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Abstract

Spectral fingerprints of samples of three Panax species (P. quinquefolius L., P. ginseng, and P.

notoginseng) were acquired using UV, NIR, and MS spectrometry. With principal components

analysis (PCA), all three methods allowed visual discrimination between all three species. All

three methods were able to discriminate between white and red ginseng and showed distinctive

sub-groupings of red ginseng related to root quality (age/size). Analysis of variance (ANOVA)

was used to evaluate the relative variance arising from the species, run, and analytical uncertainty

and was used to identify the most information rich portions of the spectrum for NIR and UV.

Accurate classification of the 3 species was obtained using partial least squares-discriminant

analysis (PLS-DA) and fuzzy rule-building expert system (FuRES). Relatively poor accuracy was

obtained using soft independent modeling of class analogy (SIMCA) when a single component

was used.
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INTRODUCTION

The roots of American and Asian ginseng and Sanqi (Panax quinquefolius, P. ginseng, and P

notoginseng, respectively) are well known herbal remedies, each with different health

promoting properties, which are used throughout the world (1–9). The primary active

components of all three are the ginsenosides (triterpenoid saponins) that are present either as

aglycones or in glycosylated forms (1–9). The similarities of the roots and the difficulty in

identifying powders and extracts have led to accidental misidentifications and intentional

misrepresentations of the three species. Accurate identification of the species and the

country of origin can have a significant economic impact.

The most common method of analysis has been separation by high performance liquid

chromatography (HPLC) of an ethanolic extract with detection by either ultraviolet

absorption spectrophotometry (UV) (3–9) or mass spectrometry (MS) (2). Less commonly

used methods are HPLC with evaporative light scattering detection (10), thin layer

chromatography (7), reflectance near-infrared spectrometry (1), Raman spectrometry (11),

and genetic barcoding (12). Except for the last method, the focus of the instrumental

*Communicating author: pei.chen@ars.usda.gov.

NIH Public Access
Author Manuscript
J AOAC Int. Author manuscript; available in PMC 2013 April 08.

Published in final edited form as:

J AOAC Int. 2011 ; 94(5): 1411–1421.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



methods has been on the ginsenosides. Little attention has been paid to the other components

of the roots or the chemical composition as a whole.

Numerous studies have sought to differentiate between the ginsenoside content of the roots

with respect to species, age, cultivation method (wild crafted versus domestic), root part

(main roots, lateral roots, and root hairs), growing site (provinces in China), season (time of

year), and post-harvest processing (red versus white P. ginseng) (1–9). The effects of other

environmental factors, such as light, temperature, moisture, and nutrition, are still unknown

(6). The interpretations of these studies have been questioned because of the limited number

of samples analyzed (3,6).

Little is known about the natural variance of the total ginsenoside content of the roots (3,6).

It is generally conceded that P. quinquefolius and P. ginseng are closer genetically than P.

notoginseng (4), but considerable variation in the ginsenoside content has been observed

within each species and within populations (roots within 1 m2) (3,6,13). Several fold

differences in total and specific ginsensoide content have been reported for P. quinquefolius

and P. notoginseng. One study of P. notoginseng reported a lack of genetic uniformity

within a population and the authors questioned whether the plants could be considered to be

of the same variety (7). It was emphasized that larger sample sizes were needed to reach

valid conclusions as to the effect of genetic and environmental factors on ginsenoside

concentrations (6).

A rapid means of differentiating between plant materials with respect to species, nutrition,

growing site, growing year, and harvest is the use of chemical spectral fingerprinting (with

no prior separation) in conjunction with analysis of variance (ANOVA) and/or pattern

recognition (14–17). Previous work employing MS fingerprints and both unsupervised and

supervised pattern recognition methods demonstrated that differentiation among all three

Panax species could be achieved (18). In that study, 68 samples of P. quinquefolius, 11

samples of P. ginseng, and 4 samples of P. notoginseng were used. Soft independent

modeling of class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA),

and fuzzy rule-building expert system (FuRES) modeling allowed the three species to be

identified with close to 100% accuracy. The loading patterns indicated that a significant

number of non-ginsenosides characterized chemical differences among the species.

In the current study, 58 of the same Panax samples previously analyzed by two MS methods

(18) were analyzed by two UV spectrophotometry methods and the original solids were

analyzed by reflectance NIR spectrometry. Results for all 5 methods were compared using

PCA to discriminate between the three species and patterns arising from the growing

location of P. quinquefolius and the quality (age/size) of P. ginseng. ANOVA was used to

identify the sources of variance and to identify enhanced spectral regions for NIR and UV

determinations. Classification methods (SIMCA, PLS-DA, and FuRES) were tested for their

ability to discriminate between species.

