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We consider the problem of discriminating two different quantum states in the setting of asymptotically

many copies, and determine the minimal probability of error. This leads to the identification of the

quantum Chernoff bound, thereby solving a long-standing open problem. The bound reduces to the

classical Chernoff bound when the quantum states under consideration commute. The quantum Chernoff

bound is the natural symmetric distance measure between quantum states because of its clear operational

meaning and because it does not seem to share some of the undesirable features of other distance

measures.

DOI: 10.1103/PhysRevLett.98.160501 PACS numbers: 03.67.�a

One of the most basic tasks in information theory is the

discrimination of two different probability distributions:

given a source that outputs variables following one out of

two possible probability distributions, determine which

one it is with the minimal possible error. In a seminal

paper, Chernoff [1] solved this problem in the asymptotic

regime and showed that the probability of error Pe in

discriminating two probability distributions decreases ex-

ponentially in the number of tests n that one can perform:

Pe � exp��n�CB�. The optimal exponent �CB arising in

the asymptotic limit is called the Chernoff bound [2]. One

of the virtues of the Chernoff bound is that it yields a very

natural distance measure between probability distributions;

it is essentially the unique distance measure in the ubiq-

uitous situation of independent and identically distributed

(i.i.d.) random variables.

A quantum generalization of this result is highly desired.

Indeed, the concept of randomness is much more elemen-

tary in the field of quantum mechanics than in classical

physics. Given the large amount of experimental effort in

the context of quantum information processing to prepare

and measure quantum states, it is of fundamental impor-

tance to have a theory that allows one to discriminate

different quantum states. Despite considerable effort, this

quantum generalization of the Chernoff bound has until

now remained unsolved. The problem is to discriminate

two sources that output many identical copies of one out of

two different quantum states � and�, and the question is to

identify the exponent arising asymptotically when per-

forming the optimal test to discriminate them. This task

is so fundamental that it was probably the first problem

ever considered in the field of quantum information theory;

it was solved in the one-copy case more than 30 years ago

[3,4]. In this Letter, we finally identify the asymptotic error

exponent when the optimal strategy for discriminating the

states is used. A nice feature of such a result is its universal-

ity, as it identifies the unique metric quantifying the dis-

tance of quantum states in the i.i.d. setting. Note that the

related question of the optimal error exponents in asym-

metric hypothesis testing in the sense of Stein’s lemma was

already solved a long time ago [5], leading to the opera-

tional meaning of quantum relative entropy. The quantum

Chernoff bound can therefore be understood as the sym-

metric version of the quantum relative entropy.

Distance measures between quantum states have been

used in a wide variety of applications in quantum infor-

mation theory. The most popular such measure seems

to be Uhlmann’s fidelity [6], which happens to coincide

with the quantum Chernoff bound when one of the states is

pure. The trace distance has a more natural operational

meaning, but lacks monotonicity under taking tensor

powers of its arguments. The problem is that one can easily

find states �, �, �0, �0 such that Trj�� �j< Trj�0 � �0j
but Trj��2 � ��2j> Trj�0�2 � �0�2j. The quantum

Chernoff bound exactly characterizes the exponent arising

in the asymptotic behavior of the trace distance in the case

of many identical copies, and therefore does not suffer

from this problem. Note that a similar situation happens
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in the case of one-copy entanglement versus the asymp-

totic entanglement entropy.

In this Letter, we give an upper bound for the probability

of error for discriminating two arbitrary states. In the

particular case of a large number of identical copies, this

result nicely complements the recent work of Nussbaum

and Szkoła [7], where a lower bound for the asymptotic

error exponent was found and hence a lower bound for the

probability of error. These respective upper and lower

bounds coincide in the asymptotic limit and hence give

the exact expression for the error exponent. The conjecture

of Ogawa and Hayashi concerning the quantum Chernoff

bound raised in [8] is thus solved.

Our Letter is organized as follows. After the mathemati-

cal formulation of the problem, we prove a nontrivial and

fundamental inequality relating the trace distance to the

quantum Chernoff bound. Finally, we discuss some inter-

esting properties of the quantum Chernoff bound.

