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Abstract

Fast Fourier Transform (FFT) correlation methods of protein-protein docking, combined with the
clustering of low energy conformations, can find a number of local minima on the energy surface.
For most complexes the locations of the near-native structures can be constrained to the 30 largest
clusters, each surrounding a local minimum. However, no reliable further discrimination can be
obtained by energy measures because the differences in the energy levels between the minima are
comparable to the errors in the energy evaluation. In fact, no current scoring function accounts for
the entropic contributions that relate to the width rather than the depth of the minima. Since structures
at narrow minima loose more entropy, some of the non-native states can be detected by determining
whether or not a local minimum is surrounded by a broad region of attraction on the energy surface.
The analysis is based on starting Monte Carlo Minimization (MCM) runs from random points around
each minimum, and observing whether a certain fraction of trajectories converge to a small region
within the cluster. The cluster is considered stable if such a strong attractor exists, has at least 10
convergent trajectories, is relatively close to the original cluster center, and contains a low energy
structure. We studied the stability of clusters for enzyme-inhibitor and antibody-antigen complexes
in the Protein Docking Benchmark. The analysis yields three main results. First, all clusters that are
close to the native structure are stable. Second, restricting considerations to stable clusters eliminates
around half of the false positives, i.e., solutions that are low in energy but far from the native structure
of the complex. Third, dividing the conformational space into clusters and determining the stability
of each cluster, the combined approach is less dependent on a priori information than exploring the
potential conformational space by Monte Carlo minimizations.
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INTRODUCTION

The goal of protein-protein docking is to determine the structure of a complex in atomic detail,
starting from the coordinates of the unbound component molecules.1–3 Based on the
thermodynamic hypothesis, at fixed temperature and pressure the Gibbs free energy of the
macromolecule-solvent system reaches its global minimum at the native state of the complex.
Thus, docking requires a computationally feasible free energy evaluation model and an
effective minimization algorithm. Most of the current docking methods start with rigid body
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docking which relies on simplified representations of the interaction energy, and perform the
search in the 6D space of rotations and translations.4 Although the rigid body assumption limits
the applicability of the method, it is a good approximation for several classes of protein
complexes. In particular, the transition from unbound to bound state in enzyme-inhibitor and
antibody-antigen complexes mostly affects the orientation of side chains, and the changes in
the backbone conformation are generally small, or are restricted to a few loop regions.

The Fast Fourier Transform (FFT) correlation approach, introduced in 1992 by Katchalski-
Katzir and co-workers,5 revolutionized rigid body protein-protein docking. The basic idea of
the method is to represent one of the proteins (which will be identified as the receptor) on a
fixed grid, the second protein (which will be referred to as the ligand) on a movable grid, and
consider an interaction energy written in the form of a correlation function (or as a sum of a
few correlation functions).6 Since such energy functions can be efficiently calculated via Fast
Fourier Transforms, one can exhaustively sample the conformational space of protein-protein
complexes evaluating the energies for billions of conformations on the grids, and thus to dock
proteins without any a priori information on the expected structure.7,8 The original scoring
function, introduced by Katchalski-Katzir et al.,5 accounted only for shape complementarity,
but was later extended to include additional terms representing electrostatic interactions,9,10

or both electrostatic and solvation contributions.11 More recently we have extended the method
to be used with a scoring function that includes a pairwise interaction potential, thereby further
increasing the number of near-native structures found.6 In all scoring functions the shape
complementarity term allows for overlaps, thereby accounting for the differences between
bound and unbound (separately crystallized) structures.

Since the FFT correlation method performs exhaustive sampling on a dense grid, it necessarily
samples near-native conformations, independent of the shape of the energy surface. However,
due to the approximate nature of the energy function and the need for tolerating potential
overlaps, the structures that are close to the native conformation do not necessarily have the
lowest energies. In order to avoid eliminating such potentially useful conformations, it is
necessary to retain a large number (usually 2,000 to 20,000) of low energy docked structures
for further processing. The majority of these retained structures are false positives, i.e.,
conformations with low energy but far from the native. Thus, the initial docking yields a long
list of candidate structures rather than a small number of models, and obtaining meaningful
results requires some form of post-processing, which may include re-scoring of the docked
conformations using a more accurate energy function, or refining the conformations followed
by re-scoring.12 These treatments usually improve discrimination and result in a number of
near-native conformations among the 10 to 100 lowest energy structures, but in most cases are
unable to eliminate all false positives.

