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Discriminating Joint Feature Analysis for
Multimedia Data Understanding

Zhigang Ma, Feiping Nie, Yi Yang, Jasper Uijlings, Nicu Sebe, and Alexander G. Hauptmann

Abstract—In this paper, we propose a novel semi-supervised feature analyzing framework for multimedia data understanding and
apply it to three different applications: image annotation, video concept detection and 3D motion data analysis. Our method is built
upon two advancements of the state of the art: (1) l2,1-norm regularized feature selection which can jointly select the most relevant
features from all the data points. This feature selection approach was shown to be robust and efficient in literature as it considers the
correlation between different features jointly when conducting feature selection; (2) manifold learning which analyzes the feature space
by exploiting both labeled and unlabeled data. It is a widely used technique to extend many algorithms to semi-supervised scenarios
for its capability of leveraging the manifold structure of multimedia data. The proposed method is able to learn a classifier for different
applications by selecting the discriminating features closely related to the semantic concepts. The objective function of our method
is non-smooth and difficult to solve, so we design an efficient iterative algorithm with fast convergence, thus making it applicable to
practical applications. Extensive experiments on image annotation, video concept detection and 3D motion data analysis are performed
on different real-world data sets to demonstrate the effectiveness of our algorithm.

Index Terms—Feature Analysis, Sparsity, Semi-supervised Learning, Image Annotation, Video Concept Detection, 3D Motion Data
Analysis.

F

1 INTRODUCTION

T HE explosive increase of multimedia data, i.e., text,
image and video has brought the challenge of how to

effectively index, retrieve and organize these resources. A
common approach is to analyze the semantic concepts of
multimedia data and to correlate concept labels with them
for management tasks. Within the realm of multimedia data
understanding, image and video concept understanding have
obtained increasing research interest as both of them become
prevalent with the popularity of the social web sites such as
Flickr and YouTube. To effectively index, retrieve and manage
these multimedia resources, it is necessary and beneficial to
study concept analyzing techniques. Multimedia data are usu-
ally represented by different types of features. Previous works
have shown that feature selection is able to reduce irrelevant
and/or redundant information in the feature representation,
thus facilitating subsequent analyzing tasks such as image
annotation [1][2].

Existing feature selection algorithms are achieved by differ-
ent means. For instance, classical feature selection algorithms
such as Fisher Score [3] compute the weights of different
features and then select features one by one. These classical
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algorithms generally evaluate the importance of each feature
individually but neglect the useful information of the cor-
relation between different features. Another problem is that
they only use labeled training samples for feature selection,
which have an excessive cost in human labor. Semi-supervised
learning has shown to be an effective tool for saving labeling
cost by using both labeled and unlabeled data. Motivated
by this fact, semi-supervised feature selection has also been
proposed. For example, in [4], Zhao et al. have presented an
algorithm based on the spectral graph theory but similarly to
Fisher Score [3], their method selects features one by one. To
overcome the disadvantage of selecting features individually,
a plethora of state of the art approaches such as [1][2][6]
have been proposed to extract features jointly across all data
points. Nonetheless, [1][2][6] implement their methods in a
supervised way.

Our semi-supervised feature selection method combines
the strengths of joint feature selection [6][1][7] and semi-
supervised learning [8][9]. It utilizes both labeled and unla-
beled data to select features while simultaneously consider
the correlation between them. We name the proposed method
Structural Feature Selection with Sparsity (SFSS).

In this paper, we apply our method to three different mul-
timedia analyzing tasks, i.e., image annotation, video concept
detection and human action analysis from 3D motion data.
Image annotation correlates labels that describe semantic con-
cepts to images. It is basically a classification problem as it has
to decide which classes an image may belong to. Annotation
is realized by exploiting the correspondence between visual
features and semantic concepts of the images. Video concept
detection is another important tool for multimedia resource
management. Similarly to image annotation, it aims to assign
different concept labels to videos. We additionally apply SFSS
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Figure 1. The general process of our method for image annotation. The red frame indicates the core part of our
algorithm which analyzes the feature space for practical applications.

to human action analysis from 3D motion data.
Taking image annotation as an example, we illustrate the

general analyzing process of our method in Figure 1. All the
training and testing images are first represented by different
types of features, followed by the graph Laplacian construc-
tion. Then sparse feature selection and label prediction are
conducted simultaneously by satisfying both label consistence
with the training data labels and manifold fitting on the data
structure. The obtained sparse coefficients can be applied to
the feature vectors for selection and be directly leveraged for
classification.

The main contributions are as follows:

• We combine the recent advances of feature selection and
semi-supervised learning into a single framework.

