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DISCRIMINATING BETWEEN OPTIMAL FOLLOW-UP DESIGNS 

By Kevin D. Kelly, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 
at Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2012. 
 

Major Director:  Dr. David Edwards, Assistant Professor, Department of Statistical Sciences and  
     Operations Research 
 

Sequential experimentation is often employed in process optimization wherein a 

series of small experiments are run successively in order to determine which 

experimental factor levels are likely to yield a desirable response.  Although there 

currently exists a framework for identifying optimal follow-up designs after an 

initial experiment has been run, the accepted methods frequently point to multiple 

designs leaving the practitioner to choose one arbitrarily.  In this thesis, we apply 

preposterior analysis and Bayesian model-averaging to develop a methodology 

for further discriminating between optimal follow-up designs while controlling 

for both parameter and model uncertainty. 

 
 

 



 

1 

Chapter 1 

Introduction 

When conducting an experiment, there exist two seemingly paradoxical goals of learning as 

much as possible about a particular process while simultaneously minimizing the total amount of 

resources dedicated to the experiment.  Experiments generally have a fixed budget, and each 

experimental run often bears a high cost.  As a result, a well-designed experiment is integral to 

satisfying the objective of obtaining knowledge about a process while maintaining efficiency.  

Prior to an experiment, the practitioner has a limited understanding of the process in question, so 

it would not be economical to run one large all-encompassing experiment at the onset.  Instead, it 

is in the practitioner’s best interest to conduct several smaller sets of experiments sequentially 

allowing the practitioner to consider the results of each experiment before proceeding. 

Sequential experimentation can be employed as a method to identify at which levels input 

variables should be set in order to ensure that optimal values of the response variable or variables 

are achieved.  In general, the practitioner has in mind a goal of maximizing, minimizing or 

reaching a target level for each response variable.  Although a great deal of information can be 

gleaned from a small initial experiment, oftentimes there still remains a great deal of ambiguities 

and questions about the process.  In these situations, a follow-up design should, therefore, be 

employed to resolve as many of these ambiguities as possible.   

The existing methods for choosing follow-up designs may fail to fully consider the results of 

the initial experiment and can force the practitioner to arbitrarily choose between multiple 

equivalent follow-up designs deemed to be “optimal”.  It is the goal of this thesis to use Bayesian 

model averaging to discriminate among these equivalent designs, thus creating a methodology 

for selecting a follow-up plan. 

The remainder of this thesis will proceed as follows. Section 2 provides a brief tutorial of 

experimental design and Bayesian optimization methods and also contains a summary of the 

existing literature concerning selecting follow-up designs. Next, Section 3 provides an in depth 

description of our proposed method of discriminating between follow-up designs through 

Bayesian model averaging and preposterior analysis.  In Section 4, we illustrate this method by 

comparing optimal follow-up designs for three different examples where the commonly accepted 
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methodology fails to elect a single optimal follow-up design.  Finally, Section 5 contains 

concluding remarks as well as suggestions for further research on this topic.  Although the 

methodology explored in this thesis can be applied to multiple response optimization, we only 

consider the case of a single response variable for simplicity.



 

3 

Chapter 2 

Literature Review 
Although a great deal of research exists regarding the choice of follow-up design, many of these methods 

point to multiple optimal choices which requires the experimenter to arbitrarily choose which follow-up 

design to use.  The goal of this paper is to leverage prior knowledge and the results of an initial 

experiment using Bayesian analysis in order to make informed decisions when choosing between 

equivalent follow-up designs.  The following three sections will outline the existing literature on follow-

up designs and Bayesian optimization methods.   

 

2.1 Two-Level Full and Fractional Factorial Designs 

Two-level factorial designs are often employed by experimenters to examine the effects of multiple 

factors on a response variable.  A “two-level” design is one in which the explanatory variables are set to 

one of two levels, generally a high and low level, and these levels are assigned a value of either “-1” or 

“1” indicating the low and high level, respectively.  A two-level full factorial is when the experiment is 

run at every possible combination of each factor, so that a full factorial of k different factors requires 2k 

experimental runs.   An example of a 24 full factorial can be seen in Table 2.1. 

Table 2.1 24 Full Factorial 

A B C D 
-1 -1 -1 -1 
-1 -1 -1 1 
-1 -1 1 -1 
-1 -1 1 1 
-1 1 -1 -1 
-1 1 -1 1 
-1 1 1 -1 
-1 1 1 1 
1 -1 -1 -1 
1 -1 -1 1 
1 -1 1 -1 
1 -1 1 1 
1 1 -1 -1 
1 1 -1 1 
1 1 1 -1 
1 1 1 1 

 
The number of runs needed for a full factorial increases exponentially as the number of factors 

increase, and as a result, a fraction of the full factorial is generally chosen as the initial experimental 
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design, which can make the analysis less straight-forward.  By only looking at a fraction of the design 

locations in a full factorial, factorial effects will be aliased with each other leading to a great deal of 

ambiguities regarding the effect of each factor.   

A fractional factorial design is created by using a full factorial in a portion of the factors and 

using the levels of those factors to generate the levels of the remaining factors.  The aliasing structure of a 

particular design is dependent on how these remaining factors are generated and can be examined by 

looking at the defining relation of a design.  The defining relation is a list of the factors and interactions 

that are aliased with the intercept and generally consists of third order interactions or greater.  Each entity 

in the defining relation is known as a word, and the number of letters in each word, known as the word 

length, determines the aliasing structure of a design.  The resolution of a fractional factorial design is 

defined as the shortest word length in the defining relation.  Higher resolutions are preferred.   

Fractional factorials are written in the form 2k-p where k identifies the number of factors that are 

being examined and 
    is the fraction of the full factorial that is being run.  For example, the 24-1 design in 

Table 2.2 has eight runs which is half as many as a 24 design.  The resolution of the design can also be 

incorporated in this form as a Roman numeral sub-script, so the design in Table 2.2 can be written 

as       .  

Table 2.2        Fractional Factorial 

A B C D 
-1 -1 -1 -1 
-1 -1 1 1 
-1 1 -1 1 
-1 1 1 -1 
1 -1 -1 1 
1 -1 1 -1 
1 1 -1 -1 
1 1 1 1 

 

Notice that this is a full factorial in factors A, B and C and that the levels of D are the product of 

the values of the other three factors.  The defining relation for the design in Table 2.2 is I = ABCD which 

shows that the four-way interaction of A, B, C and D is confounded with the intercept.  Note that as the 

product of these four factors results in a column of all ones.  In this example, ABCD is the only word in 

the defining relation and has a length of four indicating that this is a resolution IV design.  The aliasing 

structure of this fractional factorial design can be described as: A = BCD, B = ACD, C = ABD, D = ABC, 

AB = CD, AC = BD and AD = BC.   

The aliasing structure shows that the product of factors B, C and D results in a column that is 

identical to factor A. Thus, the main effect of factor A cannot be distinguished from the effect of the 
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interaction effect of BCD.  It is generally assumed that interactions between three or more factors are 

negligible, so the only aliasing problem for this design is with the two-factor interactions.  The defining 

relation and aliasing structure of most fractional factorials can be found in Montgomery (2009) or by 

using the design software JMP. 

 The aliasing structure of this        design shows which factorial effects cannot be 

differentiated when using the classical linear regression model written as       .  In this equation,   

is vector of response values, and   represents the model matrix which includes an intercept and the 

effects being estimated.  For example, if we wanted to fit a model with all the main effects and two-factor 

interactions involving A for the        design previously described, then we would use the matrix described 

by Table 2.3 as our  .  The vector   contains all the parameters that describe the linear relationship 

between each factorial effect and the response, and   is a vector of normally distributed random variables 

with a mean of zero and a variance of σ2.  The β vector is estimated using ordinary least squares. 

Table 2.3 Model Matrix 

I A B C D AB AC AD 

1 -1 -1 -1 -1 1 1 1 

1 -1 -1 1 1 1 -1 -1 

1 -1 1 -1 1 -1 1 -1 

1 -1 1 1 -1 -1 -1 1 

1 1 -1 -1 1 -1 -1 1 

1 1 -1 1 -1 -1 1 -1 

1 1 1 -1 -1 1 -1 -1 

1 1 1 1 1 1 1 1 
 

 One of the major advantages of using full and  2k-p fractional factorial designs is that all the 

columns in the model matrix are orthogonal to each other as long as there are no columns that are fully 

aliased with other columns.  If all the columns in the matrix,  , are orthogonal in the linear regression 

equation, then the estimate of   will have minimum variance and the model will not suffer from the 

effects of multicollinearity.   

 

2.2 Follow-Up Designs 

There are a plethora of strategies for selecting follow-up designs when remaining in the same design 

location. In this thesis, we choose to consider three of the most common strategies (foldovers, 

semifoldovers and MD optimal designs).   
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2.2.1 Foldovers and Semifoldovers 

A common strategy for following up two-level fractional factorial design is to employ a foldover design, 

which involves using a second fraction of equal size, obtained by reversing the signs of one or more 

columns of the initial design.  This strategy eliminates a great deal of the aliasing between factorial effects 

and also decreases the error variance of parameter estimates.  For every fractional factorial design, there 

are 2k possible foldover choices where k is the number of experimental factor being studied which raises 

the question of which foldover plan to choose.   

