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Discrimination of Breast Cancer 
with Microcalcifications on 
Mammography by Deep Learning
Jinhua Wang1,*, Xi Yang2,*, Hongmin Cai2, Wanchang Tan1, Cangzheng Jin1 & Li Li3

Microcalcification is an effective indicator of early breast cancer. To improve the diagnostic accuracy 
of microcalcifications, this study evaluates the performance of deep learning-based models on large 
datasets for its discrimination. A semi-automated segmentation method was used to characterize 
all microcalcifications. A discrimination classifier model was constructed to assess the accuracies of 
microcalcifications and breast masses, either in isolation or combination, for classifying breast lesions. 
Performances were compared to benchmark models. Our deep learning model achieved a discriminative 
accuracy of 87.3% if microcalcifications were characterized alone, compared to 85.8% with a support 
vector machine. The accuracies were 61.3% for both methods with masses alone and improved to 
89.7% and 85.8% after the combined analysis with microcalcifications. Image segmentation with 
our deep learning model yielded 15, 26 and 41 features for the three scenarios, respectively. Overall, 
deep learning based on large datasets was superior to standard methods for the discrimination 
of microcalcifications. Accuracy was increased by adopting a combinatorial approach to detect 
microcalcifications and masses simultaneously. This may have clinical value for early detection and 
treatment of breast cancer.

Breast cancer is the most common cancer in women worldwide and the second leading cause of female cancer 
deaths. Mammography is the most e�cient method for screening breast cancer and can reduce breast cancer 
mortality1–3. One of the main early symptoms on mammograms is the appearance of microcalci�cations, whose 
diameter range from 0.1 to 1 mm2,4–6. Early detection and accurate identi�cation of malignant microcalci�cations 
can facilitate early detection, diagnosis and timely treatment of breast cancer2,5,7. However, due to the small size 
and low contrast compared to the background of images, it is di�cult and time for radiologists to make objective 
and accurate evaluation of microcalci�cations8–11. �e problem is especially challenging for inexperienced radi-
ologists when facing enormous numbers of mammograms generated in widespread screening9–11. Consequently, 
there is a need to develop helpful automated tools to overcome these problems and improve diagnostic per-
formance of breast cancer. Advances in computer technologies allow comprehensive and objective analysis of 
diagnostic features in microcalci�cations and masses12–14. Meanwhile, by e�ciently analyzing large numbers of 
images, computer-based methods can minimize intra- and inter-observer performance variability12–15. �rough 
the automatic identi�cation and classi�cation of microcalci�cations, computer-based methods can be proposed 
to aid early detection and diagnosis13,15.

A wide variety of machine learning classi�ers have been developed for early diagnosis of breast cancer16–18. �e 
widely used techniques are based on support vector machines (SVM)18–20, k-nearest neighbor (KNN) method21,22 
and linear discriminant analysis (LDA)23,24. However, the discriminative power of these methods is limited due 
to the computational costs of identifying de�nitive features for subset characterization and optimization. Deep 
learning is a relatively new method in the �eld of arti�cial intelligence and machine learning technologies25–31. 
�is approach has achieved considerable successes in multiple applications, including medical research. Deep 
convolutional neural networks were employed to medical image classi�cation31; deep belief nets and active learn-
ing were presented for multi-level gene and miRNA feature selection25; convolutional neural networks were used 
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to demonstrate an explicit gradient for feature complexity in the ventral pathway of the human brain26; deep 
learning was applied to determine the sequence speci�cities of DNA and RNA-binding proteins for identifying 
causal disease variants27; superpixel and deep learning were used for automatic vaginal bacteria segmentation and 
classi�cation28; some deep learning-based latent feature representations are proposed for diagnosis of Alzheimer’s 
disease and its prodromal stage, mild cognitive impairment (MCI), such as stacked auto-encoder and deep boltz-
mann machine32,33. However, only few works have explored deep learning methods to address the automatic 
classi�cation of identi�ed lesions on mammography. A nice learning framework for breast cancer diagnosis in 
mammography by convolutional neural networks was reported34. �e tested data were preprocessed images. A 
convolutional sparse autoencoder was proposed for mammographic texture scoring35.