• The advantage of manifold learning, which is known to
be effective in exploring relationship among multimedia
data, is incorporated into our framework.

• We apply our method to different applications for which
we show promising performance. Our method is espe-
cially competitive when few labeled samples are avail-

able.
• A fast iterative algorithm is proposed to solve our objec-

tive function.

2 RELATED WORK

In this section, we briefly review the research on feature
selection and semi-supervised learning.

2.1 Feature Selection
Feature selection is an effective tool in multimedia data under-
standing by selecting discriminating features and reducing the
noise from the original data, resulting in more efficient and
accurate multimedia analysis results.

In literature, there are many different feature selection algo-
rithms. Some classical feature selection methods such as Fisher
Score [3] evaluate the relevance of a feature according to the
label distribution of the data. Although these classical methods
have good performance when used in different applications,
they have two major drawbacks. First, a lot of human labor is
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consumed as they require all the training data to be labeled to
exploit the correlation between features and labels for feature
selection. Second, their computational cost is high as they
evaluate features one by one.

To progress beyond these classical methods, researchers
have proposed sparsity-based feature selection to extract fea-
tures jointly [7][6][10][11], i.e., each feature either has small
scores or large scores over all data points, thus facilitating
feature selection. Among various methods using this approach,
l2,1-norm regularization based algorithms have gained increas-
ing interest for the sparsity, joint selection way and the ability
to exploit the pairwise correlation among groups of features.
For example, Zhao et al. use spectral regression with l2,1-norm
constraint to select features jointly and effectively remove
redundant features in [7]. Nie et al. exploit joint l2,1-norm
minimization on both loss function and regularization for
feature selection in [6]. Feature selection using l2,1 models
has shown its prominent performance. Therefore we propose
to leverage it in our feature selection framework. However,
the state of the art using l2,1 models mostly conducts feature
selection in a supervised scenario. Since in practice label
information is expensive to obtain, we design our l2,1-norm
based feature selection in a semi-supervised way which can
utilize both labeled data and unlabeled data.

2.2 Semi-supervised Learning
Semi-supervised learning is widely used in many applications
with the appealing feature that it can use both labeled and
unlabeled data [13]. The benefit of utilizing semi-supervised
learning is that we can save human labor cost for labeling a
large amount of data because it can exploit unlabeled data
to learn the data structure. Thus, the human labeling cost
and accuracy are both considered which gives semi-supervised
learning a great potential to boost the learning performance
when properly designed [12].

Among the different methods, graph Laplacian based semi-
supervised learning has gained most research interest. Yang et
al. have proposed a semi-supervised approach for cross media
retrieval in [14]. In [8], Nie et al. have proposed a Flexible
Manifold Embedding framework built upon graph Laplacian
and demonstrated its advantage for dimensionality reduction
over other state of the art semi-supervised algorithms. In [15],
a new semi-supervised algorithm based on a robust Laplacian
matrix is proposed for relevance feedback. Semi-supervised
learning has proved to be able to bring in promising perfor-
mance by leveraging the whole data distribution for multime-
dia data understanding in these previous works [14][8][15].

3 METHODOLOGY

In this section, we illustrate the detailed approach of our
algorithm.

3.1 Problem Formulation
We aim to select features that are mostly related to the
concepts of the training data. Suppose that X ∈ Rd×n indicate
the training data, Y ∈ Rn×c are the labels accordingly. d

is the dimension of the original feature, n is the number
of the training data, and c is the number of concepts. We
propose to use a projection matrix W to correlate X with
Y for feature selection. As W is used to select features
from the original feature space and it is expected to be
related to the semantic concepts, W is a d × c matrix. The
problem is subsequently to design an objective function to
obtain W for feature selection. In our method, we propose to
exploit the l2,1-norm based sparse feature selection due to its
efficacy shown in recent works. The l2,1-norm based methods
select features by exploiting the correlations between different
features and select them jointly [7][6][10][11]. The boosted
feature selection performance can consequently facilitate other
applications. l2,1-norm based algorithms can be generalized as
the following objective function:

min
W

loss(W ) + γ ‖W‖2,1 , (1)

where W is a projection matrix used for feature selection and
loss(W ) is the loss function. γ is a regularization parameter.
The definition of ‖W‖2,1 is:

‖W‖2,1 =

d∑
i=1

√∑c

j=1
W 2

ij . (2)

The regularization term ‖W‖2,1 in the above function makes
the optimal W sparse, according to [6][10]. As a result, W
can be regarded as the combination coefficients for the most
discriminative features to achieve feature selection.