Li and Lin (2003) define core-foldover plans as foldovers where only the columns of the p 

generated factors have their signs reversed, and they show that every possible choice of foldover is 

equivalent to a core foldover plan, which reduces the number of possible choices.  One common choice is 

a full foldover which is when the signs for all the factors are reversed, and an example of a full foldover 

of the        design discussed earlier can be found in Table 2.4.    In this situation, the full foldover leads to 

an identical design as the one seen in Table 2.2, and therefore, does not break any aliasing chains.  A 

foldover on only factor D, however, will lead to a full factorial in the combined design. 

Table 2.4 Full Foldover of        Design 

A B C D 
1 1 1 1 
1 1 -1 -1 
1 -1 1 -1 
1 -1 -1 1 

-1 1 1 -1 
-1 1 -1 1 
-1 -1 1 1 
-1 -1 -1 -1 

 
 In the realm of experimental design, it is preferable to have longer word lengths in a defining 

relation as shorter words lead to aliasing between lower order interactions and main effects, which is 

undesirable.  As a result, the concept of aberration was developed as a method for discriminating between 

possible designs.  Fries and Hunter (1980) describe aberration as: 

“When comparing two designs using resolution as the criterion, one considers the 

lengths of the shortest word in each defining relation.  If these lengths are equal, 

the two designs are equivalent.  With aberration as the criterion, however, one 

continues to examine the length of the next shortest word in each defining 

relation until one design is ranked superior to the other.” 

Consider several competing 26-2 designs where each uses a different set of factors to generate the values 

of the last two factors.  Table 2.5 shows the breakdown of word lengths for multiple 26-2 designs when 

using different generators for each.  According to the aberration criterion, designs 1 and 2 in the table are 



Kevin Kelly Chapter 2-Literature Review 7 
 

 
 

superior as their shortest word length of four is larger than the other three designs.  We would also deem 

design 3 to be superior to designs 4 and 5, because it only has one word of length three.  Table 2.5 also 

provides an example where using aberration as a criterion leads to more than one optimal design which 

would force the practitioner to choose between designs 1 and 2.  Aberration, therefore, can be used as a 

criterion for comparing potential foldovers and minimizing aberration should lead to the most preferable 

aliasing structure for the combined design.   

Table 2.5 Competing 26-2 Designs 

Design Generators Defining Relation 
1 E = ABC , F = BCD I = ABCE = BCDF = ADEF 
2 E = BCD, F = ACD I = BCDE = ACDF = ABEF 
3 E = CD, F = ACD  I = CDE = ABDF = ABCEF 
4 E = BC, F = AD I = BCE = ADF =ABCDEF 
5 E = BC, F = CD I = BCE = CDF =BDEF 

 

Li and Lin (2003) develop an algorithm for identifying optimal foldovers in terms of minimizing 

aberration and use it to find the optimal foldovers for 16 and 32 run initial designs.  Li and Mee (2002) 

show that although a foldover of all the factors in a resolution III design eliminates all aliasing between 

main effects and two-factor interactions, there are oftentimes better options that will lead to designs that 

are superior in terms of aberration.  Montgomery and Runger (1996) identify optimal foldovers for 

several resolution IV designs.  Although all of the aforementioned articles are able to develop a 

framework for choosing optimal foldovers, their methods generally lead to several equivalent designs 

with minimum aberration, which leaves the practitioner with the task of arbitrarily picking one of these 

designs.   

In many cases, foldovers are an extremely inefficient follow-up strategy as they require more runs 

than necessary to break aliasing chains.  Semifoldovers are half of the size of a foldover, and although 

they are not orthogonal, oftentimes they are able to de-alias equally as many two factor interactions as a 

full foldover.  When further experimentation is prohibitively expensive and there are still ambiguities due 

to aliasing, semifoldovers provide a much cheaper option for eliminating these ambiguities as they only 

require half as many experimental runs. 

Creating a semifoldover design requires the researcher to choose not only which factors to 

foldover but also which half of the full-foldover fraction to actually use.  If the practitioner wanted to do a 

semi-fold of the full foldover seen in Table 2.4, for example, then they would need to choose which four 

runs from the full foldover to use.  Mee and Peralta (2000) state that in choosing a semifoldover plan, the 

experimenter must consider which additional effects can be estimated as well as what precision these 

estimates will have.  They also recommend keeping in mind whether there is a desired level of a 

particular factor or if a certain factor is difficult to change when choosing which half of the foldover to 
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include in the follow-up design.  According to Mee and Peralta (2000) the choice of which factors to 

foldover is the primary driver of which effects will be de-aliased. 

Edwards (2011) shows that using general minimum aberration (Deng and Tang (1999)) as a 

criterion for selecting a semifoldover plan is inappropriate and proposes using the concept of minimal 

dependent sets to find the optimal semifoldover for a given design.  A minimal dependent set (MDS) is a 

set of linearly dependent vectors that will become linearly independent if any single vector is removed.  

Edwards (2011) looks at MDSs in the context of a model that is not estimable when containing a set of 

two factor interaction but becomes estimable when any single two factor interaction is removed from the 

model.   This method identifies several equivalent optimal semifoldovers which, once again, requires the 

practitioner to choose which follow-up design to use. 

For both foldovers and semifoldovers, choosing between optimal follow-up designs does not 

necessarily have to be an arbitrary decision.  If there is a particular factor or interaction of interest to the 

researcher, then it would be advantageous to choose an optimal foldover/semifoldover that dealiases this 

factor or interaction.  When this is not the case, choosing which follow-up design to use could affect the 

ability to optimize the response.   

 

2.2.2 MD-Criterion 

Oftentimes, after an initial experiment, there are several models that appear to fit the data equally well, 

and from an optimization standpoint, it is important to reduce the ambiguities around which model is 

most appropriate.  Box and Hill (1967) describe a situation where the choice of follow-up runs is 

motivated by discriminating between rival models rather than aliased effects.  They contend that in this 

situation the next experiment should be conducted at locations that maximize the ability to discriminate 

between models.    

Meyer, et al. (1996) develop a criterion that measures the amount of discrimination that a follow-

up design provides between all possible subset models. This criterion is called the model discrimination 

criterion, written as MD-criterion, and although a single calculated criterion value, alone, has no meaning, 

they can be used as a relative comparison tool between competing follow-up designs.  For a given run 

size, the follow-up design with the largest MD-criterion is preferred, and this design maximizes the 

expected amount of model discrimination provided by a follow-up design of this size.  The calculation of 

the MD-criterion requires an understanding of basic Bayesian statistical methods, so we will provide a 

background of these methods before providing an equation for the MD-criterion. 

 A factor is considered to be active when its effect on the response variable is significantly 

different than zero.  If Mi is a model containing a combination of fi active factors and the probability of  
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each factor being active is π, then the prior probability of a model Mi is 

     (  )      (   )         (2.2) 

For equation (2.2), it is assumed that the probability of a particular factor being active is independent of 

all the other factors.  

Using Bayes theorem, the posterior probability function of a vector of parameters θ conditional 

on the vector of observed data y can be calculated using 

     ( | )    ( ) ( | ) ( )       (2.3) 

where  

     ( )   ∫  ( ) ( | )       ,     (2.4)  ( ) is the prior probability of   and  ( | ) is the likelihood function of   given  .  It can be seen in 

equation (2.3) that these methods also allow the practitioner to include prior information about θ in the 

analysis by choosing a prior distribution P(θ).  A non-informative prior assumes that there is no prior 

knowledge about θ, so for example, it could considers all values between    and   to be equally likely, 

which is equivalent to a uniform distribution along these bounds.  A non-informative prior takes away the 

subjectivity often associated with Bayesian methods, but non-informative priors will often lead to results 

that are similar to the results of classical methods. 

Once the posterior distribution of θ has been found, Bayesian methods provide a method for 

making inferences about future observations, ỹ, by computing the posterior predictive distribution as 

follows 

     ( ̃| )  ∫  ( ̃     | ) ( | )  .    (2.5) 

 Using equation (2.2) as the prior probability that a given model is the true model, the posterior 

density of a particular model, Mi, given the data y is 

     (  | )    ( |  ) (  )∑  ( |  ) (  )      (2.6) 

where 

     ( |  )   ∫ ∫  ( |        ) (         |  )        (2.7)  

 After observing a vector y of responses, it is possible to calculate a posterior probability for each model 

given the data, P(Mi|y), using equation (2.6).  Meyer, et. al (1996) show that the probability of a factor, j, 

being active can be calculated with 

        ∑  (  |  ),      (2.8) 

for all Mi that contain factor j.     

In order to calculate the model posterior probability, Meyer, et al. (1996) specify a g-prior, 

meaning all main effects and interactions in the model are assigned N(0,γ2σ2) prior distributions.  The g-
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prior is popular in Bayesian optimization, and a more in depth discussion of it will be presented in the 

following section.     

