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We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically

with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination.

We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number

resolving detector in order to lower the error probability. We compare the two different receivers with an optimal

intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results.

The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental

realization of a homodyne receiver with postselection. In the comparison, it becomes clear that the performance

of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within

any Gaussian operations and conditional dynamics.

DOI: 10.1103/PhysRevA.81.062338 PACS number(s): 03.67.Hk, 03.65.Ta, 42.50.Lc

I. INTRODUCTION

In classical communication systems, information is usually

encoded into orthogonal quantum or semiclassical states of

light. An important example is binary phase shift keying with

coherent states where the logical information, “0” and “1,”

is encoded as two coherent states with large amplitudes and

a relative phase of π . Since the two coherent states each

possess a large amplitude (with opposite signs), they are nearly

orthogonal and thus they can be easily discriminated using an

interferometric measurement strategy. On the other hand, if the

amplitude becomes very small, which is the case for quantum

communication as well as long-distance amplification-free

(e.g., free-space) classical communication, the two states

are largely overlapping and thus nonorthogonal. Because of

this nonorthogonality, the states can no longer be perfectly

discriminated. Although perfect discrimination is not possible,

it is of high interest to find optimized strategies in order to

minimize measurement errors, thus keeping the error rate as

low as possible and increasing the mutual information between

sender and receiver. Moreover, the search for such optimized

strategies are of utmost importance for many applications

in quantum communication with quantum key distribution

(QKD) being the prime example [1–3]. Finally, we note

that the problem of finding optimized measurement schemes

associated with a predefined alphabet is a fundamental problem

in quantum mechanics [4,5].

There are basically two well-known discrimination strate-

gies. In the first strategy, all measurement outcomes are

used (that is, it is deterministic) and, therefore, the resulting

conclusions will be infected by errors. The idea is to optimize

the strategy such that the probability for making an error is

minimized. This strategy is known as minimum error state

discrimination and has been analyzed by Helstrom [4]. The

second discrimination strategy is probabilistic, and yields a

valid outcome only when the conclusion drawn from the

measurement is known to be error-free. Therefore, in this task

the goal is to minimize the probability of inconclusive results

(which are discarded). This strategy is known as unambiguous

state discrimination (USD) and was originally proposed by

Ivanovic, Dieks and Peres [5–8]. A combination of the two

discrimination schemes where one allows for both erroneous

and inconclusive results has also been treated theoretically.

More precisely, the minimal probability of errors for a fixed

probability of inconclusive results has been derived for pure

and mixed states in Refs. [9] and [10], respectively.

For the discrimination of two coherent states with minimum

error, several optimal and near-optimal receivers have been

proposed [11–17]. Also, a device for implementing USD

of coherent states was proposed by Huttner et al. [18] and

later by Banaszek [19]. Some of these schemes have been

experimentally accessed, such as the Dolinar receiver [20], the

optimized displacement receiver [21,22], and a programmable

receiver implementing USD [23]. However, the intermediate

regime where errors as well as inconclusive results may occur

has only recently been investigated experimentally [24].

In this paper, we elaborate on the work of Ref. [24].

We investigate two different receivers that belong to the

intermediate regime. The first is a standard homodyne detector,

and the second is a displacement-controlled photon number

resolving detector [25]. In both receivers the measurement

outcomes are postselected to obtain a specific relation be-

tween errors and inconclusive results. The postselection-based

homodyne detector has been used in various protocols such as

QKD [26–28], squeezed state and entangled state distillation

[29–33], and quantum state engineering [34–37]. Here we

thoroughly characterize the detector in terms of the discrim-

ination between two coherent states. In addition we conduct

a thorough experimental analysis of the displacement-based

photon number resolving detector (PNR) that was introduced

in Refs. [24,25]. We find that the displacement-based PNR

receiver outperforms the standard homodyne detection.

The paper is organized as follows. First, we recapitulate

the notion of intermediate measurement for coherent states

in Sec. II. In Secs. III and IV, we consider measurements
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in the intermediate regime with two strategies: a receiver

using a homodyne detector and a receiver using an optimized

displacement combined with a photon number resolving

detector. In Sec. III, we prove that the postselection-based

homodyne scheme is the optimal strategy for realizing the

intermediate measurement within all possible Gaussian opera-

tions and conditional dynamics. We demonstrate both receivers

experimentally in Sec. V. Finally, we summarize the results in

Sec. VII.

II. INTERMEDIATE MEASUREMENT

Let us assume a sender picks one signal state out of two

pure and phase-shifted coherent states and sends it through a

communication channel that preserves the quantum property

of the state. On the other end of the channel, a receiver has

to tell which state was chosen by the sender. Let us also

assume that the a priori probabilities for the preparation of the

states are p1 = p2 = 1
2

and that the received states are |−α〉
or |+ α〉.

The receiver measures the signal state and, based on the

measurement outcome, guesses the state. Because of the

nonorthogonality of the alphabet, however, the result will

not be correct in all such attempts. In fact, the minimal

error probability is given by the inner product of the states

in the alphabet, σ = |〈−α|α〉|. The maximally accessible

information of the receiver is directly related to the minimal

error rate.

