on the dynamic process by which the two
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scenarios produce the same result. We selected a relevant but not characterized before

property of the binding process, called its dynamic range, and found it behaves differently

in these two scenarios and controlled by different parameters of interest. Based on this fea-

ture, we developed and algorithm to distinguish between negative cooperativity and inde-

pendent binding based on the time evolution of the dynamic range. This tool allows to

discover the microscopic model behind the data and may be useful in other similar prob-

lems in cell signaling.

Introduction

Cells detect input signaling molecules using receptors, proteins usually located on the cell sur-

face embedded in the plasma membrane. Activated receptors then transmit the signal to the

interior of the cell through a series of downstream processes that typically lead to changes in

gene expression, resulting in an appropriate output response to the input. In a way, the sys-

tem’s overall input-output curve summarizes its biological characteristics and function [1].

Receptors have usually more than one binding site. Cooperativity in binding is defined as a

change in the properties of a given site depending on the state (occupied or not) of the other.

For two identical sites, if the second binding is weaker once the first site is occupied, this is

called negative cooperativity. The opposite corresponds to positive cooperativity.

Cooperativity is widely spread in biological systems and has an important role in regulating

signaling responses [2,3], particularly, cooperative interactions are used to accelerate or other-

wise enhance specific processes [3]. It usually arises from allosteric communication between

the binding sites, but not exclusively. Enforced proximity or the avidity effect was described in

protein-protein interactions and could lead to cooperativity without allosteric communication

[2]. Cooperativity not only occurs during ligand binding; it can also happen in other processes

involving multiple units, such as the folding and unfolding of proteins, as well as the melting

of phospholipid chains that comprise the cell membrane. In these cases cooperativity can be

macroscopically understood by analogy with a first-order phase transition [4]. Positive coop-

erativity in folding of proteins means that a second folding is more likely to occur than a first

one, a third folding more likely to occur than a second, and so on. This leads to a critical point

in the variation of some control parameter (usually temperature) where the folding changes

abruptly, giving an all-or-none response. The relation between cooperativity and first-order

phase transitions is also found in different systems, from interactive atoms [5] to epidemics

modeling [6]. Another example where cooperativity arises is the unwinding of DNA. Sections

of DNAmust first unwind in order for the DNA to carry out its other functions, such as repli-

cation, transcription, and recombination. Positive cooperativity among adjacent DNA nucleo-

tides makes it easier to unwind the whole group than it is to unwind the same number of

nucleotides spread out along the DNA chain. However, enzymes are also involved in this

example, so binding is not completely excluded. There are also examples of membrane-derived

cooperativity and cooperative interactions between cells. Cooperativity has also shown to have

an important role in the area of drug discovery [3]. Cooperativity, even when it was recognized

as a critical enabling mechanism for life, remains poorly understood.

Positive cooperativity produces an input-output response that looks switch-like, in the

sense that low input produces no significant output until reaching a threshold, while inputs

greater than the threshold produce almost maximal output. A typical example is the binding

of oxygen to hemoglobin [7]. Negative cooperativity, on the other hand, gives an input-output

curve that is more graded than the curve with no cooperativity. However, it has recently been
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shown that if ligand depletion is considered, negative cooperativity can also produce a marked

threshold in the input-output curve [8]. Despite the fact that negative cooperativity is almost

as common as positive, it has received less attention. More than 45 years ago, A. Cornish-Bow-

den wrote an article highlighting the physiological significance of negative cooperativity [9].

Years have passed and the physiological role of negative cooperativity has remained unclear

[10]. Al least, what became clear is that negative cooperativity is not a rare event that occurs in

a few enzymes with unusual structural features, on the contrary, it is an ubiquitous feature of

enzymes [11] and it is relevant in a variety of processes. To mention some of them, the advan-

tages of negative cooperativity were characterized in metabolic systems [12] using computa-

tional models in the context of an inhibitor binding to an enzyme. On a different context,

negative cooperativity has shown to play an important role in tuning transcriptional regula-

tion. The prevalence of intrinsic disorder and multivalency among transcription factors sug-

gests that formation of heterogeneous, dynamic complexes is a widespread mechanism, and

negative cooperativity is an important feature in this scenario [13]. Finally, a direct correlation

between negative cooperativity and receptor oligomerization was reported for a particular sub-

family of GPCR [14]. These studies together with the accumulating evidence that most, if not

all, GPCRs may oligomerize lead to the speculation that negative cooperativity is a general phe-

nomenon in, at least, some subfamilies of GPCRs.

Negative cooperativity is not readily distinguishable from ligand binding to multiple inde-

pendent sites present on a given (macro)molecule, each with different affinity. However, this

indistinguishability only happens at the equilibrium states, the systems are not identical over

the complete time courses of the binding reaction. As far as we know, the oldest references in

the literature related to the kinetic differentiation between negative cooperativity and indepen-

dent binding are due to Malatesta and Ascenzi [15] and to Wang and Pan [16]. In the first ref-

erence [15], a very short article from 1994, the indistinguishability is stated together with an

example, and it is mentioned with no proof that it may be possible to discriminate between the

two ligand binding mechanisms only from the kinetic viewpoint. The second reference [16],

proposed a kinetic method to distinguish between these two possible binding mechanisms

from the closed-form solution of the differential equations obtained under two restrictive

approximations: irreversible binding and pseudo-first order for the ligand association step.

In more recent years, two groups have added valuable works into the kinetic differentiation

approach. One of them showed that kinetics can be used to distinguish between different mol-

ecules with the same equilibrium distribution, based on a stochastic model as well as on a

deterministic one [17]. The other one used deterministic simulations and added an equation

for the concentration of ligand [18]. In fact, they have previously reported an experimental

study showing the efficacy of the kinetic approach in identifying two classes of binding sites

for that system [19].

