
Discriminating Between The Weibull and

Log-Normal Distributions

Debasis Kundu1 Anubhav Manglick2

Abstract

Log-Normal andWeibull distributions are the most popular distributions for modeling skewed

data. In this paper, we consider the ratio of the maximized likelihood in choosing between

the two distributions. The asymptotic distribution of the logarithm of the maximized likeli-

hood ratio has been obtained. It is observed that the asymptotic distribution is independent

of the unknown parameters. The asymptotic distribution has been used to determine the

minimum sample size required to discriminate between two families of distributions for a

user specified probability of correct selection. We perform some numerical experiments to

observe how the asymptotic methods work for different sample sizes. It is observed that the

asymptotic results work quite well even for small samples also. Two real data sets have been

analyzed.
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1 Introduction:

We address the following problem in this paper. Suppose an experimenter has observed n

data points, say x1, . . . , xn and he wants to use either two-parameter log-normal model or

two parameter Weibull model, which one is preferable?

It is well known that both the log-normal and Weibull models can be used quite effectively

to analyze skewed data set. Although, these two models may provide similar data fit for

moderate sample sizes, but still it is desirable to select the correct or more nearly correct

model, since the inferences based on the model will often involve tail probabilities, where

the affect of the model assumptions are very critical. Therefore, even if we have small or

moderate samples, it is still very important to make the best possible decision based on

whatever data are available.

The problem of testing whether some given observations follow one of the two probability

distributions is quite old in the statistical literature. See for example the work of Atkinson

(1969, 1970), Bain and Englehardt (1980), Chambers and Cox (1967), Chen (1980), Cox

(1961, 1962), Dyer (1973), Fearn and Nebenzahl (1991), Gupta and Kundu (2003, 2004),

Kundu, Gupta and Manglick (2004), Wiens (1999) and the references therein.

In this paper, we consider the problem of discriminating between Weibull and log-normal

distributions. We use the ratio of the maximized likelihood (RML) in discriminating be-

tween the two distribution functions and using the approach of White (1982a,b), we obtain

the asymptotic distribution of the logarithm of RML. It is observed that the asymptotic

distribution is asymptotically normal and it is independent of the unknown parameters. The

asymptotic distribution can be used to compute the probability of correct selection (PCS)

and it is observed in the simulation study that the asymptotic distribution works quite well

even for small sample sizes. Dumonceaux and Antle (1973) proposed a likelihood ratio test
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in discriminating between the log-normal and Weibull distributions. The asymptotic results

can be used to obtain the critical regions of the corresponding testing of hypotheses problem

also.

We also find the minimum sample size required to discriminate between the two distribu-

tion functions for a given PCS. Using the asymptotic distribution of the logarithm of RML,

we obtain the minimum sample size required to discriminate between the two distribution

functions for a given user specified protection level, i.e. the PCS.

The rest of the paper is organized as follows. We describe the likelihood ratio method in

section 2. Asymptotic distributions of the logarithm of RML statistics under null hypotheses

are obtained in section 3. Sample size determination has been performed in section 4. Some

numerical experiments are performed in section 5 and two real data sets are analyzed in

section 6. Finally we conclude the paper in section 7.

We use the following notation for the rest of the paper. The density function of a log-

normal random variable with scale parameter θ > 0 and shape parameter σ > 0, will be

denoted by

fLN(x;σ, θ) =
1√
2πxσ

e−
(ln x−ln θ)2

2σ2 ; for x > 0. (1.1)

A log-normal distribution with the shape and scale parameters σ and θ will be denoted by

LN(σ, θ). The density function of a Weibull distribution, with shape parameter β > 0 and

scale parameter λ > 0, will be denoted by

fWE(x; β, λ) = βλβxβ−1e−(xλ)β ; for x > 0. (1.2)

A Weibull distribution with the shape and scale parameters β and λ respectively, will be

denoted by WE(β, λ). We denote ψ(x) = d
dx
ln(Γ(x)) and ψ′(x) = d

dx
ψ(x), as the digamma

and polygamma functions respectively.
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2 Ratio of Maximized Likelihood

In this section, we assume that we have a sampleX1, . . . , Xn, from one of the two distribution

functions. The likelihood functions, assuming that the data follow LN(σ, θ) or WE(β, λ),

are

LLN(σ, θ) =
n
∏

i=1

fLN(Xi;σ, θ)

and

LWE(β, λ) =
n
∏

i=1

fWE(Xi; β, λ),

respectively. The logarithm of RML is defined as

T = ln

[

LLN(σ̂, θ̂)