Over the last few years we have developed a post-processing method that retains a number of
low energy conformations, clusters them using pairwise RMSD as the distance measure, and
then ranks the clusters according to their size, i.e., identifying conformations that have large
numbers of neighbors.13,14 The method is based on the observation that, in the free energy
landscapes of partially solvated receptor-ligand complexes, the free energy attractor at the
binding site generally has the greatest breadth among all local minima.15 Hence, following the
uniform sampling of the conformational space defined by translations and rotations of the
ligand, the docked conformations that are below an energy threshold are expected to form the
largest cluster around the native complex (Figure 1). This approach is confirmed by our results:
analyzing the protein pairs in the Docking Benchmark Set,16 we have shown that if the clusters
are ranked by size (i.e., by the number of their members), then at least one near-native solution
(with less than 10 Å RMSD from the native) is contained in the largest cluster for 31% of the
° complexes, in the 10 largest clusters for 74% of the complexes, and in the 30 largest clusters
for 93% of the clusters.13 Thus, adding conditions on the shape of the free energy surface
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around the native complex can substantially reduce the number of candidate structures, but is
still unable to eliminate all false positives.

Post-processing by clustering is based on the assumption that it is more likely to find near-
native structures at minima with broad regions of attraction than at narrow minima with
comparable depth. In this paper we go one step further, and for each retained local minimum
investigate whether or not it is surrounded by a broad region of attraction. The analysis is
similar to determining the stability of fixed points in dynamical systems. A fixed point is stable
and it is called an attractor if all trajectories started in a neighborhood of the fixed point remain
in the neighborhood. In good agreement with this analogy, we will examine the ”stability” of
each local minimum by starting Monte Carlo simulations from random points around the cluster
center in order to determine whether or not the trajectories converge to some small region
within the region defined by the cluster. The idea is similar to the one introduced by Brutlag,
Latombe, and co-workers,17,18 who employed stochastic roadmap simulations to determine
the number of Monte Carlo steps required for the escape of a ligand from various putative
binding sites.

The algorithm we describe in this paper starts with rigid body docking based on the FFT
correlation approach, identifies a number of low energy regions by clustering, and determines
the ”stability” of these regions by Monte Carlo simulations. While the rigid body search is
global but has to rely on simplified energy functions defined on a grid, the Monte Carlo analyses
of stability are restricted to individual clusters but can involve more detailed energy functions
and more thorough searches, possibly accounting for side chain flexibility. Exactly this type
of Monte Carlo search has been implemented in the protein docking program Rosettadock by
Baker and co-workers,19 and hence we simply use RosettaDock for our stability analyses.
Obviously RosettaDock can be and has been used for protein docking without any FFT-based
global search. However, due to the side chain search and improved energy evaluation, Roset-
taDock requires extensive calculations, and the simulations can explore only limited regions
of the conformational space on reasonable time scales. Although the Monte Carlo minimization
(MCM) trajectories in RosettaDock can move ”uphill” and thus cross energy barriers, there is
no guarantee that the search converges to the global minimum. In fact, RosettaDock and other
Monte Carlo based docking methods such as ICM20 include a first stage that uses simplified
protein models and energy functions to explore the conformational space, and only then switch
to simulations that involve models with more detailed geometry and more accurate energy
functions.

