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Abstract. Recently, the following problem of discrimination aware classification
was introduced: given a labeled dataset and an attribute B, find a classifier with
high predictive accuracy that at the same time does not discriminate on the basis
of the given attribute B. This problem is motivated by the fact that often available
historic data is biased due to discrimination, e.g., when B denotes ethnicity. Us-
ing the standard learners on this data may lead to wrongfully biased classifiers,
even if the attribute B is removed from training data. Existing solutions for this
problem consist of “cleaning away” the discrimination from the dataset before
a classifier is learned. In this paper we study an alternative approach in which
the non-discriminatory constraint is pushed deeply into a decision tree learner
by changing its splitting criterion and pruning strategy by using a novel leaf re-
labeling approach. Experimental evaluation shows that the proposed approach
advances the state-of-the-art in the sense that the learned decision trees have a
lower discrimination than models provided by previous methods with only little
loss in accuracy.

1 Introduction

In this paper we consider the case where we plan to use data mining for decision mak-
ing, but we suspect that our available historical data contains discrimination. Applying
the traditional classification techniques on this data will produce biased models. Due
to anti-discriminatory laws or simply due to ethical concerns the straightforward use of
classification techniques is not acceptable. The solution is to develop new techniques
which we call discrimination aware – we want to learn a classification model from
the potentially biased historical data such that it generates accurate predictions for fu-
ture decision making, yet does not discriminate with respect to a given discriminatory
attribute.

The concept of discrimination aware classification can be illustrated with the fol-
lowing example [3]:

A recruitment agency (employment bureau) has been keeping the track of various
parameters of job candidates and advertised job positions. Based on this data, the com-
pany wants to learn a model for partially automating the match-making between a job

? Supporting material for the paper: F. Kamiran and T. Calders and M. Pechenizkiy. Discrimina-
tion Aware Decision Tree Learning. In IEEE International Conference on Data Mining. IEEE
press, 2010.



and a job candidate. A match is labeled as successful if the company invited the appli-
cant for an interview. It turns out, however, that the historical data is biased; for higher
board functions, male candidates have been favored systematically. A model learned
directly on this data will pick up this discriminatory behavior and apply it for future
predictions.

From an ethical and legal point of view it is of course unacceptable that a model
discriminating in this way is deployed; instead, it is preferable that the class assigned
by the model is independent of this discriminatory attribute. It is desirable to have a
mean to “tell” the algorithm that it should not discriminate the job applicants in future
recruitment on the basis of, in this case, the content of the sex attribute.

As was already shown in previous works, the straightforward solution of simply
removing the attribute B from the training data does not work, as other attributes may
be correlated with the suppressed sensitive attribute. It was observed that classifiers tend
to pick up these relations and discriminate indirectly [9, 3].

It can be argued that in many real-life cases discrimination can be explained; e.g.,
it may very well be that females in an employment dataset overall have less years of
working experience, justifying a correlation between the gender and the class label.
Nevertheless, in this paper we assume this not to be the case. We assume that the data
is already divided up into strata based on acceptable explanatory attributes. Within a
stratum, gender discrimination can no longer be justified.

Problem statement. In the paper we assume the following setting (cfr. [3]): a la-
beled dataset D is given, and one Boolean discriminatory attribute B (e.g., gender) is
specified. The task is to learn a classifier that accurately predicts the class label and
whose predictions do not discriminate w.r.t. the sensitive attribute B. We measure dis-
crimination as the probability of getting a positive label for the instances with B = 0
minus the probability of getting a positive label for the instances with B = 1. For the
above recruitment example, the discrimination is hence the ratio of males that are pre-
dicted to be invited for the job interview, minus the ratio of females predicted to be
invited.

We consider discrimination aware classification as a multi-objective optimization
problem. On the one hand the more discrimination we allow for, the higher accuracy
we can obtain while on the other hand, in general, we can trade in accuracy to reduce
discrimination [3]. Discrimination and accuracy have to be measured on an unaltered
test set that was not used during the training of the classifier.

Proposed solution. We propose the following two techniques for incorporating dis-
crimination awareness into the decision tree construction process:

– Dependency-Aware Tree Construction. When evaluating the splitting criterion
for a tree node, not only its contribution to the accuracy, but also the level of de-
pendency caused by this split is evaluated.

– Leaf Relabeling. Normally, in a decision tree, the label of a leaf is determined by
the majority class of the tuples that belong to this node in the training set. In leaf
relabeling we change the label of selected leaves in such a way that dependency
is lowered with a minimal loss in accuracy. We show a relation between finding
the optimal leaf relabeling and the combinatorial optimization problem KNAP-
SACK [2]. Based on this relation an algorithm is proposed.



The choice of the decision trees as the type of classifier is arbitrary and simply reflects
their popularity. We believe that the proposed techniques can be generalized to other
popular classification approaches that construct a decision boundary by partitioning of
the instance space, yet this direction is left for further research.

Experiments. We have performed an extensive experimental study, the results of
which show what generalization performance we can achieve while trying to have as
little discrimination as possible. The results also show that the introduced discrimina-
tion aware classification approach for decision tree learning improves upon previous
methods that are based on dataset cleaning (or so-called Massaging) [3]. we have also
studied the performance of different combinations of the existing data cleaning methods
and the new decision tree construction methods.

List of Contributions:

1. The theoretical study of discrimination-accuracy trade-off for the discrimination
aware classification.

2. Algorithms. The development of two new techniques for constructing discrimina-
tion aware decision trees: changing the splitting criterion and leaf relabeling. For
leaf relabeling a link with KNAPSACK is proven and exploited.

3. Experiments. In the experimental section we show the superiority of our new dis-
crimination aware decision tree construction algorithm w.r.t. existing solutions that
are based upon “cleaning away” discrimination from the training data before model
induction [3] or modifying a naive Bayes classifier [4]. Also, where applicable,
combinations of the newly proposed methods with the existing methods have been
tested.

4. Sanity check. Of particular interest is an experiment in which a classifier is trained
on census data from the Netherlands in the 70s and tested on census data of 2001. In
these 30 years, gender discrimination w.r.t. unemployment decreased considerably,
creating a unique opportunity for assessing the quality of a classifier learned on
biased data on (nearly) discrimination-free data. The experiments show that the
discrimination-aware decision trees do not only outperform the classical trees w.r.t.
discrimination, but also w.r.t. predictive accuracy.