LWE(β̂, λ̂)

]

. (2.1)

Here (σ̂, θ̂) and (β̂, λ̂) are maximum likelihood estimators (MLEs) of (σ, θ) and (β, λ) respec-

tively based on the sample X1, . . . , Xn. The logarithm of RML can be written as follows;

T = n

[

1

2
− ln

(

σ̂β̂(λ̂θ̂)β̂
√
2π
)

]

. (2.2)

For log-normal distribution

θ̂ =

(

n
∏

i=1

Xi

)
1
n

and σ̂2 =
1

n

n
∑

i=1

(

lnXi − ln θ̂
)2
, (2.3)

and for Weibull distribution β̂ and λ̂ satisfy the following relation

λ̂ =





n
∑n
i=1X

β̂
i





1

β̂

. (2.4)

The following discrimination procedure can be used. Choose the log-normal distribution if

the test statistic T > 0, otherwise choose the Weibull distribution as the preferred model.

Note that if we transform the data as Yi = lnXi and consider the logarithm of RML of the

corresponding transformed distributions, namely normal and extreme-value distributions,

then the value of the test statistic will be same as (2.2). Therefore, using the results of
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Dumonceaux, Antle and Haas (1973), it follows that the distribution of T is independent of

(σ, θ) and (β, λ) if the data follow LN(σ, θ) and WE(β, λ) respectively. The discrimination

procedure is equivalent to the likelihood ratio method.

3 Asymptotic Properties of the Logarithm of RML

In this section we derive the asymptotic distribution of RML for two different cases. We

use the following notation. Almost sure convergence will be denoted by a.s. For any

Borel measurable function, h(.), ELN(h(U)), and VLN(h(U)) will denote the mean and

variance of h(U) under the assumption that U follows LN(σ, θ). Similarly, we define,

EWE(h(U)) and VWE(h(U)) as mean and variance of h(U) under the assumption that U

follows WE(β, λ). Moreover, if g(.) and h(.) are two Borel measurable function, we de-

fine covLN(g(U), h(U)) = ELN(g(U)h(U))−ELN(g(U))ELN(h(U)) and covWE(g(U)h(U)) =

EWE(g(U)h(U)) - EWE(g(U))EWE(h(U)), where U follows LN(σ, θ) and WE(β, λ) respec-

tively.

Case 1: The Data Follow Log-Normal Distribution

In this case we have the following main result.

Theorem 1: Under the assumption that the data follow LN(σ, θ), the distribution of T as

defined in (2.2) is approximately normally distributed with mean ELN(T ) and VLN(T ).

To prove theorem 1, we need the following lemma.

Lemma 1: Suppose the data follow LN(σ, θ), then as n→∞, we have

(1) σ̂ → σ a.s., θ̂ → θ a.s., where

ELN (ln(fLN(X;σ, θ))) = max
σ̄,θ̄

ELN
(

ln(fLN(X; σ̄, θ̄))
)

.
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(2) β̂ → β̃ a.s., λ̂→ λ̃ a.s., where

ELN
(

ln(fWE(X; β̃, λ̃))
)

= max
β,λ

ELN (ln(fWE(X; β, λ))) .

Note that β̃ and λ̃ may depend on σ and θ, but we do not make it explicit for brevity. Let

us denote;

T ∗ = ln

[

LLN(σ, θ)

LWE(β̃, λ̃)

]

, (3.1)

(3) n−
1
2 (T − ELN(T )) is asymptotically equivalent to n− 1

2 (T ∗ − ELN(T
∗)).

Proof of Lemma 1: The proof follows using the similar argument of White (1982b;

Theorem 1) and therefore, it is omitted.

Proof of Theorem 1: Using the Central Limit Theorem (CLT), it can be easily seen

that n−
1
2 (T ∗ − ELN(T

∗)) is asymptotically normally distributed. Therefore, the proof im-

mediately follows from part (3) of Lemma 1 and the CLT.