The focus of the current work is on studying how the dose-response curve of systems con-

sisting of two binding sites evolves over time and how this evolution confers a tool to add on

the kinetic differentiations approaches previously developed [20]. We have shown before that

when a ligand-receptor system is exposed to a step-like temporal profile of ligand, the occupied

receptor dose-response curve changes over time in such a way that the EC50 (concentration of

ligand that occupies 50% of the receptors) becomes progressively smaller with a minimum

when the binding reaction reaches steady-state (equilibrium binding) [21]. We have called the

property of systems that change their EC50 over time, shift, and the systems that exhibit this

property, shifters. We have later shown that covalent modification cycles and gene expression

systems work as shifters as well [22]. In the present article we focus on independent binding

and negative cooperativity, as they are both shifters but with different properties. Based on

these properties, we designed an algorithm to distinguish those two situations.
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What our work adds on the kinetic differentiation approaches developed before is three-

fold. First, it is based on an observable that is both global and time-dependent: the dynamic

range of the dose-response curve as a function of time. It is global in the sense that is extracted

from the input-output curve, so it contains somehow information of the output at different

inputs. These features of the selected observable make it useful for the goal of this paper and

robust against noise and experimental constraints. Second, the ideas are organized as a method

or algorithm, with several checkpoints, facilitating the connection between theory and experi-

ment. Third, the proposed method is tested overall the parameter space, evaluating its perfor-

mance both with simulated and experimental data.

The organization of the paper is as follows. We first study binding models with two binding

sites, focusing on two microscopic schemes: independent binding and negative cooperativity

with identical sites, showing that there is a manifold in the parameter space where both

schemes lead to the same equilibrium dose-response curve. We then apply our shifting formal-

ism focusing on the dynamic range (the fold change required in input to elicit a change from

10 to 90% of maximum output) of the dose-response curve during shifting. Based on the tem-

poral evolution of the dynamic range we then design an algorithm able to differentiate between

independent binding and negative cooperativity. We evaluate the performance of the algo-

rithm with numerical simulations with different levels of stochasticity. Finally, we test the algo-

rithm with experimental data. We conclude by discussing the potential implications of the

results in the article.

Results

Binding models with two binding sites: A single equilibrium dose-response
curve, two possible scenarios behind

We consider a receptor R with two binding sites for the same ligand L. From there, we focus

on two scenarios, an independent binding model (IB) and a negative cooperativity model

(NC). We consider different binding (kij) and unbinding (lij) rates for the two sites (01 and 10)

in the IBmodel, while for theNCmodel the sites are identical, thus, characterized by a set of

binding (k) and unbinding (l) rates and a cooperativity factor ω, as indicated in Fig 1A. If ω>

1, the second binding rate is larger than the first one, modeling positive cooperativity. If ω< 1,

it is smaller, resulting in negative cooperativity.

The deterministic kinetic description of the two binding models (see Methods) leads to the

dose-response curves in equilibrium (θ vs. L) expressed by Eqs (1) and (2) for the IB andNC

model respectively.

θIB ¼ 1

2

LðK
10
þ K

01
þ 2LÞ

K
10
K

01
þ ðK

10
þ K

01
Þ L þ L2

¼ 1

2

L

K
10
þ L

þ L

K
01
þ L

� �

ð1Þ

θNC ¼ LKþ oL2

K2 þ 2KLþ oL2
; ð2Þ

K10 and K10 are the dissociation constants for each binding (Kij = lij/kij) in the IBmodel,

and K and K/ω are the dissociation constants in theNCmodel (K = l/k). Two expressions are

included for the IBmodel because in the right one it is easier to see the independency between

sites, as the total expression is the average of two single binding models. The left expression

results from taking a common denominator and makes it easier to compare IB andNC dose-

response curves. By equaling both expressions, we find the following conditions leading to the
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same equilibrium dose-response curves for IB andNC scenarios:

K2

o
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ð3Þ
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2
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This system can be solved only if ω< 1, exhibiting an identifiability problem between IB

andNC scenarios. The solutions are:

K
10
¼ Kþ

ffiffiffiffiffiffiffiffiffiffiffiffi

1� o

p

o

ð5Þ

Fig 1. Binding models with two binding sites: Independent binding and negative cooperativity leads to identical dose-response curves in
equilibrium. (A). Independent binding (IB, left) and negative cooperativity (NC, right) between a receptor R with two binding sites and a ligand L. Rij,
with i, j = 0,1, explicitly indicates if the site is empty (0) or occupied (1). IB has four parameters, representing binding (kij) and unbinding (lij) rates for
the two different sites (01 and 10), whileNC has three parameters, binding (k) and unbinding (l) rates of the two identical sites and ω for cooperativity.
(B). Manifold where IB andNC binding models lead to identical dose-response curves in equilibrium, it is obtained from Eqs (3) and (4). One point in
this plot represents a set of (K10, K01) from IB and (K, ω) fromNC. For this panel ω< 1, ω indicated in color scale and ω = 1 is the black line. (C).NC
and IB equilibrium dose-response curves for the proportion of occupied sites (θ), L is in log scale and K = 1 (Eqs (1) and (2)). ForNC, there is one curve
for each value of ω in color scale, the black line represents ω = 1 and separates positive cooperativity curves (region I) from negative cooperativity ones
(region II). The curves in region II can also be obtained with the IBmodel because of the non-identifiability problem.

https://doi.org/10.1371/journal.pcbi.1007929.g001
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When the cooperativity factor is equal to 1 (ω = 1), both roots are null and correspond to

the case of identical and independent sites (K10 = K01 = K = K/ω). When it is greater than 1

(ω> 1), both roots are complex numbers having no physical meaning. The solution of system

of Eqs (3) and (4) leads to the manifold plotted in Fig 1B. One point in this plot represents one

set of (K, ω) fromNC and (K10, K01) from IB, which have the same equilibrium dose-response

curve. Each point represents infinite different sets ofNC or IB parameters, as only the dissoci-

ation constants are specified. Also, for any set of (K, ω), there are two sets of (K10, K01), as a

result of a reflection symmetry along the vertical plane defined by K10 = K01 (vertical gray

plane), which represents both model’s symmetry in swapping binding sites (01$10).

Dose-response curves are plotted in Fig 1C, with ω coded in a color scale. The curve with

ω = 1 (in black) divides the plot in two regions, I and II. Region I corresponds to positive coop-

erativity curves only (Eq (2), ω> 1) while region II represents both negative cooperativity (Eq

(2), ω< 1) and independent binding curves (Eq (1)). These two sets of curves in region II are

identical, meaning that they are obtained by Eqs (1) or (2), the parameters in both expressions

are related by the conditions in Eqs (3) and (4). Moreover, we can use these conditions to find

which set ofNC parameters corresponds to an indistinguishable set of IB parameters and vice

versa, defining an effective cooperativity factor for an IB set.