EXPERIMENTAL

A. Reagents

a. Water - Optima* grade ((Thermo Fisher Scientific Inc., Waltham, MA).

b. Acetonitrile - Optima* grade ((Thermo Fisher Scientific Inc., Waltham, MA)

c. Methanol - Optima* grade ((Thermo Fisher Scientific Inc., Waltham, MA)

d. Formic acid - Mass spectrometry grade (Sigma/Aldrich, St. Louis, MO).

e. Ginsenoside Rb2 (>95% purity, ChromaDex Inc., Irvine, CA).
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f. HPLC mobile phase - formic acid in water 0.1% (A), formic acid in acetonitrile

0.1% (B).

B. Samples

For this study, 44 P. quinquefolius, 12 P. ginseng, and 4 P. notoginseng samples were

obtained or purchased (Table 1).

C. Apparatus

a. NIR – Nicolet 6700 (Thermo-Electron, Waltham, MA, USA)

b. MS-Exactive - An Exactive mass spectrometer (Thermo Fisher Scientific Inc.,

Waltham, MA). Samples were introduced using an Accela high speed LC (Thermo

Fisher Scientific Inc., Waltham, MA, USA) consisting of a quaternary pump with a

vacuum degasser, a thermostatted column compartment, and an auto-sampler. Only

a guard column was used.

c. MS-LCQ - An LCQ Classic ion-trap mass spectrometer (Thermo Fisher Scientific

Inc., Waltham, MA). Samples were introduced using an Agilent 1100 HPLC

(Agilent Technologies, Palo Alto, CA) consisting of a binary pump with a vacuum

degasser, a thermostatted column compartment, an auto-sampler, and a diode array

detector (DAD). Only a guard column (Adsorbosphere All-Guard Cartridge, C18,

5μm, 4.6 × 7.5 mm, Alltech Associates, Inc., Deerfield, IL) was used.

d. 96-Well Plate Reader – Spectramax, Plus 384 (Molecular Devices, Sunnyvale, CA,

USA).

e. Centrifuge. – IEC Clinical Centrifuge (Danon/IEC Division Needham H.T.S.,

USA)

f. Grinder. – IKA A 11 basic Analytical mill (IKA® Works, Inc. Wilmington, NC,

USA)

g. LC Conditions - The HPLC-UV-MS method used a mobile phase consisting 0.1%

formic acid in H2O (A) and 0.1% formic acid in acetonitrile (B) with isocratic

elution at 60:40 (v/v) for 1.5 minutes. The flow rate used was 0.5 mL/min.

h. MS Conditions - Electrospray ionization (ESI) was performed in negative ion mode

to obtain the MS spectra fingerprints. The parameters of both mass spectrometers

were optimized for ginsenoside Rb2 by auto-tune using the Xcalibur software

through infusion of ginsenoside Rb2 standard. For MS-EX: spray voltage, −4.0 kV;

capillary temperature, 275.0 °C; sheath gas, 50.0 arbitrary units (au); aux gas, 15.0

au; spare gas, 5.0 au; max spray current, 100.00 μA; heater temperature, 365.0 °C.

For MS-LCQ: spray voltage, −4.0 kV; capillary temperature, 275.0 °C; sheath gas,

80.00 au; aux gas, 10.00 au; and heated capillary temperature, 220 °C.

D. Sample Preparation

a. Grinding - Ginseng root samples were grounded into fine powder using a IKA A 11

basic Analytical mill with knife blade (1 minute/sample) and stored in desiccators.

b. Solids analysis – for each sample, 0.5 g was placed in a separate vial for reflectance

NIR.

c. Extraction - Each dried ground sample 300 mg was mixed with 10.0 mL of

methanol-water (60:40, v/v) in 15 mL polypropylene conical centrifuge tubes

(Bection Dickinson and Company, NJ, USA) and sonicated for 60 min at room

temperature. The extracted samples were centrifuged at 5,000 g for 15 min. The
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supernatant was filtered through a 17 mm (0.45 μm) PVDF syringe filter (VWR

Scientific, Seattle, WA, USA). For LC-DAD, 5 μL of the extract was injected.