Now we discuss how to obtain β̃ and λ̃, ELN(T ) and VLN(T ). Let us define;

g(β, λ) = ELN (ln(fWE(X; β, λ))) = ELN
[

ln β + β lnλ+ (β − 1) lnX − (λX)β
]

= ln β + β lnλ+ (β − 1) ln θ − (λθ)βe
β2σ2

2 . (3.2)

By differentiating g(β, λ) with respect to β and λ and equating them to zero, we obtain

β̃ =
1

σ
and λ̃ =

1

θ
e−

σ
2 . (3.3)

Now we provide the expression for ELN(T ) and VLN(T ). Note that limn→∞
ELN (T )

n
and

limn→∞
VLN (T )

n
exist. Suppose, we denote limn→∞

ELN (T )
n

= AMLN and limn→∞
VLN (T )

n
=

AVLN . It is already observed that the distribution of T is independent of σ and θ, therefore

to compute ELN(T ) and VLN(T ), without loss of generality, we consider σ = θ = 1. For

large n,
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ELN(T )

n
≈ AMLN = ELN

[

ln fLN(X; 1, 1)− ln fWE(X; β̃, λ̃)
]

= ELN

[

−1

2
ln(2π)− β̃ lnX − 1

2
(lnX)2 − ln β̃ − β̃ ln λ̃+ (Xλ̃)β̃

]

= −1

2
ln(2π)− 1

2
− ln β̃ − β̃ ln λ̃+ λ̃β̃e

1
2
β̃2

= −1

2
ln(2π) + 1 = 0.0810614 (3.4)

We also have

VLN(T )

n
≈ AVLN(σ) = VLN

(

ln fLN(X; 1, 1)− ln fWE(X; β̃, λ̃)
)

= V

(

β̃ lnX +
1

2
(lnX)2 − (λ̃X)β̃

)

= β̃2 +
1

2
+ λ̃2β̃

(

e2β̃
2 − eβ̃

2
)

− 3β̃2λ̃β̃e
1
2
β̃2

= e− 5

2
= 0.2182818. (3.5)

Case 2: The Data Follow Weibull Distribution

Theorem 2: Under the assumption that the data follow WE(β, λ), the distribution of T

as defined in (2.2), is asymptotically normally distributed with mean EWE(T ) and variance

VWE(T ).

To prove Theorem 2, we need Lemma 2, similar to Lemma 1.

Lemma 2: Suppose the data follow WE(β, λ), then as n→∞, we have

(1) β̂ → β a.s., λ̂→ λ a.s. where

EWE (ln(fWE(X; β, λ))) = max
β̄,λ̄

EWE

(

ln(fWE(X; β̄, λ̄))
)

.

(2) σ̂ → σ̃ a.s., θ̂ → θ̃ a.s, where

EWE

(

ln(fLN(X : σ̃, θ̃))
)

= max
σ,θ

EWE (ln(fLN(X;σ, θ))) .

Note that here also σ̃ and θ̂ may depend on β, but we do not make it explicit for brevity.
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Let us denote here;

T∗ = ln

[

LLN(σ̃, θ̃)

LWE(β, λ)

]

= ln

[

LLN(σ̃, θ̃)

LWE(β, 1)

]

. (3.6)

(3) n−
1
2 [T − EWE(T )] is asymptotically equivalent to n− 1

2 [T∗ − EWE(T∗)].

Proof of Lemma 2 It also follows from Theorem 1 of White (1982b).

Proof of Theorem 2: It follows similarly as Theorem 1.

Now we discuss how to obtain σ̃, θ̃, EWE(T ) and VWE(T ). Let us define;

h(σ, θ) = EWE (ln(fLN(X;σ, θ))) = EWE

[

−1

2
ln(2π)− lnX − lnσ − (lnX − ln θ)2

2σ2

]

= −1

2
ln(2π)− 1

β
ψ(1) + lnλ− ln σ

− 1

2σ2

[

1

β2
Γ′′(1)− 2

β
ψ(1) lnλ+ (lnλ)2 − 2 ln θ

(

1

β
ψ(1)− lnλ

)

+ (ln θ)2
]

. (3.7)

Therefore, by differentiating h(σ, θ) with respect to σ and θ and equating them to zero, we

obtain σ̃ and θ̃ as

θ̃ =
1

λ
e

1
β
ψ(1)

, and σ̃ =

√

ψ′(1)

β
. (3.8)