The receiver can alternatively choose a measurement

strategy that allows for inconclusive results. In this strategy, he

will only accept states that are likely to be correctly identified,

while he does not attempt to guess the results for signals

associated with the inconclusive measurement results. This

strategy is probabilistic as the outcomes are postselected. It

can be shown that for higher probability of inconclusive results

pinc (or lower acceptance probability 1 − pinc) a lower error

probability pE can be achieved.

This intermediate measurement strategy can be described

by the three-component positive operator-valued measure

(POVM) �̂i, i = 1,2,?, where �̂i > 0 and �̂1 + �̂2 + �̂? =
Î . Consequently, an inconclusive result will occur with the

probability

pinc = p1〈−α|�̂?| − α〉 + p2〈α|�̂?|α〉, (1)

where 〈−α|�̂?| − α〉 (〈α|�̂?|α〉) represents the probability

of inconclusive results when |− α〉 (|α〉) was prepared.

Furthermore, the average error probability is given by

pE =
p1〈−α|�̂2| − α〉 + p2〈α|�̂1|α〉

1 − pinc

, (2)

where 〈−α|�̂2| − α〉 (〈α|�̂1|α〉) represents the error proba-

bility of mistakenly guessing |α〉 (| + α〉).
Finally the measurement strategy is optimized, such that the

receiver’s error probability is minimized for a given probability

of inconclusive results. The error probability according to [9]

is then given by

pE �
1

2

(
1 −

[1 − 2pinc(1 − σ ) − σ 2]1/2

1 − pinc

)
, (3)

where the error rate is lower bounded by the inner product and

the tolerated rate of inconclusive results. A receiver scheme

achieving this optimal bound is yet unknown. In the following

two sections, we investigate two near-optimal receivers: the

postselection-based homodyne receiver and the displacement-

controlled photon number resolving detector.

III. HOMODYNE RECEIVER

A very simple receiver type, which is tunable in the

probability of inconclusive results, is based on homodyne

detection followed by postselection [26–28]. The schematic

of this receiver is shown in Fig. 1(a). We now reconsider

homodyne detection with postselection in the context of state

discrimination in the aforementioned intermediate regime.

In the homodyne measurement, the local oscillator is set

along the excitation of the coherent states resulting in a

distribution of quadrature values as shown in Fig. 1(b). The

conclusion of the receiver is deduced from the particular result,

where positive measurement outcomes greater than a postse-

lection threshold B identify |α〉 whereas negative outcomes

less than the postselection threshold −B identify |− α〉. All

measurement outcomes between the postselection thresholds

are considered as inconclusive results. The corresponding

POVMs are �̂1 =
∫ −B

−∞ |x〉〈x|dx, �̂2 =
∫ ∞
B

|x〉〈x|dx, and

�̂? = Î − �̂1 − �̂2, and result in the error probability

pE,HD =
1 − erf[

√
2(B + |α|)]

2(1 − pinc,HD)
. (4)

The probability of inconclusive results is found to be

pinc,HD =
1

2
{erf[

√
2(B + |α|)] + erf[

√
2(B − |α|)]}. (5)

In the following, we prove that the postselected homodyne

scheme is the optimal strategy for realizing the intermediate

measurement within all possible Gaussian operations and

conditional dynamics (classical feedback or feedforward). For

simplicity we assume α is real and positive. Note that if

the input alphabet as well as all operations are Gaussian,

conditional dynamics is useless [38–40]. In our case, however,

the input alphabet consists of an ensemble of two coherent

states p1|−α〉〈−α| + p2|α〉〈α|. This is clearly non-Gaussian,

and thus we cannot discard conditional dynamics as a tool

to improve the discrimination task. We first briefly introduce

the characteristic functional formalism of POVMs and then

discuss the POVMs via Gaussian operations with and without

conditional dynamics.

Here we use a characteristic function formalism similar to

the approach used to prove the optimality of the homodyne

measurement for discriminating binary coherent states with

minimum error under Gaussian operations [17]. In quantum

optics, the characteristic function χ (ω) is often a useful tool

to represent a continuous variable quantum state [41]. In an

N -mode infinite-dimensional system, the characteristic func-

tion of a quantum state with the density matrix ρ̂ is defined

as

χρ(ω) ≡ Tr[ρ̂ exp(iωT R̂)], (6)

062338-2
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FIG. 1. (Color online) (a) Schematics of the homodyne receiver,

showing that the signal (S) is interfered with a local oscillator (LO)

on a 50:50 beam splitter. The photocurrents of two photodiodes are

subtracted, resulting in a quadrature measurement along the encoding

quadrature. (b) Marginal distribution of the two signal states. In

the example, we assume a signal with |α|2 = 0.24. According to

the measurement result the correct answer (−,?,+) is guessed.