Using the model posterior probabilities, Meyer, et al. (1996) developed their MD-criterion that 

can be calculated with     ∑  (  |        ) (  | ) (     )       (2.9) 

where pi is the posterior predictive density for a new observation conditional on y and on Mi being the 

correct model.  The I(pi,pj) term is the Kullback-Leibler information (Kullback and Leibler (1951)) and is 

a measure of the mean information for discriminating in favor of Mi against Mj when Mi is true and can be 

computed with    (     )   ∫   ( )   (  ( )   ( ))        (2.10) 

It is assumed for our applications that neither pi nor pj will take a value of zero as we do not anticipate a 

posterior predictive probability of zero. 

Choosing a design that maximizes the MD-criterion allows the practitioner to choose the set of 

follow-up runs that will provide the most discrimination between all the models under consideration.  

This criterion can be applied to follow-up designs of any size, which provides the researcher with a great 

deal of flexibility that is not permitted by foldover and semifoldover designs.  The MD-criterion, 

unfortunately, does not always point to a single best choice of follow-up runs. 

 We have discussed that using some of the most commonly practiced follow-up design criterion, 

the researcher is often left to decide between multiple equivalent designs.  There currently exists no 

framework for how to further discriminate between these design choices.  Although this decision may 

seem inconsequential, one of these candidate designs could be more likely to provide the experimenter 

with an optimal level of the response variable.  In other words, the design locations for a particular 

follow-up design may lead to responses that point to optimal factor settings that are more likely to 

produce the desired response level.  Therefore, choosing a follow-up design haphazardly is unwise.  The 

aim of this paper is to develop a method for further discrimination between follow-up designs using 

Bayesian analysis. 

 

2.3 Bayesian Optimization Methods 

In the classical approach to optimization, the model parameters are assumed to be unknown constants, 

and by using only standard errors to address parameter uncertainty, the frequentist approach fails to 

appropriately address all of the uncertainty in model parameters (Del Castillo (2007)).  Bayesian methods, 

on the other hand, treat the parameters as random variables with their own probability distributions, which 

accounts for any uncertainties in the parameters (Del Castillo (2007)).   
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The posterior predictive distribution makes it possible to compute the probability that the 

response of interest lies within a desirable region for a particular design location.  Integrating equation 

(2.5) over the desired range of response values will yield the probability that a given design location, x*, 

will produce a response in this optimal range.       

   Peterson (2004) shows how sampling from the predictive posterior can be used to optimize a 

process with multiple responses.  This sampling is carried out by simulating from the posterior predictive 

distribution found with equation (2.5).  Peterson (2004) introduces the idea of a preposterior analysis, 

which involves sampling from the posterior predictive distribution in order to determine whether 

collecting additional data will reduce parameter uncertainty.  Miró-Quesada, et al. (2004) apply these 

same methods to a case where noise variables must be considered as well.  Gilmour and Mead (1995) use 

preposterior analysis to determine whether further experimentation is beneficial and create a framework 

for deciding when an experiment should be ended.  Bayarri and Mayoral (2002) consider the goals of 

replications and use these methods to determine whether replicate runs will accomplish these goals.  

Although all of these articles address parameter uncertainty, their analysis fails to take into account the 

ambiguities involved in the model selection. 

 After an initial experiment, there are oftentimes several different models that fit the data 

reasonably well.  Classical optimization methods require that one of these models be selected as the 

“correct” model but fail to take into account the possibility that the chosen model is not the best choice.  

Each of the competing models may lead to different, conflicting optimal operating settings.  Bayesian 

model averaging (BMA) provides a method for considering parameter and model selection uncertainty 

simultaneously by using a weighted average of the posterior predictive densities for all the candidate 

models.  

The model posteriors that can be found using equation (2.6) are a logical choice for the weighting 

in Bayesian model averaging as they give the probability of a particular model being correct given the 

data.  Therefore the model-averaged posterior (MAP) predictive density is 

         ∑  ( ̃|       ) (  | )         (2.11) 

Equation (2.11) shows that the MAP density is a weighted average of the posterior predictive densities for 

each model where the P(Mi|y) values are the weights, thus this equation can be used to compute the 

model-averaged probability of achieving a response in the desired range for a chosen design location x*.  

The MAP predictive density is similar to the posterior predictive density in equation (2.5), but the MAP 

density also takes model uncertainty into account. 

 Buckland, et al. (1997) proposes a weighting method that uses both the Akaike’s Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) as the model weights in order to avoid the 

intensive calculations required by equation (2.11), but advances in modern computing have made these 
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calculations much easier.  The weighting method proposed by Buckland, et al. (1997) is heavily 

influenced by the number of parameters in the model so the MAP is preferred.   

Rajagopal and Del Castillo (2005) illustrate how BMA can be used to optimize a process with 

multiple responses and also provide evidence that model-averaged predictions are more reliable than 

picking an assumed model.  Both Rajagopal and Del Castillo (2005) and Ng (2010) sample from the 

MAP to optimize the process in a similar manner to the preposterior analysis discussed previously.  Ng 

(2010) samples from the MAP not only to find the optimal setting for a process but to also inform the 

choice of follow up designs.  It is the aim of this paper to utilize the methods proposed by Rajagopal and 

Del Castillo (2005) and Ng (2010) and take them a step further by applying them to break ties between 

equivalent optimal follow-up designs. 



 

13 

Chapter 3 

Illustration of Methodology 
We will now develop the follow-up strategy for a small initial experiment in order to provide an in-depth 

illustration of our follow-up design discrimination technique.  We will look at a        injection molding 

experiment from Mee (2009).  The data for this experiment in coded units can be found in Table 3.1.  The 

experiment examined the effects of 8 experimental factors on shrinkage with the goal of minimizing this 

response variable.  For the sake of this analysis, we are assuming that a shrinkage value of 14.5 or less is 

desired.  The eight factors considered in this experiment are A = screw speed, B = moisture content, C = 

holding pressure, D = cavity thickness, E = booster pressure, F = cycle time, G = gate size and H= mold 

temperature.  The generating rules for this design are E = -ACD, F = -BCD, G = ABC and H = -ABD.     

Table 3.1 Injection Molding Experiment 

A B C D E F G H Y 

-1 -1 -1 -1 1 1 -1 1 14 

1 -1 -1 -1 -1 1 1 -1 16.8 

-1 1 -1 -1 1 -1 1 -1 15 

1 1 -1 -1 -1 -1 -1 1 15.4 

-1 -1 1 -1 -1 -1 1 1 27.6 

1 -1 1 -1 1 -1 -1 -1 24 

-1 1 1 -1 -1 1 -1 -1 27.4 

1 1 1 -1 1 1 1 1 22.6 

-1 -1 -1 1 -1 -1 -1 -1 22.3 

1 -1 -1 1 1 -1 1 1 17.1 

-1 1 -1 1 -1 1 1 1 21.5 

1 1 -1 1 1 1 -1 -1 17.5 

-1 -1 1 1 1 1 1 -1 15.9 

1 -1 1 1 -1 1 -1 1 21.9 

-1 1 1 1 1 -1 -1 1 16.7 

1 1 1 1 -1 -1 1 -1 20.3 
 

3.1 Follow-Up Strategies 

This experiment is one sixteenth of the size of a full factorial which means that there are 240 design 

points in the design region of the full factorial that have not yet been run.  Oftentimes the choice of 

follow-up design is motivated by the practitioner’s desire to break specific aliasing chains, but when this 
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is not the case, the practitioner usually would prefer to choose the follow-up design that is most likely to 

identify the operating conditions that produce the desired response reliably. 

According to Li and Lin (2003), foldovers on the following groups of factors EF, EG, EH, FG, 

FH, GH and EFGH are optimal in terms of minimum aberration which leaves us with many options to 

choose from.  All of these foldovers will lead to the same word length pattern of the combined design, but 

each one will break different aliasing chains.  Table 3.2 shows that every optimal foldover leads to a 

defining relation with six 4-letter words and one 8-letter word.  Although each defining relation contains 

some words in common with the others, they are all unique, however, and will lead to different aliasing 

structures.    

Table 3.2 Minimum Aberration Foldovers 

Foldover Factors Defining Relation 

EF I = ABEF = ABCG = CEFG = -ABDH = -DEFH = -CDGH = -ABCDEFGH 

EG I = -BCDF = -BDEG = CEFG = -ABDH = ACFH = AEGH = -ABCDEFGH 

EH I = -BCDF = ABCG = -ADFG = BCEH = DEFH = AEGH = -ABCDEFGH 

FG I = -ACDE = -ADFG = CEFG = -ABDH = BCEH = BFGH = -ABCDEFGH 

FH I = -ACDE = ABCG = -BDEG = ACFH = -DEFH = BFGH = -ABCDEFGH 

GH I = -ACDE = -BCDF = ABEF = -CDGH = AEGH = BFGH = -ABCDEFGH 

EFGH I = ABEF = -BDEG = -ADFG = BCEH = ACFH = -CDGH = -ABCDEFGH 
 

Edwards (2011) identifies multiple optimal semifoldover choices that could follow up this eight 

factor experiment based on his MDS criterion.  Each of these optimal semifoldovers leads to a combined 

minimum MDS-aberration design with 18 minimal dependent sets, all of which are of size two.  The first 

step in creating these semifoldovers is to create a foldover of the initial experiment by reversing the signs 

of factors A and B which can be seen in Table 3.3.  For this design, choosing a subset of runs from Table 

3.3 based on any of the eight factors will lead to a minimum MDS-aberration design.  Subsetting by a 

particular factor means selecting the runs where the chosen factor is either set at the high level or the low 

level which means that there are 16 optimal semifoldovers that can be chosen to follow this experiment. 