Deep learning comprises a neural network with multiple hidden layers that enhances the recognition accuracy 
of images, audio and other data types; thereby increasing its versatility for capturing representative features. Deep 
learning outperforms other state-of-the-art methods in many areas and has solved complicated pattern recog-
nition problems, especially in big data situations36–39. Stacked denoising autoencoder model is one of the most 
successful deep learning strategies. �e deep architecture can be used to discover latent or hidden representation 
e�ciently inherent in the low-level features from modalities, and ultimately to enhance classi�cation accuracy. 
In this study, with a stacked denoising auto-encoder, an innovative deep learning-based model was employed to 
retrospectively analyze a large sample of microcalci�cations with or without masses on mammography. Its per-
formance and accuracy in classifying and discriminating breast lesions were compared with benchmark models.

Results
�e training group consisted of 1000 images, including 677 benign and 323 malignant lesions. �e test group con-
sisted of 204 images, including 97 benign and 107 malignant lesions. Table 1 shows the histopathological distri-
butions of the lesions in both groups. Data about microcalci�cations and suspicious breast masses were extracted 
through image segmentation. Both statistical and textural features were used to classify image features and obtain 
comprehensive characterization of the microcalci�cations and masses. A total of 41 quantitative measurements 
were recorded for each patient. Detailed information is provided in the Appendix File S1. Fi�een microcalci�-
cations features and twenty-six breast masses features were feed into the comparative classi�ers, including SVM, 
LDA, and KNN. �ese features were selected since they have been shown to improve the performance of standard 
machine learning classi�ers in earlier researches on breast lesions18,19,23,24,34,40,41.

Figure 1 illustrates an automatic detection and segmentation pipeline to identify suspicious microcalci�ca-
tions and masses in the le� breast of a 60-year-old patient with invasive ductal carcinoma. �e microcalci�ca-
tions were extracted from the raw data to delineate the image characteristics (Fig. 1(b)). Figure 2 shows that this 
method could accurately detect and extract suspicious microcalci�cations from the background of a low-density 
image showing the le� breast of a 56-year-old patient with ductal carcinoma in situ. �is demonstrated the high 
accuracy and robustness of the image segmentation pipeline. Figure 3 shows the image of the right breast of a 
49-year-old patient with �brocystic changes in which the focal microcalci�cations appear low contrast compared 
with the high-density background. Extraction of suspicious microcalci�cations is a challenging task, however, 
these results demonstrated that our segmentation model was able to accurately identify and extract microcalci�-
cations from the images to facilitate characterization.

Training group Testing group

Number Percentage Number Percentage

Malignant lesions 323 32.3 107 52.5

Invasive ductal carcinoma 222 22.2 86 42.2

Introductal carcinoma 8 0.8 2 0.9

Ductal carcinoma in situ 85 8.5 18 8.8

Mucinous carcinoma 4 0.4 0 0

Others 4 0.4 1 0.5

Benign lesions 677 67.7 97 47.6

Fibroadenoma 71 7.1 11 5.3

Fibrocystic changes 491 49.1 58 28.4

Intraductal papilloma 11 1.1 2 0.9

Hyperplasia 6 0.6 2 0.9

Phyllodes tumor 8 0.8 0 0

In�ammation 2 0.2 1 0.5

Follow-up 88 8.8 23 11.3

Microcalci�cations only 623 62.3 110 53.9

Masses only 221 22.1 35 17.2

Microcalci�cations and masses 156 15.6 59 28.9

Table 1.  Distributions of histopathological characteristics of breast lesions for both groups. Note—�e 
follow-up period was at least two years. Only both systematic clinical examination and mammogram showed no 
malignant �ndings to the suspicious benign-appearing lesion in this period, can the patient be admitted into the 
benign group.
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Figure 1. An illustrative example showing segmentation of microcalci�cations and breast mass in a 
mammogram of the le� breast of a 60-year-old patient with invasive ductal carcinoma. (a) �e craniocaudal 
(CC) view shows focal clustered microcalci�cations (indicated by thin arrows) and an irregular circumscribed 
mass (indicated by a thick arrow). (b) �e suspicious mass is automatically delineated within the red curve.  
(c) the segmented microcalci�cations detected in (b) are used to characterize the features.

