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1 Introduction

The empirical study of political science has, in the last ten years, undergone

something akin to a sea-change. Where it was once common for political

scientists to employ a linear functional form regardless of the theory being

tested, we now see new attention being paid to the connection between theory

and model (Morton 1999, Signorino 1999, Signorino and Yilmaz 2003). The

result of this attention has been an expansion in the number of different

functional forms being employed by quantitative political scientists.

This increase in the number of modelling choices available to researchers

has brought with it new challenges. For example, although Signorino (1999)

demonstrates that traditional specifications of statistical models are generally

inconsistent with strategic theories of political science, no rigorous framework

has emerged for comparing strategic models against one another, or against

nonstrategic models. While it is clear that strategic specifications provide

different answers from traditional specifications, it not yet clear that these

strategic specifications are, in fact, superior. We therefore need a procedure

to determine whether one specification is “closer” than another specification

to the data generating process (DGP).

A related problem stems from the fact that not all theory is detailed enough

to allow the derivation of a functional form suitable for testing. An empirical

researcher faced with choosing a statistical specification under these condi-

tions needs guidance in choosing between the many functional forms, some



strategic and some not, that may be used to model political phenomena.

In either of these cases, empirical researchers need tools that allow compar-

isons to be made between models with different functional forms. Such mod-

els, however, are generally nonnested (neither model is a special case of the

other model).1 Discriminating between nonnested models requires specialized

tests that are rarely used in political science research. Clarke (2001) intro-

duced the issue of nonnested testing to political science, and Clarke (2003a)

introduced a simple distribution-free test for nonnested model discrimina-

tion. These articles, however, consider only models that are nonnested in

terms of their covariates. Testing models that are nonnested in terms of

their functional forms is a natural extension of this line of research.

The goals of this article are threefold. First, we briefly review the role of

theory in determining the appropriate functional form of a discrete choice

model. Second, we briefly review two non-nested model discrimination tests

and demonstrate that discriminating between discrete choice models with

different functional forms is possible, even with small samples. Third, we

provide, with the help of an example from the literature, specific advice on

how to determine whether or not a strategic specification fits the data better

than a traditional specification.

The article proceeds as follows. In the next section, we present a common

crisis scenario and consider three functional forms a researcher might choose

1See Clarke (2001) for a technical definition of “nonnested.”
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when modelling it: a probit model, a selection model, and a strategic model.

The natural question is the extent to which we can discriminate between

these models, given that the data are generated by a strategic process. We

answer this question by conducting a monte carlo experiment that assesses

the relative power of the Vuong and distribution-free tests. We find that both

the Vuong and distribution-free tests are able to discriminate between the

models accurately. In large samples, the two tests are essentially equivalent.

In small samples, however, the distribution-free test outperforms the Vuong

test. Finally, we discuss an empirical example concerning European Union

enlargement and provide specific advice for the researcher.

2 Competing Discrete Choice Models

Consider a researcher who wants to model the conditions under which two

states are likely to go to war. Figure 1 displays a simple conflict scenario,

which we use throughout the paper. In this crisis situation, state 1 must

decide whether to attack (A) state 2 or not attack (¬A). If attacked, state

2 then chooses whether to resist (R) or not resist (¬R). If state 1 does not

attack, we assume that the status quo (SQ) is maintained. If state 1 attacks

and state 2 backs down, we assume that state 2 capitulates (Cap2). Finally,

if the state 1 attacks and the state 2 resists, we assume that war (War) is
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Figure 1: Conflict Model. State 1 decides whether to attack (A) state 2 or
not attack (¬A). If attacked, state 2 decides whether to resist (R) or not
resist (¬R). The states’ actions lead to three outcomes: the status quo (SQ),
capitulation by state 2 (Cap2), or war (War).

the result.2

Although we have already imposed certain constraints on the conflict sce-

nario, there remains a great deal of latitude for researchers who wish to

model it. A simple point, but one that is often overlooked, is that the statis-

tical model a researcher employs depends on his or her underlying theory of

the process generating the data. Some researchers take an explicitly game-

theoretic approach and derive their functional form directly from their model.

Others rely on the structure of the available data; researchers with binary

data tend to use different statistical models than those researchers with se-

quential data. Given rival models that represent two different data generating

processes, we need to be able to test which model is better supported by the

data.

To make this point more concretely, we turn to three different models a re-

2The scenario could just as well represent an extended deterrence situation where state
1 is threatening to attack a protege of state 2. If the protege is attacked, state 2 must
decide whether to defend its protege (see Huth 1988, Signorino and Tarar 2002).

4



searcher might choose when empirically analyzing the conflict scenario in

Figure 1. We highlight these models as they appear throughout the inter-

national relations literature. We begin with a probit model, follow with a

selection model, and end with the two variants (binary and sequential) of a

strategic model.