5. An experimental validation of the new techniques showing that their performance
w.r.t. the trade-off between accuracy and discrimination outperforms the current
state-of-the-art techniques for discrimination aware classification. Figure 1 is given
as an evidence which shows the results of experiments conducted over three datasets
to compare our newly proposed solutions to the current stat-of the-art techniques.
Figure 1 demonstrates clearly that our new techniques give low discrimination
scores by maintaining the high accuracy.

Outline. The rest of the paper is organized as follows. The motivation for the dis-
crimination problem is given in Section 2. Related work is given in Section 3. In Sec-
tion 4 we formally define the problem statement. In Section 5, the two different ap-
proaches towards the problem are discussed. These solutions are empirically evaluated
in Section 6. Section 7 concludes the paper and gives directions for further work.
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Fig. 1. Comparison of our proposed methods with current stat-of-the-art methods

2 Motivation

Discrimination is a sociological term that refers to the unfair and unequal treatment of
individuals of a certain group based solely on their affiliation to that particular group,



category or class. Such discriminatory attitude deprives the members of one group from
the benefits and opportunities which are accessible to other groups. Different forms of
discrimination in employment, income, education, finance and in many other social
activities may be based on age, gender, skin color, religion, race, language, culture,
marital status, economic condition etc. Such discriminatory practices are usually fueled
by stereotypes, an exaggerated or distorted belief about a group. Discrimination is often
socially, ethically and legally unacceptable and may lead to conflicts among different
groups.

Many anti-discrimination laws, e.g., the Australian Sex Discrimination Act 1984,
the US Equal Pay Act of 1963 and the US Equal Credit opportunity act have been en-
acted to eradicate the discrimination and prejudices. It is quite intuitive that if some
discriminatory practice is banned by law, nobody would like to practise it anymore due
to heavy penalties. However, if we plan to use data mining for decision making, partic-
ularly a trained classifier, and our available historical data contains discrimination, then
the traditional classification techniques will produce biased models. Due to the above
mentioned laws or simply due to ethical concerns such use of existing classification
techniques is unacceptable. The solution is to develop new techniques which we call
discrimination aware – we want to learn a classification model from the potentially bi-
ased historical data such that generates accurate predictions for future decision making
yet does not discriminate with respect to a given sensitive attribute.

We further explore the concept of discrimination with some real world examples 1:
the United Nations had concluded that women often experience a ”glass ceiling” and
that there are no societies in which women enjoy the same opportunities as men. The
term ”glass ceiling” is used to describe a perceived barrier to advancement in employ-
ment based on discrimination, especially sex discrimination.

The China’s leading headhunter, Chinahr.com, reported in 2007 that the average
salary for white-collar men was 44,000 yuan ($6,441), compared with 28,700 yuan
($4,201) for women. Even some women who have done well in business complain
that a glass ceiling limits their chances of promotion. A recent Grant Thornton survey
found that only 30 percent of senior managers in China’s private enterprises are female.
In United States, in 2004 the median income of full-time, year-round (FTYR) male
workers was $40,798, compared to $31,223 for FTYR female workers, i.e., women’s
wages were 76.5% of men’s wages. The US Equal Pay Act of 1963 aimed at abolishing
wage disparity based on sex. Due to enactment of this anti-discriminatory law, women’s
pay relative to men’s rose rapidly from 1980 to 1990 (from 60.2% to 71.6%), and less
rapidly from 1990 to 2004 (from 71.6% to 76.5%).

As illustrated by the next example, the problem of discrimination aware classifica-
tion can be further generalized:

A survey is being conducted by a team of researchers; each researcher visits a num-
ber of regionally co-located hospitals and enquires some patients. The survey contains
ambiguous questions (e.g., “Is the patient anxious?”, “Is the patient suffering from
delusions?”). Different enquirers will answer to these questions in different ways. Gen-
eralizing directly from the training set consisting of all surveys without taking into ac-
count these differences among the enquirers may easily result in misleading findings.

1 Source: http://en.wikipedia.org/wiki/Discrimination, May 17th, 2010



For example, if many surveys from hospitals in a particular area A are supplied by an
enquirer who more quickly than the others diagnoses anxiety symptoms, faulty conclu-
sions such as “Patients in area A suffer from anxiety symptoms more often than other
patients” may emerge.

In such cases it is highly likely that the input data will contain discrimination due to
high degree of dependency between the data and class attributes on the one hand, and
on the data source on the other. Simply removing the information about the source may
not resolve the problem, as the data source may be tightly connected to other attributes
in the data. For example, a survey about the food quality in restaurants may have been
distributed geographically over enquirers. When learning from this data which charac-
teristics of a restaurant are good indicators for the food quality, one may overestimate
the impact of region if not all enquirers were equally strict in their assessments. The
main claim on which discrimination aware classification is based is therefore that ex-
plicitly taking into account non discriminatory constraints in the learning process avoids
the classifiers to overfit to such artifacts in the data.

Unfortunately, the straightforward solution of simply removing the attribute B from
the training data does not work, as other attributes may be correlated with the suppressed
sensitive attribute [9, 3]. For example, ethnicity may be strongly linked to address. Con-
sider, for example, the German Dataset available in the UCI ML-repository [1]. This
dataset contains demographic information of people applying for loans and the out-
come of the scoring procedure. The rating in this dataset correlates with the age of the
applicant. Removing the age attribute from the data, however, does not remove the age-
discrimination, as many other attributes such as, e.g., own house, indicating if the ap-
plicant is a home-owner, turn out to be good predictors for age. Similarly removing the
sex and ethnicity for the job-matching example or enquirer for the survey example from
the training data often does not solve this, as other attributes may be correlated with the
suppressed attributes. For example, area can be highly correlated with enquirer. Blindly
applying an out-of-the-box classifier on the medical-survey data without the enquirer
attribute may still lead to a model that discriminates indirectly based on the locality of
the hospital. In the context of racial discrimination, this effect of indirect relationships
and its exploitation are often referred to as redlining. In the literature [9], this problem
was confirmed on the German Dataset available in the UCI ML-repository [1].