Figure 2. An illustrative example showing segmentation of microcalci�cations in a mammogram of the 
le� breast of a 56-year-old patient with ductal carcinoma in situ. (a) �e mediolateral oblique (MLO) view 
shows clustered coarse and low density microcalci�cations (indicated by thin arrows). (b) �e image shows the 
region of suspicious microcalci�cations(indicated by thin arrows). (c) �e segmented microcalci�cations from 
(b) are used to characterize the features.

Figure 3. An illustrative example showing segmentation of microcalci�cations in a mammogram of the 
right breast of a 49-year-old patient with �brocystic changes. (a) �e focal microcalci�cations (indicated by 
thin arrows) appear low contrast compared with the dense background in the mediolateral oblique (MLO) view. 
(b) �e region of suspicious microcalci�cations is indicated by thin arrows. (c) A zoomed-in view of  
(b) highlights the segmented microcalci�cations.
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In order to evaluate the performance and discriminative power of the deep learning model (DL), quantitative 
measurements for overall classi�cation accuracy (acc), sensitivity, speci�city and the area under the receiver 
operating characteristic (ROC) curve (AUC) were calculated as follows:

=
+

+ + +
×

=
+

=
+

acc
TP TN

TP FP FN TN

sensitivity
TP

TP FN

specificity
TN

FP TN

100%

where TP, FN, TN and FP represent the true positives, false negatives, true negatives and false positives, 
respectively.

Previous reports have suggested that the discriminative performances of classi�ers can be increased through 
comprehensive characterization of microcalci�cations as opposed to characterization of individual features. In 
agreement with these reports, our deep learning-based model achieved similar outcomes, as demonstrated by the 
ROC curves in Fig. 4. �erefore, this approach was used in the following experiments.

�ree scenarios for discriminating between malignant and benign lesions were examined: microcalci�cations 
alone; breast masses alone; and microcalci�cations and breast masses in combination. �e primary aims of the 
three scenarios were to investigate the discrimination power of microcalci�cations, masses or their combination 
in di�erentiation of the lesions types. �e results were compared to those of SVM, KNN and LDA benchmark 
classi�ers.

�e structure of a SAE network is decided by the size of the input layer, the number of hidden layers, and the 
number of hidden units in each hidden layer. �rough the experiments, the data of microcalci�cations alone 
was used as the input in the �rst scenario; the data of breast masses alone was served as the input in the second 
scenario; and the data of microcalci�cations and breast masses in combination was served as the input in the 
third scenario. We used the SAE model to classify malignant and benign lesions in three scenarios. �e optimal 
hyper parameters for the three scenarios were estimated by 10 fold cross-validation on training group. For the 
�rst scenario, the trained architecture consisted of two hidden layers, and the number of hidden units in each hid-
den layer was [200, 200], respectively. For the second scenario, the trained architecture consisted of two hidden 
layers, and the number of hidden units in each hidden layer was [200, 200], respectively. For the third scenario, 
the trained architecture consisted of two hidden layers, and the number of hidden units in each hidden layer was 
[400, 400].

In the �rst scenario, image segmentation yielded 15 features. �e overall accuracies were 85.8%, 83.8%, 58.8% 
and 87.3% for the SVM, KNN, LDA and DL models, respectively. �e DL model also achieved the highest spec-
i�city and AUC values (0.82 and 0.87, respectively). �e results are summarized in Table 2; the ROC curves in 
Fig. 5(a) provided visual comparisons between the models.

In the second scenario, based on breast masses alone, image segmentation yielded 26 features. �e results are 
summarized in Table 3, and the ROC curves are shown in Fig. 5(b). �e overall accuracies were markedly lower 
in all of the models, at 61.3%, 58.8%, 53.4% and 61.3% for SVM, KNN, LDA and DL respectively. Furthermore, 
the performance of the DL model was only marginally higher than that of the SVM model. Despite this �nding, 
the sensitivity of the model was approximately 100%, indicating that patients who tested positive all had breast 
masses. As such, this method may facilitate diagnosis in benign cases; however, it may not serve as a valid diag-
nostic tool in clinical practice.

In the third scenario, based on a combinatorial approach by analyzing microcalci�cations and breast masses 
simultaneously, image segmentation yielded 41 features. �e overall accuracies were 85.8%, 84.3%, 74.0% and 
89.7% for the SVM, KNN, LDA and DL models, respectively. Furthermore, the DL model achieved the highest 

Figure 4. ROC curves for selected microcalci�cation features. �e ROC curves compare the discriminative 
performances of individual features versus combinations of features.
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speci�city and AUC values (0.90 and 0.90, respectively). In comparison, the SVM model achieved 78% speci�city 
and an AUC value of 0.85. �e results are summarized in Table 4 and the ROC curves are shown in Fig. 5(b).