Focusing on pre-equilibrium conditions

A dose-response curve is typically thought of in equilibrium, i.e. several doses are applied

to the system and the equilibrium response is measured. The different pairs dose-response

are then used to build the equilibrium dose-response curve. This curve is usually, but not

always, an increasing monotonic function of the dose, until reaching saturation, as is the

case for a simple ligand-binding reaction (Fig 2A). Some global quantities characterize

the curve, like the EC50 (the concentration of the dose that produces 50% of the maximal

response) and the dynamic range DynR (the range of doses that can be distinguished

according to their responses, usually calculated as indicated in Methods). This last concept

is closely related to the span in free ligand concentration introduced by G. Weber in 1965

[23]. If the response to a certain applied dose is measured at a time t< teq such that the sys-

tem has not reached equilibrium, and this is done for all the doses at the same time t< teq, a

pre-equilibrium dose-response curve can be plotted (Fig 2B and 2C). In previous articles we

studied the temporal evolution of dose-response curves [21,22], finding that several simple

signaling components, such as a ligand-receptor system and a covalent modification cycle,

shift their dose-response curves in time from right to left. This implies the EC50 is a decreas-

ing function of time, a property that could have interesting implications in signaling at a sys-

tems level. The DynR also evolves in time, as indicated in Fig 2D for a receptor with a single

binding site.

We studied how theDynR evolves in time for the two models in Fig 1A, finding interesting

differences between them. By doing a parameter scan, as explained in the Methods section, we

obtained 10000 sets of parameters in the non-identifiability manifold (Fig 1B), solved the cor-

responding equations, and computed theDynR versus time for each one. In this way, we gen-

erated two databases, with all the possibleDynR versus time behaviors for IB andNCmodels,

respectively. The results are exhibited in Fig 3. By plotting each database, IB andNC, using a

color scale coding for different parameters or combinations of parameters, and undergoing
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different calculations (see S1 Text), we identified three control parameters as described in the

following paragraphs.

For theNCmodel,DynR is always an increasing function of time and theDynR temporal

curves are ordered by ω (Fig 3B and 3C). For IB, on the contrary,DynR an be an increasing,

decreasing or biphasic function of time and there is no order imposed by ω (remember that ω

is an effective cooperativity factor in this model) (Fig CA and Fig CC in S1 Text). In Fig 3C we

plotDynR for very early times, what we callDynR(t! 0), versus ω for both databases. The

valueDynR(t! 0) was estimated analytically (S1 Text) for the IBmodel, finding that it

depends on k10/k01, as confirmed by Fig 3D and 3F. Since in theNCmodel k10 = k and k01 =

ωk, the ratio k10/k01 is 1/ω, explaining the results in Fig 3A–3C. Finally, we identified that

parameter l (unbinding rate in the NCmodel) controls the time where the inflection point

occurs inDynR versus time forNCmodel (tip). The calculations in S1 Text explain this last

dependency.

Fig 2. The dose-response curve evolves in time. (A). Scheme representing a receptor with a single binding site. (B). Proportion of occupied binding
sites (θ) versus time for different doses (L) coded in a color scale. Two vertical dashed lines indicate pre-equilibrium and equilibrium. (C). Proportion of
occupied binding sites (θ) versus dose (L) for the two times indicated in (B). EC10, EC90 and the segment going from one to the other are indicated for
the two curves. (D).DynR versus time, computed as the log of EC90/EC10.

https://doi.org/10.1371/journal.pcbi.1007929.g002
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In Fig 3J we summarize how each of the control parameters (ω, k10/k01, and l) control dif-

ferent properties of the curveDynR versus time: ω controlsDynR(t! 0) in theNCmodel

andDynR(t!1) in both models, k10/k01 controlsDynR(t! 0) in the IBmodel, and l con-

trols the time where the curveDynR versus time has an inflection point in theNCmodel. In

the following section, we exploit these differences to design an algorithm that allows discrimi-

nation between negative cooperativity and ligand binding to independent sites using pre-equi-

librium properties of binding curves (i.e. the three control parameters ω, k10/k01, and l).

An algorithm to discriminate between negative cooperativity and
independent binding using pre- equilibrium properties of dose-response
curves

TC algorithm. As explained in the Introduction, the same question we are addressing in

this article, i.e. how to discriminate between negative cooperativity and ligand binding to inde-

pendent sites, was tackled in a recent paper by Flecha and coworkers [18] following a different

approach based also in binding kinetics. Their approach implies fitting the experimental time

courses with the two models under consideration. The model that better describes the data is

selected by statistical criteria. Based on these ideas and adding constrains to the fitting given

Fig 3. The dose-response curve evolves in time differently for IB and NCmodels. The plotsDynR versus time (panels (A), (B), (D), (E), (G), (H))
were computed from 10000 parameter sets chosen randomly in the non-identifiability manifold, as explained in the Methods section. For t> 103 all the
curves are in equilibrium, which is the same for both models; for t< 10−3 all the curves are in pre-equilibrium. Panels (A), (D), (G) come from the IB
model; panels (B), (E), (H) come from theNCmodel. In different panels different parameters are coded in a color scale: ω in (A) and (B), k10/k01 in (D)
and (E), and l in (G) and (H), we call them control parameters, they control the pre-equilibrium properties of theDynR versus time curves. Only in
panels (D) and (E), and (C), (F), (I) the complete databases with 10000 sets are included. For clarity, panels (A) and (B) contain only curves with 0.9<
l< 1.1 (207 curves), and panels (G) and (H) contain only curves with 0.010< ω< 0.011 (218 curves). Complete databases are included in S1 Text (Fig
D in S1 Text). (C).DynR(t! 0) versus ω. (F).DynR(t! 0) versus k10/k01. (I). tip (time at which the inflection point inDynR versus time occurs)
versus l. In panels (C), (F), (I), brown dots for IB, indigo dots forNC. (J). Summary of how each of the considered parameters (ω, k10/k01, and l)
control different properties of the curveDynR versus time: ω controlsDynR(t! 0) inNCmodel andDynR(t!1) in both models, k10/k01 controls
DynR(t! 0) in IBmodel, and l controls the time where the curveDynR versus time has an inflection point inNCmodel.

https://doi.org/10.1371/journal.pcbi.1007929.g003
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the macroscopic equilibrium constants obtained from the data, we developed the following

algorithm (TC algorithm, TC from “time course”). The input is θ vs. time for different L

(Fig 4A, data in this example was generated with the IBmodel), and the output is the guessed

identity of the data, i.e., whether it belongs to the IB orNCmodel. The TC algorithm has three

steps:

Step 1. Fit the curve θ vs. L at equilibrium with Eq (2) to get (K, ω) for theNCmodel and

(K10, K01) for the IBmodel (Fig 4B).