3 Related Work

In a series of recent papers [14, 15, 9, 3, 4, 10], the topic of discrimination in data mining
received quite some attention. The authors of [14, 15] concentrate mainly on identify-
ing the discriminatory rules that are present in a dataset, and the specific subset of the
data where they hold, rather than on learning a discrimination aware classifier for future
predictions. Discrimination-aware classification and its extension to independence con-
straints, were first introduced in [9, 3] where the problem of discrimination is handled
by “cleaning away” the discrimination from the dataset before applying the traditional
classification algorithms. They propose two approaches Massaging and Reweighing to
clean away the data. Massaging changes the class labels of selected objects in the train-
ing data in order to obtain a discrimination free dataset while the Reweighing method



selects a biased sample to neutralize the impact of discrimination. Authors of [4] pro-
pose three approaches for making the naive Bayes classifiers discrimination-free: these
three approaches include modifying the probability of the decision being positive, train-
ing one model for every sensitive attribute value and balancing them, and adding a latent
variable in the Bayesian model that represents the unbiased label and optimizing the
model parameters for likelihood using expectation maximization. In the current paper
we propose not to change the dataset, but the algorithms instead, in this case a decision
tree learner.

There are many relations with the traditional classification techniques but due to
space restrictions, we only discuss the most relevant links. Despite the abundance of
related works, none of them satisfactory solves the discrimination aware classification
problem. In Constraint-Based Classification, next to a training dataset also some con-
straints on the model have been given. Only those models that satisfy the constraints
are considered in model selection. For example, when learning a decision tree, an upper
bound on the number of nodes in the tree can be imposed [13]. Our proposed dis-
crimination aware classification problem clearly fits into this framework. Most existing
works on constraint based classification, however, impose purely syntactic constraints
limiting, e.g., model complexity, or explicitly enforcing the predicted class for certain
examples. One noteworthy exception is monotonic classification [11, 5], where the aim
is to find a classification that is monotone in a given attribute. Of all existing tech-
niques in classification, monotone classification is probably the closest to our proposal.
In Cost-Sensitive and Utility-Based learning [8, 12], it is assumed that not all types of
prediction errors are equal and not all examples are as important. The type of error
(false positive versus false negative) determines the cost. Sometimes costs can also de-
pend on individual examples. In cost-sensitive learning the goal is no longer to optimize
the accuracy of the prediction, but rather the total cost. Nevertheless it is unclear how
these techniques can be generalized to non-discriminatory constraints. For example,
satisfaction of monotonic constraints does not depend on the data distribution, whereas
for the non-discriminatory constraints it clearly does, and the independency between
two attributes cannot easily be reduced to a cost on individual objects.

4 Problem Statement

We formally introduce the problem of discrimination aware classification and we ex-
plore the trade-off between accuracy and discrimination.

4.1 Non-discriminatory Constraints

We assume a set of attributes {A1, . . . , An} and their respective domains dom(Ai),
i = 1 . . . n have been given. A tuple over the schema S = (A1, . . . , An) is an ele-
ment of dom(A1) × . . . × dom(An). We denote the component that corresponds to
an attribute A of a tuple x by x.A. A dataset over the schema S = (A1, . . . , An) is a
finite set of tuples over S and a labeled dataset is a finite set of tuples over the schema
(A1, . . . , An,Class). dom(Class) = {+,−}.



Table 1. Sample relation for the job-application example.

Sex Ethnicity
Highest
Degree Job Type Class

m native h. school board +
m native univ. board +
m native h. school board +
m non-nat. h. school healthcare +
m non-nat. univ. healthcare -
f non-nat. univ. education -
f native h. school education -
f native none healthcare +
f non-nat. univ. education -
f native h. school board +

As usual, a classifier C is a function from
∏n

i=1 dom(Ai) to {+,−}. Let B be a
binary attribute with domain dom(B) = {0, 1}. The discrimination of C w.r.t. B in
dataset D, denoted discB(C, D) is defined as :

discB(C, D) :=
|{x ∈ D | x.B = 0, C(x) = +}|

|{x ∈ D | x.B = 0}|
− |{x ∈ D | x.B = 1, C(x) = +}|

|{x ∈ D | x.B = 1}| .

(When clear from the context we will omit B and D from the notation.) A positive
discrimination means that tuples with B = 1 are less likely to be classified as positive
by the classifier C than others.

The discrimination of D w.r.t. B, denoted discB(D), is defined as:

discB(D) :=
|{x ∈ D | x.B = 0, x.Class = +}|

|{x ∈ D | x.B = 0}|
− |{x ∈ D | x.B = 1, x.Class = +}|

|{x ∈ D | x.B = 1}| .

For ε ∈ [0, 1], the formula discB(C,D) ≤ ε is called a non-discriminatory constraint.

Example 1 In Table 1, an example dataset is given. This dataset contains the Sex,
Ethnicity, Highest Degree of 10 job applicants, the Job Type they applied for and the
Class defining the outcome of the selection procedure. In this dataset, the discrimination
ratio between Sex and Class will be discSex=f (D) := 4

5 − 2
5 = 40% . It means that

the data object with Sex = f will have 40% less chance of getting a job than the one
with Sex = m.

4.2 Discrimination Aware Classification

The problem of discrimination aware classification can now be stated as follows.



Problem 1 (Discrimination aware classification). Let a labeled dataset D and a sensi-
tive attribute B be given. The discrimination aware classification problem is to learn
a classifier such that (a) The accuracy of C is high, and (b) the discrimination of C
w.r.t. B is low. (Both accuracy and discrimination are to be computed with respect to
an unaltered test set).

Notice that a more natural formulation may have been to require high accuracy of
the learned classifier C on the “ground truth”; i.e., the correct data without the dis-
crimination. Neither this ground truth, however, nor the exact process that lead to the
discrimination are available in general. In this context it is natural to ask for a classifier
without discrimination, for which the predictions, nevertheless, stay close to the labels
given in the training set. In this way, our criteria reflect that we assume that it is more
likely that only few of the labels changed during the introduction of discrimination than
that many labels changed.

The formulation of the problem statement is rather informally requiring “high” ac-
curacy and “low” discrimination. This ambiguity in not arbitrary, but due to the trade-
off which exists between the accuracy and the resulting discrimination of a classifier.
In general, lowering the discrimination will result in lowering the accuracy as well and
vice versa. In the next subsection we go deeper into this issue with a discussion on
Discrimination-Accuracy optimal classifiers.

In the remainder of the paper we make the following three assumptions:

(A) There is only one non-discriminatory constraint. The sensitive attribute is B and
dom(B) = {0, 1}.

(B) The prime intention is learning the most accurate decision tree for which the dis-
crimination is close to 0. Essentially we envision a scenario in which a maximally
allowable discrimination ε is specified.