E. Data Acquisition

a. NIR – The 58 samples were analyzed in triplicate on 3 separate days producing 174

spectra. Spectra were acquired at approximately 2 cm−1 intervals between 4,000

and 10,000 cm−1. This experiment produced a data matrix with 174 rows

comprising the spectra and 3112 columns corresponding to the wavenumber.

b. MS-Exactive - Spectral fingerprints were obtained in negative ion mode using flow

injection. Spectra were summed over a 0.5 min interval over the total ion current

peak. The 58 samples were analyzed in triplicate providing 174 spectra. The

resulting data matrix had 174 rows comprising spectra and 1351 columns

comprising mass measurements.

c. MS-LCQ – Spectral fingerprints were obtained in negative ion mode using flow

injection. Spectra were summed over a 0.5 min interval over the total ion current

peak. Triplicate analyses of the 58 different samples on 3 different days yielded

174 spectra. The resulting data matrix had 174 rows comprising spectra and 1301

columns of mass measurements.

d. UV-Flow Injection - Spectra were acquired using the MS-LCQ with flow injection

through a guard column. Spectra were summed over a 0.5 min interval as the

sample flowed through the DAD. Duplicate analyses of the 58 different samples

yielded 116 spectra. Data were acquired at 2 nm intervals between 200 and 400 nm

resulting in a data matrix with 116 rows comprising spectra and 101 columns

corresponding to wavelength.

e. UV-96 Well Plate Reader – Each of the 58 samples was delivered by pipet into a

well on 2 different plates and each plate was read 3 times resulting in 344 UV

spectra. Data were acquired at 1 nm intervals between 200 and 400 nm. The

resulting data matrix had 344 rows comprising spectra and 201 columns

corresponding to wavelength.

F. Data Processing

The data matrices were exported to Solo (Eigenvector Research, Inc., Wenatchee, WA,

USA) for principal component analysis (PCA). The classification methods, soft independent

modeling of class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA),

and the fuzzy rule-building expert system (FuRES) modeling were performed using

programs developed for MATLAB (Mathworks, Natick, MA, USA). Preprocessing for

PCA, SIMCA, PLS-DA, and FuRES consisted of normalization of each sample (the sum of

squares of all the intensities in each spectrum was set equal to 1.0). For NIR and UV spectra,

the data were transformed to the second derivative using a third order polynomial fit to a 15

data point window. For classification, the principal component transform (PCT) was used to

reduce the computational load when the number of variables exceeded the number of

objects. The PCT is a lossless compression method that used the MATLAB function SVD to

calculate the full set of row eigenvectors from the model-building data. The prediction data

were projected onto this set of eigenvectors to compress them to the same size.

G. Classifiers

A home-built SIMCA script was written for MATLAB. Each class of training data was

processed separately. The data for the class model were mean-centered and principal

components were calculated using the SVDS function in MATLAB. In this paper, a first

order model (single principal component) was used for all the evalutions, models with other
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orders systematically investigated. Confidence limits for each model were based on the

Hotelling T2 and the Q statistic (19). The Hotelling T2 statistic is the multidimensional

equivalent of Student’s t statistic. It characterizes the multivariate standardized variance of

an object from the model, whereas the Q statistic characterizes the lack of fit of a data object

to the model by the residual variance.

A home-built PLS2 script was written that is described in detail (20). The algorithm divides

the training data into two Latin partitions for which the results are pooled for each of 10

bootstraps. The average prediction error with respect to component number is calculated for

the 10 bootstraps. The number of latent variables in the PLS model is determined by the

minimum of the average prediction error.

A home-built FuRES classifier was written that is described in detail (21). FuRES builds

classification trees and has no adjustable parameters such as the number of components or

latent variables of SIMCA and PLS. FuRES uses a divide and conquer algorithm to

construct rules that minimize the fuzzy entropy of classification. The degree of fuzziness is

selected that maximizes the first derivative of the fuzzy entropy with respect to the rule

temperature. This constraint speeds up the optimization, reduces local minima, and furnishes

robust and reproducible multivariate rules.

Generalized validation was accomplished using bootstrapped Latin partitions (22,23). This

method characterizes a key source of variation which is the partitioning the data into a

prediction and calibration sets. Confidence intervals can be obtained by bootstrapping that

characterize the reproducibility of the method and allow statistical comparisons to be made

among the different methods. Latin partitions randomly divide the data into equally sized

subsets for which the class distributions are the same. Each partition is used once for

prediction while the others are used for calibration. The prediction results of the partitions

are pooled. The procedure is repeated several times and the average prediction results are

reported with confidence intervals.

All calculations were performed with the 64 bit version of MATLAB 2010a (version 7.10)

with the Optimization Toolbox (version 5.0). The software was executed on a homebuilt

Intel Core i7-860 Lynnfield 2.93 GHz LGA 1156 Quad Core processor computer equipped

with 4 GBs of DDR3 RAM that operated under MS Window 7 (version 6.1) 64 bit

Enterprise version.