2.1 Probit Model

Due to the widespread availability of binary data — and the commensurate

dearth of sequential data — the most popular method of analyzing a conflict

scenario such as in Figure 1 has been the probit or logit model.3 Given this

modelling choice, two of the outcomes in the conflict scenario, status quo

(SQ) and capitulation by state 2 (Cap2), are usually aggregated into a single

outcome, the absence of war (¬War).

Figure 2(a) provides graphical intuition about the data and the model. States

1 and 2 either go to war or not. The propensity to go to war, y∗
War

, is a linear

function of a set of regressors pertaining to state 1 and of a set of regressors

pertaining to state 2,

y∗
War

= Xβ + Zγ + ε.

X in the above equation represents state 1’s regressors, Z represents state

2’s regressors, β and γ are coefficient vectors on X and Z, respectively, and

3We focus solely on the probit model as logit and probit are almost perfect substitutes
for one another.
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ε is a random disturbance, assumed to be normally distributed with mean

zero and variance one.4

We do not observe the latent variable, y∗
War

, but only whether the joint

propensity is above or below the threshold for war,

yWar =











1, if y∗
War

> 0

0, otherwise.

Maximum likelihood estimation of the probit model is based on the resulting

probabilities,

Pr(yWar = 0|X,Z) = 1 − Φ(Xβ + Zγ) (1)

Pr(yWar = 1|X,Z) = Φ(Xβ + Zγ) (2)

where Φ(·) is the distribution function of the standard normal.

Throughout the remainder of the paper, we motivate the statistical models by

making random utility assumptions, as opposed to relying on the structure of

the data. It is important to note that probit models may also be motivated by

random utility assumptions (Judge, Griffiths, Hill, Lutkepohl, and Lee 1985).

In random utility models, decision-makers are assumed to have preferences

over outcomes, which are represented by their utilities for those outcomes.

4This last assumption is made in order to identify the model and is innocuous (Greene
2003).
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Figure 2: Alternative Discrete Choice Specifications. Figure (a) shows the
common probit specification. In the selection model, Figure (b), the War

outcome results from a “selection” equation, y∗
A
, and an “outcome” equation,

y∗
R
, with the additional assumption that ε1 and ε2 are correlated. Finally,

Figure (c) displays a strategic model, with each player’s payoffs shown below
the outcomes. In this case, War is also a result of state 1’s and 2’s decisions.
However, state 1’s decision, y∗

A
, is based on an expected utility calculation,

and the disturbances are assumed to be uncorrelated.
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Each decision-maker chooses the option available to her for which she has

the highest utility. Because the empirical analyst does not fully observe the

decision-makers’ utilities, the analyst models each player’s utility as having

an observable component and a random component.5

It is doubtful that the probit version of the conflict scenario could be rea-

sonably motivated by random utility assumptions. The analyst would need

to make one of two assumptions: either (1) that states 1 and 2 jointly make

a decision between War and ¬War; or, (2) that their individual actions

somehow lead to either War or ¬War. Both assumptions have obvious

theoretical problems, since both “black box” important components of the

decision-making process. Under the first assumption, we must assume the

existence of an unobserved decision aggregation rule that is consistent with

considering the dyad as a single decision-making unit. Under the second

assumption, we must assume an unobserved sequence of choices that are

consistent with considering only the War versus ¬War outcomes. With

that said, we turn to two models that can be more directly motivated by

random utility assumptions.

2.2 Selection Model

Now consider a researcher who has sequential data on state 1’s decision to

attack and state 2’s decision to resist after being attacked. One random

5For examples of strategic and nonstrategic random utility models, see Signorino (2002).
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utility-based modelling option available to the researcher is the Heckman

selection model, which has become increasingly popular in economics and in

political science.6

The selection model displayed in Figure 2(b) retains the original sequential

choice structure depicted in Figure 1. State 1 decides whether to attack or

not based on a comparison of its utility for attacking, U1(A), with its utility

for not attacking, U1(¬A). The “selection equation,”

y∗
A

= Xβ + ε1 (3)

represents state 1’s net utility for attacking, where Xβ is the observable

component of its utility and ε1 is the random term.7 As a utility maximizer,

state 1 attacks when y∗
A

> 0. We observe,

yA =











1, if y∗
A

> 0

0, otherwise.

If state 1 attacks (i.e., yA = 1), then state 2 must decide whether to resist

or not. Again, this decision is based on a comparison of state 2’s utility for

going to war versus capitulating. The “outcome equation,”

y∗
R

= Zγ + ε2,

6See Greene (2003), Reed (2000), and Signorino (2002).
7Equation 3 represents the difference in state 1’s utilities for attacking versus not at-

tacking. Equivalently, if we normalize state 1’s utility for the status quo to zero, then it
represents its utility for attacking.
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represents state 2’s net utility for resisting, where Zγ is the observable com-

ponent of its utility and ε2 is the random term. As a utilty maximizer, state

2 resists whenever y∗
R

> 0. We observe,

yR =











1, if y∗
R

> 0

0, otherwise.