The MD criterion can also be used to determine the optimal follow-up plan for this experiment, 

and it can be used to construct follow-up designs of any run size.  In order to calculate the MD-criterion, 

the practitioner must first set the values of the hyperparameters π and γ which are required by the process.  

We chose the values of π = .25 and γ = .984, and the reasoning behind these choices will discussed in the 

next sub-section.   

We used the BsMD statistical package in R to determine which four-run design would be the best 

follow-up for this experiment based on the MD-criterion.  Although the output from R was able to 

identify a single model with the highest MD-criterion value of 3.947, the MD-criterion values of the top 
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ranked follow-up designs are all within .06 units of each other.  Practically speaking, these top models are 

negligibly different from each other, so it may not be in the practitioner’s best interest to simply select the 

four-run design with the highest MD-Criterion.   

Table 3.3 Foldover on Factors A and B 

A B C D E F G H 

1 1 -1 -1 1 1 -1 1 

-1 1 -1 -1 -1 1 1 -1 

1 -1 -1 -1 1 -1 1 -1 

-1 -1 -1 -1 -1 -1 -1 1 

1 1 1 -1 -1 -1 1 1 

-1 1 1 -1 1 -1 -1 -1 

1 -1 1 -1 -1 1 -1 -1 

-1 -1 1 -1 1 1 1 1 

1 1 -1 1 -1 -1 -1 -1 

-1 1 -1 1 1 -1 1 1 

1 -1 -1 1 -1 1 1 1 

-1 -1 -1 1 1 1 -1 -1 

1 1 1 1 1 1 1 -1 

-1 1 1 1 -1 1 -1 1 

1 -1 1 1 1 -1 -1 1 

-1 -1 1 1 -1 -1 1 -1 
 

We have discussed that three of the most commonly practiced follow-up design discrimination 

techniques fail to identify a single optimal design for injection molding experiment.  Although choosing 

between these equivalent designs seems like a trivial decision, the selection of follow-up runs may 

ultimately have a direct effect on the optimal operating conditions that are chosen based on the results of 

this experiment.  It is possible that one of these optimal designs will lead to a better and more reliable 

optimum.  In this situation, we recommend that the practitioner leverage all the available information 

about the process to make this decision rather than choosing an optimal follow-up design arbitrarily.   

 

3.2 Discrimination Methodology 

The first step of our proposed discrimination technique is to determine a set of competing models to 

consider in the analysis.  Although it would not be completely unreasonable to include all possible models 

when there are very few experimental factors, this tactic, however, would be unwieldy for larger 

experiments.  A more practical approach is to consider a set of the most probable models based on model 

posterior probabilities calculated using equation (2.6).  We believe that it is reasonable to include only 
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models with posterior probabilities greater than .01 in our set of competing models as the inclusion of all 

other models would have a negligible impact on the analysis.   

 As seen in equation (2.6), the model posterior probability is a function of the model prior, P(Mi), 

and the marginal likelihood of the model given the data, P(y|Mi).  The model prior can be found using 

equation (2.2) but requires the selection of the hyperparameter π, which is the probability that an 

individual experimental factor is active.  The widely accepted sparsity of effects principle states that only 

a few experimental factors are likely to be significant in a fractional factorial, and as a result, we believe 

that π = .25 is a reasonable hyperparameter choice.  Rajagopal and Del Castillo (2005) provide evidence 

that the calculated model posteriors are fairly robust to the selection of the π hyperparameter. 

 The marginal likelihood of a model for a given data set is shown in equation (2.7) and is 

considerably more complex than the model prior.  The first part of this equation is called the likelihood 

function and when assuming that the error terms are normally distributed, the likelihood function can be 

written as: 

    ( |        )               (      ) (      )   (3.1) 

 
 The second part of equation (2.7) is the joint prior of the model parameters, βi and σ2, which are 

considered to be independent a priori.  Using a g-prior, the priors are chosen to be 

    (  )    ,        (3.2) 

    (  )             (3.3) 

and 

       (      )     ,       (3.4) 

where k1 and k2  are some constants, 

           (      ),       (3.5) 

ti is the number of parameters in the model excluding the intercept, and     is the identity matrix of order 

ti. 
Meyer et. al (1996) suggest choosing the value of γ that minimizes the posterior probability of the 

null model which is a model with the intercept as its only parameter.  They are able to empirically 

illustrate that choosing this value of γ maximizes the posterior density P(γ|y).  We found that a value of    

γ = .984 minimizes the posterior probability of the null model in our analysis of the injection molding 

experiment, and this value was therefore chosen for the hyperparameter. 

 Rajagopal and Castillo (2005) show that plugging equation (3.1) and the assumed priors into 

equation (2.7) allows the marginal likelihood of the model given the data to be rewritten as 

    ( |  )      |          |   ⁄    (   )  ⁄      (3.6) 

Then, omitting the constant denominator in equation (2.6), we now find that  



Kevin Kelly Chapter 3-Illustration of Methodology 17 
 

 

 

    (  | )     (   )        |          |   ⁄    (   )  ⁄    (3.7) 

where 

      (     ̂ ) (     ̂ )   ̂       ̂     (3.8) 

                 (          )           (3.9) 

and 

    ̂  (          )             (3.10) 

 We calculated the model posterior probabilities for all subset models in the injection molding 

experiment and found only three models with a probability greater than .01.  These three models will be 

the only models that we consider in our analysis, and these models and their posterior probabilities are 

displayed in Table 3.4.  Each model includes all the main effects listed and their two-factor interactions. 

Table 3.4 Injection Molding Model Posterior Probabilities 

Factors P(M|y) 

C, D and E 0.654 

A, C and E 0.189 

A, C, D and E 0.134 
 

Once a competing set of models has been selected, the next step is to develop a set of follow-up 

experiments to compare.  We showed that for the injection molding experiment three popular follow-up 

strategies lead to multiple optimal designs which creates our set of competing follow-up plans.  We will 

employ our discrimination technique on each of these candidate designs in order to determine which 

design will identify optimal operating conditions that maximize the model-averaged posterior (MAP) 

probability of producing a response in the desired range. 

 In order to calculate an MAP probability, we must first find the probability of achieving a 

response in the desired range when only considering a single model, which according to Rajagopal and 

Del Castillo (2005) can be defined as 

    (   ̃   |       )   ∫  ( ̃|       )  ̃       (3.11) 

where x* is a given set of experimental factor levels.  They go even further to prove that when g-priors are 

used that the predictive density in equation (3.11) has a tn-1 distribution with a cumulative predictive 

density of 

    (  ̃     ̂  ̂ √     (          )      |       )     (3.12) 

Therefore, the probability of some design point, x*, producing a response between our upper and lower 

bounds for a given model can be calculated by finding the cumulative probability for the upper bound and 
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subtracting the cumulative probability of the lower bound.  It follows, then, that when using g-priors, the 

MAP probability that a design location, x*, will produce a future response,  ̃, between upper and lower 

bounds, U and L, respectively can be computed with 

       ∑ ( ( ̃   |       )       ( ̃   |       )) (  | )    (3.13) 

Since we have decided to only use models that have posterior probabilities greater than .01, the model 

posterior probabilities must be rescaled, in order to ensure that they sum to one.   

 Once a set of competing designs and models to be considered has been created and the posterior 

probabilities of these models have been calculated, then our proposed design discrimination can be run for 

each candidate design as follows: 

1. Select a model at random using the model posterior probabilities, P(Mi|y), as weights. 

2. Create the X2 model matrix based on the follow-up design and the chosen model. 

3. Simulate a response, y, for every experimental run, x*, in X2 using the tn-1 predictive 

density described by equation (3.12). 

4. Recalculate the new model posterior probabilities that consider the initial and 

simulated responses combined. 

5. Determine which factor settings maximize the MAP probability defined by equation 

(3.13) using the Nelder-Mead (Nelder and Mead (1965)) simplex method carried out 

by the fmincon function in MATLAB. 

6. Record the MAP probability that was found at these optimum factor settings. 

7. Run 1,000 iterations of steps 1-6.   

Once this process is repeated 1,000 times for a given design, we are able to analyze the 

distribution of all the MAP probabilities that have been recorded by calculating the mean, standard 

deviation and five number summary of the data set.  We also recommend creating histograms of the 

model-averaged probabilities as a visual comparison tool.  The distribution of these probabilities can be 

used to further discriminate between optimal follow-up designs, and although this approach does not 

always point to a clear “winner” amongst a group of follow-up designs, it provides valuable information 

that should be considered before selecting a design.   

 

3.3 Injection Molding Analysis 

We considered all optimal foldovers and semifoldovers, as well as the top five 4-run MD-Optimal designs 

from the injection molding experiment.  In addition, we also included a 16-run and an 8-run MD-Optimal 

design in our analysis in order to compare an MD-Optimal design to both the foldover and semifoldover 

designs.  Prior to our analysis, we used the optimization process on the initial experiment and found that 



Kevin Kelly Chapter 3-Illustration of Methodology 19 
 

 

 

at the optimum operating conditions, the MAP probability of producing a response in the desired range is 

.4985. 