The main advantage of the prediction scheme introduced in this work is that it combines a full
low-resolution search with a high-resolution refinement, and that the quality of the refined
structures are judged based on how far the high resolution model is from the low resolution
start. This approach substantially reduces the chances that the search converges to a non-native
structure with low energy, while all near-native structures are lost. Indeed, as we will show for
a set of enzyme-inhibitor and antibody-antigen complexes, one can define stability criteria
based on the convergence of relatively short Monte Carlo trajectories such that clusters with
near-native states are always ”stable”, i.e., a certain fraction of trajectories converge to a smaller
region within the region defined by the cluster. The lack of such convergence indicates that
the cluster does not include near-native states, and hence can be excluded from further
consideration, thereby reducing the number of potential complex structures. We will also show
that the discrimination of clusters based on stability analysis can be more reliable than the
discrimination based on relative energies.
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METHODS

Rigid body docking

Docked conformations were generated using the ClusPro server13 with the docking program
ZDOCK.11 ZDOCK is based of the Fast Fourier Transform correlation approach, and
exhaustively samples the rigid body mutual orientations of the docking partners. The scoring
function of ZDOCK is a weighted sum of energy terms representing shape complementarity
(van der Waals energy), Coulombic electrostatics with the distance dependent dielectric
permittivity ε = 4r, and a simplified implementation of the atomic contact potential score
(ACP),21 which essentially measures the solvation/desolvation contributions to the binding
free energy. 2000 structures with the lowest values of the scoring function were retained for
further evaluation. Note that we used ZDOCK 2.3, and newer versions of the program are
currently available.

Discrimination by clustering

The clustering of the retained conformations is based on the pairwise root mean square
deviation of ligand structures, calculated for the atoms that are within 10 Å of any atom of the
fixed receptor (to be referred to as ligand RMSD). We use a simple greedy algorithm to find
the structures with the largest number of neighbors within a clustering radius RC. As we
described earlier,14 the choice of RC depends on a clustering parameter 0 ≤ Δ ≤1, which is
based on the histogram of pairwise RMSD values, and measures the depth of the separation
between clusters. Δ = 1 indicates perfect separation of inter-cluster and intra-cluster length
scales. Such separation means that clustering is very easy, and that the use of the optimal radius
RC, calculated from the histogram of pairwise RMSD values,14 substantially increases the
number of near-native structures in the top clusters. The analysis of the docked structures for
the proteins in the benchmark set14 showed that for Δ ≥ = 0.4 the use of the optimal radius
generally increases the number of the near-native predictions in the largest clusters. In contrast,
for Δ < 0.4 the choice of the calculated optimal radius does not necessarily improve the results,
and hence it is better to use the default clustering radius of 9 Å. Once a clustering radius RC is
selected, the structure with the highest number of neighbors within RC is considered as the
center of the first cluster. The members of this cluster are removed, and we select the next
structure with the highest number of neighbors from the remaining ligands until the set is
exhausted, thereby generating 10 to 30 rank ordered clusters.14

Optimization of model by RosettaDock Monte Carlo Minimization

The regions defined by each of the clusters as obtained in the previous section are explored
using the Monte Carlo Minimization method implemented in the RosettaDock program of Gray
et al.22 First, the position of the ligand is perturbed by random translations and rotations, and
the distance between the ligand and receptor is adjusted as to create a contact. Next, a fast
MCM at low resolution optimizes the complex orientation with respect to features that do not
depend on the explicit conformations of the side chains (e.g. amino acid propensity at the
interface, amino acid pair preferences, etc;23). Finally, the side chains are added back, and an
all-atom optimization locates the local minimum energy conformation. Each of the 50 MCM
cycles includes the readjustment of the interface side chain conformations and the optimization
of the rigid-body position.

The complete set of interface side chains is repacked every eight cycles: side chains are
optimized combinatorially starting from a backbone dependent rotamer library which also
includes the side chain conformations in the unbound proteins. The optimal combination of
rotamers is found using a simulated annealing Monte Carlo search. Subsequently, off-rotamer
conformations that further reduce the energy are sampled by rotamer trial minimization, where
for each position minimization of the dihedral angles of all possible rotamers searches for even
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lower energy conformations (rtmin, see22). In the remaining cycles, a faster procedure
evaluates only replacement of single side chain conformations (”rotamer trial”19,24).

Once the side-chains have been re-packed, the rigid body displacement is optimized using a
Davidon-Fletcher-Powell quasi-Newton minimization algorithm. After each move, side chain
packing, and minimization, an energy score is calculated. The new position is kept or rejected
according to the standard Metropolis acceptance criterion.