The optimal error probability of discriminating two

quantum states �0 and �1 has been identified a long time

ago by Helstrom [3]. We consider the two hypotheses H0

and H1 that a given quantum system is prepared either in

the state �0 or in the state �1, respectively. Since the

(quantum) Chernoff bound arises in a Bayesian setting,

we supply the prior probabilities �0 and �1, which are

positive quantities summing up to 1 (the degenerate cases

�0 � 0 or �1 � 0 are excluded).

Physically discriminating between these hypotheses cor-

responds to performing a generalized (POVM) measure-

ment on the quantum system with two outcomes, 0 and 1.

This POVM consists of the two elements fE0; E1g, where

E0 � E1 � 1, Ei � 0. The symmetric distinguishability

problem consists in finding those E0 and E1 that minimize

the total error probability Pe, which is given by Pe �
�0Tr	E1�0
 ��1Tr	E0�1
 � �1 �Tr	E1��1�1 ��0�0�
.
This problem can be solved using some basic linear alge-

bra. Let us first introduce some basic notations. Abusing

terminology, we will use the term ‘‘positive‘‘ for ‘‘positive

semidefinite‘‘ (denoted A � 0). We employ the positive

semidefinite ordering throughout, A � B iff A� B � 0.

The absolute value jAj is defined as jAj :� �A�A�1=2. The

Jordan decomposition of a self-adjoint operator A is given

by A � A� � A�, where A� and A� are the positive and

negative part of A, respectively, and are defined by A� :�
�jAj � A�=2 and A� :� �jAj � A�=2. Both parts are posi-

tive by definition, and A�A� � 0. The error probability Pe
has to be minimized over all operators E1 that satisfy 0 �
E1 � 1. The result is that E1 has to be the projector on the

range of the positive part of (�1�1 � �0�0), leading to

 Pe;min �
1

2
�1� k�1�1 � �0�0k1�;

where kAk1 � TrjAj is the trace norm.

The basic problem to be solved now is to identify how

the error probability Pe behaves in the asymptotic limit,

i.e., when one has to discriminate between the hypotheses

H0 and H1 corresponding to either n copies of �0 having

been produced or n copies of �1. To do so, we need to study

the quantity Pe;min;n :� �1� k�1�
�n
1 � �0�

�n
0 k1�=2, and

it turns out that it exponentially decreases in n:

 Pe;min;n � exp��n�QCB�:

We will prove that the exponent �QCB is given by the

following quantity, which can therefore be called the quan-

tum Chernoff bound:

 �QCB � lim
n!1

� logPe;min;n

n
(1)

 � � log min
0�s�1

Tr��s�1�s�: (2)

Note that the quantity Tr��s�1�s� is well-defined and

guaranteed to be positive. As should be, this expression

for the quantum Chernoff bound reduces to the usual

definition of the classical Chernoff bound �CB when �
and � commute: for classical distributions p0 and p1,

 �CB � � log min
0�s�1

X

i

p0�i�sp1�i�1�s: (3)

The fact that �QCB is lower bounded by the expression

on the right hand side of (2) was proven very recently in

[7]. The fact that this is also an upper bound can be inferred

from the following theorem:

Theorem 1.—Let A and B be positive operators, then for

all 0 � s � 1,

 Tr 	AsB1�s
 � Tr	A� B� jA� Bj
=2: (4)

Indeed, let A � �1�
�n
1 and B � �0�

�n
0 , then the upper

bound trivially follows from the fact that the logarithm of

the left hand side of the inequality (4) becomes

log��s0�1�s
1 � � n log�Tr	�s0�1�s

1 
�. Upon dividing by n
and taking the limit n! 1, we obtain the quantum

Chernoff bound �QCB, independently of the priors �0, �1

(as long as the priors are not degenerate).

Note that it was already known that Pe;min;n is upper

bounded by exp�� n logTr��1=2�1=2�� ([13], Lemma 3.2).

Inequality (4) is also very interesting from a purely

matrix analytic point of view, as it relates the trace norm

to a multiplicative quantity that is highly nontrivial and

very useful. Note that the optimal measurement to dis-

criminate the two sources enforces the use of joint mea-

surements. As pointed out by A. Harrow, the particular

permutational symmetry of N-copy states guarantees that

the optimal collective measurement can be implemented

efficiently (with a polynomial-size circuit) [10], and hence

that the minimum probability of error is achievable with

reasonable resources.