Now we provide the expression for EWE(T ) and VWE(T ). Similarly as before, limn→∞
EWE(T )

n

and limn→∞
VWE(T )

n
exist and we denote limn→∞

EWE(T )
n

= AMWE and limn→∞
VWE(T )

n
=

AVWE. Note that as mentioned before, the distribution of T is independent of β and λ and

we take them to be 1 for the calculations of AMWE and AVWE. Therefore for large n

EWE(T )

n
≈ AMWE = EWE

[

ln(fLN(X; σ̃, θ̃))− ln(fWE(X; 1, 1))
]

= −1

2
ln(2π)− ln σ̃ − 1

2σ̃2

[

π2

6
+
(

ψ(1)− ln θ̃
)2
]

+ 1− ψ(1)

=
1

2
− 3

2
lnπ +

1

2
ln 3− ψ(1) = −0.0905730. (3.9)

Note that the second equality follows by taking the expectations of the likelihood functions

after putting the values of σ̃ and θ̃ from (3.8). Moreover,

VWE(T )

n
≈ AVWE(β) = VWE

[

ln(fLN(X; σ̃, θ̃))− ln(fWE(X; 1, 1))
]
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= VWE

[

lnX +
(lnX − ln θ̃)2

2σ̃2
−X

]

=

(

1− ln θ̃

σ̃2

)2
(

Γ′′(1)− (Γ′(1))2
)

+
1

4σ̃4

(

Γ(4)(1)− (Γ′′(1))2
)

+ 1− 2

σ̃2
Γ′(1)

+
1

σ̃2

(

1− ln θ

σ̃2

)

(

Γ(3)(1)− Γ′(1)Γ′′(1)
)

− 2

(

1− ln θ̃

βσ̃2

)

=

(

1− ψ(1)

ψ′(1)

)2
(

Γ′′(1)− (Γ′(1))2
)

+
1

4(ψ′(1))2

(

Γ(4)(1)− (Γ′′(1))2
)

+1 +
1

ψ′(1)

(

1− ψ(1)

ψ′(1)

)

(

Γ(3)(1)− Γ′(1)Γ′′(1)
)

− 2

(

1− ψ(1)

ψ′(1)

)

− 2
ψ(1)

ψ′(1)

= ψ′(1)

(

1− ψ(1)

ψ′(1)

)2

+
1

4(ψ′(1))2

(

Γ(4)(1)− (Γ′′(1))2
)

− 1

+
1

ψ′(1)

(

1− ψ(1)

ψ′(1)

)

(

Γ(3)(1)− Γ′(1)Γ′′(1)
)

= 0.2834081. (3.10)

4 Determination of Sample Size and Testing

4.1 Minimum Sample Size Determination

In this subsection section we propose a method to determine the minimum sample size needed

to discriminate between the Weibull and log-normal distributions for a given user specified

PCS. It is expected that the user specifies the PCS before hand.

First we consider Case 1, i.e. the data are assumed to follow LN(σ, θ). Since T is

asymptotically normally distributed with mean ELN(T ) and variance VLN(T ), therefore, the

PCS is

PCS = P [T > 0] ≈ Φ





ELN(T )
√

VLN(T )



 = Φ

(

n× AMLN√
n× AVLN

)

. (4.1)

Here Φ is the distribution function of the standard normal distribution. Now to determine
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the minimum sample size required to achieve at least p∗ protection level, we equate;

Φ

(

n× AMLN√
n× AVLN

)

= p∗ (4.2)

and obtain

n =
z2p∗AVLN

(AMLN)2
. (4.3)

Here zp∗ is the 100p∗ percentile points of a standard normal distribution. For Case 2, i.e.

when the data follow WE(β, λ), we obtain

n =
z2p∗AVWE

(AMWE)2
. (4.4)

Therefore, to achieve overall p∗ protection level, we need at least

n = z2p∗ max{ AVLN

(AMLN)2
,

AVWE

(AMWE)2
} = zp∗ max{33.2, 34.5} = zp∗35. (4.5)

4.2 Testing of Hypotheses

In this subsection we consider the discrimination problem as a testing of hypothesis prob-

lem as it was considered by Dumonceaux and Antle (1973). Dumonceaux and Antle (1973)

considered the problem as the following two testing of hypotheses problems.