The final step in specifying the selection model concerns the disturbances, ε1

and ε2. Following Greene (2003), we assume the disturbances are distributed

bivariate normal with mean zero, variance one, and correlation ρ. Given

these assumptions, the probability of observing each outcome is,

Pr(SQ) = Pr(yA = 0|X,Z) = 1 − Φ(Xβ)

Pr(Cap2) = Pr(yA = 1, yR = 0|X,Z) = Φ2(Xβ, −Zγ, −ρ)

Pr(War) = Pr(yA = 1, yR = 1|X,Z) = Φ2(Xβ, Zγ, ρ),

where Φ(·) and Φ2(·) are the c.d.f.’s of the standard normal and standard

bivariate normal, respectively, and ρ is the correlation between the error

terms for the two equations.
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2.3 Strategic Choice Model

A third modelling choice available to the researcher analyzing the conflict

scenario is to assume that the choices both states make occur not only se-

quentially, but strategically. For example, in the selection model discussed

in the previous section, state 1’s decision to attack or not (Equation 3) is

a linear function and does not take into account what state 2 is likely to

do. In contrast, assume that state 1 chooses between the status quo and

attacking state 2 taking into consideration whether it believes that state 2

will capitulate or choose war. Given that state 1 chooses to attack, state 2

then decides between capitulation and war based on a straightforward utility

maximization.

Figure 2(c) displays such a strategic choice model of the crisis scenario. As

in Figure 1, we assume that state 1 attacks (A), or does not attack (¬A).

If attacked, state 2 must decide whether to resist (R) or not resist (¬R).

The payoffs to each state are given below the outcomes in Figure 2(c). We

normalize the status quo payoff for state 1 to zero. Whereas in the previous

models we combined the factors that influenced state 1’s decision into Xβ,

we now separate them into (1) those that affect state 1’s payoff for the capit-

ulation outcome (XCβC) and (2) those that affect state 1’s payoff for the war

outcome (XWβW ). As before, we normalize state 2’s payoff for the status quo

at zero, and we let its payoff for war be Zγ. We assume that a disturbance is

associated with the expected utilities at each information set, and that the
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disturbances are independently distributed standard normal.8

To derive the strategic probability model, we work “up the game,” starting

with state 2’s decision. If attacked, state 2 considers only whether to resist

or not. As in the selection model,

y∗
R

= Zγ + ε2,

represents state 2’s net utility for resisting. Zγ is the observable component

of the utility, and ε2 is the random term. As a utility maximizer, state 2

resists whenever y∗
R

> 0. We observe,

yR =











1, if y∗
R

> 0

0, otherwise.

Given the distributional assumption for ε2, state 2’s choice probabilities are,

pR = Pr(yR = 1|X,Z) = Φ(Zγ)

p¬R = Pr(yR = 0|X,Z) = 1 − Φ(Zγ).

Now consider state 1’s decision. As before, state 1’s decision whether to

attack is based on a comparison of its utility for attacking versus its utility

for the status quo. In contrast to the selection model, however, we now

assume that state 1 conditions its behavior on what it expects state 2 to do.

8This is the probit agent error model discussed in more detail in Signorino (2002). For
a logit version, see McKelvey and Palfrey (1998) and Signorino (1999).
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Because state 1 does not perfectly observe state 2’s utilities, state 1 can only

estimate the probability that state 2 will resist or not. Therefore, state 1’s

utility for attacking is an expected utility, based on the lottery representing

whether state 2 will resist or not.

Since we normalize state 1’s utility for the status quo to zero,

y∗
A = p¬R · XCβC + pR · XWβW + ε1, (4)

represents state 1’s net expected utility for attacking. p¬R ·XCβC +pR ·XWβW

is the observable component of the expected utility, and ε1 is the random

utility component. State 1 attack when y∗
A

> 0. We observe,

yA =











1, if y∗
A

> 0

0, otherwise.

State 1’s equilibrium choice probabilities are then,

pA = Pr(yA = 1|X,Z) = Φ(p¬R · XCβC + pR · XWβW )

p
¬A = Pr(yA = 0|X,Z) = 1 − Φ(p¬R · XCβC + pR · XWβW ).

Because the disturbances are independently distributed, the equilibrium out-

come probabilities are the product of the choice probabilities along the path,
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Pr(SQ) = Pr(yA = 0|X,Z) = p
¬A (5)

Pr(Cap2) = Pr(yA = 1, yR = 0|X,Z) = pA · p
¬R (6)

Pr(War) = Pr(yA = 1, yR = 1|X,Z) = pA · pR. (7)

Maximum likelihood estimation of the effect parameters, βC, βW , and γ, is

based on these equilibrium probabilities assuming that the dependent vari-

able denotes which of the three outcomes occurred for each observation.

