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Abstract
The paper covers the design and analysis of experiments to discriminate between
two Gaussian process models with different covariance kernels, such as those widely
used in computer experiments, kriging, sensor location and machine learning. Two
frameworks are considered. First, we study sequential constructions, where successive
design (observation) points are selected, either as additional points to an existing design
or from the beginning of observation. The selection relies on the maximisation of the
difference between the symmetric Kullback Leibler divergences for the two models,
which depends on the observations, or on themean squared error of bothmodels,which
does not. Then, we consider static criteria, such as the familiar log-likelihood ratios
and the Fréchet distance between the covariance functions of the two models. Other
distance-based criteria, simpler to compute than previous ones, are also introduced,
for which, considering the framework of approximate design, a necessary condition
for the optimality of a design measure is provided. The paper includes a study of the
mathematical links between different criteria and numerical illustrations are provided.
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1 Introduction

The term ‘active learning’ [cf. Hino (2020) for a recent review] has replaced the
traditional (sequential or adaptive) ‘design of experiments’ in the computer science
literature, typically when the response is approximated byGaussian process regression
[GPR, cf. Sauer et al. (2022)]. It refers to selecting the most suitable inputs to achieve
the maximum of information from the outputs, usually with the aim of improving
prediction accuracy. A good overview is given in Chapter 6 of Gramacy (2020).

Frequently the aim of an experiment—in the broad sense of any data acquisition
exercise—may rather be the discrimination between two ormore potential explanatory
models. When data can be sequentially collected during the experimental process, the
literature goes back to the classic procedure of Hunter and Reiner (1965) and has
generated ongoing research [see e.g. Schwaab et al. (2008), Olofsson et al. (2018)
and Heirung et al. (2019)]. When the design needs to be fixed before the experiment
and thus no intermediate data will be available, the literature is less developed. While
in the classical (non)linear regression case the criterion of T-optimality [cf. Atkinson
and Fedorov (1975)] and the numerous papers extending it was a major step, a similar
breakthrough for Gaussian process regression is lacking.

With this paper we would like to investigate various sequential/adaptive and non-
sequential design schemes for discriminating between the covariance structure of
GPRs and their relative properties. When the observations associated with the already
collected points are available, one may base the criterion on the predictions and pre-
diction errors (Sect. 3.1). On the one hand, one natural choice will be to put the next
design point where the symmetric Kullback–Leibler divergence between those two
predictive (normal) distributions differs most. On the other hand, when the associated
observations are not available, the incremental construction of the designs could be
based on themean squared error (MSE) for bothmodels, assuming in turn that either of
the two models is the true one (Sect. 3.2). We theoretically investigate the asymptotic
differences of the criteria with respect to their discriminatory power.

The static construction of a set of optimal designs of given size for nominal model
parameters is the last mode we have considered (Sect. 4). Our first choice is to use the
difference between the expected values of the log likelihood ratios, assuming in turn
that either of the two models is the true one. This is actually a function of the sym-
metric Kullback–Leibler divergence, which also arises from Bayesian considerations.
In a similar spirit, the Fréchet distance between two covariance matrices provides
another natural criterion. Some further novel but simple approaches are considered in
this paper as well. In particular we are interested whether complex likelihood-based
criteria like the Kullback–Leibler-divergence can be effectively replaced by simpler
ones based directly on the respective covariance kernels. The construction of optimal
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Discrimination between Gaussian process models… 1277

design measures for model discrimination (approximate design theory) is consid-
ered in Sect. 5, where we investigate the geometric properties for some of the newly
introduced criteria.

Eventually, to compare the discriminatory power of the resulting designs from dif-
ferent criteria, one can compute the correct classification (hit) rates after selecting the
model with the higher likelihood value. In Sect. 6, a numerical illustration is provided
for two Matérn kernels with different smoothness. Furthermore, we confirm the the-
oretical considerations about optimal design measures from Sect. 5 on a numerical
example.

Except for adaptive designs, where the parameter estimates are continuously
updated as new data arrive, we assume that the parameters of the models between
which we want to discriminate are known. Therefore, our results are relevant in situ-
ations where there is strong prior knowledge about the possible models, for example
through previously collected data.

2 Notation

One of the most popular design criteria for discriminating between rival models is
T-optimality (Atkinson and Fedorov 1975). This criterion is only applicable when
the observations are independent and normally distributed with a constant variance.
López-Fidalgo et al. (2007) generalised the normality assumption and developed an
optimal discriminating design criterion to choose among non-normal models. The
criterion is based on the log-likelihood ratio test under the assumption of independent
observations. We denote by ϕ0(y, x, θ0) and ϕ1(y, x, θ1) the two rival probability
density functions for one observation y at point x . The following system of hypotheses
might be considered:

H0 : ϕ(y, x) = ϕ0(y, x, θ0)

H1 : ϕ(y, x) = ϕ1(y, x, θ1)

where ϕ1(y, x, θ1) is assumed to be the true model. A common test statistic is the
log-likelihood ratio given as

L = − log
ϕ0(y, x, θ0)

ϕ1(y, x, θ1)
= log

ϕ1(y, x, θ1)

ϕ0(y, x, θ0)
,

where the null hypothesis is rejected when ϕ1(y, x, θ1) > ϕ0(y, x, θ0) or equivalently
when L > 0. The power of the test refers to the expected value of the log-likelihood
ratio criterion under the alternative hypothesis H1. We have

EH1(L) = E1(L) =
∫

ϕ1(y, x, θ1) log

{
ϕ1(y, x, θ1)

ϕ0(y, x, θ0)

}
dy

= DKL(ϕ1‖ϕ0), (1)
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where DKL(ϕ1‖ϕ0) is the Kullback–Leibler distance between the true and the
alternative model (Kullback and Leibler 1951).

Interchanging the two models in the null and the alternative hypothesis, the power
of the test would be

E0(−L) = DKL(ϕ0‖ϕ1). (2)

If it is not clear in advance which of the two models is the true model, one might
consider to search for a design optimising a convex combination of (1) and (2), most
commonly using weights 1/2 for each model. This would be equivalent to maximising
the symmetric Kullback–Leibler distance

DKL(ϕ0, ϕ1) = 1

2
[DKL (ϕ0‖ϕ1) + DKL (ϕ1‖ϕ0)] .

In this paper we will consider random fields, i.e. we will allow for correlated
observations. As we assume that the mean function is known and the same for all
models, without loss of generality we can set the mean function equal 0 everywhere.
We are solely concerned with discriminating with respect to the covariance structure
of the random fields. When the random fields are Gaussian, we might still base the
design strategy on the log-likelihood ratio criterion to choose among two rival models.

For a positive definite kernel K (x, x ′) and an n-point design Xn = (x1, . . . , xn),
kn(x) is the n-dimensional vector (K (x, x1), . . . , K (x, xn))� and Kn is the n × n
(kernel) matrix with elements {Kn}i, j = K (xi , x j ). Although x is not bold, it may
correspond to a point in a (compact) setX ⊂ R

d . Assume thatY (x) corresponds to the
realisation of a random field Zx , indexed by x inX , with zero mean E{Zx } = 0 for all
x and covariance E{Zx Zx ′ } = K (x, x ′) for all (x, x ′) ∈ X 2. Our prediction of a future
observation Y (x) based on observations Yn = (Y (x1), . . . ,Y (xn))� corresponds to
the best linear unbiased predictor (BLUP) η̂n(x) = k�

n (x)K−1
n Yn . The associated

prediction error is en(x) = Y (x) − η̂n(x) and we have

E
{
e2n(x)

}
= ρ2

n (x) = K (x, x) − k�
n (x)K−1

n kn(x).