Tables 3.5 through 3.8 show the results from applying our discrimination technique to all the 

follow-up designs being considered.  In Table 3.5, the listed factors indicate which factors had their signs 

reversed as part of the foldover procedure.  The notation for the semifoldovers in Tables 3.5 and 3.6 

provides the factor that was used to subset Table 3.3 and a positive or negative sign which indicates 

whether the high or low value of that factor was chosen.  For example, the column titled A+ is all the runs 

from Table 3.3 where factor A is set at the high level.   

Table 3.5 Foldovers and Top 16-Run MD-Optimal Design 

 Design EF EG EH FG FH GH EFGH MD-16run 

Mean 0.4978 0.495 0.5005 0.5005 0.492 0.496 0.4961 0.5107 

Min 0.1567 0.1369 0.1229 0.1488 0.0529 0.1555 0.1793 0.1514 

Max 0.9341 0.9011 0.8869 0.8635 0.8888 0.871 0.8722 0.9938 

Q1 0.4054 0.3998 0.401 0.4059 0.3974 0.4028 0.4014 0.4072 

Q3 0.5973 0.5869 0.6009 0.5863 0.5796 0.5882 0.5868 0.6026 

Median 0.4953 0.4971 0.4916 0.4992 0.4913 0.4987 0.4905 0.5076 

Std Dev 0.1358 0.132 0.1379 0.1271 0.1332 0.1306 0.1319 0.1433 
 

Table 3.6 Semifoldovers 

 Design A- A+ B- B+ C- C+ D- D+ 

Mean 0.5088 0.5061 0.5132 0.5097 0.5077 0.5077 0.5087 0.5054 

Min 0.2063 0.1692 0.168 0.1834 0.1633 0.3777 0.1709 0.1929 

Max 0.9963 0.9603 0.9794 0.9892 0.9936 0.951 0.964 0.8939 

Q1 0.4567 0.4184 0.4144 0.413 0.4078 0.4637 0.4239 0.4575 

Q3 0.5446 0.5857 0.6091 0.6047 0.6025 0.5432 0.5912 0.5397 

Median 0.4988 0.5193 0.511 0.5114 0.5072 0.5026 0.5217 0.4943 

Std Dev 0.0918 0.1229 0.1364 0.1337 0.1394 0.0592 0.1249 0.0833 
 

Table 3.7 Additional Semifoldovers and Top 8-Run MD Optimal Design 

 Design E- E+ F- F+  G- G+ H- H+ MD-8run 

Mean 0.5076 0.5077 0.5066 0.5054 0.5106 0.5139 0.5048 0.5061 0.5285 

Min 0.3891 0.1641 0.1817 0.1628 0.1717 0.1745 0.1837 0.1302 0.1776 

Max 0.8435 0.9372 0.9546 0.9718 0.9718 0.9834 0.9895 0.977 0.9996 

Q1 0.4627 0.4171 0.41 0.4086 0.4182 0.4223 0.4102 0.413 0.4185 

Q3 0.5445 0.599 0.5965 0.5884 0.597 0.6071 0.5938 0.5998 0.6251 

Median 0.5014 0.5031 0.5049 0.5 0.5074 0.512 0.5064 0.5042 0.5232 

Std Dev 0.0636 0.1331 0.1322 0.1359 0.1308 0.1342 0.1331 0.1372 0.1485 
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Table 3.8 Top Five 4-Run MD Optimal Designs 

 Design MD1 MD2 MD3 MD4 MD5 

Mean 0.5013 0.5205 0.5143 0.5159 0.4999 

Min 0.1696 0.267 0.2741 0.3019 0.4241 

Max 0.863 0.9832 0.9962 0.9871 0.6689 

Q1 0.4076 0.4319 0.4196 0.4644 0.4749 

Q3 0.5953 0.5943 0.5895 0.5299 0.5251 

Median 0.5016 0.5104 0.5118 0.4923 0.5006 

Std Dev 0.127 0.1232 0.1211 0.0963 0.0335 
 

The mean, minimum, maximum, 1st quartile, 3rd quartile, median and standard deviation of the 

simulated MAP probabilities are found under each design, and these values provide a summary of the 

distribution of these probabilities for all the potential follow-up designs.  Each individual MAP 

probability is the probability that the optimum found after the simulated follow-up design will lead to a 

response in the desired region, thus we have found a distribution that shows the capability of each design 

for finding a reliable optimum.   

 Table 3.5 shows that the MAP probabilities of all the foldovers are similar for the most part, but 

the results do suggest that the FH foldover is least preferable.  The minimum for this foldover is lower 

than the other foldovers, and its maximum, Q1 and Q3 values are also among the lowest.  The 16-run 

MD-Optimal design appears to have an advantage over all the foldovers as its maximum is much higher 

than the rest of the design.  Figure 3.1 shows the histogram for the FH foldover and the 16-run MD 

Optimal design, and it appears that MD-Optimal design appears to have a slight advantage. 

 

(a) FH Foldover 

 

 

(b) MD-Optimal 16-run 

 

 

Figure 3.1 Injection Molding Experiment 16-Run Follow-Up Design Histograms 
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  Tables 3.6 and 3.7 show that there is a much starker contrast between the distributions of the 

semifoldovers.  The diagnostics of most the semifoldovers are alike, but the C+, D+ and E- semifoldovers 

stand out with their low standard deviations and differing distributions.  The E- semifoldover, for 

example, has the highest minimum and lowest maximum MAP probabilities by far.  Figure 3.2 shows the 

drastic distributional difference between the D+ and E- semifoldovers, and it appears that the E- 

semifoldover is a more conservative option.  Each of the semifoldovers that exhibits a tight distribution 

involves an experimental factor that is in two or more of the models used in this simulation.     

 

(a) D+ Semifoldover 

 

 

(b) E- Semifoldover 

 

 

Figure 3.2 Injection Molding Experiment 8-Run Follow-Up Design Histograms 

 

Table 3.8 shows that designs MD2, MD3 and MD4 have much higher maximum and minimum 

simulated MAP probabilities than MD1 which gives them an advantage.  Designs MD2 and MD3 are 

preferable as their 3rd quartile is much higher than that of MD4.  This provides an example where the 

highest MD-Criterion value is not necessarily the best option.  MD5 sticks out with a relatively low 

standard deviation.  The histograms in Figure 3.3 show that the MD2 design produced a wider range of 

MAP probabilities and has much greater potential to produce high MAP probabilities at the optimum 

factor setting than MD5.  I would recommend choosing design MD2 over MD5, because it appears that 

there are a higher proportion of large simulated MAP probabilities. 

 Although the summary statistics and histograms of the MAP probabilities are able to provide a 

great deal of discrimination between the candidate follow-up designs, there is a great deal of subjectivity 

in this method.  Ultimately the goal of the practitioner is to choose the follow-up design that points to 

optimal factor settings with the highest MAP probability among all follow-up designs.  As a result, we are 

proposing a maximax criterion where the follow-up design with the largest simulated maximum MAP 
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probability is preferred.  This criterion leads to the selection of the design that shows the most potential 

for improving the maximum MAP probability of the combined design.   

 We recommend only using this criterion to compare follow-up designs of the same size, because 

we do not know how well this criterion will perform when comparing the maximum simulated MAP 

probability of two designs of different sizes.  When there are multiple follow-up designs with maximum 

simulated MAP probabilities that are close to the highest, it would be beneficial for the practitioner to 

inspect the distribution visually through the histograms in order to further discriminate.  According to our 

maximax criterion 16-run and 8-run MD-Optimal designs are the best choice among all 16-run and 8-run 

follow-up designs that we have considered.  We also conclude that the third ranked 4-run MD-Optimal 

design is preferred among all 4-run designs considered. 

  

 

(a) 4-Run MD-Optimal Design 2 

 

 

(a) 4-Run MD-Optimal Design 5 

 

 

Figure 3.3 Injection Molding Experiment 4-run Follow-Up Design Histograms 



 

23 

Chapter 4 

Examples 

4.1 Acid Leaching Experiment 

This example uses a 12-run Plackett-Burman (Plackett and Burman (1946)) design with 7 factors taken 

from Mee (2009).  The goal of this experiment is to optimize the acid leaching step for determining trace 

amounts of manganese in seafood products, and for our analysis, we set the desired range of the response 

variable to 90 or more units of manganese.  The seven experimental factors are A = nitric acid 

concentration, B = hydrochloric acid concentration, C = hydrogen peroxide concentration, D = acid 

solvent volume, E = ultrasonic water-bath temperature, F = ultrasound exposure time and G = mussel 

particle size.  The data from this experiment can be found in Table 4.1. 