2.3.1 A Binary Data Version of the Strategic Choice Model

The two discrimination tests discussed in the next section require that both

rival models have precisely the same dependent variable. This requirement is

problematic for researchers who wish to discriminate between the ubiquitous

probit model and the more recent strategic model. The reason is that the

strategic model has three outcomes, and the probit model has only two. The

problem is easily solved, however. For a valid comparison of the two models,

we simply need a version of the strategic model that has been aggregated for

binary data.

Recall from Figures 1 and 2(a) that the binary data represent War ver-

sus ¬War. Where the probit model ignores the different outcomes that

comprise ¬War, the strategic model forces us to confront them. Thus, the
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¬War outcome, in the binary version of the strategic model, is equivalent

to the occurrence of either the status quo (SQ) or capitulation (Cap2). The

probability of ¬War is therefore the probability of the status quo plus the

probability of capitulation. The probabilities for the binary data version of

the strategic model are then,

Pr(¬War) = p
¬A + pA · p¬R (8)

Pr(War) = pA · pR, (9)

where the choice probabilities are those previously derived for the full strate-

gic model. The War outcome is the same in both versions of the model,

therefore, the probability of war is the same in both models. These probabil-

ities form the basis for maximum likelihood estimation of the effect parame-

ters given binary data.

3 Nonnested Model Testing

The models in Section 2 are nonnested in terms of their functional forms.9

Determining which of these functional forms is closest to the true, but un-

known, specification requires the use of discrimination tests that are still new

to the vast majority of political scientists. Two of the easiest and least contro-

9See Clarke (2001) for a definition of nonnested and methods of determining whether
rival models are nonnested.
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versial of these tests are the Vuong test (Vuong 1989) and a distribution-free

test introduced by Clarke (2003a).

Both tests are based on the Kullback-Leibler information criteria (Kullback

and Leibler 1951), which is simply a measure of similarity between an esti-

mated model and the true distribution. We can write the Kullback-Liebler

information criteria (KLIC) heuristically as

KLIC ≡ True distribution − Statistical model.

The point of the above equation is that we wish to choose the statistical

model that minimizes the KLIC because that is the statistical model that is

closest to the truth. Written more formally, the KLIC is

KLIC ≡ E0[ln h(Y|X)] − E0[ln f(Y|X; β)],

where h is the true conditional density of Y given X (the true, but unknown

distribution), f is the statistical model, and E0 is the expectation under the

true distribution. Given that we wish to minimize the KLIC, we want to

choose the model with the largest log-likelihoods, E0[ln f(Y|X; β)]. In other

words, we should choose one statistical model over another statistical model

if the individual log-likelihoods of that model are significantly larger than

the individual log-likelihoods of the rival model. The difference between the

two tests we discuss here is whether we consider the average difference in the

log-likelihoods of two models or the median difference in the log-likelihoods

of two models.

16



3.1 The Vuong Test

The Vuong test considers the average difference in the log-likelihoods of two

competing statistical models. The null hypothesis of the test is that this

average difference is zero. Letting f denote model 1, which has covariates

X and coefficients β, and g denote model 2, which has covariates Z and

coefficients γ, we can write the null as

H0 : E0

[

ln
f(Y|X; β)

g(Y|Z; γ)

]

= 0.

The null hypothesis simply states that the two models are equally close to

the true specification.

The expected value in the above hypothesis is unknown. Vuong demonstrates

that under fairly general conditions that

1

n
LR(β̂, γ̂)

a.s.−→ E0

[

ln
f(Y|X; β)

g(Y|Z; γ)

]

,

where LR(β̂, γ̂) is the estimated difference in the log-likelihoods of the two

models, or Lf (β̂) − Lg(γ̂). Thus, the expected value can be consistently

estimated by
(

1
n

)

times the usual log-likelihood ratio statistic.

Suitably normalized, the test statistic is normally distributed under the null

hypothesis,
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under H0 :
LRn(β̂, γ̂)

(
√

n)ω̂

D−→ N(0, 1),

where the estimated variance is computed in the usual way (sum of the

squares minus square of the sums),

ω̂2 ≡ 1

n

n
∑

i=1

[

ln
f(Y|X; β̂)

g(Y|Z; γ̂)

]2

−
[

1

n

n
∑

i=1

ln
f(Y|X; β̂)

g(Y|Z; γ̂)

]2

.

Thus, the test can be described in simple terms. If the null hypothesis is true,

the average value of the log-likelihood ratio should be zero. If Hf is true,

the average value of the log-likelihood ratio should be significantly greater

than zero. If the reverse is true, the average value of the log-likelihood ratio

should be significantly less than zero.

The log-likelihoods used in the Vuong test are affected if the number of

coefficients in the two models being estimated is different, and therefore the

test must be corrected for the degrees of freedom. Vuong (1989) suggests

using a correction that corresponds to either Akaike’s (1973) information

criteria or Schwarz’s (1978) Bayesian information criteria. In the simulations

that follow, we use the latter, making the adjusted statistic10,

LR̃(β̂, γ̂) ≡ LR(β̂, γ̂) −
[(p

2

)

ln n −
(q

2

)

ln n
]

,

10Which correction factor is used makes no difference to this analysis.
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where p and q are the number of estimated coefficients in models f and g,

respectively.