The index n will often be omitted when there is no ambiguity, and in that case ki (x) =
kn,i (x), Ki = Kn,i , ei (x) = en,i (x), ρ2

i (x) = ρ2
n,i (x) will refer instead to model

i , with i ∈ {0, 1}. We shall need to distinguish between the cases where the truth is
model 0 or model 1, and following Stein (1999, p. 58) we denote by Ei the expectation
computed with model i assumed to be true. We reserve the notation ρ2

i (x) to the case
where the expectation is computed with the true model; i.e.,

ρ2
i (x) = Ei

{
e2i (x)

}
.

Hence we have ρ2
0 (x) = E0{e20(x)} = K0(x, x) − k�

0 (x)K−1
0 k0(x) and calculation

gives

E0{e21(x)} = K0(x, x) + k�
1 (x)K−1

1 K0K
−1
1 k1(x) − 2 k�

1 (x)K−1
1 k0(x),
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E0{[e1(x) − e0(x)]2} = E0{e21(x)} − E0{e20(x)}, (3)

with an obvious permutation of indices 0 and 1 when assuming the model 1 is true to
compute E1{·}.

Ifmodel 0 is correct, the prediction error is largerwhenweusemodel 1 for prediction
than if we use the BLUP (i.e., model 0). Stein (1999, p. 58) shows that the relation

E0
{
e21(x)

}
E0
{
e20(x)

} = 1 + E0
{[e1(x) − e0(x)]2

}
E0
{
e20(x)

}

shown above is valid more generally for models with linear trends.
Also of interest is the assumed mean squared error (MSE) E1{e21(x)} when we use

model 1 for assessing the prediction error (because we think it is correct) while the
truth is model 0, and in particular the ratio

E1
{
e21(x)

}
E0
{
e21(x)

} = K1(x, x) − k�
1 (x)K−1

1 k1(x)

E0
{
e21(x)

} ,

which may be larger or smaller than one.
Another important issue concerns the choice of covariance parameters in K0 and

K1. Denote Ki (x, x ′) = σ 2
i Ci,θi (x, x

′), i = 0, 1, (x, x ′) ∈ X 2, where the σ 2
i define

the variance, the θi may correspond to correlation lengths in a translation invariant
model and are thus scalar in the isotropic case, and C(x, x ′) defines a correlation.

3 Prediction-based discrimination

For the incremental construction of a design for model discrimination, points are
added conditionally on previous design points. We can distinguish the case where the
observations associated with those previous points are available and can thus be used
to construct a sequence of predictions (sequential, i.e., conditional, construction) from
the unconditional case where observations are not used.

3.1 Sequential (conditional) design

Consider stage n, where n design points Xn and n observations Yn are avail-
able. Assuming that the random field is Gaussian, when model i is true we have
Y (x) ∼ N (̂ηn,i (x), ρ2

n,i (x)). A rather natural choice is to choose the next design
point xn+1 where the symmetric Kullback–Leibler divergence between those two
normal distributions differs most; that is,

xn+1 ∈ Arg max
x∈X

ρ2
n,0(x)

ρ2
n,1(x)

+ ρ2
n,1(x)

ρ2
n,0(x)

+ [̂ηn,1(x) − η̂n,0(x)]2
[

1

ρ2
n,0(x)

+ 1

ρ2
n,1(x)

]
.

(4)
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Other variants could be considered as well, such as

xn+1 ∈ Arg max
x∈X

[̂ηn,1(x) − η̂n,0(x)]2,

xn+1 ∈ Arg max
x∈X

[̂ηn,1(x) − η̂n,0(x)]2
ρ2
n,0(x) + ρ2

n,1(x)
,

xn+1 ∈ Arg max
x∈X

[̂ηn,1(x) − η̂n,0(x)]2
[

1

ρ2
n,0(x)

+ 1

ρ2
n,1(x)

]
.

They will not be considered in the rest of the paper.
If necessary one can use plug-in estimates σ̂ 2

n,i and θ̂n,i of σ 2
i and θi , for instance

maximum likelihood (ML) or leave-one-out estimates based on Xn and Yn , when we
choose xn+1. Note that the value of σ 2 does not affect the BLUP η̂n(x) = k�

n K
−1
n Yn .

In the paper we do not address the issues related to the estimation of σ 2 or of the
correlation length or smoothness parameters of the kernel; one may refer to Karvonen
et al. (2020) and the recent papers Karvonen (2022), Karvonen and Oates (2022) for a
detailed investigation. The connection between the notion of microergodicity, related
to the consistency of the maximum-likelihood estimator, and discrimination through
a KL divergence criterion is nevertheless considered in Example 1 below.

3.2 Incremental (unconditional) design

Consider stage n, where n design points Xn are available. We base the choice of the
next point on the difference between the MSEs for both models, assuming that one or
the other is true. For instance, assuming that model 0 is true, the difference between the
MSEs is E0{e21(x)} − E0{e20(x)} = E0{[e1(x) − e0(x)]2} = E0{[̂ηn,1(x) − η̂n,0(x)]2}.

A first, un-normalised, version is thus

φA(x) = E0
{
[e1(x) − e0(x)]2

}
+ E1

{
[e1(x) − e0(x)]2

}

= E0
{
e21(x)

}
− E0

{
e20(x)

}
+ E1

{
e20(x)

}
− E1

{
e21(x)

}
. (5)

A normalisation seems in order here too, such as

φB(x) = E0
{[e1(x) − e0(x)]2

}
ρ2
n,0(x)

+ E1
{[e1(x) − e0(x)]2

}
ρ2
n,1(x)

= E0
{
e21(x)

}
E0
{
e20(x)

} + E1
{
e20(x)

}
E1
{
e21(x)

} − 2. (6)

A third criterion is based on the variation of the symmetric Kullback-Leibler diver-
gence (10) of Sect. 4 when adding an (n + 1)-th point x to Xn . Direct calculation,
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using

Kn+1,i =
(

Kn,i kn,i (x)
k�
n,i (x) Ki (x, x)

)
, i = 0, 1,

and the expression of the inverse of a block matrix, gives

�K L [K0,K1](Xn ∪ {x}) = �K L [K0,K1](Xn) + 1

2

[
E1{e20(x)}
E0{e20(x)}

+ E0{e21(x)}
E1{e21(x)}

]
− 1.

We thus define

φK L(x) = 1

2

[
E1{e20(x)}
E0{e20(x)}

+ E0{e21(x)}
E1{e21(x)}

]
− 1, (7)

to be maximised with respect to x ∈ X .
Although the σ 2

i do not affect predictions, Ei {e2j (x)} is proportional to σ 2
i . Unless

specific information is available, it seems reasonable to assume that σ 2
0 = σ 2

1 = 1.
Other parameters θi should be chosen to make the two kernels the most similar, which
seems easier to consider in the approach presented in Sect. 4, see (11). In the rest of
this section we suppose that the parameters of both kernels are fixed.