Step 2. Simulate the IB and NCmodels (Fig 1A and Eqs (9) and (10)) with the constraints

obtained in Step 1. The NCmodel has three parameters (k, l, ω) and the IBmodel has four

parameters (k10, k01, l10, l01). In Step 1, two fitted values are obtained in each model, result-

ing in only one free parameter forNC (k and l with the constraint l/k = K) and two for IB

(k10, k01, l10, l01 with the constraints l10/k10 = K10 and l01/k01 = K01). We use the optimization

routine fminsearch in Matlab to fit the input data with these two models and its free param-

eters (Fig 4C).

Fig 4. TC algorithm. (A). Input: θ vs. time for different L, coded in a colorscale. Dashed line indicate equilibrium. (B). θ vs. L at equilibrium fitted with
Eq (2) to get ω, K and K10, K01. (C). Time courses simulated withNCmodel (left) and IBmodel (right) with the constraints obtained in (B). Only the
best fit (dashed lines) is included in each plot. For the example in this figure the data was generated with the IBmodel (parameters in Table A in S1
Text).

https://doi.org/10.1371/journal.pcbi.1007929.g004
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Step 3. We compute the L2 norm of the difference between the input data and the two two-

variables functions θ(L, t) obtained with the fitting, one for each model. The fact that the IB

model has one extra parameter compared with theNCmodel introduces a penalization in

the fitting (since the higher the number of parameters, the easier to fit a given target), result-

ing in a corrected comparison between IB andNC distances (see S1 Text). The lower of the

two distances (IB and NC) provides the output of the procedure. Step 3 is illustrated in the

upper row of Fig 5.

Improving the TC algorithm by using DynR information: TC+DR
algorithm

Having the two distances from Step 3 in the TC algorithm, we define a quantity C from an F-

test [24], using Matlab fcdf (F cumulative distribution function) which represents the probabil-

ity of each dataset to belong toNC or IB, considering that IB has one extra parameter (details

in the S1 Text, Fig FA and Fig FB in S1 Text, where the TC+DR algorithm efficiency depen-

dence with C is evaluated). If the minimum distance in IB fit is much lower than the one in

NC, C is approximately 1. On the other hand, if the minimum distance inNC fit is much

lower than the one in IB, C is approximately 0. Oppositely, if the two minimum distances are

similar, this would mean that is not possible to decide which model generated the data, in that

case C is approximately½. Summarizing, C is a quantity between 0 and 1,½meaning absolute

uncertainty and 0 or 1 meaning absolute certainty toNC or IB, respectively. By fixing two

threshold values of C, we set the criteria on how much different these two distances must be to

decide which model originated the data. The closer to½ this value is, makes the discrimination

less strict, i.e. it requires a lower difference between the two distances. We fix the arbitrary

thresholds in 1/3 and 2/3: if C is in between them we assume that the information provided by

the TC algorithm is not enough to decide which model generated the data and continue with

the following steps based on the information described in Fig 3. We compute the curveDynR

versus time from the data, we call it the target curve (Fig 5, second row), and focus on the

three control parameters analyzed in Fig 3 and obtained from Steps 1 and 2: ω, k10/k01 and l. In

what follows we describe different sequential tests or checkpoints that are applied to a dataset

in order to decide the identity of the underlying model (NC or IB).

Checkpoint 1: target curve global behavior. If the target curve is not monotonically increas-

ing, i.e. it is biphasic or monotonically decreasing, then it is concluded that the data comes

from an IBmodel (see databases in Fig 3). If it is monotonically increasing, then we con-

tinue by quantifying several aspects of the target curve.

Checkpoint 2: analyzing DynR(t! 0). We get the value ofDynR at the earliest time available.

If the shape of the target curve allows assuming that the value ofDynR at the earliest time is a

reasonable estimation ofDynR(t! 0) (see S1 Text), the question is if it is well described by

the functionDynR(t! 0) vs. ω (Fig 3C), by the functionDynR(t! 0) vs. k10/k01 (Fig 3F),

or by both. In this last case, we go to the next checkpoint. The functionsDynR(t! 0) vs. ω

andDynR(t! 0) vs. k10/k01 are numerically obtained by the databases analysis described in

Fig 3. Having estimations of ω from the equilibrium fit in Step 1 and k10/k01 from Step 3, we

compare the value ofDynR(t! 0) of the target curve withDynRNC(t! 0) at the estimated

ω andDynRIB(t! 0) at the estimated k10/k01. If the difference betweenDynR(t! 0) and

DynRNC(t! 0) at the estimated ω is higher than an arbitrary threshold (see S1 Text), then it

is concluded than the data comes from an IBmodel. If it is lower, we analyze the difference

betweenDynR(t! 0) andDynRIB(t! 0) at the estimated k10/k01, if it is higher than an arbi-

trary threshold (see S1 Text), it its concluded than the data comes from anNCmodel. If
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DynR(t! 0) if well described by bothDynRNC(t! 0) andDynRIB(t! 0), then the next

checkpoint is needed.