RosettaDock uses a detailed energy function which includes van der Waals interactions with
a linear term serving as the repulsive part; a solvation term based on a pairwise Gaussian solvent
exclusion model;25 hydrogen bonding energies using an orientation-dependent empirical
function;26 a rotamer probability term; residue-residue atom pair interactions for charged
residues, and a simple electrostatic term across the interface.27 While the weights of most of
the terms in the scoring function are of the same order of magnitude, the dominant contributions
to discrimination are the van der Waals (packing) interactions, followed by solvation.23 The
only term of small contribution is the electrostatics across the interface; the effect of
electrostatics is described mainly by the pair term. The scoring function used during
minimization assigns a larger weight to repulsion in order to remove clashes in the structure.
This weight is reduced in the final scoring.

Cluster stability tests using Monte Carlo minimization

In order to discriminate local minima surrounded by broad regions of attraction from those that
do not have such regions we perform “stability” tests for each of the retained clusters using
RosettaDock. Starting from the structure defined as the cluster center we generate 1200 random
perturbations of the ligand structure in the range of 7 Å RMSD. Each perturbation involves up
to 5 Å random translation along the vector connecting the centers of mass of the two component
proteins, up to 10 degrees rotation around this axis, and 10 degrees tilt. Each of the perturbed
conformations serves as the starting point for low-resolution optimization followed by 50 full-
atom steps of Monte Carlo minimization (MCM) by RosettaDock. From the 1200 simulation
runs we retain 200 structures with the lowest energy scores. According to our experience, 1200
trajectories and the resulting 200 low energy conformations provide an adequate sampling of
the free energy surface around the cluster center.

As described in the introduction, our goal is to study the convergence of MCM trajectories
following the perturbations. To identify potential attractors, the 200 retained structures are
clustered with a 3 Å RMSD cutoff radius. In order to distinguish the resulting clusters from
the original cluster, the former will be referred to as subclusters. It is important to keep in mind
that these ”subclusters” are based on the 200 points from the Monte Carlo minimization (MCM)
runs rather than simply re-clustering the points of the original cluster. Although we will refer
to the ”stability of a cluster”, we actually investigate whether or not some region in the vicinity
of the cluster center attracts a fraction of the convergent Monte Carlo minimization (MCM)
trajectories. The analysis of stability of a given cluster will be based on the properties of the
highest occupancy subcluster S. The cluster is considered stable if and only if:

A. the highest occupancy subcluster S has at least 10 entries;

B. the center of S (i.e., the lowest energy conformation in S) is less than 12 Å from the
center of the cluster; and

C. S contains at least one of the seven lowest energy structures from the MCM runs.

As shown in Figure 2A, to determine the stability of the cluster we find the small region S
which contains the highest number of structures from the 200 MCM runs. The cluster is
considered stable if such a strong attractor exists, has at least 10 entries, is relatively close to
the original cluster center, and contains at least one low energy structure. The cluster is unstable

Kozakov et al. Page 5

Proteins. Author manuscript; available in PMC 2010 February 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



if no such subcluster can be found, i.e., the trajectories either diverge, converge outside the
original cluster, or the convergent trajectories lead to high energy states. We note that since
for stability we require convergence to a narrow region in the cluster, a small fixed rather than
variable radius is used gto define the sub-clusters.

The stability criteria were based on the analysis of a subset of the enzyme-inhibitor complexes
in the protein docking benchmark, and have been chosen such that all near-native clusters
would be classified as stable. However, the same criteria also classified as stable all near-native
clusters for the remaining enzyme-inhibitor complexes, as well as all near-native clusters for
the antibody-antigen pairs in the benchmark set, indicating that the conditions have some
general validity. As we will show, the criteria are somewhat conservative and classify about
50% of non-native clusters as stable, in addition to the ones that include near-native
conformations. However, since the unstable clusters are always free of near-native
conformations and hence can be removed from further considerations, the analysis generally
yields substantial reduction in the number of candidate models, at least for cases where the
backbone does not change significantly.