RESULTS

Principal Component Analysis

Spectral fingerprints were acquired for samples of three species of Panax using NIR, two

UV spectrophotometers, and two MS (24). The NIR fingerprints were acquired for finely

powdered samples with no sample preparation other than grinding. Both sets of UV and MS

spectra were acquired from methanol-water extracts of the powdered samples. The MS data

were acquired using flow injection (through a guard column) to the Exactive (MS-EX) and

the LCQ (MS-LCQ), both from Thermo Scientific, Waltham, MA, USA. One set of UV data

were acquired using flow injection to the LCQ (UV-FI) and other set were acquired using a

96-well plate reader (UV-96WPR). The 58 samples listed in Table 1 were analyzed by all 5

methods.

NIR Fingerprints—Figure 1 shows the object score plot obtained for PCA of the

derivatized and normalized NIR spectra of all the samples from all 3 species using the entire

spectrum (4,000–10,000 cm−1). The three species are clearly separated. However, while the

clusters for P. quinquefolius and P. notoginseng are relatively amorphous, the P. ginseng
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cluster has distinct sub-groupings which are related to their quality, i.e., the numerical rating

was supplied by the distributor and reflects age and size. Samples of Kirin 1, 3, and 5 (#9-

#11 in Table 1) and Shih Chu 25 and 80 (#12 and #13 in Table 1) are identified in the figure

and show a progression from left to right with increasing label number, i.e., Kirin 1 and Shih

Chu 25 further to the left and Kirin 3 and 5 and Shih Chu 80 further to the right. Samples

from American Herbal Pharmacopoeia labeled as “red ginseng” (#7) fall between the Kirin 1

and the Shih Chu 25.

The sub-grouping observed for P. ginseng in Figure 1 led us to apply PCA to each of the

species individually. No pattern was noted in the score plot for P. notoginseng (not shown).

The object score plot for P. ginseng (Figure 2) has the same sub-groupings that appear in

Figure 1. All the samples lie within the 95% confidence limit based on Hotelling T2. All the

P. ginseng samples in Figure 1 (#7 and #9–#13) were labeled “red’ ginseng by the sources.

Two samples from AHP labeled “white” ginseng (#8) have been added to Figure 2. These

samples were bleached with sulfite prior to drying. These samples lie above the “red”

ginseng samples, although they are still within the 95% confidence limit for the whole

population.

The PCA object score plot for P. quinquefolius is shown in figure 3. The main cluster

consists of samples grown in the US (#1–#3 in Table 1). The three clusters of samples (#4

and #5) that lie to the right of the cluster of US samples are samples grown in Canada and

are outside the 95% confidence limit. A sample grown in China (#6) lies just above the

cluster of samples grown in the US, but within the 95% confidence limit. The separation of

the Canadian grown samples from the US samples is much greater in Figure 3, where only

the variance of the P. quinquefolius samples is considered, than in Figure 1 where all three

species contribute to the variance.

UV Fingerprints—As stated earlier, UV spectra were acquired by: 1.) flow injection using

an HPLC autosampler through a guard column to a diode array detector (UV-FI) and 2.) a

96-well plate reader (UV-96WPR). Both methods offer fully automated data acquisition.

The PCA object score plot for UV-FI spectra (240–400 nm at 2 nm intervals) is shown in

Figure 4. The score plot is very similar to that for NIR (Figure 1). The species are separated

on two PCs to the same extent as observed with NIR and the sub-groupings of P. ginseng are

very distinct compared to the other 2 species. The order of separation of the P. ginseng

samples is closer to that for MS (shown later) than for NIR. The object score plots for PCA

of the individual species (not shown) were similar to those acquired by NIR (Figures 2 and

3). P. notoginseng presented no pattern while the pattern for P. ginseng was similar to the

pattern of scores in Figure 2. For P. quinquefolius, the Canadian grown samples were

separated from the US samples, but all the sample scores were within the 95% confidence

limit.

The PCA object scores for UV-96WPR were very similar to those for UV-FI. This similarity

is apparent in Figure 5 where the scores for both UV-FI and UV-96WPR spectra are plotted

together. There is almost perfect overlap for each of the three 3 clusters of the different

species. The plots in Figure 5 were obtained using spectra from 270 to 400 nm. Inclusion of

wavelengths below 270 nm caused the sample scores to differ between the two methods (not

shown). This difference was caused by the difference in optical transmission between the

two methods in the far UV. The 96-well plates used in these analyses were constructed of a

UV-transparent acrylic. Figure 6 compares the spectra of a sample analyzed in duplicate by

UV-FI and 6 times (duplicate plates analyzed in triplicate) by UV-96WPR. The UV cut-off

wavelength of the plate appears to be approximately 230 nm, considerably higher than the
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190 nm cut-off expected for a quartz window. The refraction limit imposed by the samples

analyzed by UV-FI was approximately 210 nm.