�ese �ndings con�rmed that by accessing a large dataset, the deep learning model produced a higher num-
ber of representative segmentation features and exhibited greater overall accuracy for discriminating between 
malignant and benign breast lesions through mammography compared to standard models. Furthermore, the 
discriminative power of the deep learning model was greatest if a combinatorial approach was applied to charac-
terize microcalci�cations and breast masses simultaneously.

Discussion
Mammography is considered the primary imaging modality for early detection and treatment of breast cancer; 
however, achieving accurate diagnoses through mammography is o�en challenging for radiologists due to the dif-
�culty of distinguishing the features of malignant symptoms in images42–44. Consequently, considerable research 
is being undertaken to develop computer-based applications including various classi�cation models to overcome 
these challenges10,12,14,45–47.

Microcalci�cations are highly correlated with breast cancer2,3,7, therefore, the aim of this investigation was to 
evaluate the performance of an innovative deep learning model for classifying breast lesions. �e results demon-
strated that deep learning not only enabled accurate segmentation of microcalci�cations but also provided an 
e�cient analysis of their characteristics, leading to a marked improvement in discriminating between benign and 
malignant breast lesions compared to more standard SVM, KNN and LDA methods. �is may have particular 
signi�cance for cases in which microcalci�cations are the only indicator of malignant lesions4,11,48,49.

Deep learning-based models employing large sample sets show greater discriminative performance in classi-
fying microcalci�cations through mammography compared to other machine learning methods. Compared to 
other methods, deep learning-based models provide a higher number of image segmentation features and help 
enhance the diagnostic accuracy through comprehensive characterization of these features. �e discriminative 
power of deep learning can be increased by adopting a combinatorial approach to classify microcalci�cations and 
masses simultaneously. Our results suggest that deep learning based-models on large datasets are promising in 
the earlier detection and treatment of breast cancer by identifying microcalci�cations on mammograms.

Breast masses are also know to exhibit distinct features that vary from benign to malignant lesions2; however, 
machine-based methods are generally based on detecting microcalci�cations or breast masses in isolation. In 
contrast, reports on methods that detect microcalci�cations and masses simultaneously are scarce. In this study, 
we carried out a provisional and innovative trial using our deep learning-based model to distinguish both fea-
tures in combination. �e results showed that this combinatorial approach enhanced the diagnostic sensitivity of 
the model in patients presenting with both microcalci�cations and masses. �is implied that deep learning may 
o�er an advanced statistical method for di�erentiating mammographic microcalci�cations with greater accuracy 
and sensitivity, both in the presence or absence of breast masses. Not only could this facilitate earlier and more 
accurate classi�cation of breast cancer, but also improve prognosis through timely treatment in malignant cases. 
It may also help avoid unnecessary surgical procedures, including total resection, and psychological and physio-
logical pain in benign cases.

However, the current study su�ered from the following limitations. First, the testing dataset should to be 
expended to provide more benign and malignant samples in order to achieve higher statistical power. In addi-
tion, by increasing the number of cases with breast masses, either alone or with microcalci�cations, would allow 
deeper examination of the combinatorial approach and facilitate establishing the optimal diagnostic performance 
of our model and its potential value in future applications. Second, the features investigated in present study may 
not so su�cient enough to fully characterize microcalci�cations, future studies will extract more. By selecting the 
most discriminative subset of them and optimizing the selection of various features, it helps improve the perfor-
mance of deep learning in the classi�cation stage. �e current study was aiming to employ powerful deep learning 
based classi�er to discriminate breast lesions by microcalci�cations with or without the combined analysis of 
masses. With the settlement of problems addressed before, the nice performance of our trial in using deep learn-
ing opens a way to aid radiologist’s diagnostic performance. It further facilitates the systematical investigation of 
breast cancer for early detection, diagnosis and clinical management.