The un-normalised version φA(x) given by (5) could be used to derive a one-step
(non-incremental) criterion, in the same spirit as those of Sect. 4, through integration
with respect to x for a given measure μ on X . Indeed, we have

E0
{
[e1(x) − e0(x)]2

}

= k�
0 (x)K−1

0 k0(x) + k�
1 (x)K−1

1 K0K
−1
1 k1(x) − 2 k�

1 (x)K−1
1 k0(x),

so that

∫
X

E0
{
[e1(x) − e0(x)]2

}
dμ(x)

= trace
[
K−1

0 A0(μ) + K−1
1 K0K

−1
1 A1(μ) − 2K−1

1 A0,1(μ)
]

,

where Ai (μ) = ∫
X ki (x)k�

i (x) dμ(x), i = 0, 1, and A0,1(μ) = ∫
X k0(x)

k�
1 (x) dμ(x). Similarly,

∫
X

E1
{
[e1(x) − e0(x)]2

}
dμ(x)

= trace
[
K−1

1 A1(μ) + K−1
0 K1K

−1
0 A0(μ) − 2K−1

0 A0,1(μ)
]

.
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The matrices Ai (μ) and A0,1(μ) can be calculated explicitly for some kernels and
measures μ. This happens in particular when X = [0, 1]d , the two kernels Ki are
separable, i.e., products of one-dimensional kernels on [0, 1], andμ is uniform onX .

3.2.1 Example 1: exponential covariance, no microergodic parameters

We consider Example 6 in Stein (1999, p. 74) and take Ki (x, x ′) = e−αi |x−x ′|/αi ,
i = 0, 1. The example focuses on two difficulties: first, the two kernels only differ by
their parameter values; second, the particular relation between the variance and corre-
lation length makes the parameters αi not microergodic and they cannot be estimated
consistently from observations on a bounded interval; see Stein (1999, Chap. 6). It is
interesting to investigate the behaviour of the criteria (5), (6) and (7) in this particular
situation.

We suppose that n observations are made at xi = (i−1)/(n−1), i = 1, . . . , n ≥ 2.
We denote δ = δn = 1/[2(n − 1)] the half-distance between two design points. The
particular Markovian property of random processes with kernels Ki simplifies the
analysis. The prediction and MSE at a given x ∈ (0, 1) only depend on the position
of x relative to its two closest neighbouring design points; moreover, all other points
have no influence. Therefore, due to the regular repartition of the xi , we only need to
consider the behaviour in one (any) interval Ii = [ai , bi ] = [xi , xi+1].

We always haveφA(x) → 0 as x → xi ∈ Xn . Numerical calculation shows that for
δn small enough, φA(·) has a unique maximum in Ii at the centre Ci = (xi + xi+1)/2.
The next design point xn+1 that maximises φA(·) is then taken at Ci for one of the
n − 1 intervals, and we get

φA(Ci ) = 1

4

(α1 − α0)
2(α1 + α0)

3

α0α1
δ4n + O(δ5n), n → ∞.

Similar results apply to the case where the design Xn contains the endpoints 0 and
1 and its covering radius CR(Xn) = maxx∈[0,1] mini=1,...,n|x − xi | tends to zero, the
points xi being not necessarily equally spaced: Ci is then the centre of the largest
interval [xi , xi+1] and δn = CR(Xn).

When δn is large compared to the correlation lengths 1/α0 and 1/α1, there exist
two maxima, symmetric with respect toCi , that get closer to the extremities of Ii as α1
increases, and Ci corresponds to a local minimum of φA(·). This happens for instance
when α0 δn = 1 and α1 δn � 2.600455.

A similar behaviour is observed for φB(x) and φK L(x): for small enough δn they
both have a unique maximum in Ii at Ci , with now

φB(Ci ) = 1

4

(α1 − α0)
2(α1 + α0)

3

α0α1
δ3n + O(δ4n), n → ∞,

φK L(Ci ) = 1

8

(α1 − α0)
2(α1 + α0)

3

α0α1
δ3n + O(δ4n), n → ∞.

Also, φB(x) → 0 and φK L(x) → 0 as x → xi ∈ Xn . For large values of δn compared
to the correlation lengths 1/α0 and 1/α1, there exist two maxima in Ii , symmetric
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with respect toCi . When α0 δn = 1, this happens for instance when α1 δn � 2.020178
for φB(·) and when α1 δn � 7.251623 for φK L(·). However, in the second case the
function is practically flat between the two maxima.

The left panel of Fig. 1 presents φA(x), φB(x) and φK L(x) for x ∈ [x1, x2] =
[0, 0.1] when n = 11 (δn = 0.05) and α0 = 1, α1 = 10. The right panel is for
α0 δn = 1, α1 δn = 10.

This behaviour ofφK L(Ci ) for small δn sheds light on the fact thatα is not estimable
in this model. Indeed, consider a sequence of embedded nk-point designs Xnk , ini-
tialised with the design Xn = Xn0 considered above and with nk = 2k (n0 − 1) + 1,
all these designs having the form xi = (i − 1)/(nk − 1), i = 1, . . . , nk . Then,
CR(Xnk ) = CR(X j ) = δ j = 1/[2(nk − 1)] for j = nk, . . . , nk+1 − 1 = 2 nk − 2. For
k large enough, the increase in Kullback–Leibler divergence (10) from Xnk to Xnk+1

is thus bounded by c/(nk − 1)2 for some c > 0, so that the expected log-likelihood
ratio E0{Lnk } − E1{Lnk } remains bounded as k → ∞.

More generally, denote by 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 the ordered
points of an n-point design Xn in [0, 1], n ≥ 3. Let i∗ ≥ 3 be such that
|xi∗−2−xi∗ | = mini=3,...,n|xi−2−xi |. Then necessarily |xi∗−2−xi∗ | ≤ 1/(�n/2�−1).
Indeed, consider the following iterative modification of Xn that cannot decrease
mini=3,...,n|xi−2 − xi |: first, move x1 to zero, then move x2 to x1; leave x3 unchanged,
but move x4 to x3, etc. For n even, the design X′

n obtained is the duplication of an
(n/2)-points design; for n odd, only the right-most point xn remains single. In the
fist case, the minimum distance between points of X′

n is at most 1/(n/2 − 1), in the
second case it is at most 1/(�n/2� − 1). We then define Xn−1 = Xn \ {xi∗−1}. For n
large enough, the increase in Kullback–Leibler divergence (10) from Xn−1 to Xn is
thus bounded by c/(�n/2� − 1)3 for some c > 0 depending on α0 and α1. Starting
from some design Xn0 , we thus have, for n0 large enough,

�K L [K0,K1](Xn) − �K L [K0,K1](Xn0) ≤ c
n∑

k=n0+1

1

(�k/2� − 1)3
,

which implies limn→∞ �K L [K0,K1](Xn) ≤ B for some B < ∞. Assuming, without
any loss of generality, that model 0 is correct, we have 0 ≤ E0{Ln} ≤ B (we get
0 ≤ E1{−Ln} ≤ B when we assume that model 1 is correct), implying in particular
that Ln does not tend to infinity a.s. and theMLestimator ofα is not strongly consistent.

3.2.2 Example 2: exponential covariance, microergodic parameters

Consider now two exponential covariance models with identical variances (which we
take equal to one without any loss of generality): Ki (x, x ′) = e−αi |x−x ′|, i = 0, 1.