MS Fingerprints—Analyses of the same Panax samples were previously reported for

spectra acquired using an Exactive (MS-EX) and an LCQ (MS-LCQ) (24). The separation of

the three species by MS was relatively greater than was observed for NIR (Figure 1) for both

the MS-EX spectra (Figure 7A) and the MS-LCQ spectra (not shown). Inclusion of the third

PC (Figure 7B) for the MS-EX spectra reveals the same distinctive sub-grouping observed

with NIR, although the numerical sequence of the scores is not the same. Certainly, the

distinctive sub-grouping is apparent as compared to the amorphous clusters for P.

quinquefolius and P. notoginseng. The sub-grouping was less distinct with the MS-LCQ

spectra. Examination of the loadings for the third PC showed that the most significant ion

contributing to the separation was m/z 323, a dihexoside.

ANOVA

Analysis of variance was used to determine the variance associated with the species means,

sample means, run means, and analytical uncertainty (Table 2). For the UV-96WPR data,

the variance arising between plates was also determined.

NIR Fingerprints—We considered three spectral regions when applying ANOVA to the

NIR spectra (Table 2, columns 1–3); the whole spectra (4,000–10,000 cm−1) and two high

information regions (region 1 from 4,300–4,700 cm−1 and region 2 from 5,500–5,900 cm−1)

lying between the water bands. The third band (7,000–10,000 cm−1) was not considered as it

had previously been shown to provide little information (24). In this study, the variance

associated with the water bands (4,700–5,500 cm−1 and 5,900–7,000 cm−1) was found to be

primarily associated with the analytical uncertainty (not shown) and had little influence on

the means of the species or samples.

Regions 1 and 2 (Table 2, columns 2 and 3) have greater variance between species means,

compared to the whole spectrum, suggesting enhanced ability to discriminate between

species but less ability to discriminate between samples. Object score plots for regions 1 and

2 (not shown) showed increased separation between the P. quinquefolius and P. ginseng

clusters, but less separation between P. quinquefolius and P. notoginseng.

The PCA object score plot for the NIR spectra showed distinctive sub-groupings for P.

ginseng as compared to the other two species. In addition, more subtle sub-groupings of P.

quinquefolius with respect to location were seen as compared to P. notoginseng. These

differences are not reflected by the data in Table 2. However, an examination of the average

of the residuals for each species (not shown) reveals that the values for P. ginseng are 2 to 5

times greater than those for P. quinquefolius, which in turn is approximately 2.5 times that

of P. notoginseng. The average of the species residuals must be considered because the

number of samples per species is not equal. Thus, the distinctive sub-groupings arising from

the quality of P. ginseng and, to a lesser extent, the growing location of P. quinquefolius are

observed with ANOVA in the form of greater variance of the species residuals around the

mean.

UV Fingerprints—Not surprisingly, ANOVA of the full wavelength ranges of the

derivatized UV spectra from both methods (UV-FI and UV-96WPR) were essentially

identical (Table 2, columns 4 and 5). The biggest difference between the two methods was

the larger variance between runs observed for UV-96WPR. In this study, duplicate plates

were prepared (see Experimental section) and each plate was read 3 times. Using ANOVA,
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it was determined that the plate preparation contributed negligible variance (0.1%) while the

difference between read cycles accounted for 2% of the total variance.

The ANOVA results reported above for the UV spectra were obtained using the entire

spectrum, i.e. treating the entire spectrum as a single variable. However, an F statistic can be

computed for each variable, providing an estimate of the significance of the data variance at

each wavelength, in this case. Figure 8 is a plot of the F statistic computed for between

species means for the UV-FI spectra. The region between 280 and 320 nm offers the

maximum information for differentiating species and the region between 220 and 240 nm

(omitted by the 96-well plate reader) makes little contribution. An identical plot (not shown)

was obtained for the UV-96WPR spectra for wavelengths from 240–400 nm.

Figure 9 is the PCA object score plot of the data from the 302–316 nm region using UV-FI.

The F value for P. notoginseng versus P. quinquefolius was greatest in the 302–316 nm

range (not shown). Thus, this region was used to obtain maximum discrimination for all 3

species. Compared to Figures 4 and 5, where the full spectra were used, the smaller, but

more optimum, wavelength region provides tighter clusters for P. quinquefolius and P.

notoginseng and better separation of the clusters for the three species. This observation is

supported by the ANOVA for the 280–320 nm region (columns 6 and 7). The between-

species means variance increases to 82% (and between-sample means variance decreases to

17%) indicating greater variance between species and less spread within each species. The

first two PCs in Figure 9 now account for more than 99% of the variance.