Our goal is to design a robust loss function of Eq. (1)
through which we obtain the W for feature selection. In
literature, most works built upon Eq. (1), e.g., [16][7][6],
are realized through supervised learning. However, we want
to incorporate semi-supervised learning into Eq. (1) as it is
known to be an effective tool for saving cost while simulta-
neously maintaining or enhancing the learning performance
when properly designed [12]. To this end, we propose to
leverage semi-supervised learning by using the widely adopted
graph Laplacian.

To begin with, we have following notations. X =
[x1, x2, ..., xn] is the training data matrix where m data are
labeled. xi ∈ Rd(1 ≤ i ≤ n) is the i-th datum and n is the total
number of the training data. Y = [y1, y2, ..., ym, ym+1, ...,
yn]

T ∈ {0, 1}n×c is the label matrix and c indicates the class
number. yi ∈ Rc(1 ≤ i ≤ n) is the label vector with c classes.
Yij denotes the j-th datum of yi and Yij = 1 if xi is in the
j-th class, while Yij = 0 otherwise. If xi is not labeled, yi is
set to a vector with all zeros, i.e., ∀i > m, yi|ni=(m+1) = 0c×1.

A typical way to construct the graph Laplacian is as follows:
First, we define a matrix G whose element Gij weighs the
similarity between xi and xj as

Gij=

{
1 xi and xj are k nearest neighbors;
0 otherwise.

In Eq. (3), we use the Euclidean distance to evaluate whether
the two samples xi and xj are within the k nearest neighbors
in the original feature space. Second, a diagonal matrix D is
formulated with Dii =

∑n
j=1Gij . Finally, the graph Laplacian

L is constructed through L = D −G.
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The graph Laplacian is the basis of semi-supervised learn-
ing. We further leverage Manifold Regularization [17] built
upon the graph Laplacian to extend our framework to a
semi-supervised scenario. Manifold Regularization is adopted
because multimedia data has been normally shown to possess
a manifold structure [18][19] and Manifold Regularization can
explore it. Consequently, by applying Manifold Regularization
to the loss function in Eq. (1) we obtain:

argmin
W,b

Tr
(
WTXLXTW

)
+ µ

∥∥XT
l W + 1nb

T − Yl
∥∥2
F

+γ ‖W‖2,1 . (3)

where Tr (·) denotes the trace operator. Xl and Yl denote the
labeled training data and their ground truth labels respectively.
b ∈ Rc is the bias term and 1n ∈ Rn denotes a column vector
with all its n elements being 1. µ and γ are regularization
parameters.

As can be seen, the optimal W obtained from Eq. (3)
is affected by the known ground truth labels Yl. However,
inspired by the transductive classification algorithm proposed
in [20][13], we expect all the labels of the training data to
contribute to the optimization of W . To achieve this goal, we
denote a predicted label matrix as F = [f1, . . . fn]

T ∈ Rn×c

for all the training data in X . fi ∈ Rc(1 ≤ i ≤ n) is the
predicted label vector of xi ∈ X . According to [8], F should
satisfy the smoothness on both the ground truth labels of the
training data and the manifold structure. Hence, it can be
obtained as follows [20][13]:

argmin
F

Tr
(
FTLF

)
+ Tr

(
(F − Y )TU(F − Y )

)
. (4)

In the above function, we define a selecting diagonal matrix U
whose diagonal element Uii =∞ if xi is labeled and Uii = 1
otherwise. This definition is to make the predicted labels F
consistent with the ground truth labels Y . In practice, we can
use a very large value, e.g. 1010 to approximate ∞.

Following the methodology in [8], we incorporate Eq. (4)
into Eq. (3) and meanwhile consider all the training data
with their labels (note that now we use X and F instead of
Xl and Yl respectively). Consequently, our objective function
becomes:

arg min
F,W,b

Tr
(
FTLF

)
+ Tr

(
(F − Y )TU(F − Y )

)
+µ
∥∥XTW + 1nb

T − F
∥∥2
F
+ γ ‖W‖2,1 . (5)

From Eq. (5) we can see that we are able to get F , W and b
simultaneously. Additionally, the optimal W obtained through
Eq. (5) can be utilized directly for classification as W selects
the features most related to the class labels.

3.2 Solution

Our objective function involves the l2,1-norm which is non-
smooth. Hence, it is not straightforward to optimize it. We
propose to solve the problem as follows.