(C) As it is assumed that the discrimination on B is an artifact, the learned classifier
should not use the attribute B at prediction time. Only at learning time we can use
the attribute B.

4.3 Accuracy - Discrimination Trade-Off

Before going into the proposed solutions, we first theoretically study the trade-off be-
tween discrimination and accuracy in a general setting. Let C be a set of classifiers. We
will call a classifier C optimal w.r.t. discrimination and accuracy (DA-optimal) in C if
for every other classifier C ′ in C either disc(C) < disc(C ′), or acc(C ′) < acc(C).

In this section we will theoretically study the following scenario: suppose a discrim-
inatory classifier C (or ranker R) is learned using a traditional learning method. What
are the DA-optimal classifiers we can construct by changing the labels that C assigns
in a post-processing phase? In this study we will assume that we can use attribute B
in the post-processing phase. It is easy to see that otherwise without the attribute B,
the only thing we can do that is guaranteed to change the discrimination of a classi-
fier, is to always make the same prediction. The importance of this theoretical study is
that it establishes the following important fact: no matter what we do, if we only use
a given classifier without any additional information on the data distribution, the best
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trade-off between accuracy and discrimination we can hope for is linear. If we use extra
information; e.g., we have a ranking function, we can do better than a linear trade-off.

Post-processing the classifier output. Suppose we have a classifier C for which
we want to change the predictions in order to reduce the discrimination on attribute B.
We use the following probabilities for keeping the label assigned by C:

C = − C = +
B = 0 p0− p0+

B = 1 p1− p1+

We denote the resulting classifier by C[p0−, p0+, p1−, p1+]. If we have to label a new
example x with B = b, it will be assigned to class c = C(x) by C[p0−, p0+, p1−, p1+]
with probability pbc, and to the other class with probability 1 − pbc. For example,
C[1, 1, 1, 1] denotes the classifier C itself, and C[0, 0, 0, 0] the classifier that never as-
signs the same class as C. We denote the set of all classifiers we can construct from C
in this way, by CC :

CC := {C[p0−, p0+, p1−, p1+] | 0 ≤ p0−, p0+, p1−, p1+ ≤ 1} .

Example 1. For example, suppose we keep p0− = p1− = p1+ = 1, and change p0+ =
0.8. Since C[1, 0.8, 1, 1] does not change the class assignments for tuples with B = 1,
the positive class probability for these tuples remains the same. On the other hand, some
of the positively labeled examples with B = 0 are changed, while the negative ones
remain. As a result, the positive class probability for the tuples with B = 0 decreases,
and the total effect is that discrimination decreases at the cost of some accuracy.

The next theorem generalizes the example and shows what is the optimal we can
obtain in this way. In the analysis we will implicitly assume that the probability of
an example being relabeled does not depend on its true class, given its B-value and
the class assigned to it by C. This assumption holds in the limit as the true label C
is unknown at the moment C ′ is applied. With these definitions we get the following
theorem:

Theorem 1 Let C be a classifier with disc(C) > 0. A classifier C ′ with disc(C ′) ≥ 0
is DA-optimal in CC iff

acc(C)− acc(C ′) = α(disc(C)− disc(C ′))

with

α := min
(

P [B = 0]
tp0 − fp0

tp0 + fp0

, P [B = 1]
tn1 − fn1

tn1 + fn1

)

tpb (tnb,fpb,fnb), B = 0, 1 denotes the true positive (true negative, false positive, false
negative) rate for the tuples with B = b; e.g., tp1 is the probability that C assigns the
correct label to a positive example with B = 1.

Proof. For the classifier C ′ = C[p0−, p0+, p1−, p1+], the true positive rate for B = 0,
tp′0, will be:

tp′0 = p0+tp0 + (1− p0−)fn0 ,



as there are two types of true positive predictions: on the one hand true positive pre-
dictions of C that were not changed in C ′ (probability p0+) and on the other hand
false negative predictions of C that were changed in C ′ (probability 1 − p0−). For the
other quantities similar identities exist. Based on these equations we can write accu-
racy and discrimination of C ′ in function of tpb, tnb, fpb, fnb for B = 0, 1 (pb denotes
P [B = b]):

acc(C ′) = p0(tp′0 + tn ′0) + d1(tp′1 + tn ′1)
= p0(p0+tp0 + (1− p0−)fn0 + p0−tn0 + (1− p0+)fp0)

+ p1(p1+tp1 + (1− p1−)fn1 + p1−tn1 + (1− p1+)fp1)
disc(C ′) = (tp′1 + fp′1)− (tp′0 + fp′0)
= (p1+tp1 + (1− p1−)fn1 + p1+fp1 + (1− p1−)tn1)
− (p0+tp0 + (1− p0−)fn0 + p0+fp0 + (1− p0−)tn0)

The formulas can be simplified by the observation that the DA-optimal classifiers will
have p0+ = p1− = 1; i.e., we never change a positive prediction for a tuple having
B = 0 to a negative one or a negative prediction for a tuple having B = 1 into a
positive one. The theorem now follows from analyzing when the accuracy is maximal
for fixed discrimination. ¤
We see a linear trade-off between discrimination and accuracy in the theorem. This
linear trade-off could be interpreted as a negative result: if we rely only on the learned
classifier and try to undo the discrimination in a post-processing phase, the best we can
do is trading in accuracy linearly proportional to the decrease in discrimination we want
to achieve. The more balanced the classes are, the higher the price we need to pay per
unit of discrimination reduction.