Table 4.1 Acid Leaching Experiment 

A B C D E F G MN 

1 -1 1 -1 -1 -1 1 100.4 

1 1 -1 1 -1 -1 -1 86.9 

-1 1 1 -1 1 -1 -1 105 

1 -1 1 1 -1 1 -1 59.8 

1 1 -1 1 1 -1 1 107.2 

1 1 1 -1 1 1 -1 87.8 

-1 1 1 1 -1 1 1 88 

-1 -1 1 1 1 -1 1 67.5 

-1 -1 -1 1 1 1 -1 34.6 

1 -1 -1 -1 1 1 1 106.6 

-1 1 -1 -1 -1 1 1 104.2 

-1 -1 -1 -1 -1 -1 -1 46.6 
  

 After the initial experiment, the optimum factor setting led an MAP probability of producing a 

response in the desired range of 90 or more units of manganese is .6791.  The hyperparameters were set to 

π=.25 and γ = .832, and we found that 17 different models had model posterior probabilities greater than 

.01.  The top five models and their posterior probabilities are displayed in Table 4.2.  All 17 models are 

used in the follow-up design analysis. 
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Table 4.2 Acid Leaching Experiment Model Posterior Probabilities 

Factors P(M|y) 

A, B and G 0.324 

B and G 0.212 

None 0.098 

B 0.07 

A and B 0.056 
 

According the minimum aberration criterion, the full foldover is the only optimal foldover for a 

12-run Plackett-Burman design.  The minimal dependents sets criterion shows that folding over on all 

factors and subsetting on factor A, B, C, D, E or F will lead to an optimal semifoldover.  We consider the 

full foldover, the 12 optimal semifoldovers, the top five 3-run MD-Optimal designs and an MD-Optimal 

designs with 12 and 6 runs in our analysis.  Tables 4.3 through 4.5 present the simulated MAP 

probabilities for each of these candidate follow-up designs. 

 

Table 4.3 Full Foldover, Top 12-Run MD-Optimal and Top Five 3-Run MD-Optimal Designs 

  Full MD-12run MD1 MD2 MD3 MD4 MD5 

Mean 0.7034 0.7096 0.6977 0.6972 0.6965 0.6899 0.694 

Min 0.2982 0.3095 0.3964 0.3825 0.45 0.3609 0.3858 

Max 0.9931 0.9752 0.9101 0.9097 0.891 0.8512 0.8941 

Q1 0.5606 0.576 0.5965 0.587 0.5884 0.6043 0.6066 

Q3 0.8554 0.8636 0.8036 0.808 0.7962 0.7861 0.7857 

Median 0.717 0.7234 0.7093 0.7114 0.727 0.721 0.7054 

Std Dev 0.173 0.1712 0.1282 0.1315 0.1175 0.1157 0.1092 
 

Table 4.4 Semifoldovers 

  A- A+ B- B+ C- C+ 

Mean 0.6965 0.6969 0.6928 0.7081 0.7115 0.6896 

Min 0.3617 0.3411 0.4279 0.3169 0.3347 0.365 

Max 0.963 0.9739 0.9622 0.9633 0.9614 0.9647 

Q1 0.5905 0.5766 0.5585 0.5997 0.604 0.5626 

Q3 0.8098 0.8141 0.8132 0.8295 0.8366 0.8166 

Median 0.7155 0.6972 0.6939 0.7306 0.7333 0.6939 

Std Dev 0.1391 0.1488 0.1463 0.1457 0.1504 0.149 
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Table 4.5 Additional Semifoldovers and Top 6-Run MD-Optimal Design 

  D- D+ E- E+ F- F+ MD-6run 

Mean 0.7023 0.7065 0.7119 0.7076 0.7014 0.7088 0.7037 

Min 0.3142 0.3824 0.3215 0.3139 0.3316 0.34 0.3518 

Max 0.9613 0.9657 0.9655 0.9597 0.9573 0.9599 0.9445 

Q1 0.5852 0.5913 0.5871 0.5984 0.5939 0.5926 0.5884 

Q3 0.8281 0.8326 0.8494 0.8275 0.8333 0.8378 0.827 

Median 0.7261 0.7157 0.7219 0.7299 0.7191 0.7156 0.7302 

Std Dev 0.1548 0.1534 0.1574 0.1483 0.1561 0.1511 0.144 
 

The results in Table 4.3 indicate that there is not much difference between the MAP probability 

distributions of the full foldover and the 12-run MD-Optimal design, but the descriptive statistics do not 

always paint the clearest picture.  The histograms in Figure 4.1 show that the 12-run MD-Optimal design 

has a greater proportion of MAP probabilities above .8 and is therefore a more preferable choice.  

Although the difference looks subtle, the histograms show that the MD design has around 35 more MAP 

probabilities in the highest grouping of around .9 or greater.  Both 12-run designs dominate the 3-run 

designs in both the maximum and 3rd quartile values and show a slight advantage over the 6-run designs.  

Based on our maximax criterion, I would use the full foldover rather than the 12-run MD-Optimal design. 

 

 

(a) Full Foldover 

 

 

(b) 12-Run MD-Optimal 

 

 

Figure 4.1 Acid Leaching Experiment 12-Run Follow-Up Design Histograms 

 

 Much like the results of the 12-run follow-up designs, the descriptive statistics for the 

semifoldovers in Tables 4.4 and 4.5 do very little to differentiate these follow-up designs.  The 

histograms, once again, are able to detect differences in the distributions of the MAP probabilities that 
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were not apparent in summary statistics.  The A+, B- and C+ semifoldovers all lead to distributions with a 

lower proportion of MAP probabilities on the higher end of the spectrum.  These semifoldovers produce 

the three lowest medians, and the B- semifoldover has by far the highest minimum.  Figure 4.2 shows that 

although the B- semifoldover has a much higher minimum, the B+ semifoldover has a definitively larger 

proportion of high MAP probabilities.  The maximax criterion points to the A+ semifoldover as the 

preferred 6-run follow up design, but most of the maximum simulated MAP probabilities for these 

designs are close to that of the A+ semifoldover.  This suggests that the choice of 6-run follow-up design 

may not influence the reliability of the optimum that the combined design locates. 

Neither the descriptive statistics nor histograms are able to further discriminate between the top 

five 3-run MD-Optimal designs.  The maximax criterion points to the top ranked 3-run MD-Optimal 

(MD1) design, but once again, the maximum simulated MAP probabilities of the other designs of this size 

are fairly close.  In this situation, it may be in the practitioner’s best interest to use the MD3 optimal 

instead design as it has a high maximum simulated MAP probability, and a much higher minimum 

simulated MAP probability than the other 3-run designs. 

  

 

(a) B- Semifoldover 

 

 

(b) B+Semifoldover 

 

 

Figure 4.2 Acid Leaching Experiment 6-Run Follow-Up Design Histograms 

 

4.2 Heat Treating Experiment 

Next we analyze a        heat treating experiment from Montgomery (2009) that investigates the 

carbonization of metal parts.  The response variable of interest is pitch thickness, and a thickness between 

160 and 180 is desired by the practitioners.  The experimental factors are A = carbon concentration, B = 

cycle time, C = furnace temperature, D = duration of carbonization cycle, E = carbon concentration of the 
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diffuse cycle and F = duration of the diffuse cycle, and the defining relation for this design is I = 

A*B*C*E = A*B*D*F = C*D*E*F.  The data for this experiment is in Table 4.6. 

Table 4.6 Heat Treating Experiment 

A B C D E F Y 

-1 -1 -1 -1 -1 -1 74 

-1 -1 -1 1 -1 1 121 

-1 -1 1 -1 1 -1 190 

-1 -1 1 1 1 1 188 

-1 1 -1 -1 1 1 133 

-1 1 -1 1 1 -1 135 

-1 1 1 -1 -1 1 127 

-1 1 1 1 -1 -1 170 

1 -1 -1 -1 1 1 115 

1 -1 -1 1 1 -1 126 

1 -1 1 -1 -1 1 101 

1 -1 1 1 -1 -1 175 

1 1 -1 -1 -1 -1 54 

1 1 -1 1 -1 1 126 

1 1 1 -1 1 -1 144 

1 1 1 1 1 1 193 
  

The maximum MAP probability of producing a pitch with a thickness between 160 and 180 is 

only .4325 after the initial experiment which means that there is a great deal of room for improvement.  

We chose π = .25 and γ = 1 as our hyperparameters and calculated that there 8 models with a posterior 

probability greater than .01.  All these models and their posteriors can be found in Table 4.7.  In this 

example, the most probable model has a posterior probability of .667 which means it will most likely 

dominate the analysis. 

Table 4.7 Heat Treating Experiment Model Posterior Probabilities 

Factors  P(M|y) 

C, D and E 0.667 

A, C, D and E 0.086 

C 0.082 

C and D 0.042 

C, D, E and F 0.027 

C and E 0.024 

None 0.024 

D 0.011 
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 A foldover on factors E, F and both factors simultaneously will lead to an optimal foldover which 

includes every single core foldover.  This means that the minimum aberration criterion has not pared 

down the candidate list of foldovers at all.  There are 12 optimal semifoldovers for this design according 

to the minimal dependent sets criterion, and they can be formed by folding over on factor A and 

subsetting on any of the six factors.  We applied our methodology to the 3 foldovers, 12 semifoldovers 

and several different MD-Optimal designs as well, and the results can be seen in Tables 4.8 through 4.10. 