By setting the derivative of Eq. (5) w.r.t. b to zero, we obtain:

bT =
1

n
(1TnF − 1TnX

TW ). (6)

Substituting bT in Eq. (5) with Eq. (6), the problem becomes:

argmin
F,W

Tr
(
FTLF

)
+ Tr

(
(F − Y )TU(F − Y )

)
+µ

∥∥∥∥(I − 1

n
1n1

T
n )X

TW − (I − 1

n
1n1

T
n )F

∥∥∥∥2
F

+γ ‖W‖2,1 ,

(7)

where I is an identity matrix. Let H represent I − 1
n1n1

T
n ,

the objective becomes:

argmin
F,W

Tr
(
FTLF

)
+ Tr

(
(F − Y )TU(F − Y )

)
+µ
∥∥HXTW −HF

∥∥2
F
+ γ ‖W‖2,1 . (8)

Note that H = HT = H2. By setting the derivative of Eq. (8)
w.r.t. F to zero, we have:

F = PQ, (9)

where P = (L + U + µH)−1 and Q = UY + µHXTW .
Substituting F in Eq. (8) with Eq. (9), we arrive at:

argmin
W

Tr
(
QTPT (L+ U)PQ−QTPTUY

−Y TUPQ+ µWTXHXTW − µWTXHPQ

−µQTPTHXTW + µQTPTHPQ
)
+ γ ‖W‖2,1 .

(10)

As Tr(QTPTUY ) = Tr(Y TUPQ) and Tr(µWTXHPQ)
= Tr(µQTPTHXTW ), Eq. (10) becomes:

argmin
W

Tr
(
QTPTQ− 2QTPTQ+ µWTXHXTW

)
+γ ‖W‖2,1 .

By substituting Q = UY + µHXTW in the above function,
we get:

argmin
W

Tr
(
WT (XH(µI − µ2P )HXT )W

−2µY TUPHXTW
)
+ γ ‖W‖2,1 .

Denoting A = XH(µI − µ2P )HXT and B = µXHPUY ,
the objective function becomes:

argmin
W

Tr
(
WTAW

)
− 2Tr

(
BTW

)
+ γ ‖W‖2,1 . (11)

3.3 Algorithm
Eq. (11) is a quadratic problem. First we have the following
lemma to show that it is solvable.

Lemma 1: The objective of our framework is convex.
Proof: To prove Lemma 1 is actually to prove that for any

non-zero X , A defined in Eq. (11) is positive semi-definite.
We therefore prove as follows:

A = XH(µI − µ2P )HXT

= µXHXT − 2µ2XHPHXT + µ2XHPP−1PHXT

= µXHXT − 2µ2XHPHXT

+ µ2XHP (L+ U + µH)PHXT

= µ ( (XT − µPHXT )TH(XT − µPHXT )

+ µXHP (L+ U)PHXT )

= µ
(
MTHM + µXNXT

)
(12)
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where M = XT − µPHXT , N = HP (L + U)PH . As
H and N are both larger than zero, we can easily draw the
conclusion that µMTHM + µ2XNXT is greater than zero.
Thus, A = XH(µI − µ2P )HXT is positive semi-definite,
demonstrating that the problem of our framework is convex.

Algorithm 1: The optimization algorithm for SFSS.
Input:

The training data X ∈ Rd×n;
The training data labels Y ∈ Rn×c;
Parameters µ and γ.

Output:
Converged W ∈ Rd×c.

1: Construct the graph Laplacian matrix L ∈ Rn×n;
2: Compute the selecting matrix U ∈ Rn×n;
3: H = I − 1

n1n1
T
n ;

4: P = (L+ U + µH)−1;
5: A = XH(µI − µ2P )HXT ;
6: B = µXHPUY ;
7: Set t = 0 and initialize W0 ∈ Rd×c randomly;
8: repeat

Compute the diagonal matrix Dt as:

Dt =

 2
∥∥w1

t

∥∥
2

...
2
∥∥wd

t

∥∥
2

 ;

Update Wt+1 as: Wt+1 = (DtA+ γI)−1DtB;
t = t+ 1.
until Convergence;

9: Return W .

To solve Eq. (11), we first reformulate it with the Lagrangian
function as:

L(W ) = Tr
(
WTAW

)
− 2Tr

(
BTW

)
+ γ ‖W‖2,1 . (13)

Denoting W = [w1, ..., wd]T with wi as its i-th row, we define
a diagonal matrix D whose diagonal elements Dii = 2

∥∥wi
∥∥
2
.