Classifiers based on rankers. On the bright side, however, most classification mod-
els actually provide a score or probability R(x) for each tuple x of being in the positive
class, instead of only a class label. For example, a Naive Bayes classifier computes a
score for every example and for decision tree we often also have access to (an approxi-
mation of) the class distribution in every leaf. Such a score allows us for a more careful
choice about which tuples to change the predicted label for: instead of using a uniform
weight for all tuples with the same predicted class and B-value, the score can be used
as follows: We dynamically set different cut-off c0 and c1 for respectively tuples with
B = 0 and B = 1; for a ranker R, the classifier R(c0, c1) will predict + for a tuple
x if x.B = 0 and R(x) ≥ c0 and if x.B = 1 and R(x) ≥ c1. In all other cases, −
is predicted. The class of all classifiers R(c0, c1) will be denoted CR. Intuitively one
expects that slight changes to the discrimination will only incur minimal changes to
the accuracy, as the tuples that are being changed are the least certain ones and hence
actually sometimes a change will result in a better accuracy. The decrease in accuracy
will thus no longer be linear in the change in discrimination, but its rate will increase as
the change in discrimination increases, until in the end it becomes linear again, because
the tuples we change will become increasingly more certain leading to a case similar to
that of the perfect classifier. A full analytical exposition of this case, however, is far be-
yond the scope of this paper. Instead we tested this trade-off empirically. The results of
this study are shown in Figure 2. In this figure the DA-optimal classifiers in the classes



Algorithm 1: Decision Tree Induction
Parameters: Split evaluator gain , purity condition pure1
Input Dataset D over {A1, . . . , An,Class}, att list2
Output Decision Tree DT (D, att list)3
1: Create a node N
2: if pure(D) or att list is empty then
3: Return N as a leaf labeled with majority class of D
4: end if
5: Select test att from att list and test s.t. gain(test att , test) is maximized
6: Label node N with test att
7: for Each outcome S of test do
8: Grow a branch from node N for the condition test(test att) = S
9: Let DS be the set of examples x in D for which test(x.test att) = S holds

10: if DS is empty then
11: Attach a leaf labeled with the majority class of D
12: else
13: Attach the node returned by Decision Tree(DS , att list − {test att})
14: end if
15: end for

CR (curves) and C (straight line) are shown for the Census-Income dataset [1]. The
three classifiers are a Decision Tree (J48), a 3-Nearest Neighbor model (3NN), and a
Naive Bayesian Classifier (NBS). The ranking versions are obtained from respectively
the (training) class distribution in the leaves, a distance-weighted average of the labels
of the 3 nearest neighbors, and the posterior probability score. The classifiers based on
the scores perform considerably better than those based on the classifier only.

Conclusion. In this section the accuracy-discrimination trade-off is clearly illus-
trated. It is theoretically shown that if we rely on only post-processing the output of the
classifiers, the best we can hope for is a linear trade-off between accuracy and discrim-
ination. Notice also that the classifiers proposed in this section violate our assumption
C; the classifiers C[p0−, p0+, p1−, p1+] use the attribute B at prediction time.

5 Solutions

In this section we propose two solutions to construct decision trees without discrimi-
nation. The first solution is based on the adaptation of splitting criterion for tree con-
struction to build a discrimination-aware decision tree. The second approach is post-
processing of decision tree with discrimination-aware pruning and relabeling of tree
leaves.

5.1 Discrimination-Aware Tree Construction

Traditionally, when constructing a decision tree, we iteratively refine a tree by iteratively
splitting its leaves until a desired objective is achieved, as shown in Algorithm 1. The
optimization criteria used are usually trying to optimize the overall accuracy of the tree,



e.g., based on the so-called information gain. Suppose that a certain split divides the
data D into D1, . . . , Dk. Then, the information gain is defined as:

IGC := HClass(D)−
k∑

i=1

|Di|
|D| HClass(Di) ,

where HClass denotes the entropy w.r.t. the class label. In this paper, however, we are
not only concerned with accuracy, but also with discrimination. Therefore, we will
change the iterative refinement process by also taking into account the influence of
newly introduced split on the discrimination of the resulting tree. Our first solution is
changing the attribute selection criterion as in step 5 of Algorithm 1. To measure the
influence of the split on the discrimination, we will use the same information gain, but
now w.r.t. the sensitive attribute B instead of the class Class . This gain in sensitivity to
B will be denoted IGS. The IGS is defined as:

IGS := HB (D)−
k∑

i=1

|Di|
|D| HB (Di) ,

here HB describes the entropy w.r.t. sensitive attribute. Based on these two measures
IGC and IGS, we introduce three alternative criteria for determining the best split:

IGC-IGS: We only allow for a split if it is non-discriminatory, i.e., we select an
attribute which is homogeneous w.r.t. class attribute but heterogenous w.r.t. sensitive
attribute. We subtract the gain in discrimination from the gain in accuracy to make the
tree homogeneous w.r.t. class attribute and heterogenous w.r.t. sensitive attribute.

IGC/IGS: We make a trade-off between accuracy and discrimination by dividing
the gain in accuracy by gain in discrimination.

IGC+IGS: We add up the accuracy gain and the discrimination gain. It means, we
want to construct a homogeneous tree w.r.t. both accuracy and the sensitive attribute.
IGC+IGS will lead to good results in combination with the relabeling technique we
show next.

5.2 Relabeling

In this section we assume that a tree is already given and the goal is to reduce the dis-
crimination of the tree by changing the class labels of some of the leaves. Let T be a
decision tree with n leaves. Such a decision tree partitions the example space into n
non-overlapping regions. See Figure 3 for an example; in this figure (left) a decision
tree with 6 leaves is given, labeled l1 to l6. The lower part of the figure shows the par-
titioning induced by the decision tree. When a new example needs to be classified by
a decision tree, it is given the majority class label of the region it falls into; i.e., the
leaves are labeled with the majority class of their corresponding region. The relabeling
technique, however, will now change this strategy of assigning the label of the majority
class. Instead, we try to relabel the leaves of the decision tree in such a way that the
discrimination decreases while trading in as little accuracy as possible. We can com-
pute the influence of relabeling a leaf on the accuracy and discrimination of the tree on
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Fig. 3. Decision tree with the partitioning induced by it. The + and− symbols in the partitioning
denote the examples that were used to learn the tree. Encircled examples have B = 1. The grey
background denotes regions where the majority class is −

a dataset D as follows. Let the joint distributions of the class attribute C and the sensi-
tive attribute B for respectively the whole dataset and for the region corresponding to
the leaf be given by the following contingency table (For the dataset additionally the
frequencies have been split up according to the predicted labels by the tree):

Dataset
Class → − +
Pred. → −/+ −/+
B = 1 U1/U2 V1/V2 b

B = 0 W1/W2 X1/X2 b

N1/N2 P1/P2 1

Leaf l
− +

B = 1 u v b

B = 0 w x b

n p a

Hence, e.g., a fraction a of the examples end up in the leaf we are considering for
change, of which n are in the negative class and p in the positive. Notice that for the
leaf we do not need to split up u, v, w, and x since all examples in a leaf are assigned
to the same class by the tree.