Methods
Participant population. We retrospectively reviewed mammograms from 1204 female patients histo-
pathologically diagnosed with benign or malignant breast lesions at the SunYat-sen University Cancer Center 
(Guangzhou, China) and Nanhai A�liated Hospital of Southern Medical University (Foshan, China) between 

Test Dataset Training Dataset

accuracy sensitivity speci�city AUC
mean ± std 
(Accuracy)

SVM 85.8% 0.93 0.79 0.85 0.79 ±  0.07

KNN (N =  8) 83.8% 0.95 0.74 0.84 0.77 ±  0.07

LDA 58.8% 0.63 0.55 0.59 0.61 ±  0.05

SAE 87.3% 0.93 0.82 0.87 0.82 ±  0.05

Table 2.  Diagnostic performances of di�erent classi�cation models through microcalci�cation features 
(15 features). �e proposed SAE achieved superior performance in terms of the four measurements. �e best 
measurements were highlighted in bold.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:27327 | DOI: 10.1038/srep27327

May 2011 and March 2015. �e sample comprised of 774 benign and 430 malignant breast lesions. All patients 
underwent molybdenum targeted mammography. Identified lesions were histopathologically confirmed as 
benign or malignant by performing open surgical biopsy or �ne needle biopsy. �e sample was divided into two 
groups: the training group comprised of images from 1000 randomly selected patients admitted between May 
2011 and March 2015 (range, 26–75 years); the test group comprised of images from 204 randomly selected 
patients admitted between October 2013 and March 2015 (range, 28–75 years). All experimental protocols were 
approved by the Ethics Committee of the SunYat-sen University Cancer Center and the Ethics Committee of the 
Nanhai A�liated Hospital of Southern Medical University, and were conducted in accordance with the Good 
Clinical Practice guideline. Informed consent was obtained from each patient for their consent to have their 
information used in research without a�ecting their treatment option or violating their privacy.

Imaging and analysis. Images were obtained on a GE Senographe DS mammography system and a Siemens 
Mammomat Inspiration mammography system. Craniocaudal (CC) and mediolateral oblique (MLO) projections 
were obtained for each breast. All images were digitized at a resolution of 1024 ×  1024 pixels and at 8-bit gray scale 
level. Taking the raw image directly may bring in a large bias due to image deformation, uniform background 

Figure 5. ROC curves comparing the discriminative performances of the four classi�cation models. �e 
three scenarios show the ROC curves based on the following classi�cations: (a) Microcalci�cations alone (15 
segmentation features). (b) Breast masses alone (26 segmentation features). (c) Microcalci�cations plus breast 
masses (41 segmentation features).

Test Dataset Training Dataset

accuracy sensitivity speci�city AUC
mean ±  std 
(Accuracy)

SVM 61.3% 1.00 0.26 0.60 0.68 ±  0.11

KNN (N =  8) 58.8% 1.00 0.21 0.57 0.71 ±  0.11

LDA 53.4% 0.99 0.12 0.52 0.67 ±  0.13

SAE 61.3% 0.99 0.27 0.61 0.71 ±  0.12

Table 3.  Diagnostic performances of di�erent classi�cation models through mass features (26 features). 
�e proposed SAE achieved superior performance in terms of the four measurements. �e best measurements 
were highlighted in bold.

Test Dataset Training Dataset

accuracy sensitivity speci�city AUC
mean ±  std 
(Accuracy)