Then by setting the derivative of Eq. (13) w.r.t. W to zero, we
obtain:

2AW − 2B + 2γD−1W = 0

⇒W = (A+ γD−1)−1B = (DA+ γI)−1DB. (14)

According to the mathematical deduction aforementioned, we
propose an iterative approach to solve the problem in Eq. (11).
The iterative algorithm is illustrated in Algorithm 1 and it
converges. We briefly discuss the computational complexity.
Computing the graph Laplacian is O(n2). During the training,
learning W involves calculating the inverse of a few matrices,
among which the most complex part is O(n3). Denote nte
as the number of testing data. Once we get W , it takes c ×
d× nte multiplications to predict the categories of the testing
data. For large scale data sets nte � c and nte � d. Thus,
the classification complexity is approximately linear w.r.t. nte,
which is very efficient.

The convergence of Algorithm 1 can be proved following
the work in [6][10][32].

4 EXPERIMENTS
We evaluate our method on image annotation, video concept
detection and 3D motion data analysis respectively. Additional
analyzing experiments are also performed to assess the overall
performance of our method. These include a parameter sensi-
tivity study and a convergence study.

4.1 Compared Algorithms
To evaluate the advantage of our method for multimedia data
understanding, we compare it with the following algorithms:

• Fisher Score (FISHER) [3]: a classical method. It selects
the most discriminative features by evaluating the impor-
tance of each feature individually.

• Sparse Multinomial Logistic Regression via Bayesian L1
Regularisation (SBMLR) [31]: a sparsity based state of
the art method. It realizes sparse feature selection by
using a Laplace prior.

• Group Lasso with Logistic Regression (GLLR) [1]: a
recently proposed method based on a sparse model. It
utilizes group lasso extended with logistic regression to
select both sparse and discriminative groups of homoge-
neous features.

• Feature Selection via Joint l2,1-Norms Minimization
(FSNM) [6]: a recent sparse feature selection algorithm.
It employs joint l2,1-norm minimization on both loss
function and regularization for joint feature selection.

• Semi-supervised Feature Selection via Spectral Analysis
(sSelect) [4]: a semi-supervised feature selection method
based on spectral analysis.

• Locality sensitive semi-supervised feature selection
(LSDF) [5]: a semi-supervised approach based on two
graph construction, i.e., within-class graph and between-
class graph.

We use the regularized least square regression for classifica-
tion after FISHER, SBMLR, FSNM, sSelect and LSDF finish
the feature selection. In contrast, GLLR and SFSS can learn
the classifiers directly when performing feature selection.

Table 1 illustrates the different properties of each method
used in our experiments.

Table 1
A brief comparison between the different methods.

Method SSa Sb J-FSc I-FSd One-Stepe

FISHER [3]
√ √

SBMLR [31]
√ √

GLLR [1]
√ √ √

FSNM [6]
√ √

sSelect [4]
√ √

LSDF [5]
√ √

SFSS
√ √ √

a semi-supervised.
b supervised.
c feature selection across all data points.
d feature selection one by one.
e simultaneous classifier learning.

4.2 Experimental Data Sets
4.2.1 Image Annotation
Three data sets, i.e., Corel-5K [21][22], MSRA-MM [23] and
NUS-WIDE [24] are used in our experiments. The following
is a brief description of the three data sets.
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Corel-5K: In our experiment, we use the standard data set
used in [21][22]. Corel-5K consists of 5,000 images from
50 different categories. Three types of color features (color
histogram, color moment, and color coherence) and three types
of texture features (Tamura coarseness histogram, Tamura
directionality, and MSRSAR texture) are used to represent the
images.

MSRA-MM: The data set used in our experiments is a subset
of the original MSRA-MM 2.0 data set, which includes 50,000
images related to 100 concepts. However, 7,734 images within
it are not associated with any labels. We have removed these
images and obtained a subset of 42,266 labeled images. Three
feature types used in [1], namely Color Correlogram, Edge
Direction Histogram and Wavelet Texture are combined in our
experiments.

NUS-WIDE: It consists of 209,347 labeled real-world im-
ages collected from Flickr which are associated with 81
concepts. The images are also represented by the combination
of Color Correlogram, Edge Direction Histogram and Wavelet
Texture.

4.2.2 Video Concept detection
We choose the Kodak consumer video data set [25] and the
CareMedia data set [26].

Kodak: It consists of 1,358 consumer video clips and
5,166 key-frames are extracted accordingly. Among these key-
frames, 3590 ones are annotated. We use all the annotated
key-frames belonging to 22 concepts in our experiments for
video concept detection. Color Correlogram, Edge Direction
Histogram and Wavelet Texture are used to represent the key-
frames.