With these tables it is now easy to get the following formulas for the accuracy and
discrimination of the decision tree before the label of the leaf l is changed:

accT = N1 + P2

discT =
W2 + X2

b
− U2 + V2

b

The effect of relabeling the leaf now depends on the majority class of the leaf; on the
one hand, if p > n, the label of the leaf changes from + to− and the effect on accuracy
and discrimination is expressed by:

∆accl = n− p

∆discl =
u + v

b
− w + x

b

on the other hand, if p < n, the label of the leaf changes from − to + and the effect on
accuracy and discrimination is expressed by:

∆accl = p− n

∆discl = −u + v

b
+

w + x

b

Notice that relabeling leaf l does not influence the effect of the other leaves and that
∆accl is always negative.

Example 2 Consider the dataset and tree given in Figure 3. The contingency tables for
the dataset and leaf l3 are as follows:

Dataset
Class → − +
Pred. → −/+ −/+
B = 1 5

20/ 1
20

1
20/ 3

20
1
2

B = 0 3
20/ 1

20
1
20/ 5

20
1
2

8
20/ 2

20
2
20/ 8

20 1

Leaf l3
− +

B = 1 1
20

1
20

2
20

B = 0 1
20 0 1

20
2
20

1
20

3
20

The effect of changing the label of node l3 from − to + hence is: ∆accl = − 1
20 and

∆discl = − 1
10 .

The central problem now is to select exactly this set of leaves that is optimal w.r.t.
reducing the discrimination with minimal loss in accuracy, as expressed in the following
Optimal relabeling problem (RELAB):

Problem 1 (RELAB) Given a decision tree T , a bound ε ∈ [0, 1], and for every leaf l
of T , ∆accl and ∆discl, find a subset L of the set of all leaves L satisfying

rem disc(L) := discT +
∑

l∈L

∆discl ≤ ε

that minimizes
lost acc(L) := −

∑

l∈L

∆accl .



We will now show that the RELAB problem is actually equivalent to the following
well-known combinatorial optimization problem:

Problem 2 (KNAPSACK). Let a set of items I, a weight w(i) and a profit p(i), both
positive integers, for every item i ∈ I , and an integer bound K be given. Find a subset
I ⊆ I subject to

∑
i∈I w(i) ≤ K that maximizes

∑
i∈I p(i).

The following theorem makes the connection between the two problems explicit.

Theorem 2 Let T be a decision tree, and ε ∈ [0, 1] and for every leaf l of T , ∆accl

and ∆discl have been given.
The RELAB problem with this input is equivalent to the KNAPSACK problem with

the following inputs:

– I = { l ∈ L | ∆discl < 0 }
– w(l) = −α∆discl for all l ∈ I
– p(l) = −α∆accl for all l ∈ I
– K = α

(∑
l∈I discl − discT + ε

)

Where α is the smallest number such that all w(l), p(l), and K are integers.
Any optimal solution L to the RELAB problem corresponds to a solution I = I \ L

for the KNAPSACK problem and vice versa.

Proof. Let L be an optimal solution to the RELAB problem. Suppose l ∈ L has
∆discl ≥ 0. Then, rem disc(L \ {l}) ≤ rem disc(L) ≤ ε, and, since ∆accl is al-
ways negative, lost acc(L \ {l}) ≤ lost acc(L). Hence, there will always be an opti-
mal solution for RELAB with L ⊆ I. The equivalence of the problems follows easily
from multiplying the expressions for rem disc and lost acc with α and rewriting them,
using

∑
l∈I w(l) =

∑
l∈L w(l) +

∑
l∈I w(l) for I = I \ L. ¤

Algorithm 2: Relabel
Input Tree T with leaves L, ∆acc(l), ∆disc(l) for every l ∈ L, ε ∈ [0, 1]1
Output Set of leaves L to relabel2
1: I := { l ∈ L |∆discl < 0 }
2: L := {}
3: while rem disc(L) > ε do
4: best l := arg maxl∈I\L(discl/accl)
5: L := L ∪ {l}
6: end while
7: return L

From this equivalence we can now derive many properties regarding the intractabil-
ity of the problem, approximations, and guarantees on the approximation. Based on
the connection with the KNAPSACK problem, the greedy Algorithm 2 is proposed for
approximating the most optimal relabeling. The following corollary gives some com-
putational properties of the RELAB problem and a guarantee for the greedy algorithm.



Corollary 1

1. RELAB is NP-complete.
2. RELAB allows for a fully polynomial approximation scheme (FPTAS) [2].
3. An optimal solution to RELAB can be found with a dynamic programming approach

in time O(|D|3|I|) 2

4. The difference in accuracy of the optimal solution and the accuracy of the tree
given by Algorithm 2 is at most rem disc(L)−ε

∆discl
∆accl where l is the last leaf that

was added to L by Algorithm 2.

Proof. Membership in NP follows from the reduction of RELAB to KNAPSACK. Com-
pleteness, on the other hand follows from a reduction from PARTITION to RELAB.
Given a multiset {i1, . . . , in} of positive integers, the PARTITION problem is to di-
vide this set into two subsets that sum up to the same number. Let N = i1 + . . . + in.
Consider a database D with 3N tuples and a decision tree T with the following leafs:
T has 2 big leafs with N tuples with B = 0 and Class = 0, and n leafs with re-
spectively i1, . . . , in tuples, all with B = 1 and Class = 1. The accuracy of the tree
is 100%. It is easy to create such an example. The discrimination of the tree T equals
100% − 50% = 50%. Changing one of the big leafs will lead to a drop in accuracy
of 1/3 and a drop in discrimination of 50%, to 0%. Changing the jth positive leaf will
lead to a drop in accuracy of ij/3N and a drop in discrimination of ij/N . The partition
problem has a solution if and only if the optimal solution to the RELAB problem for
the tree T with ε = 0 has lost acc = 1/6.

Point 2 follows directly from the reduction of RELAB to KNAPSACK. 3 follows
from the fact that α is at most |D|(|D|B)(|D|B) ≤ |D|3 and the well known dynamic
programming solution for KNAPSACK in time O(K|I|). 4 follows from the relation
between KNAPSACK and the so-called fractional KNAPSACK-problem [2]. The dif-
ference between the optimal solution and the greedy solution of Algorithm 2 is bounded
above by the accuracy loss contributed by the part of l that overshoots the bound ε. This
“overshoot” is ε−rem disc(L)

∆discl
. The accuracy loss contributed by this overshoot is then

obtained by multiplying this fraction with −∆accl. ¤
The most important result in this corollary is with no doubt that the greedy Algo-

rithm 2 approximates the optimal solution to the RELAB problem very well. In this
algorithm, in every step we select the leaf that has the least loss in accuracy per unit of
discrimination that is removed. This procedure is continued until the bound ε has been
reached. The difference with the optimal solution is proportional to the accuracy loss
that corresponds to the fraction of discrimination that is removed too much.