Checkpoint 3: analyzing tip. We end up here in cases where C is lower than the threshold (i.e.

the fitting obtained by steps 1–3 are both good or both bad), the target curveDynR is an

Fig 5. A combined algorithm to distinguish between IB and NCmodels based on the differences in binding kinetics and DynR temporal
evolution. Columns contain 7 examples of data generated with the two models. The identity of each example (IB orNC) is indicated in each column
header and follows a color code, brown for IB and indigo forNC. Parameters that generated the data are listed in Table A in S1 Text. The data was
produced using stochastic simulations as explained in the Methods section, with a total number of receptors of 1000. Data appears to be noisier for
longer times due to the logarithmic scale used in the figure. First row. Input data (θ vs. time for different values of L) together with the best IB fit
(dashed brown lines) and the bestNC fit (dashed indigo lines). Second row.DynR versus time target curve. Third row. PredictedDynR(t! 0)
according to the value of ω obtained from Step 1, indicated with an indigo horizontal dashed line. The upper and lower lines are the corresponding
thresholds (see S1 Text). Fourth row. PredictedDynR(t! 0) according to the value of k10/k01 obtained from Step 2, indicated with a brown horizontal
dashed line. The upper and lower lines are the corresponding thresholds (see S1 Text). Fifth row. Predicted time for theDynR(t) inflection point (tip),
according to the value of l obtained from Step 2, indicated with an indigo vertical dashed line. The dashed lines to the left and to the right are the
corresponding thresholds (see S1 Text). In Example 1, C is higher than the threshold, so the algorithm indicates the data comes from anNCmodel. In
Examples 2 to 7, the fits are both bad (2, 3, 6) or both good (4, 5, 7), so C does not allow a decision and further analysis is needed. In Example 2,DynR

is decreasing with time, this can only happen in the IBmodel. In Examples 3 to 7,DynR is an increasing function of time. In Example 3, the range
predicted by theNCmodel forDynR(t! 0) does not contain the value ofDynR(t! 0) from the target curve, so the data comes from an IBmodel. In
Examples 4 to 7, the value ofDynR(t! 0) from the target curve is within the predicted range, so both models can explain the data and further analysis
is needed. In Example 4, the range predicted by the IBmodel forDynR(t! 0) does not contain the value ofDynR(t! 0) from the target curve, so the
data comes from anNCmodel. In Examples 5 to 7, the value ofDynR(t! 0) from the target curve is within the predicted range, so both models can
explain the data and one last checkpoint is needed. In Examples 5 and 7, the time where the inflection point in theDynR curve occurs (tip) is well
described by the range predicted by theNCmodel, so it is concluded that these two examples correspond to theNCmodel. In Example 5 this
conclusion is right, in Example 7 is not. This Example illustrates the only group of situations where the algorithm fails. A global analysis indicates that
only the 5% of the cases fall in this group (this number corresponds to R0 = 1000, which is the value used in the seven examples analyzed in this figure).
Finally, in Example 6, tip is outside the range predicted by theNCmodel, so it is concluded that the data comes from the IBmodel.

https://doi.org/10.1371/journal.pcbi.1007929.g005
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increasing function of time, andDynR(t! 0) is well described by bothDynRNC(t! 0)

andDynRIB(t! 0), meaning that up to this point both models could explain the data. Hav-

ing the estimation of l from Step 3, we compare the tipData (time of the inflection point of

the target curve) with the tipNC at the estimated l, according to the function in Fig 3I. If the

difference between tipData and tipNC is higher than an arbitrary threshold (see S1 Text),

then it is concluded than the data comes from an IBmodel. If it is lower, it is concluded

that the data comes from theNCmodel. This last conclusion is mistaken only in 26, 7, 5,

and 1.5% of cases, each value corresponding to different total number of receptors (R0 = 10,

100, 1000 and1 respectively), i.e. to different levels of stochasticity.

The procedure described by the three checkpoints is illustrated in Fig 5, where 7 examples

were selected indicating the different possible outcomes of each checkpoint.

Performance of TC and TC-DR algorithms

In order to test and compare the performance of the two algorithms (TC alone and TC+DR),

we computationally simulated IB andNCmodels both with deterministic and stochastic

methods, in this last case for different total number of receptors (R0 = 10, 100, 1000) (see Meth-

ods for details). Examples of dose-response curves for different times and the corresponding

DynR versus time curves, obtained with R0 = 10 and R0 = 1000, are included in Fig 6A. We

then randomly selected 100 different sets of parameters for each model, chosen by Latin

Hypercube Sampling [25], and applied both algorithms to all of them (Fig 6B). The combined

one has very high performance (75% of correct definitions) even for very noisy simulations

(R0 = 10).

Fig 6. (A). Testing the algorithms with simulated stochastic data. Dose-response curves for different times in color scale (time evolves from pink to
black). Examples for R0 = 10 (up and left) and R0 = 1000 (up and right) (R0 is the number of total receptors). SimulatedDynR versus time (target
curves), for R0 = 10 (bottom and left) and R0 = 1000 (bottom and right). Parameters provided in Table A in S1 Text. (B). Performance of TC and a
combined TC and DR algorithms in discriminating between IB and NCmodels. Performance of the TC algorithm alone (pink line) and combined
with DR analysis (green line), in terms of the total number of receptors, where corresponds to deterministic simulations.

https://doi.org/10.1371/journal.pcbi.1007929.g006

PLOS COMPUTATIONAL BIOLOGY Discriminating between negative cooperativity and independent ligand binding

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007929 June 4, 2020 12 / 21

https://doi.org/10.1371/journal.pcbi.1007929.g006
https://doi.org/10.1371/journal.pcbi.1007929


The algorithm applied to experimental data

Even though we tested the algorithms with noisy simulated data, there are other sources of

uncertainty when applying the different steps and checkpoints to experimental data, namely:

the temporal resolution at which the data was acquired, the step in ligand concentrations at

which the dose-response curve was obtained, how wellDynR(t! 0) can be estimated, and if

the equilibrium is reached or not. To test all this together, we selected four sets of experimental

data from the literature.

Before describing the data, we consider all the possible scenarios with two binding sites.

These two binding sites can be identical or different. Each category can have cooperativity or

not. So, the two binding sites space is divided in four, as summarized in Fig 7. The identical

and cooperative region contains theNC cases studied in this paper (and positive cooperativity

cases as well) (Fig 7 up and right), while the different and non-cooperative region contains

the IB cases studied in this paper (Fig 7 bottom and left). The identical and non-cooperative

region behaves as a single binding site model, so it is well described by bothNC and IBmodels,

provided that the cooperativity factor is ω = 1 or K10 = K01, respectively (Fig 7 up and left).

Summarizing, having data that comes from a two binding site experiment, and applying the

ideas developed in this paper, the possible outcomes are:NC describes the data, IB describes

the data, both NC and IB describe the data with ω = 1, none of them describe the data, cover-

ing all possibilities with two-binding sites. In Fig 7 we include the output of studying experi-

mental data sets corresponding to these four cases (more details in the S1 Text).