CareMedia: The video data set was collected by Carnegie
Mellon University to provide useful statistics to help doctors’
diagnosis and patients’ heath status assessment. 15 geriatric
patients’ activities in public spaces were recorded in a nurs-
ing home [26]. We test the performance by annotating the
following 5 concepts which are concerned with patients’
detailed behaviors: Pose and/or Motor Action (e.g. Tremors),
Positive (e.g. Smiles and Dancing), Physically Aggressive (e.g.
Punching), Physically Non-aggressive (e.g. Eating), and Staff
Activities (e.g. Feeding). The MoSIFT feature [27] is used to
represent each video sequence. In this experiment, we use a
subset consisting of 3913 video sequences recorded by one
camera in the dining room.

4.2.3 3D Motion Data Analysis
We choose the HumanEva 3D motion database [28]. There
are five types of actions, namely boxing, gesturing, jogging,
walking and throw-catch performed by different subjects in
this database. We randomly sample 10,000 data of two subjects
(5,000 per subject) similarly to [29][30] in our experiment.
The action of the two subjects is considered to be different.
We simultaneously recognize the identities and actions, which
comes to 10 semantic categories in total. Each action is
encoded as a collection of 16 joint coordinates in 3D space,
thus resulting in a 48 dimensional feature vector. On top of
that, we compute the Joint Relative Features between different
joints and get a feature vector with 120 dimensions. The two

Table 2
The settings of the training sets.

Size (n) Labeled Percentage (m)1

Corel-5K 2500 2, 5, 10, 25, 50, 100
MSRA-MM 10000 1, 5, 10, 25, 50, 100
NUS-WIDE 10000 1, 5, 10, 25, 50, 100
Kodak 1000 2, 5, 10, 25, 50, 100
CareMedia 1000 1, 5, 10, 25, 50, 100
HumanEva 3000 1, 5, 10, 25, 50, 100

Table 3
Performance comparison of image annotation

(MAP±Standard Deviation) when 2% (Corel-5K) or 1%
(MSRA-MM&NUS-WIDE) training data are labeled.

Corel-5K MSRA-MM NUS-WIDE
SFSS 0.090±0.008 0.047±0.002 0.065±0.002
FISHER [3] 0.069±0.006 0.041±0.002 0.058±0.003
GLLR [1] 0.066±0.008 0.032±0.008 0.046±0.007
FSNM [6] 0.078±0.007 0.043±0.002 0.059±0.002
SBMLR [31] 0.052±0.004 0.040±0.002 0.056±0.003

kinds of feature vectors are further combined to generate a
168 dimensional feature.

4.3 Experimental Setup

First, a training set for each data set is generated randomly
consisting of n samples, among which m% samples are
labeled. The detailed settings are given in Table 2. The
remaining data of each data set work as the corresponding
testing set. We generate the training and testing sets 5 times
and report the average results with standard deviation.

In the experiments, we have to tune two types of param-
eters. One is the parameter k that specifies the k nearest
neighbors used to compute the graph Laplacian. We fix
it at 15 following the setting in our previous work [32].
The other one is the regularization parameters which are
represented as µ and γ in Eq. (5). We tune them from
{10−3, 10−2, 10−1, 1, 10, 102, 103} and report the best results.

To evaluate the classification performance, we use Mean
Average Precision (MAP) as the evaluation metric for its
stability and discriminating capability.

4.4 Multimedia Understanding Performance

In this section, we report the experimental results on image an-
notation, video concept detection and 3D motion data analysis
respectively.

4.4.1 Image Annotation
Figure 2 shows the annotation results when different percent-
ages of data are labeled. Table 3 to Table 5 show the results
when 2% (Corel-5K) or 1% (MSRA-MM&NUS-WIDE), 5%
and 10% of the training data are labeled. We have the
following observations from the experimental results: 1) As the

1. Note that the settings of the labeled training data on Corel-5K and Kodak
are slightly different from others to guarantee that each concept class has at
least one labeled training data.
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Figure 2. Performance comparison of image annotation w.r.t. the percentage of labeled training data. When 10% or
less of the data are labeled our method outperforms all other algorithms. When 25% or more of the data are labeled,
our method yields top performance or, on the MSRA-MM data set significantly better performance.

Table 4
Performance comparison of image annotation

(MAP±Standard Deviation) when 5% training data are
labeled.

Corel-5K MSRA-MM NUS-WIDE
SFSS 0.112±0.009 0.059±0.002 0.087±0.003
FISHER [3] 0.083±0.007 0.055±0.002 0.078±0.002
GLLR [1] 0.085±0.010 0.052±0.001 0.079±0.001
FSNM [6] 0.101±0.007 0.051±0.002 0.082±0.002
SBMLR [31] 0.078±0.005 0.050±0.002 0.071±0.003

Table 5
Performance comparison of image annotation

(MAP±Standard Deviation) when 10% training data are
labeled.