Example 3 Consider again the example decision tree and data distribution given in
Figure 3. The discrimination of the decision tree is 20%. Suppose we want to reduce the

2 Notice that this bound in 3. is not inconsistent with the NP-completeness of 1., as RELAB
does not take the dataset D as input, but only the ∆’s.



discrimination to 5%. The ∆’s and their ratio are as follows:

Node ∆acc ∆disc ∆disc
∆acc

l1 −15% −10% 2/3
l2 −15% −10% 2/3
l3 −5% −10% 2
l4 −10% −20% 2
l5 −10% 0% 0
l6 −5% 10% −2

The reduction algorithm will hence first pick l3 or l4, then l1 or l2, but never l5 or l6.

6 Experiments

All datasets and the source code of all implementations reported upon in this section
are available at http://www.win.tue.nl/˜fkamiran/code.

In this section we show the results of experiments with the new discrimination-
aware splitting criteria and the leaf relabeling for decision trees. As we observe that the
discrimination-aware splitting criteria by themselves do not lead to significant improve-
ments w.r.t. lowering discrimination, we have omitted them from the experimental vali-
dation. However, the new splitting criteria IGC+IGS is an exception: sometimes, when
used in combination with leaf relabeling, it outperforms the leaf relabeling with original
decision tree split criterion IGC. IGC+IGS in combination with relabeling outperforms
other splitting criteria because this criterion tries to make tree leaves homogeneous w.r.t.
both class attribute and sensitive attribute. The more homogeneous w.r.t. the sensitive
attribute the leaves are, the less number of leaves we will have to relabel to remove
the discrimination from the decision tree. So the use of this criterion with leaf relabel-
ing reduces the discrimination by making the minimal possible changes in our decision
tree. For the relabeling approach, however, the results are very encouraging, even when
the relabeling is applied with normal splitting criterion IGC. We compare the following
techniques (between brackets their short name):

1. The baseline solutions (Baseline) that consist of removing B and its k most cor-
related attributes from the training dataset before learning a decision tree, for k =
0, 1, . . . , n. In the graphs this baseline will be represented by a black continuous
line connecting the performance figures for increasing k.

2. We also present a comparison to the previous state-of-the-art techniques, shown
in Table 4, which includes discrimination aware naive Bayesian approaches [4],
and the pre-processing methods Massaging and Reweighing [9, 3] that are based on
cleaning away the discrimination from the input data before a traditional learner is
applied.

3. From the proposed methodes we show the relabeling approach in combination with
normal decision tree splitting criteria (IGC Relab) and with new splitting criteria
IGC+IGS (IGC+IGS Relab).

4. Finally we also show some hybrid combinations of the old and new methods; we
present the results of experiments where we first applied the Reweighing technique
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Fig. 4. Accuracy-discrimination trade-off for different values of epsilon ε ∈ [0, 1] is plotted. We
change the value of epsilon from the baseline discrimination in the dataset (top right points of
lines) to the zero level (bottom left points of these lines).



of [3] on the training data to learn a tree with low discrimination (either with the
normal or the new splitting criterion). On this tree we then apply relabeling to re-
move the last bit of discrimination from it (RW IGC Relab and RW IGC+IGS Relab).
The other combinations led to similar results and are omitted from the comparison.

Experimental Setup. We apply our proposed solutions on the Census Income dataset
[1], the Communities dataset [1], and two Dutch census datasets of 1971 and 2001 [6, 7].
The Dutch Census 2001 dataset has 189 725 instances representing aggregated groups
of inhabitants of the Netherlands in 2001. The dataset is described by 13 attributes
namely sex, age, household position, household size, place of previous residence, cit-
izenship, country of birth, education level, economic status (economically active or
inactive), current economic activity, marital status, weight and occupation. All the at-
tributes are categorical except weight (representing the size of the aggregated group)
which we exclude from our experiments. We use the attribute occupation as a class
attribute where the task is to classify the instances into “high level” (prestigious) and
“low level” professions. We remove the records of underage people, some middle level
professions and people with unknown professions, leaving 60 420 instances for our ex-
periments. The Dutch 1971 Census dataset consists of 159 203 instances and has the
same features except the missing attribute place of previous residence and the extra at-
tribute religious denominations. After removing the records of people under the age of
19 years and records with missing values, we use 99 772 instances in our experiments.
We use the attribute sex as sensitive attribute.

The Communities dataset has 1 994 instances which give information about differ-
ent communities and crimes within the United States. Each instance is described by
122 predictive attributes which are used to predict the total number of violent crimes
per 100K population while 5 non predictive attributes are also given which can be used
only for extra information. In our experiments we use only predictive attributes which
are numeric. We add a sensitive attribute black to divide the communities according to
race and discretize the class attribute to divide the data objects into major and minor
violent communities.

The Census Income dataset has 48 842 instances. This dataset contains demographic
information about people and the associated prediction task is to determine whether a
person makes over 50K per year or not, i.e., income class High or Low will be pre-
dicted. Each data object is described by 14 attributes, including: age, type of work, ed-
ucation, years of education, marital status, occupation, type of relationship (husband,
wife, not in family), sex, race, native country, capital gain, capital loss and weekly work-
ing hours. We use Sex = f as sensitive attribute. In this dataset, 16 192 citizens have
Sex = f and 32 650 have Sex = m. The discrimination of the class w.r.t. Sex = f is
discSex=f (D) := 9918

32650 − 1769
16192 = 19.45% .

Testing the Proposed Solutions. The reported figures are the averages of a 10-fold
cross-validation experiment. Every point represents the performance of one learned de-
cision tree on original test data excluding the sensitive attribute from it. Every point in
the graphs corresponds to the discrimination (horizontal axis) and the accuracy (verti-
cal axis) of a classifier produced by one particular combination of techniques. Ideally,
points should be close to the top-left corner. The comparisons show clearly that relabel-
ing succeeds in lowering the discrimination much further than the baseline approach.