Again, φA(x) → 0 as x → xi ∈ Xn and φA(·) has a unique maximum at Ci for
small enough δn , with now

φA(Ci ) = 1

2

(
α2
1 − α2

0

)2
δ4n + O

(
δ5n

)
, n → ∞.
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There are two maxima for φA(·) in Ii , symmetric with respect to Ci for large δn : when
α0 δn = 1, this happens for instance when α1 δn � 2.558545. Nothing is changed for
φB(·) compared to Example 1 as the variances cancel in the ratios that define φB(·),
see (3) and (6). The situation is quite different for φK L(·), with

φK L(Ci ) = 1

2

(α1 − α0)
2

α0α1
+ O(δn), n → ∞,

indicating that it is indeed possible to distinguish between the two models much more
efficiently with this criterion than with the two others. Interestingly enough, the best
choice for next design point is not at Ci but always as close as possible to one of
the endpoints ai or bi , with however a criterion value similar to that in the centre Ci

when δn is small enough, as limx→xi φK L(x) = (α1 − α0)
2/(2 α0α1). Here, the same

sequence of embedded designs as in Example 1 ensures that E0{Lnk }−E1{Lnk } → ∞
as k → ∞. Figure2 presents φA(x), φB(x) and φK L(x) in the same configuration as
in Fig. 1 but for the kernels Ki (x, x ′) = e−αi |x−x ′|, i = 0, 1.

3.2.3 Example 3: Matérn kernels

Take K0 and K1 as the 3/2 and 5/2 Matérn kernels, respectively:

K0,θ (x, x
′) = (1 + √

3θ |x − x ′|) exp(−√
3θ |x − x ′|) (Matérn 3/2), (8)

K1,θ (x, x
′) = [1 + √

5θ |x − x ′| + 5θ2 |x − x ′|2/3] exp(−√
5θ |x − x ′|) (Matérn 5/2).

(9)

We take θ = θ0 = 1 in K0,θ and adjust θ = θ1 in K1,θ to minimise φ2 [K0,θ0 ,K1,θ1 ](μ)

defined by Eq. (13) in Sect. 4 with μ the uniform measure on [0, 1], which gives
θ1 � 1.1275. The left panel of Fig. 3shows K0,θ0=1(x, 0) and K1,θ (x, 0) for θ = 1
and θ = θ1 when x ∈ [0, 1]. The right panel presents φB(x) and φK L(x) for the
same n = 11-point equally spaced design Xn as in Example 1 and x ∈ [0, 1] for K0,1
and K1,1.1275 (the value of φA(x) does not exceed 0.65 10−4 and is not shown). The
behaviours of φB(x) and φK L(x) are now different in different intervals [xi , xi+1]
(they remain symmetric with respect to 1/2, however), the maximum of φK L(x) is
obtained at the central point x5. The behaviour of φK L(·) could be related to the fact
that discriminating between K0 and K1 amounts to estimating the smoothness of the
realisation, which requires that some design points are close to each other.

4 Distance-based discrimination

We will now consider criteria which are directly based on the discrepancies of the
covariance kernels. Ideally those should be simpler to compute and still exhibit rea-
sonable efficiencies and some similar properties. The starting point is again the use
of the log-likelihood ratio criterion to choose among the two models. Assuming that
the random field is Gaussian, the probability densities of observations Yn for the two
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models are

ϕn,i (Yn) = 1

(2π)n/2 det1/2 Kn,i
exp

[
−1

2
Y�
n K

−1
n,iYn

]
, i = 0, 1.

The expected value of the log-likelihood ratio Ln = logϕ(Yn|0)− logϕ(Yn|1) under
model 0 is

E0{Ln} = 1

2
log det

(
Kn,1K

−1
n,0

)
− n

2
+ 1

2
trace

(
Kn,0K

−1
n,1

)

and similarly

E1{Ln} = 1

2
log det

(
Kn,1K

−1
n,0

)
+ n

2
− 1

2
trace

(
Kn,1K

−1
n,0

)
.

A good discriminating design should make the difference E0{Ln} − E1{Ln} as large
as possible; that is, we should choose Xn that maximises

�K L [K0,K1](Xn)

= E0{Ln} − E1{Ln} = 1

2

[
trace

(
Kn,0K

−1
n,1

)
+ trace

(
Kn,1K

−1
n,0

)]
− n

= 2 DKL
(
ϕn,0, ϕn,1

)
, (10)

i.e. twice the symmetricKullback–Leibler divergence between the normal distributions
with densities ϕn,0 and ϕn,1, see, e.g., Pronzato et al. (2019).

We may enforce the normalisation σ 2
0 = σ 2

1 = 1 and choose the θi to make the two
kernels most similar in the sense of the criterion � considered; that is, maximise

min
θ0∈�0, θ1∈�1

�K L [K0,K1](Xn). (11)

The choice of �0 and �1 is important; in particular, unconstrained minimisation over
the θi couldmake both kernels completely flat or on the opposite close toDirac distribu-
tions. Itmay thus be preferable to fix θ0 andminimise over θ1 without constraints. Also,
the Kullback–Leibler distance is sensitive to kernel matrices being near singularity,
whichmight happen if design points are very close to each other. Pronzato et al. (2019)
suggest a family of criteria based on matrix distances derived from Bregman diver-
gences between functions of covariance matrices from Kiefer’s ϕp-class of functions
(Kiefer 1974). If p ∈ (0, 1), these criteria are rather insensitive to eigenvalues close or
equal to zero. Alternatively, they suggest criteria computed as Bregman divergences
between squared volumes of random k-dimensional simplices for k ∈ {2, . . . , d − 1},
which have similar properties.

The index n is omitted in the following and we consider fixed parameters for both
kernels. The Fréchet-distance criterion

�F [K0,K1](Xn) = trace
[
K0 + K1 − 2 (K0K1)

1/2
]
, (12)
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Fig. 4 �i [K0,1,K1,θ ](Xn), i = 1, 2, �F [K0,1,K1,θ ](Xn) and �K L [K0,1,K1,θ ](Xn) as functions of θ ∈
[0.75, 3] for the same 11-point equally spaced design Xn as in Example 1 and K0,θ , K1,θ given by (8) and
(9), respectively

related to the Kantorovich (Wasserstein) distance, seems of particular interest due to
the absence of matrix inversion. The expression is puzzling since the two matrices do
not necessarily commute, but the paper Dowson and Landau (1982) is illuminating.

Other matrix “entry-wise" distances will be considered, in particular the one based
on the (squared) Frobenius norm,

�2 [K0,K1](Xn) = trace
(
K2

0 + K2
1 − 2K0K1

)
= trace

[
(K0 − K1)

2
]
,

which corresponds to the substitution of K2
i for Ki in (12) for i = 0, 1. Denote more

generally

�p [K0,K1](Xn) = ‖K1 − K0‖p
p =

n∑
i, j=1

|{K1 − K0}i, j |p = 1�
n |K1 − K0|�p1n, p > 0,

where 1n is the n-dimensional vector with all components equal to 1, the absolute
value is applied entry-wise and �p denotes power p applied entry-wise.

Figure 4shows the values of the criteria �i [K0,1,K1,θ ], i = 1, 2, �F [K0,1,K1,θ ] and
�K L [K0,1,K1,θ ] as functions of θ for the two kernels K0,θ and K1,θ given by (8) and
(9) and the same regular design as in Example 1: xi = (i − 1)/(n− 1), i = 1, . . . , 11.
The criteria are re-scaled so that their maximum equals one on the interval considered
for θ . Note the similarity between �2 [K0,1,K1,θ ](Xn) and �F [K0,1,K1,θ ](Xn) and the
closeness between the distance-minimising θ for �1, �2 and �F . Also note the good
agreement with the value θ1 � 1.1275 that minimises φ2 [K0,1,K1,θ1 ](μ) from Eq. (13),
see Example 3. The optimal θ for �K L [K0,1,K1,θ ](Xn) is much different, however,
showing that the criteria do not necessarily agree between them.
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An interesting feature of the family of criteria �p [K0,K1](·), p > 0, is that they
extend straightforwardly to a design measure version. Indeed, defining ξn as the
empirical measure on the points in Xn , ξn = (1/n)

∑n
i=1 δxi , we can write

�p [K0,K1](Xn) = n2 φp [K0,K1](ξn),

where we define, for any design (probability) measure on X ,

φp(ξ) = φp [K0,K1](ξ) =
∫
X 2

|K1(x, x
′) − K0(x, x

′)|p dξ(x)dξ(x ′). (13)

Denote by Fp [K0,K1](ξ ; ν) the directional derivative of φp [K0,K1](·) at ξ in the
direction ν,

Fp [K0,K1](ξ ; ν) = lim
α→0+

φp [K0,K1][(1 − α)ξ + αν] − φp [K0,K1](ξ)

α
.