RESULTS

Clustering the structures from the rigid body docking using the optimally selected cluster radius
may yield up to 30 clusters.13 However, as mentioned in the introduction, at least one of the
10 largest clusters includes near-native solutions (i.e., structures with less than 10 Å ligand
RMSD from the native structure) for 74% of the complexes in the protein docking benchmark
set. In order to apply the method described in this paper to as many complexes as possible
while keeping the amount of computations at reasonable levels, we considered only enzyme-
inhibitor and antibody-antigen complexes in Benchmark Set 1 that satisfied this condition, i.e.,
their nth cluster (where n ≤ 10) was near-native. The restriction results in 26 complexes listed
in Table I. Although Table I shows the Protein Data Bank (PDB) codes only for the target
complexes, the docking and the stability analysis involve either unbound-unbound (i.e.,
separately crystallized) or bound-unbound proteins as given in the Benchmark Set.16 We note
that most enzyme-inhibitor test cases are in the unbound-unbound category, whereas the
antibody-antigen cases involve the docking of an unbound antigen structure to the bound
structure of the antibody.16 Computational requirements were further reduced by restricting
consideration to the n largest clusters for each complex, where the nth is the first near-native
cluster. For example, if the second largest cluster includes a near-native structure for a particular
complex, then only clusters 1 and 2 were considered in this paper. While this restriction is
acceptable for a validation study, in real applications we generally have to study the stability
of up to 30 clusters.

The first goal of our analysis is to show that all near-native clusters (with a cluster center located
less than 10 Å from the native complex structure) are stable. Table I shows several properties
of the near-native clusters for the complexes in our test set. To describe these properties we
consider the first row of the table, i.e., the complex of a-chymotrypsinogen and pancreatic
secretory trypsin inhibitor (PDB code 1CGI) as an example. After docking the unbound
component proteins (PDB codes 1CHG and 1HPT) and clustering the top 2000 docked
structures as described in the Methods, the largest cluster (ranked as number 1) is near-native,
with its center at 3.95 Å RMSD from the native structure. After performing 1200 Monte Carlo
minimization runs from random points around the cluster center, selecting the 200 lowest
energy structures, and clustering them using a 3 Å RMSD clustering radius, the largest
subcluster S has only 22 members, but it includes the lowest energy structure of all the 200
structures retained. The center of this subcluster S is within 5.14 Å RMSD from the center of
cluster 1. Thus, based on the properties of subcluster S, cluster 1 satisfies all three conditions
for stability, and therefore it can be classified as stable in Table I. According to the last column,
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the center of subcluster S (which in this case includes the structure with the lowest RosettaDock
energy) is 5.50 Å from the native. Since the original cluster center is at 3.95 Å RMSD from
the native, RosettaDock did not improve the accuracy of the solution for this complex, but
demonstrated that it has a well-defined region of attraction.

The results in Table I show that the near-native cluster is stable for all the complexes studied.
Clustering of the 200 best-energy structures from the Monte Carlo minimization runs yields
in general larger subclusters than for 1CGI. In addition, the distance between the native
structure and the center of the largest subcluster is generally smaller than the distance between
the native structure and the center of the cluster, i.e., the Monte Carlo minimization by
RosettaDock improves the structures obtained by rigid body docking. According to Table I,
RosettaDock reduces the RMSD in 18 of the 26 complexes. For the purposes of this paper,
however, the more important observation is that the near-native clusters are stable for all the
26 complexes.

Our second goal is to show that the stability criterion can discriminate between near-native and
non-native clusters, and hence help to eliminate some of the “false positive” clusters that have
low energy but are not close to the native. Therefore we performed the same simulations on
the non-native clusters that are ranked higher than the first near-native one, in order to see
whether some of them can be excluded from further analysis. It is expected that the Monte
Carlo simulations will improve discrimination as we switch from the the rigid body energy
function, which is defined on a grid and has limited accuracy, to the more accurate RosettaDock
energy function. Detailed results are presented for the enzyme-inhibitor complex 1MAH (Table
II) and the antibody-antigen complex 1NMB (Table III). These complexes were selected
because the near-native cluster is preceeded by nine non-native clusters in both cases, and
hence they provide good examples to study the outcome of Monte Carlo minimization
calculations in these clusters.