Corel-5K MSRA-MM NUS-WIDE
SFSS 0.147±0.009 0.065±0.001 0.097±0.002
FISHER[3] 0.113±0.003 0.061±0.002 0.086±0.003
GLLR [1] 0.126±0.015 0.059±0.001 0.094±0.002
FSNM [6] 0.133±0.009 0.060±0.001 0.093±0.003
SBMLR [31] 0.113±0.013 0.055±0.002 0.075±0.007

number of labeled training data increases, the performance in-
creases. 2) Our method is the only one which has consistently
high scores on all three data sets. Other methods have varying
degrees of success on each data set. 3) When 25% or more
of the training data are labeled, our method is competitive
with the best algorithms compared or better. Yet the more
labeled data is available, the smaller our advantage is over
other supervised algorithms. On the Corel-5K data set GLLR
[1] slightly outperforms our method; on the NUS-WIDE data
set our method is competitive with GLLR [1]; on the MSRA-
MM data set our method outperforms all other methods. 4)
Finally, when less than 25% of the data are labeled, our method
consistently outperforms other methods on all three data sets.
This is especially visible on the Corel-5K and MSRA-MM
data sets.

4.4.2 Video Concept Detection
We illustrate the video concept detection results in Figure 3,
Table 6 and Table 7. It can be seen from Figure 3 that our
method has the top one performance over other algorithms.
Table 6 and Table 7 give the detailed results when 2% or 1%,

Table 6
Performance comparison of video concept detection
(MAP±Standard Deviation) w.r.t. 2%, 5% and 10%

labeled data on Kodak data set.
2% labeled 5% labeled 10% labeled

SFSS 0.259±0.015 0.303±0.023 0.346±0.027
FISHER[3] 0.185±0.021 0.230±0.009 0.298±0.022
GLLR [1] 0.220±0.028 0.249±0.015 0.283±0.024
FSNM [6] 0.210±0.025 0.240±0.009 0.291±0.019
SBMLR [31] 0.189±0.029 0.222±0.009 0.269±0.026

Table 7
Performance comparison of video concept detection
(MAP±Standard Deviation) w.r.t. 1%, 5% and 10%

labeled data on CareMedia data set.
1% labeled 5% labeled 10% labeled

SFSS 0.257±0.018 0.293±0.009 0.301±0.014
FISHER[3] 0.235±0.017 0.279±0.012 0.286±0.014
GLLR [1] 0.220±0.017 0.276±0.017 0.286±0.011
FSNM [6] 0.236±0.014 0.278±0.011 0.286±0.014
SBMLR [31] 0.202±0.003 0.227±0.004 0.249±0.007

5% and 10% training data are labeled. We observe that our
method is especially competitive when few training data are
labeled.

4.4.3 3D Motion Data Analysis
The results of 3D motion data analysis are illustrated in Table 8
and Figure 4. From Table 8 and Figure 4 we observe that our
method gains huge advantage over other compared approaches.
We also notice that SFSS gets satisfactory performance when
only 5% training data are labeled and it shows nearly perfect
performance (close to 1 in terms of MAP) when over 10%
training data are labeled. Intuitively, this indicates that the
exploitation of the manifold structure has contributed consid-
erably to the whole analyzing performance.

4.5 Comparison with Other Semi-supervised Fea-
ture Selection Methods
In this section, we compare SFSS with two state of the art
semi-supervised feature selection algorithms, namely sSelect
and LSDF. The experiments are conducted on Corel-5K,
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Figure 5. Performance comparison with semi-supervised approaches on different applications w.r.t. the percentage of
labeled training data. Our method outperforms sSelect and LSDF for all settings and has much advantage when few
training data (2% and 5%) are labeled.
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(b) CareMedia
Figure 3. Performance comparison of video concept
detection w.r.t. the percentage of labeled training data.
Our method is consistently better than other compared
methods.

CareMedia and HumanEva data sets for different applications.
To be consistent, 2%, 5%, 10%, 25% and 50% training
data are labeled in this experiment for all data sets. The
results are shown in Figure 5. It can be observed that our
method consistently outperforms both sSelect and LSDF. The
advantage is especially visible when only few training data
are labeled, i.e., 2% or 5%. Semi-supervised methods are used
for the cases when we only have limited number of labeled
training data. We thus conclude that SFSS is much better than
sSelect and LSDF as it has much higher accuracy when only
few labeled training data are available.
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Figure 4. Performance comparison of 3D motion data
analysis w.r.t. the percentage of labeled training data. Our
method has much advantage over other algorithms. Good
performance can be achieved even when very few training
data are labeled.