3.2 The Distribution-Free Test

Where the Vuong test considers the average difference in the log-likelihoods

of two competing statistical models, the distribution-free test considers the

median difference in the log-likelihoods of two competing statistical models

(Clarke 2003a). Thus, if the models are equally close to the truth, half of the

individual log-likelihood ratios should be greater than zero and half should

be less than zero. If model f is “better” than model g, more than half of

the individual log-likelihood ratios should be greater than zero. Conversely,

if model g is “better” than model f , more than half of the individual log-

likelihood ratios should be less than zero.

The null hypothesis of the distribution-free test, therefore, is that if two

models are equally close to the truth, half of the log-likelihood ratios should

be great than zero,

H0 : Pr

[

ln
f(Y|X; β)

g(Y|Z; γ)
> 0

]

= 0.5.

Letting di = ln f(Y|X; β̂) − g(Y|Z; γ̂), the test statistic is
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B =
n

∑

i=1

I(0,+∞)(di),

where I is the indicator function. The test statistic, therefore, is simply the

number of positive differences, and it is distributed Binomial with parameters

n and θ = 0.5.11

One of the great strengths of this test is that implementation is remarkably

simple; the test can be produced by any mainstream statistical software

package using the following algorithm12:

1. Run model f , saving the individual log-likelihoods,

2. Run model g, saving the individual log-likelihoods,

3. Compute the differences, di, and count the number of positive values,
B,

4. The number of positive differences, B, is distributed binomial(n, 0.5).

This test, like the Vuong test, may be affected if the number of coefficients in

the two models being estimated is different. Once again, we need a correction

for the degrees of freedom. The Schwarz correction is,

11The assumptions of the distribution-free test are unsurprising and general: the log-
likelihood ratios are mutually independent, and each ratio is drawn from a continuous
population (not necessarily the same) that has a common median θ.

12In what follows, steps 1 and 2 are in the process of being implemented by STATA.
Step 3 already exists in STATA because we are making use of the paired sign test. The
command is simply “signtest ll1 = ll2” where lli are the individual log-likelihoods from
one model.
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[(p

2

)

ln n −
(q

2

)

ln n
]

,

where p and q are the number of estimated coefficients in models f and g,

respectively. As we are working with the individual log-likelihood ratios,

we cannot apply this correction to the “summed” log-likelihood ratio as we

did for the Vuong test. We can, however, apply the average correction to

the individual log-likelihood ratios. That is, we correct the individual log-

likelihoods for model f by a factor of:

( p

2n

)

ln n

and the individual log-likelihoods for model g by a factor of:

( q

2n

)

ln n.

A discussion of the efficiency of the distribution-free test versus the Vuong

test as well as proofs of the consistency and unbiasedness of the distribution-

free test are found in Clarke (2003b).

4 Monte Carlo Simulations

We wish to determine if we can discriminate (1) between the strategic model

and the selection model, and (2) between the binary data version of the

strategic model and the probit model. To that end, we perform a suite of
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monte carlo simulations. In addition to answering our main question, the

results also indicate under what conditions we can expect either the Vuong

test or the distribution-free test to have greater relative power.

4.1 Experimental Design

The data generating process (DGP) for the experiment is the strategic model.

The utilities for states 1 and 2 are specified as in Figure 2(c) with the excep-

tion that each utility is now a function of a single variable denoted by xC,

xW , and z. State 1’s latent variable equation is thus,

y∗
A

= p
¬RβCxC + pRβWxW + ε1,

and state 2’s latent variable equation is

y∗
R

= γz + ε2.

For each monte carlo replication, xC, xW , and z are drawn anew from uni-

form distributions with means of -0.5 and variances of one.13 The stochastic

components ε1 and ε2 are drawn anew from independent normal distributions

with means of zero and variances of σ2
ε . All coefficients, βC, βW , and γ, are

set to 1.

The values taken by the two latent variables, y∗
A

and y∗
R
, determine the actions

13Using uniform distributions with slightly negative means ensures that war is a rela-
tively rare event in the simulated data. In this way, the data more closely approximate
what we find in real-world applications.
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taken by both states in the simulated data. State 1 attacks when y∗
A

> 0,

and state 2 resists when y∗
R

> 0. For each replication, two versions of the

dependent variable are generated: one contains the actions of both states and

the other is aggregated to war and no war as noted in Section 2.3.1. In this

way, we can discriminate between the strategic and selection models and be-

tween the strategic and probit models using the same simulated independent

variables and error terms.

The strategic, selection, and probit models are estimated for each generated

data set. The specification of the strategic model matches the DGP. The

selection model is specified with the following selection and outcome equa-

tions,

y∗
A

= βCxC + βWxW + γz + ε1

y∗
R

= γz + ε2.