Problem 1: H0 : Log-Normal vs. H1 : Weibull. (4.6)

Problem 2: H0 : Weibull vs. H1 : Log-Normal. (4.7)

Dumonceaux and Antle (1973) provided the exact critical regions and the powers of the

likelihood ratio tests based on Monte Carlo simulations. Our asymptotic results derived in

the previous section can be used for testing the above two hypotheses as follows:

Test 1: For Problem 1: Reject the null hypothesis H0 at the α % level of significance, if

T < n× 0.0810614− zα ×
√
n× 0.2182818, and accept otherwise.

Test 2: For Problem 2: Reject the null hypothesis H0 at the α % level of significance, if

T > −n× 0.0905730 + zα ×
√
n× 0.2834081, and accept otherwise.
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5 Numerical Experiments:

In this section we perform some numerical experiments to observe how these asymptotic

results derived in section 3, work for different sample sizes. All computations are performed

at the Indian Institute of Technology Kanpur, using Pentium IV processor. We use the

random deviate generator of Press et al. (1993) and all the programs are written in C. They

can be obtained from the authors on request without any cost. We compute the PCS based

on simulations and we also compute it based on the asymptotic normality results derived in

section 3. Since the distribution (numerical value) of T is independent of the shape and scale

parameters, we consider the shape and scale parameters to be one in all cases. We consider

different sample sizes namely n = 20, 40, 60, 80 and 100.

First we consider the case when the null distribution is Log-Normal and the alternative is

Weibull. In this case we generate a random sample of size n from LN(1,1) and compute T as

defined in (2.2) and check whether T is positive or negative. We replicate the process 10,000

times and obtain an estimate of PCS. We also compute the PCS based on the asymptotic

results derived in the Section 3. The results are reported in Table 1. Similarly, we obtain

the results when the null distribution is Weibull and the alternative is Log-Normal, and the

results are reported in Table 2.

It is quite clear from Tables 1 and 2 that as sample size increases the PCS increases as

expected. Even when the sample size is 20, asymptotic results work quite well for both the

cases. We performed normality tests on 10,000 T values and the null hypothesis can not be

rejected even when the sample size is 20. From the simulation study, it is recommended that

asymptotic results can be used quite effectively even when the sample size is small.

Now we consider the discrimination problem as a testing of hypothesis problem as defined

in the previous section. Let us define the rejection regions as {T < 0} and {T > 0} for
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problems 1 and 2 respectively. Therefore, it is immediate that P[Type I error] = 1 - PCS.

From Tables 1 and 2, it also clear that the P[Type I error] varies between 0.22 and 0.04 as

the sample size varies between 20 and 100 for both problems 1 and 2. Similarly, the power

of the test varies between 0.78 and 0.96 as sample size varies between 20 and 100.

6 Data Analysis

In this section we analyze two data sets and use our method to discriminate between the

two distribution functions.

Data Set 1: The first data set is as follows; (Lawless; 1986, page 228). The data given

arose in tests on endurance of deep groove ball bearings. The data are the number of million

revolutions before failure for each of the 23 ball bearings in the life tests and they are: 17.88,

28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88,

84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

When we use the Log-Normal model, the MLEs of the different parameters are θ̂ =

63.4890, σ̂ = 0.5215 and the corresponding log-likelihood (LL) value is -113.1017. The

Kolmogorv-Smirnov (K-S) distance between the data and the fitted log-normal distribution

function is 0.0901 and the corresponding p value is 0.98. Similarly when we fit the Weibull

model, the MLEs are β̂ = 2.1050, λ̂ = 0.0122 and the corresponding LL value is -113.6887.

The non-parametric survival function, fitted Weibull survival function and fitted log-normal

survival function are plotted in Figure 1.

The K-S distance between the data and the fitted Weibull distribution function is 0.1521

and the corresponding p value is 0.63. We also present the observed, expected frequencies for

different groups and the corresponding χ2 statistics for both the distributions to the fitted

data. The results are presented below:
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Table A

Intervals Observed LN WE

0-35 3 2.92 3.01
35-55 7 6.04 5.31
55-80 5 6.48 6.52
80-100 3 3.15 3.62
100- 5 4.41 4.54

The χ2 values are 0.579 and 1.045 for Log-Normal and Weibull distributions respectively.

For data set 1, K-S distances, χ2 values and Figure 1 indicate that both the distributions

provide quite good fit to the data set.