Let us now move on to prove Theorem 1. The proof that

we present here goes through in infinite dimensions.

The proof relies on the following Lemma:

Lemma 1.—Let A, B � 0. Let 0 � t � 1, and let P be

the projector on the range of �A� B��. Then
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 Tr 	PB�At � Bt�
 � 0: (5)

Proof.—We exploit the integral representation [12]

 at � sin�t��
�

Z �1

0
dx
axt�1

a� x
; a � 0; 0 � t � 1;

(6)

which can be extended to positive operators in the usual

way. Under the integral sign, At � Bt contributes a factor

A�A� x��1 � B�B� x��1 � xf�B� x��1 � �A� x��1g:
We next use the obvious relations

 

1

b
� 1

a
�

Z 1

0
dy

d

dy

�1

b� �a� b�y ;
d

dy

�1

c
� 1

c

dc

dy

1

c
;

which hold for arbitrary invertible operators a, b, and c. By

introducing the notation ��y�A�B� and V � �B���
x��1, we can write At � Bt � ��1 sint�

R1
0 dxx

t 

R
1
0 dyy

�1V�V. Hence, to prove the lemma, we just need

to show that TrPBV�V � TrP�V�1 � �� x�V�V � 0
for 0 � x and 0 � y � 1.

Let � have the Jordan decomposition � � �� � ��.

Thus P is the projector on the range of ��. We choose the

basis in which � is diagonal, and hence �, P, and V can be

partitioned as

 ��
�
�� 0

0 ���

�

; P�
�
1 0

0 0

�

; V�
�
V�� V��
V�� V��

�

:

For ease of notation, the subscript ij will henceforth refer

to the (ij)-th block of an operator valued expression. We

can rewrite TrPBV�V as

 TrPBV�V � Tr	��V�� � ��� � x��V�V���
:
By the fact that V�� and V�� are each other’s adjoint, the

latter expression is positive, which finally proves the state-

ment of the Lemma. �

Proof of theorem.—We apply Lemma 1 to the case t �
s=�1� s�, A � a1�s, and B � b1�s, where a, b are posi-

tive operators and 0 � s � 1=2. With P the projector on

the range of �a1�s � b1�s��, this yields

 Tr 	Pb1�s�as � bs�
 � 0:

Subtracting both sides from Tr	P�a� b�
 then yields

 Tr 	asP�a1�s � b1�s�
 � Tr	P�a� b�
:
Since P is the projector on the range of the positive part of

(a1�s � b1�s), the LHS can be rewritten as Tr	as�a1�s �
b1�s��
. Because as � 0, this is lower bounded by

Tr	as�a1�s � b1�s�
 � Tr	a� asb1�s
.
On the other hand, the RHS is upper bounded by Tr	�a�

b��
; this is because for any self-adjoint H, Tr	H�
 is the

maximum of Tr	QH
 over all self-adjoint projectorsQ. We

thus have

 Tr 	a� asb1�s
 � Tr	�a� b��

� Tr	�a� b� � ja� bj
=2:

Subtracting both sides from Tr	a
 finally yields (4) for 0 �
s � 1=2. The remaining case 1=2 � s � 1 obviously fol-

lows by interchanging the roles of a and b. �

In the remainder of this Letter, we discuss the main

properties of the nonlogarithmic variety of the quantum

Chernoff bound, which we denote here by Q��;�� :�
min0�s�1Tr	�s�1�s
.

The following upper and lower bounds on Q in terms of

the trace norm distance T��;�� :� jj�� �jj1=2 exist [9]:

 1�Q � T �
���������������

1�Q2
q

: (9)

Based on these bounds, the following properties of the

Q-quantity and the Chernoff bound can be derived:

Inverted measure.—The maximum value Q can attain is

1, and this is reached when � � �. This follows, for

example, from the upper bound Q2 � T2 � 1. The mini-

mal value is 0, and this is only attained for pairs of

orthogonal states, i.e., states such that �� � 0. This im-

plies that the Chernoff bound is infinite if the states are

orthogonal; this has to be contrasted with the asymmetric

error exponents occurring in the context of relative entropy,

where infinite values are obtained whenever the states have

a different support.