The P. ginseng samples in Figure 9 still exhibit the sub-groupings previously observed in

Figures 1, 2, and 7. ANOVA indicated that the average residuals around the species means

are 2 to 40 times greater for P. ginseng than for P. quinquefolius (not shown). Thus, the sub-

groupings of the P. ginseng leads to increased within species residuals.

MS Fingerprints—The ANOVA results for MS-EX spectra were almost identical to those

for both UV systems using the full spectra. Variances associated with species and samples

were 60% and 30%, respectively. In all three cases, the sum of the between run variance and

analytical uncertainty fell between 0.6% and 2.5%. For the MS-LCQ spectra, the sum of the

last two values was much larger, totaling 22%, and reduced the between species variance to

41%. For both the MS-EX and the MS-LCQ spectra, the average residuals around the

species means were 2 to 6 times greater for P. ginseng than for P. notogenseng or P.

quinquefolius.

Classification Methods

Three different classification methods (SIMCA, PLS-DA, and FuRES) were applied to the

Panax data. The models employed either 3 classes (red P. ginseng, P. notoginseng, and P.

quinquefolius) or 4 classes, depending on whether the Canadian grown P. quinquefolius was

considered as a separate class. In each case, white P. ginseng was omitted since there were

insufficient samples to permit validation. Data were preprocessed in the same manner as

described for PCA and described in the Methods and Development section. For the UV

spectra, a wavelength range of 302–316 nm was selected. A wavenumber range of 4300–

4700 cm−1 was used for the NIR data set. This smaller range (compared to the 4000–10000

range of the full spectrum) was used because it was faster to process, provided the same

results (Table 2), and eliminated any concern that the water bands contributed to the

classification.

SIMCA—This supervised modeling method fits a separate PCA model to each of the

specified classes of samples and then measures the distances between the objects and their

projections onto the subspace defined by the PCA model. Table 3 presents the accuracy of
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the results obtained for modeling of 3 and 4 classes. The percent accuracy summarizes the

sensitivity (percent of positives correctly identified, e.g., the percent of P. notoginseng

correctly classified as P. notoginseng) and specificity (percent of negatives correctly

identified, e.g.. percent of non-P. notoginseng samples correctly classified as non-P.

notoginseng). The same samples were analyzed by each method, but the number of

replicates varied from 2 (UV-FI) to 3 (NIR, MS-EX, and MS-LCQ) to 6 (UV-96WPR).

SIMCA provided accuracies of 77% to 88% for UV and MS when the samples were

partitioned into 3 classes. The accuracy for NIR was only 19%. The PCA models in Figures

1, 4, and 7 are based on the attributes of all the samples. With SIMCA, each PCA model is

based on only the attributes of a specific class. Thus, the vectors (based on a single PC) for

each model of the 3 classes were not well separated. Partitioning into 4 classes provided

even worse performance for UV and MS and the improvement for NIR was negligible.

The two sets of UV data presented a unique opportunity to evaluate the robustness of the

analytical method. Using the UV-FI samples as a training set, classification of the

UV-96WPR samples had an accuracy of 97.6%. Using the UV-96WPR samples as a training

set, classification of the UV-FI samples had an accuracy of 95.0%. It must be remembered

that the samples analyzed by the two methods were from separate extractions and dilutions

and were run months apart on different instruments. These results attest to the stability of the

instrumentation and the repeatability of the UV method.

PLS-DA and FuRES—Two additional supervised classification methods were applied to

the data from the five analytical methods (20,21). Both methods used the principal

component transform as a lossless form of data compression. FuRES (21) has an inherent

advantage over SIMCA and PLS-DA in that there is no parameter such as the number of

latent variables to optimize. As explained in more detail in the Materials and Methods

section, the results reported in Table 3 were obtained from 10 bootstraps of 3 Latin

partitions (22,23). The replicates for each sample were never split between prediction and

training sets. The prediction results were pooled and the classifications were averaged across

the 10 bootstraps. This approach gives a much more general estimate of the prediction

accuracy than building a single model from the entire data.

The results in Table 3 for the prediction accuracy for PLS-DA and FuRES were excellent.