The z regressor is added to the selection equation in order that the model

might stand a better chance of approximating the strategic DGP.14

The probit model is specified as,

y∗
War

= βCxC + βWxW + γz + ε.

To compare the strategic model to the probit model, log-likelihoods for the

14It seems likely that some researchers might try to model state 1’s conditioning on state
2’s behavior by including z in state 1’s regression equation.
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strategic model are constructed using the estimated model’s parameters and

aggregating the probabilities appropriately as in Equations 8 and 9.

Our ability to discriminate between these rival models is likely to depend

upon the size of the sample and the “signal-to-noise ratio” of the DGP (the

ratio of the variance of the systematic portion of the DGP to the variance

of the error term). Discrimination should be easier as both the size of the

sample and as the “signal-to-noise ratio” increase. To assess these effects,

we varied the size of the sample between 50 and 500, and varied the “signal-

to-noise ratio” by changing the error variance between 0.5 and 2.0. 8000

replications are performed.

The following summarizes the experiments:

• Data generating process: strategic (all coefficients set to 1),

• Sample sizes: N ∈ {50, 100, 200, 300, 500},

• Error variance: σε ∈ {.5, 1, 2},

• Comparisons: probit v. strategic, selection v. strategic15,

• Tests: Vuong and distribution-free,

• Replications: 8000.

In total, the results of 15 simulations are reported.

The experimental design raises two interesting issues. First, given the design

of the simulations, we cannot discuss the size of the tests because the null

15As both the probit and selection models are misspecified given the DGP, how well
they fare against each other is not a concern of this paper.
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hypothesis is false in every experiment (the models are never equally close to

the true DGP). Rejecting the null hypothesis when it is true is therefore not

possible. We can, however, discuss the power of the tests in both the correct

direction (toward the strategic model) and the wrong direction (away from

the strategic model). Note that this latter category includes not only picking

the wrong model, but also picking neither model.

Second, we are comparing a continuous test statistic, the Vuong, with a dis-

crete test statistic, the number of positive differences. The problem with

this comparison is that for any finite number of observations, the exact sig-

nificance level of the discrete test statistic is unlikely to match the nom-

inal significance level selected for the simulation. For example, we would

like to assess the statistics based on a .05 significance level. However, the

discrete test statistic has a limited number of probabilities (the number of

“jump points” in the c.d.f.) that can serve as α. Absent identical exact sig-

nificance levels, power comparisons may be quite misleading (Gibbons and

Chakraborti 1992).

One way to avoid this problem is to employ a randomized decision rule

(Lehmann 1986). However, as DeGroot (1989) points out, it seems odd for

a researcher to decide which hypothesis to accept by tossing a coin or using

some other method of randomization. In place of a randomized procedure,

then, we chose critical values for the Vuong test such that the significance

level of the Vuong would match the exact significance level of the distribution-
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free test for the desired α. For example, with a sample size of 200, there is

no critical value for the binomial that will produce a significance level of .05.

Using 58 as a critical value produces a significance level of .0666. The ap-

propriate critical value for the Vuong test, then, is one that also produces a

significance level of .0666, which in this case, is 1.5015606. The power levels

we report, therefore, are for equivalent nominal and exact significance levels.

4.2 Results

The results for the discrimination of the strategic model against the selection

model are displayed in Table 1, and the results for the discrimination of the

binary strategic model against the probit model are shown in Table 2. Each

table reports in what proportion of replications the Vuong and distribution-

free (Clarke) tests correctly chose the strategic model.16 These results are

shown for sample sizes ranging from 50 to 500 and for disturbance standard

deviations of .5, 1, and 2.

Tables 1 and 2 clearly show that both tests are able to discriminate between

the models, depending on the sample size and signal-to-noise ratio. In gen-

eral, the power of both tests increases as the sample size increases and as

the signal-to-noise ratio increases. The former is not surprising as both tests

16The strategic and probit models almost always converged. Therefore, the results re-
ported for the binary data model comparisons are generally based on a full 8000 iterations,
or at least very close to it. Unfortunately, the selection model had difficulty converging at
times for smaller sample sizes and smaller error variances. In these cases, we report the
results of only those iterations that converged without problem.
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Table 1: Discriminating between the Strategic vs. Selection Models.
The table displays the proportion of times the strategic model was correctly
chosen by the Clarke and Vuong tests. The experiments were conducted for
sample sizes ranging from N=50 to N=500, and for disturbance standard
deviations ranging from .5 to 2.

Size Test 0.5 1.0 2.0
50 Clarke 1.000 0.919 0.728

Vuong 0.979 0.775 0.688

100 Clarke 1.000 0.969 0.806
Vuong 0.996 0.856 0.788

200 Clarke 1.000 0.984 0.855
Vuong 1.000 0.926 0.835

300 Clarke 1.000 0.994 0.882
Vuong 1.000 0.974 0.873

500 Clarke 1.000 0.999 0.889
Vuong 1.000 0.995 0.885

are consistent and will choose the correct model more often for larger sam-

ple sizes. The latter is hardly surprising as the discrimination tests perform

better in the absence of noise.