  

Table 4.8 Foldovers, Top 16-Run MD-Optimal and Top Five 4-Run MD-Optimal Designs 

  E F EF MD-16Run MD1 MD2  MD3 MD4 MD5 

Mean 0.4323 0.4229 0.438 0.4133 0.4213 0.4206 0.4249 0.4261 0.4199 

Min 0.1166 0.1165 0.1166 0.1199 0.1203 0.1474 0.1236 0.1519 0.142 

Max 0.7328 0.7053 0.7327 0.6982 0.5627 0.562 0.5625 0.5643 0.5618 

Q1 0.3994 0.3732 0.4095 0.3654 0.3723 0.3711 0.3904 0.3816 0.3748 

Q3 0.5059 0.5015 0.5061 0.487 0.4953 0.4941 0.4949 0.4975 0.4917 

Median 0.461 0.4544 0.4632 0.4418 0.457 0.4567 0.4566 0.4602 0.4547 

Std Dev 0.1185 0.1184 0.1137 0.1102 0.1005 0.1003 0.0977 0.0983 0.0991 
 

Table 4.9 Semifoldovers 

  A- A+ B- B+ C- C+ D- D+ 

Mean 0.4417 0.4314 0.4439 0.4398 0.4344 0.4296 0.4301 0.4277 

Min 0.1206 0.1193 0.1069 0.114 0.1314 0.1182 0.1297 0.1131 

Max 0.6324 0.6569 0.6481 0.6446 0.6517 0.6819 0.6786 0.6196 

Q1 0.411 0.3915 0.4112 0.4111 0.3952 0.3831 0.3977 0.3786 

Q3 0.5096 0.5047 0.5139 0.5072 0.5018 0.5097 0.5007 0.5065 

Median 0.4715 0.466 0.4751 0.4699 0.4597 0.4643 0.461 0.4573 

Std Dev 0.104 0.1125 0.1096 0.1055 0.1026 0.119 0.1121 0.1097 
 

Table 4.10 Additional Semifoldovers and Top 8-Run MD-Optimal Design 

  E- E+ F- F+ MD8-Run 

Mean 0.4298 0.4372 0.4317 0.4324 0.4148 

Min 0.1085 0.1174 0.1128 0.1175 0.1011 

Max 0.6576 0.6713 0.6516 0.6761 0.6699 

Q1 0.3901 0.3869 0.3836 0.3903 0.3631 

Q3 0.503 0.5108 0.507 0.508 0.4881 

Median 0.4589 0.4678 0.463 0.4678 0.447 

Std Dev 0.1094 0.1111 0.1128 0.1135 0.1074 
 

The descriptive statistics in Tables 4.8 through 4.10 show that the larger follow-up designs have a 

greater potential for finding an optimum with a high MAP probability of falling in the desired range, but 
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these summary statistics fail to discriminate between designs of the same size.  The histograms in Figure 

4.3 show that the E+ semifoldover may have a slight advantage over the D+ semifoldover, but for the 

most part, the histograms fail to show any noticeable differences among designs of the same size.   

The maximax criterion selects the E foldover, the C+ semifoldover and the MD4 design as the 

best choice of 16-run, 8-run and 4-run follow-up designs respectively.  The maximum simulated MAP 

probabilities are all very close together for follow-up designs of the same run size, so there may not be a 

major advantage to picking these designs over the others.  As a result, we conclude that for a given run 

size, the selection of follow-up design should not impact the reliability of the optimum.   

  

 

(a) D+ Semifoldover 

 

 

(b) E+ Semifoldover 

 

 

Figure 4.3 Heat Treating Experiment 8-Run Follow-Up Design Histograms 

 It should be noted that the maximum MAP probabilities for all the designs in this example are 

relatively low.  A follow-up design with 16 runs will at best find an optimum with an MAP probability of 

.7328 which would be unacceptable in any industrial setting.  These results make the argument that the 

range of acceptable response values may be too narrow and that this range needs to be extended. 

The heat treating experiment provides an example where our technique does not necessarily 

provide a great deal of discrimination between these designs.  The homogeneity in the results could be the 

result of having one model with a dominant posterior probability or perhaps due to setting a response 

range that is too conservative. 

 

4.3 Amino Acid Experiment 

 We pull our last example from a nine-factor full factorial experiment taken from Mee (2008) that 

investigates the binding process of the neuropeptide substance P systematically by replacing native L-

amino acids with D-amino acids in nine positions.  The nine experimental factors in this experiment are 
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categorical variables, but for the sake of our analysis, we assume that they are continuous.  The response 

variable being studied is the percentage of inhibition of a reagent.  Higher inhibition values are preferred, 

so we select a desired response range of 90% inhibition or greater.  We filtered out the 32 runs from the 

full factorial that create the minimum aberration        design with the following generators: F = BCDE,  

G = ACDE, H = ABDE and J = ABCF.  We treat this 32-run design, seen in Table 4.11, as our initial 

experiment for this analysis. 

Table 4.11 Amino Acid Experiment 

A B C D E F G H J Y 

-1 -1 -1 -1 -1 1 1 1 1 96 

1 -1 -1 -1 -1 1 -1 -1 -1 8 

-1 1 -1 -1 -1 -1 1 -1 -1 14 

1 1 -1 -1 -1 -1 -1 1 1 9 

-1 -1 1 -1 -1 -1 -1 1 -1 0 

1 -1 1 -1 -1 -1 1 -1 1 23 

-1 1 1 -1 -1 1 -1 -1 1 5 

1 1 1 -1 -1 1 1 1 -1 29 

-1 -1 -1 1 -1 -1 -1 -1 1 8 

1 -1 -1 1 -1 -1 1 1 -1 14 

-1 1 -1 1 -1 1 -1 1 -1 0 

1 1 -1 1 -1 1 1 -1 1 43 

-1 -1 1 1 -1 1 1 -1 -1 27 

1 -1 1 1 -1 1 -1 1 1 18 

-1 1 1 1 -1 -1 1 1 1 75 

1 1 1 1 -1 -1 -1 -1 -1 18 

-1 -1 -1 -1 1 -1 -1 -1 -1 21 

1 -1 -1 -1 1 -1 1 1 1 0 

-1 1 -1 -1 1 1 -1 1 1 62 

1 1 -1 -1 1 1 1 -1 -1 20 

-1 -1 1 -1 1 1 1 -1 1 34 

1 -1 1 -1 1 1 -1 1 -1 22 

-1 1 1 -1 1 -1 1 1 -1 0 

1 1 1 -1 1 -1 -1 -1 1 16 

-1 -1 -1 1 1 1 1 1 -1 81 

1 -1 -1 1 1 1 -1 -1 1 3 

-1 1 -1 1 1 -1 1 -1 1 22 

1 1 -1 1 1 -1 -1 1 -1 9 

-1 -1 1 1 1 -1 -1 1 1 17 

1 -1 1 1 1 -1 1 -1 -1 10 

-1 1 1 1 1 1 -1 -1 -1 0 

1 1 1 1 1 1 1 1 1 99 
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 The hyperparameters were set to π = .25 and γ = .365 in our analysis, and we found that the 

maximum MAP probability is only .2585 after the initial experiment.  There are 20 models with posterior 

probabilities greater than .01 for the data in Table 4.11 that will be included in our model averaging 

process.  The top five models and their posterior probabilities are displayed in Table 4.12.  The top two 

models appear to dominate although their posterior probabilities are relatively low. 

Table 4.12 Amino Acid Experiment Model Posterior Probabilities 

Factors P(M|y) 

F, G, H and J 0.206 

F, G and H 0.169 

F and G 0.072 
G 0.049 

D, F, G, H and J 0.044 
 

Foldovers on the combination of factors FG, FH, FJ, GH, GJ and HJ are all minimum aberration 

and therefore optimal.  Based on the minimally dependent sets criteria, there are 16 optimal semifoldovers 

that can be produced by first folding over on factors F and G then subsetting on any factor other than E.  

We also included the top five MD-Optimal designs with only 8 runs, as well as a 16-run and 32-run MD-

Optimal design in our analysis.  The descriptive statistics from all these simulations are displayed in 

Tables 4.13 through 4.16. 