With 3 classes of samples, the worst accuracy was 95% (PLS-DA for UV-FI). The other

methods were 98% or better. Selection of 4 classes made little difference in the accuracy of

NIR, MS-LCQ, or UV-96WPR. For MS-EX, the average accuracy decreased from 100% to

95% while UV-FI decreased to 91% and 89% for PLS-DA and FuRES, respectively. These

results suggest that the spectral differences for Canadian and American grown P.

quinquefolius obtained from UV-FI were not as substantive as NIR and MS. The data in

Table 2 suggest that the greater accuracy for UV-96WPR may come from the reduced

analytical uncertainty. However, the accuracy of the results obtained from the MS-LCQ

were equal to or better than those for the MS-EX despite the much greater analytical

uncertainty of the former.

Discussion

Methods Comparison

Each of the five methods employed in this study have advantages and disadvantages with

regards to characterizing the ginseng samples. NIR reflectance spectrometry provides the

spectrum of the chemical components of finely powdered samples without any interference

from solvent bands thus providing a more chemically comprehensive perspective. However,

this sampling method can also be a disadvantage because the spectral contribution of the
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high concentration components can overwhelm the characteristic bands from components of

lower concentration.

MS and UV can only provide characterization of those constituents present in the extract.

An advantage is that the extraction solvent can be selected to target specific families (or

polarities) of compounds. The disadvantage is that an extract will never represent the full

chemical constituency of the sample. MS provides extensive specific ion information that,

even without separation by column chromatography, can be used to identify specific

compounds. UV provides the least specific information, but has a higher precision that

allows subtle differences in the broad spectral profiles to be statistically significant.

It might be expected that NIR is more sensitive to the macro components of the plant

chemistry associated with growth and energy metabolism and less sensitive to chemical

differences arising from environmental factors. The latter components would be most useful

in determining the influence of growing conditions (e.g., year, harvest, and location). Thus,

MS and UV analysis of a methanol-water extract (used in this study) would be more

sensitive to environmental factors. The clearly separated clusters in Figures 1, 4, and 7

demonstrate that all three methods can discriminate between the three species. MS appears

to have an advantage (greater separation of species), most likely as a result of the higher

information content. A comparison of Figures 4 and 9 shows that, with UV, separation of

the species can be improved using ANOVA to select wavelength regions that optimize the

signal-to-noise ratio. Similar improvements would be expected for NIR and MS, although

those operations were not carried out in this study.

All five methods would appear to have the ability to discriminate between Asian ginseng

with respect to treatment (red versus white) and quality (different ratings of Kirin and Shih

Chu). In the latter case, the acquisition of many more samples and the use of multivariate

calibration methods may allow modeling of the quality of the Asian ginseng.

The ability of the five methods to discriminate between P. quinquefolius samples from the

US, Canada, and China varies. Both UV and MS included most of the Canadian and Chinese

samples with the US samples in the SIMCA, PLS-DA, and FuRES models. The most

striking result was the ability of NIR to clearly distinguish between the P. quinquefolius

samples grown in the US and Canada. None of the other methods provided this level of

discrimination with respect to growing site. The data presented here suggest that additional

samples, with better representation of each of the classes, are necessary for a valid

evaluation of the ability of the different methods to discriminate with respect to growing

location. Data fusion among the different methods could further enhance the prediction

accuracies of the ginseng classes.

Classification

The results reported in this study demonstrate that spectral fingerprinting, combined with

pattern recognition methods, is sensitive to the differences among samples that arise from

species, growing location, quality (their numerical rating by the supplier), and processing.

Initially, we focused on comparing samples of the three species. However, the sub-

groupings of P. quinquefolius samples with respect to growing site and P. ginseng samples

with respect to quality brought added complexity to the study. To accurately discriminate

between samples of different sites and qualities, the samples can no longer be simply

documented with respect to species. They must now be documented with respect to the

additional factors that influence the sample composition.

The real challenge now appears to be not the methodology, but the collection of sufficient

numbers of authentic samples with known provenance. Defining “authentic” will be project-
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dependent, that is, dependent on the goals of the investigators. Thus, species, plant age,

growing site, growing year, plant part, treatment, or a number of other variables may

influence the defining of an “authentic” material. The method and the authentic samples

must be fit for the purpose of the analysis.

Documented, authentic samples will be expensive and it will be desirable to use them as

infrequently as possible. Consequently, the use of archived spectra as a basis for comparison

is very attractive. Archived spectra, however, would not be useful unless the analytical

methodology is stable and the spectra are reproducible. The levels of variance between runs

and the analytical uncertainty given in Table 2 suggest that all three methods used in this

study are suitable. However, previous research suggests that MS data acquired by

electrospray ionization varies considerably between instruments (different manufacturers

and designs), between instruments of the same design, and between experiments on the same

instrument (15,25). NMR, NIR, and UV are all less sensitive than MS but provide greater

reproducibility making them more attractive instruments for the archiving of spectra. UV

provides the best documented precision of any of the instrumental methods considered here.