Convexity in s.—The function to be minimized in Q is

s � Tr	�s�1�s
. It is important to realize that this function

is convex in s 2 	0; 1
 because that means that the mini-

mization has only one local minimum, and therefore this

local minimum is automatically the global minimum. This

is an important benefit in actual calculations.

Indeed, the function s � xsy1�s is convex for positive

scalars x and y, as one easily confirms by calculating the

second derivative xsy1�s�logx� logy�2, which is non-

negative. Consider then a basis in which � is diagonal

and given by � � Diag��1; �2; . . .�. Let the eigenvalue

decomposition of � (in that basis) be given by � �
UDiag��1; �2; . . .�U�, where U is a unitary. Then

Tr	�s�1�s
 � P

i;j�
s
i�

1�s
j jUijj2. As this is a sum with

positive weights of convex terms �si�
1�s
j , the sum itself

is also convex.

Joint concavity in (�, �).—By Lieb’s theorem [11],

Tr	�s�1�s
 is jointly concave in (�, �). Since the quantum

Chernoff bound is the point-wise minimum of Tr	�s�1�s

(over a fixed set, namely, over s 2 	0; 1
), it is itself jointly

concave as well. The Chernoff bound is therefore jointly

convex, just like the relative entropy.

Monotonicity under CPT maps.—From the joint con-

cavity, one easily derives the following monotonicity prop-

erty: for any completely positive trace preserving (CPT)

map �,

 Q�����;����� � Q��;��: (10)

For a proof, see [13].

Continuity.—By the lower bound Q� T � 1, 1�Q is

continuous in the sense that states that are close in trace

norm distance are also close in 1�Q distance: 0 � 1�
Q � T.
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Relation to fidelity.—If one of the states is pure, then Q
equals the Uhlmann fidelity. Indeed, assume that �1 �
j ih j is pure, then the minimum of the expression

Tr��s1�1�s
2 � is obtained for s � 0 and reduces to

h j�2j i. From inequality (9), the fidelity is always an

upper bound to Q.

Relation to the relative entropy.—Just as in the classical

case, there is a nice connection between the quantum

relative entropy and the Chernoff bound. By differentiating

the expression Tr��s�1�s� with relation to s, one observes

that the minimum (which is unique due to convexity) is

obtained when

 Tr ��s�1�s log�� � Tr��s�1�s log��:
One easily verifies that this is equivalent to the condition

that

 S��sk�� � S��sk��
with S�AkB� the quantum relative entropy Tr�A logA�
A logB� and �s defined as

 �s �
�s�1�s

Tr�s�1�s : (11)

Note that �s is not a state because it is not even self-adjoint

(except in the commuting case). Nevertheless, as it is

basically the product of two positive operators, it has

positive spectrum, and its entropy and the relative entropies

used in (11) are well-defined. The value of s for which both

relative entropies coincide is the optimal value s�. This �s�
can be considered the quantum generalization of the

Hellinger arc and interpolates between two different quan-

tum states, albeit in a rather special (unphysical) way.

Metric.—The quantum Chernoff bound (or its nonlogar-

ithmic variety) between two infinitesimally close states �
and �� d� induces a monotone metric that gives a geo-

metrical structure to the state space [14]. The metric is

given by [9]

 ds2 � 1� min
0�s�1

Tr	�s��� d��1�s
 � 1

2

X

ij

jhijd�jjij2
� �����
�i

p � �����
�j

p �2

where � � P

i�ijiihij is the eigenvalue decomposition of

�.

In conclusion, we have identified the exact expression of

the quantum generalization of the Chernoff bound, which

allows us to quantify the asymptotic behavior of the error

in the context of Bayesian discrimination of different

sources of quantum states. This resolves a long-standing

open question. Our main theorem (Theorem 1), which

gives a computable lower bound to the trace norm differ-

ence of two states in the many-copy regime, may also find

other relevant applications in and outside the field of state

discrimination [15].
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