(c) Schematics of the photon number resolving (PNR) receiver. The

signal (S) is interfered with an auxiliary oscillator (AO) on a highly

transmissive beam splitter. Finally, the signal is measured by a photon

number resolving detector (PNRD). (d) Photon number distribution

of two signal states. According to the measurement outcome of the

PNRD the correct answer is guessed. In the example, we assume

a signal with |α|2 = 0.24 and a displacement of β = 1. Results for

n = 1 are considered inconclusive. (e) Comparison of PNR receivers

with m = 1–3 (solid lines) with homodyne receiver (dashed lines)

at equal success rates. The PNR receiver outperforms the homodyne

receiver for all signal amplitudes. The dot-dashed lines show the error

rate of the optimal measurement.

where ω ∈ R
2N and R̂ = [x̂1, . . . ,x̂N ,p̂1, . . . ,p̂N ]. Here x̂i

and p̂i are the quadrature operators of mode i. In particular,

a Gaussian state is defined as the state whose characteristic

function is represented by a Gaussian function [42],

χρ(ω) = exp
(
− 1

4
ωT Ŵω + iDT ω

)
, (7)

where Ŵ is a 2N × 2N covariance matrix and D is a 2N -vector

corresponding to the displacement.

A similar formalism is applicable for the representation of

POVMs. A single-mode POVM consisting of any Gaussian

operation, Gaussian auxiliary states, and homodyne measure-

ments can be described by a set of operators {�̂(dM)}dM whose

characteristic function is [17]

χd (ω) = Tr[�̂(D) exp(iωT R̂)]

=
1

π
exp

(
−

1

4
ωT ŴMω + idT

Mω

)
, (8)

where ŴM is a 2 × 2 covariance matrix and dM = [u,v]T

represents the measurement outcome. A typical example

of the measurement in this class is a heterodyne measure-

ment described by {�̂(β) = |β〉〈β|/π}β∈C whose covariance

matrix is calculated to be an identity matrix and dM =
[
√

2Reβ,
√

2Imβ]T . Another example may be a homodyne

measurement: A homodyne measurement with the phase

ϕ = 0 is a projection measurement onto an X quadrature, and

its covariance matrix is given by ŴM = diag[e−2r ,e2r ] with

r → ∞ and the element in the first row of dM corresponding

to the measurement outcome. Note that the POVM in Eq. (8)

does not include conditional dynamics. In this formalism, the

probability distribution of detecting a state ρ̂ by a POVM

�̂(dM) is calculated as

P (dM) = Tr[ρ̂�̂(dM)] =
1

2π

∫
dωχρ(ω)χd (−ω). (9)

More general characteristics of Gaussian state transformations

in the formalism of characteristic function are described, for

example, in [40,42].

Let us construct the intermediate measurement via a

Gaussian measurement described in Eq. (8), that is, without

conditional dynamics, and classical postprocessing for a set of

binary coherent states {|α〉,|−α〉}. When the measurement is

“noise-free” (i.e., consisting of Gaussian unitary operations,

pure Gaussian ancillary states, and ideal homodyne measure-

ments) the covariance matrix is simply given by [17]

ŴM =
[

cosh 2r − sinh 2r cos ϕ sinh 2r sin ϕ

sinh 2r sin ϕ cosh 2r + sinh 2r cos ϕ

]
,

(10)

where r and ϕ are real parameters. This noise-free re-

striction does not compromise generality since one can

always construct a general Gaussian measurement by

preparing a corresponding noise-free Gaussian measure-

ment and discarding some of its measurement outcomes.

We also note that such a noise-free Gaussian mea-

surement corresponds to { 1
π
|ψζ (u,v)〉〈ψζ (u,v)|}(u,v), where

|ψζ (u,v)〉 = D̂(u,v)Ŝ(ζ )|0〉, D̂(u,v) = exp[i(vx̂ − up̂)] and

Ŝ(ζ ) = exp[(ζ ∗â2 − ζ â† 2)] are a displacement and a squeez-

ing operator, respectively, and ζ = reiϕ is a complex squeezing

parameter.

The characteristic functions of the coherent states |± α〉
are given by χ±(ω) = exp(− 1

4
ωT Iω + idT

±ω), where I is

the identity matrix and d± = [±
√

2α,0]T . The probability

distribution of detecting | ± α〉 with such a POVM is thus

062338-3
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calculated to be

P (u,v|±) =
1

2π

∫
dωχ±(ω)χD(−ω)

=
1

π
√

det(ŴM + I )
exp{−[(±

√
2α − u)2a

− 2(±
√

2α − u)vc + v2b]}, (11)

where

1

ŴM + I
=

[
a c

c b

]
, (12)

and

a =
1 + cosh 2r + sinh 2r cos ϕ

2(cosh 2r + 1)
, (13)

b =
1 + cosh 2r − sinh 2r cos ϕ

2(cosh 2r + 1)
, (14)

c =
− sin 2r sin ϕ

2(cosh 2r + 1)
. (15)

We first show that the optimal measurement in this class is

homodyne detection. Let us denote the likelihood ratio of two

signals as


1 =
p1P (u,v|−α)

p2P (u,v|α)
=

p1

p2

exp[−4
√

2α(au + cv)], (16)

and 
2 = 
−1
1 . According to the Bayesian strategy [4], an

optimal signal decision for the fixed measurement is to guess

|−α〉 for 
1 � 
B , |α〉 for 
2 � 
B , and the inconclusive

result otherwise, where 
B is the threshold. The probabilities

of having successive, erroneous, and inconclusive results for

each signal are then given by

p(±)
s =

1

2
erfc

(√
2aα −

ln 
B ± ln(p1/p2)

4
√

2α

)
, (17)

p(±)
e =

1

2
erfc

(√
2aα +

ln 
B ∓ ln(p1/p2)

4
√

2α

)
, (18)

p
(±)
i = p(±)

s − p(±)
e . (19)

The average error and inconclusive probabilities are given by

pE = (p1p
(−)
e +p2p

(+)
e )/(1−pinc) and pinc=p1p

(−)
i +p2p

(+)
i ,

respectively. We find that, for a given 
B , these two prob-

abilities are simultaneously minimized for ϕ = 0 and r → ∞,

that is, an ideal homodyne measurement with phase ϕ = 0.