The tests perform at their worst when the sample size is small (N=50) and

the uncertainty is large (σε = 2). In this situation, the distribution-free

test correctly selects the strategic model 72.8% of the time, while the Vuong

test correctly selects the strategic model 68.8% of the time. The results are

even less impressive when we turn to the binary model comparison. Here,
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Table 2: Discriminating between the Strategic vs. Probit Models.
The table displays the proportion of times the strategic model was correctly
chosen by the Clarke and Vuong tests. The experiments were conducted for
sample sizes ranging from N=50 to N=500, and for disturbance standard
deviations ranging from .5 to 2.

Size Test 0.5 1.0 2.0
50 Clarke 0.860 0.713 0.631

Vuong 0.699 0.484 0.351

100 Clarke 0.961 0.863 0.835
Vuong 0.916 0.765 0.626

200 Clarke 0.996 0.967 0.952
Vuong 0.993 0.942 0.868

300 Clarke 0.999 0.993 0.992
Vuong 0.999 0.993 0.972

500 Clarke 1.000 0.999 0.999
Vuong 1.000 0.999 0.998

the distribution-free test correctly chooses the strategic model 63.1% of the

time, while the Vuong test only selects the correct model in 35.1% of the

iterations.

Large sample sizes, however, are not always required for accurate model

discrimination. For example, Table 1 shows that the distribution-free test is

highly accurate when the uncertainty is low to moderate, even for very small

samples.
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Clarke (2002) demonstrates that the distribution-free test generally outper-

forms the Vuong test for small samples, and performs equally well as samples

became relatively large. Tables 1 and 2 provide further evidence of this re-

sult. In every case, the distribution-free test performs at least as well as the

Vuong test. For small samples, it often performs much better. The greater

relative power of the distribution-free test does not, however, come without

a price. If we disaggregate the “incorrect” categories in both tables into

“chose incorrectly” and “made no choice” (not presented here), we see that

the distribution-free test has a slightly higher probability of choosing the

wrong model, while the Vuong test, on the other hand, has a slightly higher

probability of choosing neither model. We believe that the benefits gained

from the greater power of the distribution-free test outweigh the slightly

higher probability of rejecting the null in favor of the incorrect model.17

The simulation results should be of great interest to substantive scholars. The

results are important in that small sample studies, though not the majority,

are common in international relations research. For example, seven recent

small-n studies in conflict studies are Huth (1988), which has an n of 58;

Huth, Gelpi, and Bennett (1993), which has an n of 97; Reiter and Stam

(1998), which has an n of 197; Signorino and Tarar (2002), which has an n of

58; Bennett and Stam (1996), which has an n of 169; Benoit (1996), which

has an n of 97; and Pollins (1996), which has an n of 161. A test that works

under conditions where is discrimination is difficult is surely welcome.

17See Clarke (2003b) for a formal comparison of the trade-offs between these errors.

29



5 Application

In their recent article on European Union (EU) eastern enlargement, Plümper,

Schneider, and Troeger (2006) break new ground by treating enlargement as

two interrelated decisions. In the first stage, the governments of transition

states choose whether or not to apply for membership, and in the second

stage, the EU decides whether or not to accept these applications. The au-

thors state that the presence of the selection mechanism calls for the use of

a Heckman selection model arguing that “the procedure not only captures

our theory appropriately, it is also more efficient and robust than competing

procedures and — most importantly — the only consistent estimator given

the truncated distribution of the sample in the second stage” (Plümper et al.

2006, 24).

Does the Heckman selection model appropriately capture Plümper et al.’s

theory? The authors argue that the application and the accession stages

are “intertwined” and interdependent [18]. They also argue that leaders of

autocratic regimes are unwilling to apply for EU membership because, among

other reasons, “they anticipated little or no chance for success” [18]. This

suggests that the decision to apply for EU membership is strategic. If so,

then, as we argued in Section 2.3, the Heckman selection model does not

appropriately capture the theory.

Using the methods discussed in Section 3, we can test whether or not the

decision to apply for EU membership is strategic. The two competing models
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Figure 3: Modelling EU Enlargement as a Selection Process and a Strategic
Process
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are depicted in Figure 3 (compare with panels (b) and (c) of Figure 2). In

the top panel of Figure 3, the transitioning government makes the decision to

apply for EU membership or not. This decision would be made, as suggested

by Plümper et al. [21], for purely domestic reasons, and the likely decision

by the EU is not a factor. In the bottom panel of Figure 3, the transitioning

government makes the decision to apply for EU membership based partly

on what the government believes the EU’s decision will be. Which model is

closer to the DGP, therefore, has considerable theoretical bite.

We replicate Plümper et al.’s model 3 (their full model) in Table 3.18 The

dependent variable is binary taking a value of 1 if a state applies for member-

ship in the EU. The independent variables in this stage include a measure of

regulatory quality, the Polity IV proxy for the level of democracy, a measure

of the dependence of the government on presidential intervention, exports of

goods and services (per cent of GDP), and government consumption expen-

diture (per cent of GDP).