Table 4.13 Foldovers and Top 32-Run MD-Optimal Design 

  FG FH FJ GH GJ HJ MD 32-Run 

Mean 0.2612 0.2695 0.2603 0.2665 0.2597 0.2688 0.2499 

Min 0.0131 0.0121 0.014 0.0115 0.0098 0.0115 0.013 

Max 0.8419 0.8336 0.8339 0.8306 0.8579 0.8521 0.7559 

Q1 0.0824 0.0872 0.0839 0.0793 0.08 0.0992 0.0879 

Q3 0.4224 0.4291 0.4026 0.4274 0.4053 0.4154 0.3888 

Median 0.2089 0.2355 0.2205 0.2218 0.2152 0.2245 0.2161 

Std Dev 0.2004 0.1973 0.1954 0.2023 0.1978 0.1942 0.1803 
 

Table 4.14 Semifoldovers 

  A- A+ B- B+ C- C+ D- D+ 

Mean 0.2718 0.2664 0.2668 0.2652 0.2655 0.2617 0.2595 0.2656 

Min 0.0119 0.016 0.015 0.0153 0.0172 0.015 0.0204 0.0137 

Max 0.7686 0.7068 0.8423 0.7193 0.7733 0.8303 0.7186 0.7999 

Q1 0.1072 0.1036 0.104 0.1132 0.1035 0.1001 0.1154 0.0962 

Q3 0.4216 0.4144 0.4004 0.4044 0.4099 0.3975 0.3939 0.4187 

Median 0.2385 0.2321 0.2319 0.2499 0.2403 0.236 0.2309 0.2339 

Std Dev 0.1838 0.1797 0.1811 0.1691 0.1762 0.1796 0.1679 0.183 



Kevin Kelly Chapter 4-Examples 32 
 

 

 

Table 4.15 Additional Semifoldovers and Top 16-run MD-Optimal Design 

  F- F+ G- G+ H- H+ MD 16-run 

Mean 0.2548 0.2578 0.2573 0.2624 0.2588 0.2594 0.2588 

Min 0.0552 0.0136 0.0469 0.0127 0.0416 0.0124 0.0313 

Max 0.6727 0.7958 0.6006 0.8174 0.6334 0.9115 0.6257 

Q1 0.1326 0.0746 0.1412 0.0908 0.1483 0.0837 0.1383 

Q3 0.3647 0.4125 0.3597 0.4039 0.3547 0.4043 0.3689 

Median 0.2256 0.2126 0.2405 0.2238 0.2516 0.2154 0.2395 

Std Dev 0.1421 0.1959 0.1395 0.1888 0.1323 0.1926 0.1396 
 

Table 4.16 Top Five 8-run MD-Optimal Designs 

  MD 1 MD 2 MD 3  MD 4 MD 5 

Mean 0.2596 0.2626 0.2524 0.2528 0.2702 

Min 0.0488 0.0499 0.0513 0.0237 0.0242 

Max 0.5436 0.526 0.524 0.651 0.6979 

Q1 0.1566 0.1685 0.1627 0.1128 0.1288 

Q3 0.3534 0.3533 0.3366 0.3784 0.3984 

Median 0.2562 0.2619 0.2475 0.2385 0.2608 

Std Dev 0.1167 0.1116 0.1097 0.154 0.1595 
  

The descriptive statistics show an intriguing relationship between the optimal foldovers and 

semifoldovers in that several of the semifoldovers preform equally as well as or even better than the much 

larger foldover designs.  The B-, C+ and G+ semifoldovers have maximum MAP probabilities on par 

with the maximums of the foldovers while the H+ semifoldover’s maximum is the largest among all 

follow-up designs being compared.  The histograms of the EF foldover and G+ semifoldover displayed in 

Figure 4.4 show that the two distributions are virtually indistinguishable which implies that the extra 16 

runs in the foldover may be unnecessary. 

According to the maximax criterion, the GJ foldover and the H+ semifoldover are the preferred 

choice among designs of their size.  While the H+ semifoldover has a much higher maximum MAP 

probability than the other 16-run designs, the HJ foldover has a maximum simulated MAP probability 

that is very close to that of the GJ foldover.  As a result both of these foldovers would be good choices. 

The summary statistics for the semifoldovers in Tables 4.14 and 4.15, on the other hand, indicate 

that there are noticeable differences in the MAP probability distributions of these designs.   Several of the 

semifoldovers clearly dominate the rest in terms of their maximum and 3rd quartile MAP probability 

values, such as B-, C+, D+, F+ and H+.  The F-, G- and H- semifoldovers have lower standard deviations 

which lead to unusually low maximums, while the minimums are only slightly higher than the rest of the 

semifoldover designs.   
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(a) FH Foldover 

 

 

(b) G+ Semifoldover 

 

 

Figure 4.4 Amino Acid Experiment 32 and 16-Run Follow-Up Design Histograms 

 

In this example, the histograms do not highlight the differences in these distributions nearly as 

well as the descriptive statistics do.  Although the statistics in Table 4.15 indicate that the H+ 

semifoldover is clearly a better option than the G- semifoldover, this conclusion is much more 

questionable when considering their histograms seen in Figure 4.5.  These histograms show that while the 

H+ semifoldover has a greater proportion of MAP probabilities at the higher end of the spectrum, this 

semifoldover also has a much larger proportion of low probabilities as well.  Despite the questionable 

results seen in the histograms, we still feel that the H+ semifoldover is a better option due to the presence 

of much higher MAP probabilities in the results.  Fortunately, this design was sampled from a full 

factorial, so we are able to test our hypothesis empirically by calculating the maximum MAP probability 

when the actual response values that were produced for these follow-up runs are considered.  
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(a) G- Semifoldover 

 

 

(b) H+ Semifoldover 

 

 

Figure 4.5 Amino Acid Experiment 16-Run Follow-Up Design Histograms 

 

First we combine the results of the initial and follow-up designs from the full factorial experiment 

and then recalculate the model posterior probabilities for each combined design.  Finally, we use these 

new model posteriors to locate the factor settings associated with the maximum MAP probability of 

producing a desirable response. 

Table 4.17 Actual MAP Probabilities 

Design MAP 
Probability 

Simulated 
Maximum 

Foldover FJ 0.6187 0.8339 

Foldover GJ 0.5579 0.8579 

Semifoldover A- 0.6503 0.7686 

Semifoldover A+ 0.5236 0.7068 

Semifoldover B- 0.612 0.8423 

Semifoldover C+ 0.5993 0.8303 

Semifoldover F- 0.4451 0.6727 

Semifoldover G- 0.4687 0.6006 

Semifoldover G+ 0.6174 0.8174 

Semifoldover H- 0.4416 0.6334 

Semifoldover H+ 0.6274 0.9115 

MD-Optimal 1 0.3792 0.5436 

MD-Optimal 2 0.3899 0.526 

MD-Optimal 4 0.4748 0.651 

MD-Optimal 5 0.5022 0.6979 
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The actual MAP probabilities for several of the follow-up designs are shown in Table 4.17, and 

they appear to confirm our hypothesis about the G- and H+ semifoldovers.  The output in Table 4.17 also 

verifies that the best semifoldovers find an equally reliable optimum as the foldovers.   These results 

suggest that the maximax criterion that we have introduced may be a powerful tool for discriminating 

optimal follow-up designs.  We found a highly significant Pearson correlation coefficient (Montgomery 

(2009)) of r = .919 between the real maximum MAP probability and the maximum simulated MAP 

probability.  This provides evidence that the maximax criterion maybe be good predictor of the actual 

maximum MAP probability that will be found after a follow-up experiment is run. 

The summary statistics for the 8-run MD-Optimal designs in Table 4.16 show that the MD4 and 

MD5 designs have slightly more spread out MAP probabilities with much higher maximums and 3rd 

quartile values and only slightly lower minimums.  The histograms for the 8-run MD-Optimal designs 

confirm this conclusion, as it can be seen in Figure 4.6 that the MD5 design has a greater proportion of 

higher MAP probabilities than the MD1 design.   

 

 

(a) 8-Run MD1 Design 

 

 

(b) 8-Run MD5 Design 

 

 

Figure 4.6 Amino Acid Experiment 8-Run Follow-Up Design Histograms 

  

   We have shown, once again, that the design with the highest MD-criterion value is not always the 

best option.  The descriptive statistics for the MD-Optimal designs also show that the MD4 and MD5 

designs are competitive with the worst of the semifoldover designs.  The results in Table 4.17 validate 

that the MD4 and MD5 designs are much better options than the MD1 follow-up and also that the best 8-

run MD-Optimal designs lead to optimums that are competitive with the worst semifoldover choices. 
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This example demonstrates the ability of our discrimination technique to differentiate between 

follow-up designs of all run sizes and also provides empirical evidence that this technique can be a 

powerful instrument for informing the follow-up design selection process.    
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Chapter 5 

V.  Conclusion 
 Sequential experimentation is a widely accepted and practiced process optimization method, and 

follow-up design selection is vital to the success of the optimization process.  We have shown that three 

widely used follow-up design selection criteria will oftentimes lead to multiple optimal designs which 

requires that the practitioner selects one arbitrarily.  The choice of design can greatly influence the 

optimization process, but there is currently no framework in place for further discriminating between 

these optimal follow-up designs. 

 In this paper, we are able to develop a technique for distinguishing between follow-up designs 

that are otherwise considered to be equivalent.  Our discrimination technique uses Bayesian optimization 

methods to control for parameter and model uncertainty, and through simulations we are able to identify 

which follow-up designs are more likely to lead to a reliable optimum.  The descriptive statistics and 

histograms of the simulated optimum MAP probabilities can both be used to differentiate between follow-

up designs of the same and different sizes, but we recommend using a maximax criterion to reduce the 

subjectivity involved in design selection.   

The examples in this paper show that our proposed methods do allow further discrimination 

between optimal follow-up designs, and in the final example, we are even able to demonstrate that our 

preferred designs tend to lead to better MAP probabilities at their optimum.  Our results create a great 

deal of opportunities in the future.  We hope to apply our methodology to other optimal follow-up 

designs, such as A-optimal and D-optimal designs, and we would also like to adapt out method for three-

level designs as well as experiments with multiple response variables.  Also, we would like to develop a 

methodology that does not assume a point estimation of the γ hyperparameter and instead uses a density 

curve for possible values of γ instead.  We feel that it would be extremely beneficial to sample from more 

full factorials in order to test the efficacy of this discrimination technique in greater depth. 
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