This implies that the optimal measurement with only Gaussian

operations is the homodyne detector with a fixed phase of

ϕ = 0.

Furthermore, in the following we prove that any conditional

operation will not improve the discrimination task. To prove

this, we consider two different Gaussian operators. The first

operation is a partial measurement of the signal which in

general outputs a measurement outcome (classical number)

and a conditioned output state. For an input of p1|−α〉〈−α| +
p2|α〉〈α|, the conditioned output is given as

ρ̂out = p′
1(dM)ρ̂− + p′

2(dM)ρ̂+, (20)

where ρ̂± are general multimode states that preserve Gaussian

statistics with the joint covariance matrix Ŵout and the dis-

placement ±D. Here dM denotes the measurement outcome

and thus only the a posteriori probabilities in Eq. (20) depend

on dM. Moreover, it was shown that ρ̂out can always be

transformed into another mixture of coherent states [17],

ρ̂out → ρ̂α′ ⊗ ρ̂aux, (21)

where ρ̂aux is some Gaussian state and

ρ̂α′ = p′
1(dM)|−α′〉〈−α′| + p′

2(dM)|α′〉〈α′|, (22)

with real and positive α′. Such an additional Gaussian

operation can be deterministic and independent of the partial

measurement outcome dM. Since only the a posteriori

probabilities depend on dM, the optimal second operation

is independent of dM and given by a fixed homodyne mea-

surement (ϕ = 0) as already shown. We therefore conclude

that any conditional dynamics is not useful in the two-step

measurement scenario. An extension of the above conclusion

to the multistep measurement scenario is straightforward,

which proves the optimality of the homodyne detector within

all possible Gaussian operations and conditional dynamics.

IV. PHOTON NUMBER RESOLVING RECEIVER

Quadrature measurements (measurements of the light’s

field amplitude) and photon counting measurements (mea-

surements of the excitation of a light field) are fundamentally

different. Therefore, it is of interest to investigate also a

receiver based on the latter technique. In Ref. [25] we

proposed to use a photon number resolving receiver for the

discrimination of two coherent states. It consists of two stages:

a displacement operation D(β) and a photon number resolving

detector (PNRD), and it is sketched in Fig. 1(c).

The postselection process of the PNR receiver is similar to

that of the homodyne detector: If the measurement outcome

of the PNR detector is n = 0, we guess |− α〉, if it is

n > m (where m is the threshold parameter), we guess |α〉,
and otherwise the measurement is inconclusive. This can

be described by the projector �̂? =
∑m

n=1 |n〉〈n| for m > 0.

Conclusive results are described by �̂1 = |0〉〈0| and �̂2 =
Î − �̂1 − �̂?, where �̂1 identifies |− α〉 and �̂2 identifies

|α〉. An example for the photon number distributions of two

displaced coherent states is shown in Fig. 1(d). The error rate

is then given by

pE,PNR =
(
1 − Ŵ(m+1,(α−β)2)

Ŵ(m+1)
+ e−(α+β)2)

2(1 − pD,inc)
, (23)

where the Euler gamma function Ŵ(z) and the incomplete

gamma function Ŵ(a,z) are defined as Ŵ(z) =
∫ ∞

0
tz−1e−tdt

and Ŵ(a,z) =
∫ ∞
z

ta−1e−tdt . The probability of inconclusive

results is given by

pinc,PNR =
Ŵ(m + 1,(α − β)2) + Ŵ(m + 1,(α+β)2)

2Ŵ(m + 1)

−
1

2
e−(α−β)2 −

1

2
e−(α+β)2

. (24)

The displacement in the receiver can be chosen such that

one of two input states is displaced to the vacuum state (β = α)

as suggested by Kennedy [11]. However, to minimize the error

rate of the receiver the displacement must be optimized, that

062338-4
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is, dpE,PNR/dβ = 0. A detailed discussion of this receiver can

be found in Ref. [25].

We compare the PNR receiver with homodyne receivers

with different postselection thresholds. In this comparison,

we choose the postselection parameter B such that the rates

of inconclusive results are equal for both strategies, that is,

pinc,HD = pinc,PNR. The error probability for the receivers

with m = 0–2 and the corresponding homodyne receivers

are plotted against the mean photon number of the signal in

Fig. 1(e). We find that the performance of the PNR receiver

(solid lines) surpasses the performance of the homodyne

receiver (dashed lines) for all signal amplitudes. The optimal

discrimination strategy is shown by the dot-dashed, gray

curve.