It is generally accepted that relative precisions of 0.3% can be achieved with good

laboratory technique. Recent reports have shown that NMR can provide reproducible spectra

at the 1% level between a number of different platforms (26,27). NIR spectra are vey

reproducible and catalogs of NIR spectra are routinely used to identify unknown

compounds. Certainly, more research is needed to determine the best instrumentation for

archiving data.

CONCLUSIONS

MS, NIR, and UV, used in conjunction with PCA, are capable of distinguishing between P.

quinquefolius L., P. ginseng, and P. notoginseng. Initial data suggests that any of these

methods might be capable of distinguishing between red and white P. ginseng and the

different qualities (age or size). Initial data also suggests that any of these methods might be

able to distinguish between P. quinquefolius grown in the U.S., Canada, and China. PLS-DA

and FuRES were excellent classification methods for identifying the 3 Panax species. More

samples with known provenances are necessary prior to developing validated methods to

identify growing location, quality (age), or post-harvest treatment.
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Figure 1.
PCA scores from NIR spectra for all three Panax species.
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Figure 2.
PCA scores from NIR spectra for P. ginseng samples.
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Figure 3.
PCA scores from NIR spectra for P. quinquefolius samples.
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Figure 4.
PCA scores from UV-FI spectra for all three Panax species using wavelengths 240–400 nm.
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Figure 5.
PCA scores from UV-FI and UV-96WPR spectra for all three Panax species using

wavelengths 270–400 nm.
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Figure 6.
UV spectra for UV-FI (duplicate analyses) and UV-96WPR (6 repeat analyses).
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Figure 7.
PCA scores from MS-EX spectra for all three Panax species showing: A) the first two PCs

and B) the first 3 PCs.
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Figure 8.
F values as a function of wavelength for UV-FI spectra.
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Figure 9.
PCA score plots from UV-FI spectra for all three Panax species using wavelengths 302–316

nm.
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Table 1

Panax samples analyzed in this Study

Sample Number N Label Provider Source

P. quinquefolius

 1 23 American Ginseng Ginseng Board of Wisconsin1 USA

 2 13 American Ginseng American Herbal Pharmacopoeia2 USA

 3 4 American Ginseng Internet Retailer (Wisconsin farm) 3 USA

 4 2 American Ginseng Internet Retailer (Canadian farm) 4 Canada

 5 1 American Ginseng Ginseng Board of Wisconsin1 Canada

 6 1 American Ginseng Ginseng Board of Wisconsin1 China

P ginseng

 7 3 Asian Ginseng, red American Herbal Pharmacopoeia2 China

 8 2 Asian Ginseng, white American Herbal Pharmacopoeia2 China

 9 1 Kirin Red #1 Internet Retailer5 China

 10 1 Kirin Red #3 Internet Retailer5 China

 11 1 Kirin Red #5 Internet Retailer5 China

 12 1 Shih Chu #25 Internet Retailer5 China

 13 1 Shih Chu #80 Internet Retailer5 China

P. notoginseng

 14 4 Notoginseng American Herbal Pharmacopoeia2 China

1
GB of Wisconsin

2
AHP

3
Wisconsin farm

4
Internet retailer

5
Starwest
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Table 3

Accuracy of classification methods

Method N SIMCA PLS-DA FuRES

3 Classes

 NIR 168 19.0% ± 1.2% 99.0% ± 0.5% 100.0% ± 0.0%

 MS-EX 168 77.4% ± 1.8% 100.0% ± 0.0% 100.0% ± 0.0%

 MS-LCQ 168 88.1% ± 1.2% 100.0% ± 0.0% 99.9% ± 0.3%

 UV-Fi 112 84.8% ± 1.8% 94.6% ± 0.8% 99.1% ± 0.2%

 UV-96WPR 336 87.5% ± 0.6% 97.9% ± 0.0% 98.0% ± 0.1%

4 Classes

 NIR 168 25.6% ± 1.8% 99.2% ± 0.5% 99.9% ± 0.1%

 MS-EX 168 45.8% ± 1.2% 94.6% ± 1.2% 95.8% ± 0.6%

 MS-LCQ 168 75.0% ± 1.8% 100.0% ± 0.0% 99.7% ± 0.4%

 UV-Fi 112 61.6% ± 2.7% 91.1% ± 0.9% 89.3% ± 2.7%

 UV-96WPR 336 45.8% ± 2.1% 97.9% ± 0.0% 98.1% ± 0.1%
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