Direct calculation gives

Fp [K0,K1](ξ ; ν) = 2

[∫
X 2

|K1(x, x
′) − K0(x, x

′)|p dν(x)dξ(x ′) − φp [K0,K1](ξ)

]
,

and thus in particular

Fp [K0,K1](ξ ; δx ) = 2

[∫
X

|K1(x, x
′) − K0(x, x

′)|p dξ(x ′) − φp [K0,K1](ξ)

]
.

One can easily check that the criterion is neither concave nor convex in general (as
the matrix |K1 − K0|�p can have both positive and negative eigenvalues), but we
nevertheless have a necessary condition for optimality.

Theorem 1 If the probability measure ξ∗ onX maximises φp [K0,K1](ξ), then

∀x ∈ X ,

∫
X

|K1(x, x
′) − K0(x, x

′)|p dξ∗(x ′) ≤ φp [K0,K1](ξ∗). (14)

Moreover,
∫
X |K1(x, x ′) − K0(x, x ′)|p dξ∗(x ′) = φp [K0,K1](ξ∗) for ξ∗-almost every

x ∈ X .

The proof follows from the fact that Fp [K0,K1](ξ∗; ν) ≤ 0 for every ν when ξ∗ is
optimal, which implies (14). As

∫
X

[∫
X |K1(x, x ′) − K0(x, x ′)|p dξ∗(x ′)

]
dξ∗(x) =

φp [K0,K1](ξ∗), the inequality necessarily becomes an equality on the support of ξ∗.
This suggests the following simple incremental construction: at iteration n, with

Xn the current design and ξn the associated empirical measure, choose xn+1 ∈
Argmaxx∈X Fp [K0,K1](ξn; δx ) = Argmaxx∈X 1�

n |kn,0(x) − kn,1(x)|�p. It will be
used in the numerical example of Sect. 6.2.
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Fig. 5 ψ2(t) for K0 = K0,1 and K1 = K1,θ1 with two different values of θ1

5 Optimal designmeasures

In this section we explain why the determination of optimal design measures max-
imising φp(ξ) is generally difficult, even when limiting ourselves to the satisfaction of
the necessary condition in Theorem 1. At the same time, we can characterise measures
that are approximately optimal for large p.

We assume that the two kernels are isotropic, i.e., such that Ki (x, x ′) = �i (‖x −
x ′‖), i = 0, 1, and that the functions �i are differentiable except possibly at 0 where
they only admit a right derivative. We define ψ(t) = |�1(t) − �0(t)|, t ∈ R

+, and
assume that the kernels have been normalised so that K0(x, x) = K1(x, x); that is,
ψ(0) = 0. Also, we only consider the case where the function ψ(·) has a unique
global maximum on R

+. This assumption is not very restrictive. Consider again the
two Matérn kernels (8) and (9). Figure5shows the evolution of ψ2(t) for K0 = K0,1
and K1 = K1,θ1 with two different values of θ1: θ1 = 1 and θ1 � 1.1275; the latter
minimises φ2 [K0,1,K1,θ ](μ) for μ being the uniform measure on [0, 1].

In the following, we shall consider normalised functions ψ(·), such that
maxt∈R+ ψ(t) = 1. We denote by � the (unique) value such that ψ(�) = 1. On
Fig. 5, � � 0.7 when K1 = K1,1.

5.1 A simplified problemwith an explicit optimal solution

Consider the extreme case where ψ = ψ∗ defined by

ψ∗(t) =
{
1 if t = �,

0 otherwise.
(15)
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Note that ψ
p∗ (t) = ψ∗(t) for any p > 0; we can thus restrict our attention to p = 1

for the maximisation of φp(ξ) defined by (13); that is, we consider

φ1(ξ) =
∫
X 2

ψ∗(‖x − x ′‖) dξ(x)dξ(x ′).

Theorem 2 When ψ = ψ∗ and X ⊂ R
d is large enough to contain a regular d

simplex with edge length �, any measure ξ∗ allocating weight 1/(d + 1) at each
vertex of such a simplex maximises φ1(ξ), and φ1(ξ

∗) = d/(d + 1).

Proof Since φ1(ξ) = 0 when ξ is continuous with respect to the Lebesgue measure
on X , we can restrict our attention to measures without any continuous component.
Assume that ξ = ∑n

i=1 wiδxi , with wi ≥ 0 for all i and
∑n

i=1 wi = 1, n ∈ N.
Consider the graph G(ξ) having the xi as vertices, with an edge (i, j) connecting xi
and x j if and only if ‖xi − x j‖ = �. We have

φ1(ξ) =
∑

(i, j)∈G(ξ)

wiw j ,

and Theorem 1 of Motzkin and Straus (1965) implies that φ1(ξ) is maximum when
ξ is uniform on the maximal complete subgraph of G(ξ). The maximal achievable
order is d + 1, obtained when the xi are the vertices of a regular simplex in X
with edge length �. Motzkin and Straus (1965) also indicate in their Theorem 1 that
φ1(ξ

∗) = 1−1/(d+1). This is easily recovered knowing thatG(ξ∗) is fully connected
with order d + 1. Indeed, we then have

φ1(ξ) =
d+1∑
i=1

wi

d+1∑
j=1
j �=i

w j =
d+1∑
i, j=1
j �=i

wiw j = 1 −
d+1∑
i=1

w2
i ,

which is maximum when all wi equal 1/(d + 1). ��

5.2 Optimal designs forÃ(t) = |91(t) − 90(t)|

The optimal designs of Theorem 2 are natural candidates for being optimal when we
return to the case of interest ψ(t) = |�1(t) − �0(t)|. In the light of Theorem 1, for a
given probability measure ξ on X , we consider the function

δξ (x) =
∫
X

ψ p(‖x − x ′‖) dξ(x ′) − φp(ξ),
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Fig. 6 Surface plot of δξ∗ (x) (x ∈ R
2), the support of ξ∗ corresponds to the vertices of the equilateral

triangle in blue. Left: K0(x, x
′) = exp(−‖x − x ′‖) and K1 = K1,1 (� � 0.53), p = 1.5; Right:

K0 = K0,1, K1 = K1,1 (� � 0.7), p = 10; the red point x∗ is the symmetric of the origin (0, 0) with
respect to the opposite side of the triangle. (Color figure online)

whichmust satisfy δξ (x) ≤ 0 for all x ∈ X when ξ is optimal. For an optimalmeasure
ξ∗ as in Theorem 2, with support x1, . . . , xd+1 forming a regular d-simplex, we have

δξ∗(x) = 1

d + 1

[
d+1∑
i=1

ψ p(‖x − xi‖) − d

]
.