V. EXPERIMENTAL RESULTS

In the following section, the receiver schemes are demon-

strated with the experimental setup shown in Fig. 2. It consists

of a preparation stage and two different receiver stages; the

PNR receiver and a homodyne receiver. Our source is a grating

stabilized cw diode laser at 810 nm (Toptica DL100). After

passing a fiber mode cleaner, the linearly polarized beam is

split asymmetrically into two parts to serve as a local oscillator

of the homodyne receiver (LO) and an auxiliary oscillator

for state preparation and displacement in the PNR receiver

scheme. The signal state (S) is generated in a polarization

mode orthogonal to the auxiliary mode using an electro-optical

modulator (EOM): The field amplitude of the auxiliary mode

LO

50:50

State preparation

ModulatorAttenuator

Modulator PBS PNRD

PNR receiver

50:50

Homodyne
reveiver

Diode
laser

τ

FMCBS

HWP

AO S

S

FIG. 2. (Color online) Simplified scheme of the experiment,

where the abbreviated components are a fiber mode cleaner (FMC),

beam splitters (BSs, 50:50), a polarizing beam splitter (PBS), a

half-wave plate (HWP), and a photon number resolving detector

(PNRD). The graphs show modulation and the corresponding

recorded quadrature measurements and detection events of the PNRD.

is coherently transferred into the signal polarization and the

excitation is controlled by the input voltage of the modulator.

Note that the auxiliary oscillator remains in the polarization

mode orthogonal to the signal mode, thus propagating along

with the signal. After the signal was split on a 50:50 beam

splitter, two identical signal states (either |α〉⊗2 or |−α〉⊗2)

are produced and subsequently directed to the two detection

schemes.

The signal states are generated in time windows of τ =
800 ns with a repetition rate of 100 kHz. This was done by

applying a constant voltage across the modulator during the

measurement time. The birefringence induced by the EOM’s

input voltage causes a variable coupling between the S and AO

mode similarly to a variable beam splitter. We can therefore

tune the signal amplitude continuously.

This modulation scheme is in contrast to the commonly

used sideband modulation approach in experiments with

homodyne detectors, where a rf modulation is applied to

the modulator to create a pair of frequency sideband modes

that defines the quantum state. Since an avalanche photodiode

(APD) is not capable of selecting a specific pair of sideband

modes, such a sideband approach cannot be used when the

homodyne detector is used in conjunction with an APD. The

quantum states are therefore defined as a pulse in the temporal

frame of the local oscillator. The exact pulses measured by

the two detectors are not identical as they have different

frequency responses. The effect of the detector response

is described after the detailed description of the detection

schemes.

We carefully characterize the prepared input signal and

verify that the excess noise added to the quadrature by the

signal preparation is only 5 × 10−3 shot noise units (see

Ref. [21]). This purity is achieved by attenuation of the laser

(the carrier) down to the single-photon level, thereby minimiz-

ing the thermal fluctuations at low frequencies prevailing in

normal diode laser operation.

At the homodyne receiver the signal interferes with the

local oscillator, the two resulting outputs are detected, and

a difference current is produced. This yields an integrated

quadrature value for each signal pulse. The detected signal of

the homodyne detector is filtered with a seven-pole Chebyshev

low-pass filter from dc to 10 MHz, and subsequently the signal

is sampled at the rate 20 MS/s. For a single pulse, the number

of samples produced was therefore 16. These data were then

averaged, thus resulting in a single quadrature measurement

for an 800 ns pulse. The technical noise at low frequencies was

removed by correcting for the baseline shift occurring between

consecutive signal states. The phase of the signal relative to

the LO is estimated by sending a number of bright calibration

pulses along with the signal pulses. Subsequently, the measure-

ments are accepted or discarded according to the estimated

phase, that is, they are accepted only if the measurement

was performed along the signal encoding quadrature. This

substitutes for a technically demanding phase-locking method.

A drawback is the increased measurement time. The overall

quantum efficiency of the homodyne receiver amounts to

ηhom = 85.8%; the interference contrast to the local oscillator

is (96.6 ± 0.1)% and the p-i-n diode quantum efficiency is

(92 ± 3)%. The electronic noise level is more than 23 dB below

the shot noise level.
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The PNR receiver is composed of a displacement operation

and a fiber-coupled avalanche photodiode operating in an

actively gated mode to circumvent a dark count event and

thus a dead time at the time the pulse is arriving. During

the measurement time, the APD works as a primitive photon

number resolving detector, as used in [43]. The quantum states

are subsequently categorized according to the corresponding

result of the photon number measurement, thus implementing

the POVMs �̂1 = |0〉〈0|, �̂? =
∑m

n=1 |n〉〈n|, and �̂2 = Î −
�̂1 − �̂?. In contrast to the displacement operation depicted

in Fig. 1(b) where two spatially separated modes interfere on a

beam splitter, in our setup the two modes (the auxiliary and the

signal modes) are in the same spatial mode but have different

polarization modes [Fig. 1(c)]. The interference (and thus the

displacement) is therefore controlled by a modulator and a

polarizing beam splitter. This method facilitates the displace-

ment operation and yields a very high interference contrast

of 99.6%. A high extinction ratio is of great importance as

the mismatched part of the auxiliary might impinge onto the

APD and cause false detection events. Such false counts can

be detrimental to the discrimination task for receivers with low

error rate and especially if the signal amplitude is relatively

large.