The NC experimental data in Fig 7 (upper right panel) comes from an article studying

ligand binding to DNA [26] (data extracted from Fig 3D of the cited article). The ligand is a

chiral helical macrocyclic lanthanide complex, and it binds to a GC-duplex DNA sequence,

which is a periodic sequence with 17 GC repetitions. The binding sites are identical because

the ligand binds GC. The data was acquired with Fourier transform-surface plasmon reso-

nance (FT-SPR) experiments [27]. In the article it is recognized that no positive cooperativity

emerges from the data. We found that anNCmodel explains the data with parameters in

agreement with those reported in the article (see Table 1). This is consistent with the fact that

the ligand molecules size is similar to the receptor size (the 17 GC repetitions), leaving less

space for a second binding.

The IB experimental data (Fig 7, lower left panel) comes from an article performing a

kinetic analysis of ligand binding to interleukin-2 receptor complexes created on an optical

biosensor surface [28] (data extracted from Fig 1C of the cited article). The interleukin-2

receptor (IL-2R) is composed of at least three cell surface subunits, IL-2Rα, IL-2R∏, and IL-
2Rγc. On activated T-cells, the α- and β-subunits exist as a preformed heterodimer that simul-

taneously captures the IL-2 ligand as the initial event in formation of the signaling complex.

The data analyzed here comes from an experiment in which they compare the binding of IL-2

to biosensor surfaces containing either the α-subunit, the β-subunit, or both subunits together.
Equilibrium analysis of the binding data established IL-2 dissociation constants for the indi-

vidual α- and β-subunits of 37 and 480 nM, respectively. Surfaces with both subunits immobi-

lized, however, contained a receptor site of much higher affinity, suggesting the ligand was

bound in a ternary complex with the a- and β–subunits. Since the experiment we selected was

done with an excess of the β–subunit in a 1:3.4 molar ratio, this data is expected to behave as

IB, one binding site being the β–subunit, the other one being the preformed heterodimer. The

data was acquired with SPR experiments.

The data corresponding to identical binding sites with no cooperativity (Fig 7, upper left

panel) comes from an article measuring the binding between carbonic anhydrase isozyme II

(the ligand) and carboxybenzenesulfonamide (the receptor) [27] (data extracted from Fig 6A

PLOS COMPUTATIONAL BIOLOGY Discriminating between negative cooperativity and independent ligand binding

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007929 June 4, 2020 13 / 21

https://doi.org/10.1371/journal.pcbi.1007929


of the cited article). The data was acquired with SPR experiments and reported to correspond

to a single-site binding model. Finally, the data corresponding to different and cooperative

binding sites (Fig 7, lower right panel) comes from an article studying the glucocorticoid

receptor binding to genomic response elements [29] (data extracted from Fig 5A, upper left

panel, of the cited article). The response elements were synthetized in the analyzed article and

are different (Pal-R is the one corresponding to the data extracted), thus leading to different

Fig 7. TC + DR algorithm applied to experimental data. The two binding sites space is divided in four: left/right panels do not have/have
cooperativity, upper/lower panels do not have/have different binding sites. In all four panelsDynR vs. time is plotted, filled dots are the data, indigo/
brown solid line is theDynR expected from theNC/IBmodel. Schemes with the microscopic models are superimposed in each panel.Up and left, data
from a one site model, both curves (DynR fromNC and from IB) are the same and fit the data.Up and right,NC experimental data, bottom and left,
IB experimental data (details of the steps and checkpoints applied to these two datasets are in Fig G in S1 Text). Bottom and right, data from a two
different sites binding experiment with positive cooperativity, neitherNC nor IB fit the data, as expected. In theNC example, time goes from 0 to 700 s
with a step of 0.1; ligand goes from 0.01 to 3 μM, with a non-uniform step totalizing 13 doses (0.01, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.5, 1, 1.5, 2, 2.5,
3 μM). In the IB example, time goes from 0 to 500 s with a step of 0.1; ligand goes from 3.9 to 2000 nM, each dose is the double of the previous one
totalizing 10 doses. In the up and left example, time goes from 0 to 40 s with a step of 0.025; ligand goes from 0.1 to 25.6 μM, each dose is the double of
the previous one, totalizing 9 doses. In the bottom and right example, time goes from 0 to 250 s with a step of 0.025; ligand goes from 0.7 to 200 nM,
each dose is approximately 1.85 times the previous one, totalizing 10 doses. Parameters obtained from the fits and compared with those in the articles
where the data comes from are included in Table 1.

https://doi.org/10.1371/journal.pcbi.1007929.g007
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binding sites; reported Hill coefficients higher than 1 support positive cooperativity in this

binding experiment. This data was also acquired with SPR experiments.

The visual inspection indicates thatNC, IB and the data corresponding to identical binding

sites with no cooperativity are fitted with accuracy. The parameters obtained in each case are

in agreement with those reported in the corresponding papers, as summarized in Table 1

(more details in S1 Text).

Table 1 shows the equilibrium ratios obtained for the four experimental data cases

described in Fig 7, fitting the equilibrium dose-response curve from each one with both mod-

el’s predictions (Eq (1) for K10 and K01 and Eq (2) for K and ω). These ratios are compared

with those obtained from data reported in the mentioned papers.

Discussion

This article deals with a problem that is within the broad problematic of model discrimination

in systems biology [30], meaning that structurally different computational models fit a set of

experimental data equally well, resulting in more than one molecular mechanism being able to

explain available data. This area of research is certainly enriched by adding dynamics into the

methodology to address model ambiguity, either by fitting not only steady-states but also time

courses [18] or by designing dynamic stimuli that, in stimulus–response experiments, distin-

guish among parameterized models with different topologies [31]. The models that are the

center of the present article only fit steady-state data equally well, but not kinetic data, which is

the key in discriminating between both mechanisms. This last statement places our approach

close in essence to those that apply time varying inputs to distinguish closely related models

of biochemical systems. We hypothesize that, because of those similar bases, the method pro-

posed in this article may be used to infer model structure from a set of plausible candidates in

different biochemical models.