Table 8
Performance comparison of 3D motion data analysis
(MAP±Standard Deviation) w.r.t. 1%, 5% and 10%

labeled data.
1% labeled 5% labeled 10% labeled

SFSS 0.860±0.021 0.984±0.015 0.994±0.012
FISHER[3] 0.453±0.016 0.608±0.022 0.678±0.019
GLLR [1] 0.559±0.037 0.645±0.024 0.666±0.013
FSNM [6] 0.480±0.013 0.615±0.024 0.696±0.018
SBMLR [31] 0.126±0.055 0.554±0.022 0.608±0.024

4.6 Influence of the Unlabeled Data

To study the influence of unlabeled training data on the multi-
media understanding performance, we conduct an experiment
correspondingly.

The unlabeled data in the training set are left out and we
only use labeled training data to conduct feature analysis. Then
we compare the results with the ones that are achieved by
using the entire training set including both labeled and unla-
beled data. The experiment is performed on Corel-5K, Kodak
and HumanEva data sets for each application respectively. 2%
(Corel-5K, Kodak) or 1% (HumanEva), 5%, 10%, 25% and
50% training data are labeled as different settings. Figure 6
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Figure 6. The influence of unlabeled data on different multimedia analyzing tasks. The blue bar stands for the
performance of SFSS. The yellow bar indicates the results that are obtained by using only labeled data (no unlabeled
data). The comparisons between the two approaches show that using unlabeled data improves the analyzing
performance.
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Figure 7. Performance variance w.r.t. µ and γ. The figure displays different results when using different µ and γ.

illustrates the comparisons.

It can be seen that using unlabeled data besides the labeled
data yields better results over using the labeled data alone.
When 10% of the data are labeled, by also using unlabeled data
we obtain relative improvements of 13% on the Corel-5K data
set and 18% on the Kodak data set. Yet the situation is different
for the HumanEva data set. The largest improvement, 45%, is
obtained when only 1% of the data are labeled. However, as
the percentage of labeled training data grows, the performance
by using only labeled training data increases dramatically. The
reason could be that the HumanEva data set is clean and easy
to analyze. Moreover, the MAP closes in on 1 after 5% training
data are labeled, which makes the contribution of the unlabeled
data on the performance limited. The improvements in semi-
supervised learning are due to the learning of the manifold
structure. In theory, the more data points that one has, the
better the manifold structure that can be learned. This saturates
with enough data. The Corel-5K data set still has huge benefits
from using all data instead of 50% for learning the manifold
structure. For the HumanEva data set the manifold structure
is very important as without this manifold the performance is
much lower in general (see Figure 4). Figure 6(c) shows that
this manifold is learned well using 25% of the data, after which
performance is close to optimal for both the fully supervised
and semi-supervised settings.

4.7 Parameter Sensitivity Study

In Figure 7, we show the influence of the two parameters µ
and γ on the performance of different applications using Corel-
5K, Kodak and HumanEva data sets when 10% training data
are labeled. It can be seen that the MAP is generally higher
when µ and γ are comparable for Corel-5K and Kodak data
sets. In contrast, there is no analogous rule identifiable about
when the optimal results are obtained for HumanEva data set.
The phenomenon demonstrates that the parameter sensitivity
is presumably related to the properties of the different data
sets.

4.8 Convergence Study

In the previous section, we have proved that the objective func-
tion in Eq. (5) converges by using the proposed algorithm. For
practical applications it is interesting how fast our algorithm
converges.

Figure 8 shows the convergence curves of our optimization
algorithm w.r.t. the objective function value in Eq. (5) on
Corel-5K, Kodak and HumanEva when µ and γ are fixed at
1. It can be seen that our algorithm converges within as few
as 10-20 iterations.
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Figure 8. Convergence curves of the objective function value in Eq. (5) using Algorithm 1. The figure shows that the
objective function value monotonically decreases until convergence by applying the proposed algorithm.

5 CONCLUSION

We have proposed a new multimedia analyzing method built
upon feature analysis. The method takes advantage of joint
feature selection with sparsity, manifold regularization and
transductive classification. Additionally, to solve the non-
smooth objective function of our algorithm, we have proposed
an iterative approach. Our method is general and can be
applied to different applications. In this paper, we evaluate
its performance on image annotation, video concept detection
and 3D motion data analysis. The experimental results have
demonstrated that our method consistently outperforms the
other compared algorithms for different analyzing tasks. Our
method considers the characteristic of multimedia data, the
labeling cost, the computational efficiency and the adaptability.
Therefore, it is suitable for real-world multimedia understand-
ing applications.
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