The detection efficiency of the scheme is estimated as

ηon/off = 55%, including the transmission coefficient of the

modulator, the polarization optics, and the fiber of 89.1% as

well as the quantum efficiency of the APD of (63 ± 3)%. The

last efficiency was estimated by the APD click statistic for

an input coherent state that was calibrated by the homodyne

receiver. An optical isolator is used between the two detection

schemes to prevent backscattering of the LO to the APD.

Because the two detectors have different responses, they

do not measure the exact same temporal mode. However,

in the following we show that the two different temporal

modes are nearly identical, possessing an overlap of about

95%. In the experiment, we probe the optical mode â(tm) =
(1/T )

∫ tm+T/2

tm−T/2
â(t)dt . The APD is a broadband detector, and

by neglecting the electronic jitter noise and the dead time, the

APD detects the following mean photon number during the

measurement time T:

n̂(tm) =
1

T

∫ tm+T/2

tm−T/2

â†(t)â(t)dt. (25)

On the other hand, the homodyne detector has a finite detector

bandwidth, which means that the quadrature measurement X̂sa

at time t depends on the detector response G(τ ). A single

sample is thus described by [44]

X̂sa(t) =
∫

dτ G(τ )X̂(t − τ ), (26)

where G(τ ) is determined by the detector’s frequency response

G(ω) and accounts for the mean of X̂sa over the measurement

time T. The time-averaged measurement X̂av at the time tm can

then be written as

X̂av(tm) =
1

T

∫ tm+T/2

tm−T/2

dt

∫
dτ G(τ )X̂(t − τ )

=
1

T

∫ ∫
dt dτ rect

(
t − tm

T

)
G(t − τ )X̂(τ )

=
1

T

∫
dτX̂(τ )

∫
dt rect

(
t − tm

T

)
G(t − τ )

=̂
∫

dτ Geff(tm − τ )X̂(τ ), (27)

where the measurement is described by the effective response

function Geff . We compare this function to the ideal mode

X̂ideal(tm) = (1/T )
∫ tm+T/2

tm−T/2
dtX̂(t) as illustrated in Fig. 4.

We estimate the mode overlap of the ideal and the effective

modes with the normalized cross-correlation function g12 =
〈X̂avX̂ideal〉/

√
|X̂av|2|X̂ideal|2 (which is related to the visibility

for the interference of two partially coherent waves [45]). For

our detector the cross-correlation is 95.5%, and thus the simi-

larity between the temporal mode experienced by the APD and

the one experienced by the homodyne detector is about 95%.

We proceed by describing the procedure for the

discrimination task. A PC controls the preparation of

the states and the displacement in the PNR receiver by

modulating two electro-optical modulators. Simultaneously it

acquires the homodyne and APD detection outcomes during

the pulse sequence. An example of such a sequence is shown

in Fig. 2, where we show the voltages applied to the amplifiers,

the quadrature values, and the recorded number of counts per

measurement time. The outcomes of the homodyne receiver

within the interval [−B,B] are considered as inconclusive

results. If the value is outside the interval and positive

we guess |α〉, and if the value is outside the interval and

negative we guess |−α〉. For the outcomes of the PNR receiver,

we use the hypothesis that, if the outcome is larger than m, we

guess |α〉, if it is zero, we guess |−α〉, and otherwise it is an

inconclusive result. The error probability is therefore found

by addition of all the false detections related to the number of

pulses that were accepted. The acceptance probability is the

ratio of pulses that were accepted to the total number of pulses.

The theoretical predictions for the acceptance probability

1 − pinc,HD and the error probability pE,HD are shown in

Figs. 3(a) and 3(b), respectively. For increasing signal am-

plitude |α|2 the error probability pE,HD drops, and an increase

of the postselection threshold B leads to a decreasing error

probability at the expense of an increase in the probability for

inconclusive results. An advantage of the homodyne receiver

is the smooth dependence between postselection threshold and

error rate. This allows one to chose exactly the error rate

desired for a specific application. For example, in quantum

key distribution the amount of mutual information between

sender, adversary, and receiver can be easily adjusted through

the postselection threshold [26]. The receiver’s performance

is completely characterized by the error and acceptance rates.

In Fig. 3, we introduced a red dashed line, where the condition

pinc,HD = pinc,USD is met, with pinc,USD the probability of

inconclusive results in a perfect USD measurement. This

means that an error-free but probabilistic discrimination is

in principle possible above this curve.

The experimental results for the acceptance and the error

probability of the homodyne receiver are shown in Figs. 3(b)

and 3(d), respectively. The contour plots are generated from

signals with 21 different amplitudes (with linearly increasing

mean photon number) and calculated for 41 postselection

thresholds. We find very good agreement of theory and
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MM

MM

(a) Acceptance probability 1− pinc,HD (theor.) − pinc,HD (expt.)

(b) Error probability log10(pE,HD)(theor.) pE,HD) (expt.)