One can readily check that δξ∗(xi ) = 0 for all i (as ψ(‖xi − x j‖) = ψ(�) = 1
for i �= j and ψ(0) = 0). Moreover, since ψ(·) is differentiable everywhere except
possibly at zero, when p > 1 the gradient of δξ∗(x) equals zero at each xi . However,
these d + 1 stationary points may sometimes correspond to local minima—a situa-
tion when of course ξ∗ is not optimal. The left panel of Fig. 6shows an illustration
(d = 2) for p = 1.5, K0(x, x ′) = exp(−‖x − x ′‖) and K1 being the Matérn 5/2
kernel K1,1. The measure ξ∗ is supported at the vertices of the equilateral triangle
(0, 0), (�, 0), (�/2,

√
(3)�/2) (indicated in blue on the figure), with � � 0.53 (the

value where ψ(·) is maximum). Here the xi correspond to local minima of δξ∗(x),
ψ(·) is not differentiable at zero but p > 1 so that δξ∗(·) is differentiable.

When p → ∞, ψ p(·) approaches the (discontinuous) function ψ∗(·), suggesting
that ξ∗ may become close to being optimal for φp when p is large enough. However,
whenX is large, ξ∗ is never truly optimal, no matter how large p is. Indeed, suppose
that X contains a point x∗ corresponding to the symmetric of a vertex xk of the
simplex defining the support of ξ∗ with respect to the opposite face of that simplex.
Direct calculation gives

L = ‖xk − x∗‖ = 2�

(
d + 1

2 d

)1/2

.

The right panel of Fig. 6 shows an illustration for K0 and K1 being the Matérn 3/2
and Matérn 5/2 kernels K0,1 and K1,1, respectively. The measure ξ∗ is supported at
the vertices of the equilateral triangle with vertices (0, 0), (�, 0), (�/2,

√
(3)�/2)
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with now � � 0.7. At the point x∗, symmetric to xk , indicated in red on the figure,
we have

δξ∗(x∗) = 1

d + 1

⎡
⎢⎢⎣
d+1∑
i=1
i �=k

ψ p(‖x∗ − xi‖) + ψ p(‖x∗ − xk‖) − d

⎤
⎥⎥⎦

= 1

d + 1
ψ p(L) > 0, (16)

where the second equality follows from ‖x∗ − xi‖ = � for all i �= k, implying that ξ∗
is not optimal. Another, more direct, proof of the non-optimality of ξ∗ is to consider
the measure ξ̂ that sets weights 1/(d + 1) at all xi �= xk and weights 1/[2(d + 1)] at
xk and its symmetric x∗. Direct calculation gives

φp (̂ξ ) = d

d + 1

(
1 − 1

d + 1

)
+ 2

2 (d + 1)

[
d

d + 1
+ 1

2 (d + 1)
ψ p(L)

]
.

The first term on the right-hand side comes from the d vertices xi , i �= k, each one
having weight 1/(d + 1) and being at distance � of all other vertices, those having
total weight 1− 1/(d + 1). The second term comes from the two symmetric points xk
and x∗, each one with weight 1/[2(d + 1)]. Each of these two points is at distance �

from d vertices with weights 1/(d + 1) and at distance L of the other opposite point
with weight 1/[2(d + 1)]. We get after simplification

φp (̂ξ ) = d

d + 1
+ ψ p(L)

2 (d + 1)2
> φp(ξ

∗) = d

d + 1
,

showing that ξ∗ is not optimal. Note that, for symmetry reasons, the design ξ̂ is not
optimal for large enoughX . The determination of a truly optimal design seems very
difficult. In the simplified problem of Sect. 5.1, where the criterion is based on the
function ψ∗ defined by (15), the measures ξ∗ and ξ̂ supported on d + 1 and d + 2
points, respectively, have the same criterion value φp(ξ

∗) = φp (̂ξ ) = d/(d + 1) for
all p > 0.

Although ξ∗ is not optimal, since ψ(‖x∗ − xk‖) < 1 (as ψ(t) takes its maximum
value 1 for t = �), (16) suggests that ξ∗ may be only marginally suboptimal when p is
large enough.Moreover, as the right panel of Fig. 6 illustrates, a design ξ∗ supported on
a regular simplex is optimal provided that X is small enough and p is large enough
to make δξ∗(x) concave at each xi (for symmetry reasons, we only need to check
concavity at one vertex). In fact, p > 2 is sufficient. Indeed, assuming that p > 2
and that ψ(·) is twice differentiable everywhere, with second-order derivative ψ ′′(·),
except possibly at zero, direct calculation gives

d2δξ∗(x)

dxdx�

⏐⏐⏐⏐
x=x1

= 1

d + 1

pψ p−1(�)ψ ′′(�)

�2

d+1∑
i=2

(x1 − xi )(x1 − xi )
�,
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Fig. 7 Surface plot of δξ∗ (x) (x ∈ R
2), the support of ξ∗ corresponds to the vertices of the equilateral

triangle in blue: K0 = K0,1, K1 = K1,1.07 (� � 1.92), p = 2. (Color figure online)

which is negative-definite (since ψ ′′(�) < 0, ψ(·) being maximal at �). The right
panel of Fig. 6 gives an illustration. Note that p < 2 on the left panel, and the xi
correspond to local minimas of δξ∗(·). Figure7shows a plot of δξ∗(x) for p = 2 and
K0 and K1 being theMatérn 3/2 andMatérn 5/2 kernels K0,1 and K1,1.07, respectively,
suggesting that the form of optimal designs may be in general quite complicated.

6 A numerical example

6.1 Exact designs

In this section, we consider numerical evaluations of designs resulting from the
prediction-based and distance-based criteria. Here, the rival models are the isotropic
versions of the covariance kernels used in Example 3 (Sect. 3.2) for the design space
X = [0, 10]2, discretised at n = 25 equally spaced points in each dimension. For
an agreement on the setting of correlation lengths in both kernels, we have applied a
minimisation procedure. Specifically, we have taken θ = θ0 = 1 in K0,θ (x, x ′) and
adjusted the parameter in the second kernel minimising each of the distance-based cri-
teria for the design X625 corresponding to the full grid. This resulted in θ1 = 1.0047,
1.0285, 1.0955 and 1.3403, respectively, for �F ,�1,�2 and �K L . We have finally
chosen θ1 = 1.07, which seems to be compatible with the above values.

The left panel in Fig. 8shows the plot of the two Matérn covariance functions at
the assumed parameter values. This plot illustrates the similarity of the kernels which
we aim to discriminate. The right panel in the figure refers to the plot of the absolute
difference between the covariance kernels. The red line corresponds to the distance
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Fig. 8 Left: Plot of the Matérn covariance functions at the assumed parameter setting. Right: ψ(t) =
|K0,θ0 (t, 0) − K0,θ1 (t, 0)|, (θ0 = 1, θ1 = 1.07). (Color figure online)

Fig. 9 Maximum likelihood estimates of the correlation lengths in Matérn kernels. (Color figure online)

where the absolute difference between them is maximal. This is denoted by �, which
is equal to � = 1.92 in this case.