SVM 85.8% 0.95 0.78 0.85 0.79 ±  0.07

KNN (N =  6) 84.3% 0.94 0.76 0.83 0.77 ±  0.06

LDA 74.0% 0.84 0.65 0.74 0.69 ±  0.07

SAE 89.7% 0.89 0.90 0.90 0.85 ±  0.06

Table 4.  Diagnostic performances of di�erent classi�cation models through microcalci�cations and mass 
features in combination (41 features). �e proposed SAE achieved superior performance in terms of the four 
measurements. �e best measurements were highlighted in bold.
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illumination, uneven imaging angle and position. Such problems may deteriorate the classi�cation performance. 
To alleviate the problems, this study used various types of features that were widely used in researches on breast 
lesions as input data instead of original images34,40,41. We not only considered the features invariant to rotation, 
but also the features invariant to rotation, scaling, and translation. A previously reported computerized segmen-
tation approach29 was used to extract any suspicious microcalci�cations and masses from each image. Data about 
microcalci�cations and suspicious breast masses were extracted through image segmentation. Both statistical and 
textural features were used to classify image features and obtain comprehensive characterization of microcalci�-
cations and breast masses. A total of 41 quantitative measurements were recorded for each patient. Fi�een micro-
calci�cations features and twenty-six breast masses features, estimated from the region of interests, were selected 
instead of original images as the input data for SAE model. �e extracted features from mammograms aimed to 
provide comprehensive characterization of the image as much as possible. �ey consisted of intensity, statistic, 
shape and texture features. �ese features were extensively reported and tested widely in researches on breast les
ions18,19,23,24,34,40,41. �e 15 microcalci�cations features were selected to describe di�erent dimensional aspects of 
microcalci�cations, including one-dimensional shape features (average diameter), two-dimensional morphological 
features ( microcalci�cations area), fractal dimensional features (microcalci�cations density, circularity propor-
tion, solidity, sandy microcalci�cation, spiculation, volume ratio), gray level intensity statistics features (mean gray 
value), and statistic feature (microcalci�cations number, circularity, linear microcalci�cation). �e 26 breast masses 
features also characterized di�erent aspects of masses, including morphological features (breast masses area), frac-
tal dimensional features (solidity, elongation, axis ratio, heterogeneity, spiculation, volume ratio, convexity), texture 
features (mean gray, maximum gray, gray relativity, entropy, inverse di�erence entropy, di�erence entropy, correla-
tion, di�erence variance, sum average, sum variance, energy, mutual information). Detailed information about the 
features was provided in the Appendix File S1. Once the comprehensive characterization for each lesion done, its 
feature description was feed into the deep learning model to classify its type into benign or malignant.

Deep learning model. Deep learning is a machine learning model with multiple hidden layers that learns 
inherent rules and features of large data sets. A stacked autoencoder (SAE) creates a deep network by stacking 
multiple autoencoders hierarchically31,34,35. Each autoencoder is a neural network (NN) that attempts to repro-
duce its input; the output of each autoencoder is used as the training set for the next autoencoder. More specif-
ically, in an SAE withn layers, the �rst layer is trained as an autoencoder to obtain the �rst hidden layer, and the 
output of the kth hidden layer is used as the input of the (k+1)th hidden layer.

In this study, 15 microcalci�cations features and 26 breast masses features were selected instead of original 
images as the input data for SAE model, respectively. �e SAE model was trained in a layer-wise greedy fashion to 
learn low-level features of microcalci�cations from input data according to the following mathematical procedures:

Training samples were denoted as …x x x{ , , }m(1) (2) ( ) ; an autoencoder encoded inputx(i) to a hidden rep-
resentation y x( )i( )  through a deterministic mapping function:

= + .y x f W x b( ) ( ) (1)1 1

Conversely, the autoencoder decoded the representation y x( )i( )  back into a reconstruction through a second 
deterministic mapping function:

= +z x g W y x b( ) ( ( ) ) (2)2 2

where W1 is a weight matrix, W2 is a decoding matrix, b1 is an encoding bias vector, and b2 is a decoding bias 
vector.

A logistic sigmoid function: =
+
−f x( )

e

1

1 x  and =
+
−g x( )

e

1

1 x  was used in this study.

�e objective of an autoencoder was to minimize the reconstruction error by applying the following formula:

∑ − .

=

x z xmin
1

2
( )

(3)W W b b i

m
i i

, , , 1

( ) ( ) 2

1 2 1 2

�e encoding procedure was carried out from the �rst layer to the last layer by the following formulas:

=a f z( ) (4)
k k( ) ( )

= + .
+z W a b (5)k k k k( 1) ( ,1) ( ) ( ,1)

�e decoding procedure was calculated from the last layer to the �rst layer by the following formulas:

=
+ +a f z( ) (6)

n k n k( ) ( )

= +
+ + − + −z W a b (7)n k n k n k n k( 1) ( ,2) ( ) ( ,2)

where W k( ,1) is a weight matrix of the kth autoencoder, W(k,2) is a decoding matrix of the kth autoencoder, b k( ,1)is an 

encoding bias vector of the kth autoencoder, and b k( ,2) is a decoding bias vector of the kth autoencoder, f x( ) is 

sigmoid function, a k( ) is sigmoid value.
We added a so�max classi�er on the top layer of the SAE network to create the deep learning model for ana-

lyzing breast lesions50–55.
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