(c) Acceptance probability 1

(d) Error probability log10(

FIG. 3. (Color online) (a) Dependence of the acceptance probability for ideal homodyne detection on the signal’s mean photon number |α|2
and the postselection threshold B. The dashed line shows the postselection threshold B for which the homodyne detection and USD have equal

acceptance probability. (b) The error probabilities of ideal homodyne detection shown in a logarithmic contour plot. The dashed line shows

the error rate of homodyne detection for success rates equal to USD. (c) Experimentally measured acceptance probability. (d) Experimentally

measured error probabilities. In (c) and (d), we corrected for the quantum efficiency of the receiver.

experiment with only minor deviations for very low error

probabilities.

The PNR receiver is demonstrated for m = 0, 1, and 2.

In Fig. 5(a), the dependence of the error probability on the

displacement β for a fixed signal amplitude is illustrated. We

FIG. 4. Comparison between the effective and ideal response

functions of the homodyne receiver.

find that for any m the displacement can be optimized such that

the experimentally measured error rates reach a minimum. The

optimal displacement is higher for higher m, and the minimum

error rate after this optimization of the displacement is lower

for increasing m. When compared to the theoretical predic-

tions, the experimental data fit well in the region of the minima,

while the experimental imperfections dominate in the region

of smaller displacement. We also observed this for m > 2.

We marked four data points in the plot. From left to right,

they represent the error rates associated with the Kennedy

receiver (black squares) (an early receiver for minimum

error discrimination [11] without optimized displacement, i.e.,

β = α), the optimized displacement receiver with m = 0 (red

circles), and the PNR receivers with m = 1 and 2 (green

triangles and blue diamonds). The error rates for varying

amplitudes are plotted in Fig. 5(b). We find a maximal
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K

m=0

m=1

m=2

U
SD

(a)

(b)

(c)

FIG. 5. (Color online) (a) Experimental data showing the effect

of the displacement β on the error rate pE,PNR for a given signal

amplitude |α|2 = 0.24 (corrected for quantum efficiency) and dif-

ferent numbers of dropped results m. The theoretically predicted

error probabilities for the receiver without imperfections are shown

with dashed lines. The error rates at the optimal displacement βopt

for different receivers are marked. (b) Error rates for varying m

and optimized βopt. The error bars reflect the standard deviations

of repeated measurements, which are larger than the statistical errors.

The experimental data are compared to ideal receivers (dashed lines).

(c) Experimental data for acceptance rates (points) and theoretical

predictions (dashed lines). Below the curve for an optimal USD device

(solid gray), states can be discriminated without error in principle.

We corrected for the quantum efficiencies of the receiver.

HD(m=1)

HD(m=2)

PNR(m=1)

PNR(m=2)

i
crea

n

n

si
g

signal am
plitude

(a)

(b)

FIG. 6. (Color online) (a) Comparison of experimental error rates

and acceptance rates for the two receiver schemes. For this compar-

ison the success rate of both schemes is fixed to the one that is theo-

retically reached by the PNR receiver. Experimental data are shown

for PNR receivers with m = 1 and 2 (filled circles and triangles)

and the homodyne receiver (open circles and triangles). Additionally,

theoretical predictions for the homodyne receiver (dashed line), the

PNR receiver (solid line), and the optimal intermediate measurement

(dot-dashed lines) are shown. The mean photon number is varied

for the different receivers. The PNR receiver again outperforms

the homodyne receiver, and we find a relatively good agreement

of experimental data and theoretical predictions. (b) Error rate for

various signal amplitudes. The PNR receiver surpasses the homodyne

receiver. Statistical error bars show standard deviation of the random

process. We corrected for the quantum efficiencies of the receivers.

reduction of the error rate by a factor of 3.5 in going from

m = 0 (deterministic scheme) to m = 2 (probabilistic scheme)

at the signal amplitude |α|2 = 0.47. The corresponding penalty

on the acceptance rates and a comparison with the theoretical

predictions for the acceptance probability are shown in

Fig. 5(c).
The two detection schemes are compared to each other in

Fig. 6. We find that both receivers show the expected behavior.

In particular for m = 1, it is obvious that the PNR receiver

outperforms the homodyne receiver for several data points.

In the following, we discuss the limitations of the different

schemes. The quantum efficiency of homodyne detection is

partly limited by the p-i-n diode efficiency and partly by the

mode-matching efficiency at the homodyne’s beam splitter.
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For specially made p-i-n diodes, the efficiency can reach

nearly 100%, and beam splitter mode-matching efficiencies

beyond 99% have been reported. The efficiency of the PNR

is mainly limited by the quality of the displacement operation

and the efficiency of the avalanche photodiode. For higher

values of m, we also find that the probability of false detection

events becomes important [see m = 2 in Fig. 6(a)]. We used a

commercially available APD, but the development of photon

number resolving detectors with very high quantum efficiency

is rapidly progressing (see [46] for a detailed list).

VI. APPLICATION OF PNR RECEIVERS IN QKD

In the following, we show that PNR detection can ef-

fectively replace homodyne detection in certain standard

quantum information protocols such as QKD. To demonstrate

its advantage, we take the standard binary continuous-variable

(CV) QKD protocol [47] and replace the homodyne detection

part with the PNR receiver described above. The main steps

of the protocol are the following.

1. The sender (Alice) randomly chooses a coherent state

from a binary alphabet (|± α〉) and sends it to the receiver

(Bob).