The logarithm of RML i.e., T = 0.5870 > 0. It indicates to choose the Log-Normal

model. From (4.1), it is clear that if the data follow Log-Normal distribution then based on

sample size 23, PCS = 0.80 and if the data follow Weibull then PCS = 0.79. Therefore, in

this case the PCS is at least min{0.79, 0.80} = 0.79. Based on the assumption that the data

follow Log-Normal distribution, the p-value = 0.28. Similarly based on the assumption that

the data follow Weibull distribution, the p-value = 0.15. Comparing the two p values also we

would prefer to choose Log-Normal distribution over Weibull distribution. Therefore, in this

case, the LL values, χ2 values, K-S distances and our proposed method indicate to choose

the Log-Normal model and the probability of correct selection is at least 79%. If we consider

the two testing of hypotheses problems (4.6) and (4.7), then based on the data we can not

reject the null hypotheses in both cases even with the 15% level of significance.

Data Set 2: The second data set (Linhart and Zucchini; 1986, page 69) represents the

failure times of the air conditioning system of an airplane: 23, 261 87, 7, 120, 14, 62, 47,

225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1 16, 52, 95.

For Data set 2, when we use the Log-Normal model, we have the following results: θ̂

= 28.7343, σ̂ = 1.3192, LL = -151.706, χ2 = 3.562, K-S = 0.1047 and the corresponding p
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value = 0.88. Similarly, when we use the Weibull model they are β̂ = 0.8554, λ̂ = 0.0183,

LL = -152.007, χ2 = 3.053, K-S = 0.1540 and the corresponding p value = 0.44. The non-

parametric survival function, fitted log-normal survival function and fitted Weibull survival

function are plotted in Figure 2. For data set 2 also K-S distances, χ2 values and Figure 2

indicate that both the distributions provide quite reasonable fit to the data set.

The observed and the expected frequencies for different groups are presented below.

Table B

Intervals Observed LN WE

0-15 11 9.33 8.45
15-30 5 6.01 5.06
30-60 3 5.91 6.33
60-100 6 3.57 4.55
100- 5 5.18 5.62

The logarithm of RML, T = 0.3012. In this case also since T > 0, we choose Log-Normal

distribution as the preferred model. In this case the PCS = min{0.83, 0.83} = 0.83. Based

on the assumption that the data follow Log-Normal distribution, the p-value = 0.20 and

similarly under the assumption that the data follow Weibull distribution, the corresponding

p-value = 0.15. Based on the p values also we prefer to choose the Log-Normal model over

Weibull model for data set 2. In this case also, if we consider the two testing of hypotheses

problem, then based on the data we can not reject the null hypotheses in both cases even

with the 15% level of significance.

7 Conclusions

In this paper we consider the problem of discriminating the two important families of dis-

tribution functions namely the log-normal and Weibull families. We consider the statistic
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based on the ratio of maximized likelihoods and obtain the asymptotic distributions of the

test statistics under null hypotheses. It is observed that the asymptotic distributions are

asymptotically normal and they are independent of the parameters of the null distribution.

We compare the probability of correct selection obtained using Monte Carlo simulations

and the proposed asymptotic results, it is observed that the asymptotic results work very

well even when the sample size is as small as 20. The normality tests on RML statistic

suggests that T follows normal distribution, even when the sample size very small. There-

fore the asymptotic results can be used quite effectively to calculate the PCS for a given

data set. We use these asymptotic results to calculate the minimum sample size required

to discriminate the two probability distributions for a given PCS. Our method can be used

for discriminating any two members of the location and scale family. The exact mean and

variance of the corresponding normal distribution needs to be derived in each case. Finally,

we should mention that for a given data set it may happen that none of the two distribution

functions provide good fit. It should be clear from the K − S values and also from the χ2

values. Those cases some other family members should be used.
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Table 1

The probability of correct selection based on Monte Carlo simulations (MC) with 10,000

replications and also based on the asymptotic results (AS) when the null distribution is

Log-Normal and the alternative is Weibull.

n 30 60 90 120 150

MC 0.8401 0.9097 0.9481 0.9708 0.9796

AS 0.8405 0.9206 0.9579 0.9768 0.9871

Table 2

The probability of correct selection based on Monte Carlo simulations (MC) with 10,000

replications and also based on the asymptotic results (AS) when the null distribution is

Weibull and the alternative is Log-Normal.

n 30 60 90 120 150

MC 0.7300 0.8592 0.9227 0.9499 0.9691

AS 0.7927 0.8689 0.9151 0.9436 0.9619
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