The sequential approach is the only case where the observations Yn corresponding
to the previous design points Xn are used in the design construction. In our example,
we simulate the data according to the assumed model. We use this information to
estimate the parameter setting at each step. The (box)plots of the maximum likelihood
(ML) estimates θ̂0 and θ̂1 of the inverse correlation lengths θ0 and θ1 of K0,θ (x, x ′)
and K1,θ (x, x ′), respectively, are presented in Fig. 9. This refers to the case where the
first kernel, Matérn 3/2, is the data generator. The θ̂0 estimates converge to their null
value, θ0 = 1, drawn as a red dashed line in the left panel of Fig. 9, as expected due to
the consistency of the ML estimator in this case. For the second kernel to be similar to
the first one (i.e., less smooth), the θ̂1 estimates have increased (see the right panel).
The decrease of the correlation length causes the covariance kernel to drop faster as a
function of distance. We defer from presenting the opposite case (where the Matérn
5/2 is the data generator), which is similar.
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Apart from the methods applied in Sect. 4, we have considered some other static
approaches for discrimination. Ds-optimal design is a natural candidate that can be
applied in the distance-based fashion. For Ds-optimality, we require the general form
of the Matérn covariance kernel, which is based on the modified Bessel function of
the second kind (denoted by Cν). It is given by

Kν(r) = 21−ν

�(ν)

(√
2ν rθ

)ν

Cν

(√
2ν rθ

)
. (17)

Smoothness, ν, is considered as the parameter of interest, while the correlation length
θ is assumed as nuisance. The first off-diagonal element in the 2 × 2 information
matrix, associated with the estimation of parameters θ = (θ, ν), is

M(Xn, θ)12 = 1

2
trace

{
K−1

ν

∂Kν

∂θ
K−1

ν

∂Kν

∂ν

}
, (18)

see, e.g., Eq. (6.19) in Müller (2007). The other elements in the information matrix
are calculated similarly. We have used the supplementary material of Lee et al. (2018)
to compute the partial derivatives of the Matérn covariance kernel. Finally, the Ds-
criterion is

�Ds = |M(Xn, θ)|/|M(Xn, θ)11|, (19)

where M(Xn, θ)11 is the element of the information matrix corresponding to the
nuisance parameter (i.e., in M(Xn, θ)11 both partial derivatives are calculated with
respect to θ ). In the examples to follow we consider local Ds-optimal design; that is,
the parameters θ and ν are set at given values.

From a Bayesian perspective, models can be discriminated optimally when the
difference between the expected entropies of the prior and the posterior model prob-
abilities is maximised. This criterion underlies a famous sequential procedure put
forward by Box and Hill (1967) and Hill and Hunter (1969). Since such criteria typi-
cally cannot be computed analytically, several bounds were derived. The upper bound
proposed by Box and Hill (1967) is equivalent to the symmetric Kullback-Leibler
divergence �K L . Hoffmann (2017) derives a lower bound based on a lower bound for
the Kullback–Leibler divergence between a mixture of two normals, which is given
by Eq. (A3) and is denoted by �� . Here, we assume equal prior probabilities. A more
detailed account of Bayesian design criteria and their bounds is given in Appendix A.

Table 1 collects simulation results for the given example. We have included the
sequential procedure (4) as a benchmark for orientation. For all other approaches the
true parameter values are used in the covariance kernels. Concerning static (distance-
based) designs basedonmaximisation of�F ,�1,�2,�K L ,��,�Ds , for eachdesign
size considered we first built a an incremental design and then used a classical
exchange-type algorithm to improve it. These designs are thus not necessarily nested,
i.e., Xn �⊂ Xn′ for n < n′.

Each design of size n was then evaluated by generating N = 100 independent sets
of n observations generated with the assumed true model, evaluating the likelihood
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Table 1 Comparison of average hit rates in different methods for the first numerical example

Average hit rate

Design size 5 6 7 8 9 10 20 30 40 50

Sequential (4) 0.500 0.535 0.540 0.595 0.570 0.640 0.695 0.715 0.740 0.770

φA 0.505 0.500 0.530 0.525 0.505 0.510 0.520 0.535 0.585 0.635

φB 0.520 0.545 0.575 0.585 0.615 0.650 0.785 0.875 0.900 0.910

φK L 0.520 0.545 0.575 0.585 0.615 0.650 0.785 0.870 0.915 0.925

�F 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.900 0.925 0.950

�1 0.525 0.520 0.555 0.540 0.550 0.610 0.725 0.890 0.910 0.920

�2 0.525 0.520 0.555 0.540 0.550 0.610 0.715 0.860 0.890 0.910

�K L 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.895 0.925 0.955

�� 0.595 0.625 0.610 0.645 0.675 0.700 0.795 0.895 0.935 0.940

�Ds 0.540 0.575 0.590 0.620 0.650 0.675 0.805 0.850 0.855 0.925

Bold numbers indicate the highest average hit rate achieved for each design size

functions for these sets of observations for both models, and then deciding for each
set of observations which model has the higher likelihood value. The hit rate is the
fraction of sets of observations where the assumed true model has the higher likeli-
hood value. The procedure was repeated by assuming the other model to be the true
one. The two hit rates are then averaged and stated in Table 1, which contains the
results for all the criteria and design sizes we considered. For the special case of the
sequential construction (4), the design path depends on the observations generated at
the previously selected design points; that is, unlike for the other criteria, for a given
design size n each random run produces a different design. To compute the hit rates
for a particular n we used N = 100 independent runs of the experiment.

The hit rates reported in Table 1 reflect the discriminatory power of the correspond-
ing designs. One can observe that �F and as expected �K L are outperforming in
terms of hit rates. The Bayesian lower bound criterion �� is similar to the symmetric
�K L . The sequential design strategy (4) does not behave as well as the outperforming
ones. It is, however, the realistic scenario that one might consider in applications as
it does not assume knowledge of the kernel parameters. The effect of this knowledge
can thus be partially calibrated for by comparing the first line against the other criteria.

6.2 Optimal designmeasure for�p

Theorem 1 also allows the use of approximate designs as it presents a necessary
condition for optimality of the family of criteria φp, p > 0. This is more extensively
discussed in the previous section.Herewe present the numerical results for two specific
cases of p = 2 and p = 10. To reach a design which might be numerically optimal
(or at least nearly optimal), we have applied the Fedorov–Wynn algorithm (Fedorov
1971; Wynn 1970) on a dense regular grid of candidate points.

Numerical results show that for very small p (e.g., p = 1) explicit optimalmeasures
are hard to derive. The left panel in Fig. 10 presents the measure ξ∗

2 obtained for
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Fig. 10 Left: The optimal measure for φ2. Right: The optimal measure for φ10. (Color figure online)

φ2. To construct ξ∗
2 , we have first calculated an optimal design on a dense grid by

applying 1000 iterations of the Fedorov–Wynn algorithm (see the comment following
Theorem 1); the design measure obtained is supported on 9 grid points. We then
applied a continuous optimisation algorithm (library NLopt (Johnson 2021) through
its R-interface nloptr) initialised at this 9-point design. The 9 support points of the
resulting design measure ξ∗

2 are independent of the grid size; they receive unequal
weights, proportional to the disk areas on Fig. 10-left. Any translation or rotation of
ξ∗
2 yields the same value of φ2.
As the order p increases, we eventually reach an optimal measure with only three

support points and equal weights. The right panel in Fig. 10 corresponds to the opti-
mal design measure computed for φ10. This has, similarly as before, resulted from
application of a continuous optimisation initialised at an optimal 3-point design cal-
culated with the Fedorov–Wynn algorithm on a grid. This optimal design measure
ξ∗
10 has three support points, drawn as blue dots, with equal weights 1/3 represented
by the areas of the red disks. The blue line segments between every two locations
have length � � 1.92, reflecting the ideal interpoint distance (see the right panel of
Fig. 8), in agreement with corresponding discussions in Sect. 5. Also here the optimal
designs are rotationally and translationally invariant, and thus any design of such type
is optimal as long as the design region is large enough to fit it.