2. Bob performs an optimal displacement on the attenuated

state |±√
ηα〉 by the value β and measures the state |β ± √

ηα〉
with a PNR detector, thereby obtaining a result n. In the case

of n = 0, he associates the result with the state |β − √
ηα〉,

and in the case of n > m, with the state |β + √
ηα〉. In

the remaining cases 0 < n � m, he gets an inconclusive

result with probability pinc [see Eq. (24)] and thus omits the

transmitted states associated with these data.

3. After collecting a sufficiently large set of data, Alice and

Bob perform the error correction and privacy amplification

procedures.

For the purpose of comparing PNR and double-homodyne

detection, we perform a security analysis of the protocol with

direct reconciliation in the case of a noiseless quantum channel

and assuming the optimal collective attack by Eve. Under

these assumptions, the security analysis is similar to the one

developed in [47,48]. The amount of secret information per

single transmission (i.e., the secret key rate) is equal to the

difference between Bob’s and Eve’s information.

During error reconciliation with direct communication

(Alice sends classical information to Bob), Eve has to guess

the quantum states that were transmitted by Alice. Thus her

information does not depend on Bob’s measurement strategy

and is essentially the same as for homodyne detection [47]:

IE = −[c log2 c + (1 − c) log2(1 − c)], (28)

where c = (1 + e−2(1−η)α2

)/2.

Bob’s information reflects the amount of correlations in the

accepted part of all measurements (i.e., when n = 0 or n > m)

and can be calculated as Shannon information:

IB = 1 − H (perr), (29)

where perr is given by Eq. (23).

The secret key rate is equal to the average information

advantage of Bob over Eve:

G = (1 − pinc)(IB − IE). (30)

The first term (1 − pinc) takes into account only conclusive

results after Bob’s measurement, and the second term (IB −
IE) corresponds to the information contribution of the accepted

transmissions.

(a)

(b)

(c)

(d)

FIG. 7. (a) Key rate G on logarithmic scale (log10G) as a function

of the channel transmittance η. The solid curve corresponds to the

optimized PNR receiver. The dashed curve shows the secret key rate

for the decoding strategy based on optimized homodyne detection

[47,48]. The other figures show the optimized (b) threshold number

m, (c) signal amplitude α, and (d) displacement β as functions of the

channel transmittance.
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The key rate (30) depends on four variable parameters:

the signal’s amplitude α, the displacement amplitude β, the

threshold value m, and the channel transmittance η. As a stan-

dard figure of merit for characterization of the QKD protocol

quality, we show the key rate G as a function of the channel

transmittance η, assuming optimization of all other parameters

(α, β, and m). The exact optimization of these parameters is

performed numerically in order to maximize the key rate. If the

optimization procedure is different (e.g., minimization of the

error rate or minimization of the probability of an inconclusive

result), then the parameters obtained are also different and do

not lead to the maximum key rate.

After optimization of all parameters, we found that the

optimal amplitude α is similar to that of the double-homodyne

detection scheme [48] and is about α ≃ 0.5–1, the optimal

displacement parameter is about β ≃ 1–3, and the optimal

threshold value m ranges from 1 to 30. The exact results are

shown in Fig. 7. We can see that the CV QKD protocol based

on the PNR receiver is better than the one based on a homodyne

receiver, especially in the case of high channel attenuation.

VII. CONCLUSION

In this paper, we have thoroughly investigated two different

probabilistic receivers of binary-encoded optical coherent

states; the homodyne detector and the displacement-controlled

photon number resolving detector. These receivers yield

inconclusive as well as error-affected results, and we have

carefully conducted a detailed study of the relation between

these two outcomes. Furthermore, we found, theoretically, that

the homodyne detector is the optimal Gaussian receiver for

minimizing the errors for a fixed probability of inconclusive

results. Experimentally, we have implemented both receivers

and through comparison we found that the performance of the

displacement-controlled PNR receiver is better than that of the

homodyne receiver.

The PNR receiver is thus a promising alternative to the com-

monly used homodyne receiver. We find several advantages of

this scheme. For example if the phase reference is sent along

with the signal (most CV QKD scenarios), the power of the

displacement beam is normally much lower than the power

of the local oscillator beam required for homodyne detection,

and thus less power is injected into the communication channel

(e.g., an optical fiber). This has the obvious benefit of lowering

the power consumption in the fiber, but it also lowers the risk

of scattering of auxiliary photons into the signal state, as this

scattering mechanism is proportional to the power. We also

note that, instead of performing the displacement operation

at the receiving station, it can already be implemented at the

sending station. This would completely remove the necessity

for a phase reference. Finally, we note that the quadrature

measurement can also be performed using a displacement

operation followed by a single intensity detector, similar to

the setup of the PNR detector. However, in that case, the

displacement must be macroscopic so that the quadratures

are measured instead of the photon properties.

The PNR receiver is fundamentally different from the more

commonly used and technically mature homodyne detector.

Whether the PNR detector will be the future choice in real-life

implementations of binary detectors will depend on the future

progress of its technology. A future option is also to use

both detector schemes in a receiving station, where the proper

detection scheme is chosen according to the currently needed

property [49], such as speed, low noise, the capability of

performing a full tomography of the state, or the performance

for noisy quantum channels [14].
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