Previously we have shown that if the input-output curve of a ligand-receptor reaction is

measured before it reaches equilibrium, it is shifted to the right of its equilibrium position and

it moves from right to left as time evolves. More specifically, the EC50 decreases over time. We

labelled systems with this property as shifters. As the EC50 evolves in time, so do the EC10 and

the EC90, the two of them define the dynamic range of the reaction (DynR = ln(EC90/EC10))

which is in turn a function of time. In this article, we studied theDynR temporal evolution for

receptors having two binding sites, which are also shifters, with extensions to other successive

binding events not involving receptors. The focus of this work was on the indistinguishability

Table 1. Equilibrium ratios for the experimental databases. For each of the four experimental databases considered (listed on the first column: Equal Sites,NC, IB, Diff
& Coop) the equilibrium dose-response curve was fitted both with the mathematical expression corresponding to an IB description and with that of anNC description
(Eqs (1) and (2) in the main text), obtaining K10 and K01, or K and K/ω, respectively. For the experimental databases labeled Equal Sites,NC and IB both fittings are good,
because of the indistinguishability reasons. The considered articles fitted the data (dose-response curve in equilibrium) using a two-site model (TS); this model is described
in detail in the S1 Text. The TSmodel provides two parameters, K1 and K2. By comparing the equilibrium dose-response curves from IB andNCmodels, with that of the
TSmodel, a mathematical relationship between K1-K2 and K10-K01, and K1-K2 and K-K/ω was obtained. Summarizing, the papers provide K1-K2, and using the mentioned
relationships the inferred K10-K01 and K-K/ω are calculated from those reported values, to be compared with the inferred K10-K01 and K-K/ω from fitting with IB andNC
models. Data coming from Diff and Coop does not have reported K1 nd K2, that is why that row is empty.

Equilibrium Ratios

Experimental

dataset

K10 K01 K K/ω

fitting with IB reported values fitting with IB reported values fitting with NC reported values fitting with NC reported values unit

Equal Sites 0.81 0.92 0.81 0.92 0.99 0.92 0.67 0.92 μM

NC 1.0 1.0 540 419 8.0 2.0 270 210 nM

IB 0.38 0.76 3.8 9.2 0.59 1.42 7.0 5.0 μM

Diff & Coop 4.2 4.2 5.7 3.2 nM

https://doi.org/10.1371/journal.pcbi.1007929.t001
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problem between negatively cooperative identical sites and independent and different sites:

both scenarios lead to the same equilibrium binding curve. Different researchers have studied

the kinetics leading to that equilibrium binding curve, finding thatNC and IB follows different

kinetics and this is, then, a way to distinguish them. However, when data is noisy, the kinetic

discrimination based on fitting binding time courses is challenging.

The method we propose in this article to tackle the NC—IB indistinguishability problem

takes a global measurement over the input-output curve, and repeats this procedure as time

evolves, obtaining de DynR versus time curve, or the target curve as we called it in this arti-

cle. The more important feature that makes the method robust and successful is that it relies

on the estimation of ω (the cooperativity factor, Fig 1A), done over the equilibrium input-

output curve, together with the fact that the target curves are ordered by ω in the NC

model, as shown in Fig 3B. This feature alone (called Checkpoint 2 in the paper) can solve

the indistinguishability problem in 88% of the cases. The target curves in NCmodel are

always increasing, their initial and final values are functions of ω, and the time correspond-

ing to the inflection point of the curve is a function of l, the unbinding rate. All these charac-

teristics make the target curve a good observable to analyze in the context of deciding if the

data comes from NC or IBmodels.

Why is it exactly that the proposed approach to distinguish between IB and NC scenarios

resulted in an improvement from previously implemented methodology [18], given that both

of them use kinetic information?. As explained, our methodology uses both steady-state and

kinetic information, and both local and global information (local and global with respect to

the dose-response curve, distinguishing if it uses data from one or a few doses or from the

complete curve). What makes the model so efficient is that it deals with kinetic data but not

that one associated to the time evolution of different variables, instead, it deals withDynR(t).

In a binding process, the fitting of the variables’ time courses depends on the binding and

unbinding rates and on the amount of ligand. However,DynR(t! 0) depends on the ratio

between those rates, which leads to ω in theNC scenario and to k10/k01 in the IB one, and does

not depend on the ligand concentration. The dependency with an unique parameter that is

estimated from the equilibrium dose-response curve resulted in a clear advantage.

The approach proposed in this article seems to be robust under noisy data and other

sources of uncertainty and is based on the preliminary knowledge that there are only two bind-

ing sites and relies on having sufficient temporal and dose resolution, thatDynR(t! 0) can be

well estimated and that saturation in the dose-response curve is reached. Some other implicit

assumptions are the following. First, it compares pure IB andNCmechanisms, heterogeneous

binding is not covered by the approach. Second, ligand depletion was not considered in the

present form of the method, its inclusion is part of current efforts to improve the approach.

Third, the method is based on the proportion of occupied binding sites (θ). If, instead, what is

measured is the receptor with two bound ligands (R11), the method cannot be applied in its

current form, modifications in this direction are also part of current research. Fourth, the

bindings that are covered by the method are such that they are well described by the law of

mass action.

The method was based on the properties of the target curve as a function of different

parameters, these properties came to light both by numerical exploration (Fig 3) and by ana-

lytical calculations (details in the S1 Text). Importantly, the method was tested with simu-

lated data and with experimental data as well. The numerical data was generated considering

the noise introduced by chemical reactions. As expected, the performance of the method

decreases as molecular noise increases (Fig 6), but in the worst scenario tested, the perfor-

mance decreased no further than 75%, meaning that in 75% of the cases the algorithm made

a correct guess.
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In the case of experimental data, for some of the datasets we used, the microscopic model

was known, and our method confirmed that information. In the case of theNC dataset, even

when it is not stated that the binding scheme corresponded to negative cooperativity, our

results support that explanation (Fig 7). Not only our method is successful in identifying the

microscopic model, but also in obtaining its parameters (Table 1).

The method presented in this article relies on different thresholds, as studied in detail in Fig

E and Fig F in S1 Text. Fig F in S1 Text evaluated the accuracy of the predictions as a function

of threshold C (Fig FB in S1 Text). Regarding the other thresholds involved in the method (Fig

E in S1 Text) we did not include results with variations of their values, this effect can be seen

from the mentioned figure. Any change in the selected value of those thresholds will result in a

worsening of the outcome. The reason for this is that those values were obtained from an opti-

mization procedure (that was performed with simulated data with a total number of receptors

of 1000). There is still something that could be done for each experimental database in which

the method is applied: from the noise in the temporal curves it is possible to infer the number

of receptors, then, the thresholds for that database can be reobtained by using simulated data

with that number of receptors. In this way, one can obtained the best set of thresholds for a

given database.