Table 2. The detail of working and not working males and females in the Dutch 1971 Census
dataset.

Job=Yes (+) Job=No (-)
Male 38387 (79.78%) 9727 (20.22%) 48114

Female 10912 (21.12%) 40746 (78.88%) 51658
Disc = 79.78 - 21.12 = 58.66%

Table 3. The detail of working and not working males and females in the Dutch 2001 Census
dataset.

Job=Yes (+) Job=No (-)
Male 52885 (75.57%) 17097 (24.43%) 69982

Female 37893 (51.24%) 36063 (48.768%) 73956
Disc = 75.57 - 51.24 = 24.23%

Figure 4 shows a comparison of our discrimination aware techniques with the baseline
approach over three different datasets. We observe that the discrimination goes down
by removing the sensitive attribute and its correlated attribute but its impact over the
accuracy is very severe. On the other hand the discrimination aware methods classify
the unseen data objects with minimum discrimination and high accuracy for all values
of ε. We also run our proposed methods with both Massaging and Reweighing but we
only present the results with Reweighing because both show similar behavior in our
experiments.

It is very important to notice here that we measure the accuracy score here over
the discriminatory data but ideally we expect a non-discriminatory test data. If our test
set is non discriminatory, we expect our discrimination aware methods to outperform
the traditional method w.r.t. both accuracy and discrimination. In our experiments, we
mimic this scenario by using the Dutch 1971 Census data as a training set and the Dutch
2001 Census dataset as a test set. We use the attribute economic status as class attribute
because this attribute uses similar codes for both 1971 and 2001 dataset. The use of
occupation as class attribute was not possible in these experiments because its coding
is different in both datasets. This attribute economic status determines whether a person
has some job or not, i.e., is economically active or not. We remove some attributes like
current economic activity and occupation from these experiments to make both datasets
consistant w.r.t. codings. Tables 2 and 3 show that in Dutch 1971 Census data, there is
more discrimination toward female and their percentage of unemployment is higher
than in the Dutch 2001 Census data. Now if we learn a traditional classifier over 1971
data and test it over the same dataset using 10-fold cross validation method, it will give
excellent performance as shown in Figure 5 (a). When we apply this classifier to 2001
data without taking the discrimination aspect into account, it performs very poorly and
accuracy level goes down from 89.6% (when tested on 71 data; Figure 5 (a)) to 73.09%
(when tested on 2001 data; Figure 5 (b)). Figure 5 makes it very obvious that our dis-
crimination aware technique not only classify the future data without discrimination but
they also work more accurately than the traditional classification methods when tested
over non-discriminatory data. In Figure 5 (b), we only show the results of IGC Relab
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Fig. 5. The results of experiments when Dutch 1971 Census dataset is used as train set while the
test set is different for both plots.

because other proposed methods also give similar results. Figure 5 (b) shows that if
we change the value of ε from 0 to 0.04 the accuracy level increases significantly from
74.62% to 77.11%. We get the maximum accuracy at ε = 0.04 because the Dutch 2001
Census data is not completely discrimination free.

In order to assess the statistical relevance of the results, in Table 4 the exact accu-
racy and discrimination figures together with their standard deviations have been given.
As can be seen, the deviations are in general much smaller than the differences between
the points. Table 4 also gives a comparison of our proposed methods with the other
state-of-the-art methods on the Census Income dataset. We select the best results of the
competitive methods to compare with. We observe that out proposed method outper-
form the others approaches w.r.t. accuracy-discrimination trade off.

From the results of our experiments we draw the following conclusions: (1) Our pro-
posed methods give high accuracy and low discrimination scores when applied to non-
discriminatory test data. In this scenario, our methods are the best choice, even if we are



Table 4. The results of experiments over the Census Income dataset with their standard devia-
tions. (ε = 0.01)

Method Disc (%) Acc (%)
IGC Relab 0.31± 1.10 81.10± 0.47

IGC+IGS Relab 0.90± 1.50 84.00± 0.46

RW IGC Relab 0.59± 1.17 81.66± 0.60

RW IGC+IGS Relab 0.63± 1.29 82.27± 0.67

Massaging 6.59± 0.78 83.82± 0.22

Reweighing 7.04± 0.74 84.84± 0.38

Naive Bayesian Approach 0.10 80.10

only concerned with accuracy. (2) The improvement in discrimination reduction with
the relabeling method is very satisfying. The relabeling reduces discrimination to almost
0 in almost all cases if we decrease the value of ε to 0. (3) The relabeling methods out-
perform the baseline in almost all cases. As such it is fair to say that the straightforward
solution is not satisfactory and the use of dedicated discrimination-aware techniques is
justified. (4) Our methods significantly improve the current stat-of-the-art techniques
w.r.t. accuracy-discrimination trade off.

7 Conclusions

In this paper we presented the construction of a decision tree classifier without dis-
crimination. This is a different approach of addressing the discrimination-aware classi-
fication problem. Most of the previously introduced approaches were focused on “re-
moving” undesired dependencies from the training data and thus can be considered as
“preprocessors”. In this paper on the contrary, we propose the construction of decision
trees with with non-discriminatory constraints. Especially relabeling, for which an al-
gorithm based on the KNAPSACK problem was proposed, showed promising results in
an experimental evaluation. It was shown to outperform the other discrimination aware
techniques by giving much lower discrimination scores and maintaining the accuracy
high. Moreover, it is shown that if we are only concerned with accuracy, our method is
the best choice when training set is discriminatory and test set is non-discriminatory. All
methods have in common that to some extent accuracy must be traded-off for lowering
the discrimination. This trade-off was studied and confirmed theoretically.

As future work we are interested in extending the discrimination model itself; in
many cases, non-discriminatory constraints as introduced in this paper are too strong:
consider for example that often it is acceptable from an ethical and legal point of view
to have a correlation between the sex of a person and the label given to him or her, as
long as it can be explained by other attributes. Consider, e.g., a car insurance example:
suppose that the number of male drivers involved in two or more accidents in the past
is significantly higher than the number of female drivers with two or more accidents.
In such a situation it is perfectly acceptable for a car insurance broker to base his or
her decisions on the number of previous accidents, even though this will result in a



higher number of men than women being denied from getting insured. This discrimi-
nation is acceptable because it can be explained by the attribute “number of car crashes
in the past.” Similarly, using the attribute “years of driving experience” may result in
acceptable age discrimination.
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