7 Conclusions

In this paper we have considered the design problem for the discrimination ofGaussian
process regression models. This problem differs considerably from the well-treated
one in standard regression models and thus offers a multitude of challenges. While the
KL-divergence is a straightforward criterion, it comes with the price of being compu-
tationally demanding and lacking convenient simplifications such as design measures.
We have therefore introduced a family of criteria that allow such a simplification at
least in special cases and have investigated its properties. We have also compared the
performance of these and other potential criteria on several examples and see that
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KL-divergence can be effectively replaced by simpler criteria without much loss in
efficiency. In particular designs based on the Fréchet-distance between covariance
kernels seem to be competitive. Results from the approximate design computations
indicate that for classical isotropic kernels, designs with d+1 support points placed at
the vertices of a simplex of suitable size are optimal for distance-based criteria φp for a
large enough p when the design region is small enough and are marginally suboptimal
otherwise.

As a next step, it would be interesting to investigate the properties of the discrim-
ination designs under parameter uncertainty, for example by considering minimax or
Bayesian designs.

A referee has indicated that our techniques could be used for discriminating the
intricately convoluted covariances stemming fromdeepGaussian processes (as defined
inDamianou andLawrence (2013)) frommore conventional ones. This is an interesting
issue of high relevance for computer simulation experiments that certainly needs to
be explored in the future.
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Appendix A: Notes on Box–Hill–Hunter Bayesian criteria for model
discrimination between Gaussian random fields

Chapter 5 of Hoffmann (2017) contains an overview of Bayesian design criteria for
model discrimination and some useful bounds on them.We assume there areM models
m0, . . . ,mM−1. Themost commonBayesian design criterion formodel discrimination
has the following form:

��(Xk) = −
M−1∑
i=0

p(mi ) log(p(mi ))

+
∫
Yk∈Y

p(Yk)

M−1∑
i=0

p(mi |Yk) log(p(mi |Yk)) dYk, (A1)
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where the data Yk = (Y1(x1), . . . ,Yk(xk))� are observed at the design Xk =
(x1, . . . , xk), p(mi ) denotes the prior and p(mi |Yk) the posterior model probabil-
ity of model mi and p(Yk) is the marginal distribution of Yk with respect to the
models. Hence, this criterion is the (expected) difference of the model entropy and
the conditional model entropy (conditional on the observations). The posterior model
probability p(mi |Yk) is defined by

p(mi |Yk) ∝ p(Yk |mi )p(mi ),

where p(Yk |mi ) is the likelihood of model mi (marginalised over the parameters),
and p(Yk) is given by

p(Yk) =
M−1∑
i=0

p(Yk |mi )p(mi ).

The first term in (A1) does not depend on the design and can therefore be ignored.
A common alternative formulation of criterion (A1) is the one adopted by Box and

Hill (1967) and Hill and Hunter (1969), which will henceforth be called Box-Hill-
Hunter (BHH) criterion:

��(Xk) =
M−1∑
i=0

p(mi )

∫
Yk∈Y

p(Yk |mi ) log

(
p(Yk |mi )

p(Yk)

)
dYk . (A2)

In our case, if we assume point priors for the kernel parameters, we have

p(Yk |mi ) = ϕ(Yk |ηk,i ,Kk,i ),

whereηk,i = (η1,i (x1), . . . , ηk,i (xk))� is themean vector ofmodel i at designXk ,Kk,i

is the k × k kernel matrix of model i with elements given by {Kk,i } j,l = Ki (x j , xl),
and ϕ(·|η,K) is the normal pdf with mean vector η and variance-covariance matrix
K.

For example, for a static design involving n design points, we set k = n and assume
that ηn,i = 0 for each design Xn . The model probabilities p(mi ) would just be the
prior model probabilities before having collected any observations.

In a sequential design setting, where n observationsYn have already been observed
at locations Xn and we want to find the optimal design point x where to col-
lect our next observation, we have k = 1 and set ηk,i to the conditional mean
η̂n,i (x) = kn,i (x)�K−1

n,iYn andKk,i to the conditional variance ρ2
n,i (x) = Ki (x, x)−

kn,i (x)�K−1
n,i kn,i (x), where kn,i (x)� = (Ki (x, x1), . . . , Ki (x, xn)), see Sect. 3.1.

The prior model probabilities would have to be set to the posterior model probabilities
given the already observed data:

p(mi ) = p(mi |Yn) ∝ ϕ(Yn| 0,Kn,i ) p(mi ).

123



1302 E. Yousefi et al.

It follows that p(Yk) is a mixture of normal distributions. The criterion representa-
tions (A1) and (A2) cannot be computed directly. However, several bounds have been
developed for the criterion, the most famous being the classic upper bound derived by
Box and Hill (1967).

Appendix A.1: Upper bound

The upper bound has the following form (see alsoHoffmann (2017, Thm. 5.2, p. 168)):

�U (Xk) = 1

2

M−1∑
i=0

M−1∑
j=0

p(mi )p(m j )

{∥∥ηk,i − ηk, j
∥∥2
K−1
k, j

+ trace
(
Kk,iK

−1
k, j

)
− n

}
.

For M = 2, the formula simplifies to

�U (Xk) = 1

2
p(m0)p(m1)

{∥∥ηk,0 − ηk,1
∥∥2
K−1
k,0

+ ∥∥ηk,0 − ηk,1
∥∥2
K−1
k,1

+trace
(
Kk,0K

−1
k,1

)
+ trace

(
Kk,1K

−1
k,0

)
− 2n

}
.

This is equivalent to the symmetric Kullback–Leibler divergence that we use as the
criterion �K L (with p(m0) = p(m1) = 1/2 and ηk,0 = ηk,1 = 0).

Appendix A.2: Lower bound

Hershey and Olsen (2007, Sect. 7) derive a lower bound for the Kullback–Leibler
divergence between a mixture of two normals, see also Hoffmann (2017, Thm. 5.4
and Cor. 5.5, pp. 173–174). This result is then used by Hoffmann (2017) to find a
lower bound for the BHH criterion ��(Xk) (Hoffmann 2017, Thm. 5.9, p. 178). This
lower bound is given by

��(Xk) = −
M−1∑
i=0

p(mi ) log

⎧⎨
⎩

M−1∑
j=0

p(m j ) exp

(
−1

2
�(Xk)i j

)⎫⎬
⎭ ,

where

�(Xk)i j = ∥∥ηk,i − ηk, j
∥∥2
K−1
k, j

+ trace
(
Kk,iK

−1
k, j

)
− log det

(
Kk,iK

−1
k, j

)
− n.

For M = 2, which is the relevant case for our setup, we get

��(Xk) = −p(m0) log

{
p(m0)

+p(m1) exp

(
−1

2

[∥∥ηk,0 − ηk,1
∥∥2
K−1
k,1

+ trace
(
Kk,0K

−1
k,1

)
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− log det
(
Kk,0K

−1
k,1

)
− n

])}

−p(m1) log

{
p(m1)

+p(m0) exp

(
−1

2

[∥∥ηk,0 − ηk,1
∥∥2
K−1
k,0

+ trace
(
Kk,1K

−1
k,0

)

− log det
(
Kk,1K

−1
k,0

)
− n

])}
(A3)

where ϕi (·) = ϕ(·|ηk,i ,Kk,i ), which we are also using to compute designs in Sect. 6.1
(again with p(m0) = p(m1) = 1/2 and ηk,0 = ηk,1 = 0).
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