It is unusual to find a paper focusing on cooperativity, as this one, and not dealing with the

Hill coefficient. Instead of that, and based in our previous papers [21,22], we focused on the

dynamic range as a function of time. One of the definitions of the Hill coefficient (nH) is

related to theDynR in this way: nH = ln(81)/ln(EC90/EC10) = ln(81)/DynR. However, we

decided to focus onDynR because nH is usually associated with the slope of the curve and, in

the problem we are tackling, a single slope is not always possible to define (Fig 1C).

If several binding sites are suspected and theDynR of the equilibrium input-output curve is

higher that what is expected for a single binding site (DynR = 1.9), then the method we pro-

posed helps unveiling the microscopic details behind the data. Regarding possible extensions

of the method and the analysis in this article, even though it is possible to rebuild the proce-

dure for 3 or more binding sites, the complexity is high since different combinations arise (tak-

ing 3 binding sites as an example, the 3 of them could be independent, 2 cooperative and 1

independent, 2 independent and 1 cooperative, all of them cooperative). Extension to several

binding events not involving ligand-receptor reactions is presented related to experimental

datasetsNC and IB (Fig 7).

In order to know if the approach presented in this article can be used to characterize a par-

ticular model and identify features that contribute in distinguishing it from other models with

similar or identical dose-response curves, it is important to study the functionDynR(t) in

those models. In a previous article [22] we have characterized which signaling systems display

time-evolving EC50 (t) andDynR(t), finding that nearly all biochemical processes operate in

this way and that this mechanism may be ubiquitous in cell signaling systems. Therefore,

studying and characterizing DynR(t) is a promising tool for characterizing every signaling

model based on biochemical processes. If, in addition, an indistinguishability problem involves

that particular model under consideration as is the case for IB and NCmodels, or for adapta-

tion models in which the adaptive response could result from mainly two different types of

models [32], then the study of the functionDynR(t) could help solve the problem, as was

shown in detail in this article. In this direction, extensions of the essence of the method, i.e.

different global behaviors ofDynR versus time as a way to distinguish different but close

scenarios, are under study in our lab and have promising results in models for adaptation in

signaling (some preliminary results in [21]). The proposed approach is useful to distinguish

between some candidate models that fit the data equally well, but not to infer model structure.

However, if different biochemical models are grouped in classes according to a particular
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criteria related to its structure, and the functionDynR(t) shares common properties within a

class, the study of the target function could help to infer model structure.

Methods

All the algorithms used in this paper were written in Matlab R2014a.

1. Dose-response curves and dynamic range

In this article we consider dose-response curves, in which the dose is the amount of ligand L,

and the response is the proportion of occupied binding sites:

θ ¼ R10 þ R01 þ R11

2R
0

ð7Þ

where R10 and R01 are the configurations with only one site occupied, R11 represents the recep-

tor with two bound ligands, and R0 is the total amount of receptors.

The dose-response curves were characterized by their logarithmic dynamic range (DynR),

defined as:

DynR ¼ ln EC90=EC10

� �

ð8Þ

where EC10 (EC90) is the concentration of ligand that gives 10% (90%) of the total occupation

of sites.DynR is the range of inputs or doses for which the system can generate distinguishable

outputs or responses.

2. Deterministic numerical simulations

We described both models (IB andNC) using mass action law, where R0 is the total receptor

concentration. We computationally integrated these two systems of equations for each given

set of parameters, for 1000 different values of ligand concentration each one between 10−3 and

108, in uniform log10 scale:
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From the integrated variables Rii(L, t), we obtained θ(L, t) using Eq (7) and then EC10(t)

and EC90(t) numerically andDynR(t) from Eq (8). These 10000 different sets ofDynR(t)

curves are the ones shown in Fig 3 and Fig A in S1 Text, with different parameters in different

colored scales and with different filters.

3. Random parameter scan

We sampled parameters k, l, l10, l01 between 10−2 and 102 and ω between 10−2 and 1, using

Latin Hypercube Sampling [25], for 10000 different sets. The missing parameters, k10 and k01,

where obtained from the non-identifiability conditions (Eqs (3) and (4)) to make sure we were

comparing pairs of sets (one of IB and the other ofNC) where the problem exists, this means,
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in the non-identifiable manifold (Fig 1B). Thus, we are considering 4 orders of magnitude in

uniform log10 scale. 3 of the parameters have dimensions of inverse of concentration�time

(k, k10 and k01) and other 3 have dimensions of inverse of time (l, l10 and l01). ω has no dimen-

sions. The interpretation of the results depends yet on the choice of the reference unit concen-

tration (the ‘0’ in log scale). For example, if the reference dimensional concentration is chosen

as 0.1 μM, this leads to interpreting the scanned intervals as being in the range [1 nM, 10 μM],

which seems reasonable as intracellular concentrations [33]. However, this is just an example

and the choice of the reference unit concentration remains a degree of freedom in our numeri-

cal methodology.

4. Stochastic numerical simulations

To obtain stochastic simulated data to test our protocol, we used Gillespie’s algorithm [34]

that considers the probability of each reaction to occur. This method needs the total number

of receptors, ligands and the volume where the reactions occur. We took 100 sets of parame-

ters for each model, chosen as described in the previous section, and repeated this for 4 dif-

ferent total number of receptors (R0), 10, 100, 1000 and infinite, this last case representing

deterministic simulations and thus integrated by mass action law (Eqs (9) and (10)), as

before. The volume was chosen to result in the same ligand concentration in all cases, which

were 20 different concentrations between 10−3 and 107 in uniform log10 scale, to make sure

to reach the 90% of occupied sites for any set of parameters and represent a plausible experi-

ment. As for the deterministic simulations, we obtained θ(L, t) using Eq (7) and then EC10(t)

and EC90(t) numerically andDynR(t) from Eq (8). For each considered time t0, each curve

θ(L, t0) was smoothed using the smooth function of Matlab to reduce the stochastic noise

before EC10(t0) and EC90(t0) calculation.
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