The dependent variable in the second stage is also binary and takes a value

of 1 if a state has been selected for accession. In the second stage, the

18Our replication is based on 98 observations, not the 169 observations used by Plümper
et al. The reason for this discrepancy is the amount of missing data in the variables used
for the EU utilities. Unlike the selection model, where the two equations are essentially
estimated separately, the strategic model uses the variables in the EU utilities to create the
probabilities that weight the choice between status quo and applying. The three variables
that comprise the EU utilities—chapters completed, the power of eurosceptic parties, and
the total size of the agricultural sector—include significant amounts of missing data. Thus,
the weighting probabilities have a significant amount of missing data, and we end up with
98 observations. We ran the selection model with 98 observations, therefore, to ensure
comparability with the strategic model. A few variables are no longer significant, but no
major inferences are affected.
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Table 3: Heckman Probit Selection Model, n = 98

Variable Coefficient S.E. P -value

First stage: Gov.

Regulatory quality 2.262 0.444 0.000

Level of democracy -0.281 0.271 0.301

Presidential power 0.220 0.309 0.477

Export of goods and

services -0.009 0.013 0.474

Government consumption -0.073 0.049 0.138

Constant -2.050 2.060 0.320

Second stage: E.U.

Chapter 0.260 0.057 0.000

Power of

Eurosceptic parties -0.008 0.006 0.156

Agriculture -0.487 0.001 0.000

ρ -1.000 0.000

Log-Likelihood -46.266

authors “focus on the effect of political variables providing EU members

with information on the political preferences of parties in the applicants’

parliaments” (Plümper et al. 2006, 25). The independent variables therefore

include the number of closed chapters in the negotiations and the strength

of Eurosceptic parties. Finally, the authors include the total size of the

agricultural sector as a proxy for “the expected redistribution of agricultural

subsidies once applicants are accepted” [26].

In Table 4, we present a strategic version of EU enlargement. One ques-

tion that arises is how to apportion to independent variables in the first
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Table 4: Strategic Model, n = 98

Variable Coefficient S.E. P -value

Government

Status Quo (βSQ)

Level of Democracy 1.23 0.55 0.025

Regulatory Quality -6.23 1.49 0.000

Application rejected (βRej.)

Constant -9.79 4.99 0.050

Application accepted (βAcc.)

Government consumption 0.03 1.28 0.982

Presidential power 44.67 32.85 0.174

Export of goods and

services -0.71 0.64 0.269

European Union

Application accepted (γAcc.)

Chapter 0.43 0.89 0.000

Power of

Eurosceptic parties -0.02 0.01 0.014

Agriculture -0.67 0.04 0.079

Constant -1.89 0.47 0.000

Log-Likelihood -38.49

stage of the selection model between the three government utilities (status

quo, application rejected, application accepted) in the strategic model. Our

reasoning is quite straightforward. Reforms must be carried out before the

admission decision; thus, they are sunk costs that do not depend on whether

the EU admits the state or not. Hence, regulatory quality and regime type

should affect the status quo utility of the government. We normalize the

payoff to the government for “application rejected” to only a constant. The
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other independent variables are included in the acceptance utility for the

government. For the EU’s utilities, we normalize the payoff for “application

rejected” to zero and enter the independent variables into the EU’s utility

for “application accepted.”

Comparing the log-likelihoods from Tables 3 and 4, we see that the strategic

model appears to fit better, although we do not know whether this difference

is meaningful or not. To answer that question, we apply the nonnested tests

from Section 3. These results are in Table 5.

Table 5: Results of the Nonnested Tests, n = 98

Statistic P-value
Vuong 2.01 0.045
Clarke 68 0.000

The results of the tests leave no room for ambiguity; both tests reject the

null hypothesis of equality in favor of the strategic model. Thus, we can

be confident that when states decide to apply for EU membership, they pay

attention not solely to domestic political concerns, but also to the anticipated

decision of the EU itself.

6 Conclusion

The purpose of this paper is to demonstrate that discrimination between

discrete choice models with different functional forms is possible, even with
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small samples. We provide a framework in which it is possible to compare

strategic models to nonstrategic alternatives, or even strategic models against

one another. At the same time, we extend nonnested model testing in po-

litical science to situations where the rival models are nonnested in terms of

their functional forms.

We demonstrate that discriminating between strategic choice models and

various alternative nonstrategic choice models is feasible even under adverse

conditions. While the distribution-free test has greater relative power in

many of the experiments, both tests perform well and are easy to implement.

There is therefore no reason why a substantively-oriented scholar should need

to simply assume whether or not that functional form is strategic. In our

application, we demonstrate that the two-stage process of EU enlargement

is indeed strategic. We hope that future scholars will use these results and

techniques for increasingly rigorous comparative model testing.
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