Table II shows the results of our analysis for the enzyme-inhibitor complex 1MAH. These
include the RMSD between the cluster center and the native complex for each of the top ten
clusters obtained by the rigid body docking of the unbound component proteins (column 2),
as well as the results of the MC minimizations for each cluster. As in Table I, we list the number
of elements in the largest subcluster, the rank of the subcluster center (among the 200 structures
retained from the MC minimization), and the RMS displacement of the subcluster center from
the cluster center. Clusters 5, 7, 8, and 10 satisfy all three conditions for stability, and hence
are considered stable. The other 6 clusters fail at least for one condition and hence are unstable.
Cluster 3 is unstable, because the center of the largest subcluster is more than 12 Å from the
cluster center, and with 7 entries the subcluster is too small. The highest occupancy subclusters
are also too small in Clusters 2, 3, and 6, whereas in clusters 1, 6, and 9 the S subclusters do
not include low energy structures and hence do not satisfy Condition C. Table II also shows
the RMSD between the center of the most populated subcluster and the native structure,
demonstrating that starting from a point in a non-native cluster, the short Monte Carlo
minimizations alone are generally unable to substantially reduce the RMSD from the native
structure. In fact, since the energy landscape is very rugged, the Monte Carlo protocol gets
stuck pretty near to its starting point, and therefore no trajectory leading to the global minimum
can be created if the starting structure is too far away.

Figure 3 shows the 200 lowest RosettaDock scores from the 1200 Monte Carlo minimization
runs as a function of the RMSD from each cluster center. These plots reveal a funnel-like
behavior within 10 Å RMSD from the cluster center for the stable clusters 5, 7, 8, and 10, and
the lack of funnels leading to low energy within this RMSD range for the remaining 6 clusters.
The energy plot for cluster 8 shows two or three funnels within the same cluster. However, the
funnel located only at 2.5 Å RMSD from the cluster center represents the most populated
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subcluster. Although this subcluster is very small, with only 10 members (see Table II), cluster
8 satisfies the conditions for stability. Cluster 3 has a well-defined funnel, but it is beyond the
12 Å stability threshold. Although the plot also shows a single structure with very low energy
below the 10 Å mark, this structure is not surrounded by a populated subcluster, and cluster 3
is considered unstable. As shown in Table II, this results is correct, since the RMSD between
the center of cluster 3 and the native complex is 31 Å.

Table III and Figure 4 show the results of stability analyses for the antibody-antigen complex
1NMB. As for 1MAH, four out of the ten clusters (clusters 1, 3, 7, and 10) satisfy all three
conditions for stability. The comparison to the 1MAH results show a number of differences
that appear to generally exist between enzyme-inhibitor and antigen-antibody complexes. First,
for 1NMB all clusters except for cluster 10 are around 30 Å RMSD away from the native. This
is in agreement with the observation that due to the smaller role of shape complementarity,
rigid-body energy functions carry less information and usually yield less accurate results for
antibody-antigen complexes than for enzyme-inhibitor complexes.4 Second, the Monte Carlo
simulations generally move farther from the cluster center than for 1MAH (see Table III).
Indeed, the displacements are close to 10 Å, even for the native cluster 10. However,
RosettaDock works very well for the near-native cluster of 1MNB, and the MCM simulations
converge at 1.12 Å RMSD from the native structure (Table III). To illustrate the complexity
of the global energy surface, Figure 5 shows the union of results for the 10 clusters (200 points
for each), this time as a function of the RMSD from the native structure. According to this plot,
there is a near-native funnel for this complex with a 1.12 Å RMSD from the native structure,
and RosettaDock finds this solution in 41 of the 200 simulations started around the center of
cluster 10 (Table III). However, Figure 5 reveals the existence of much lower energy structures
at almost 30 Å RMSD from the native, emphasizing that even a detailed energy function, such
as the one used by RosettaDock, is unable to eliminate all false positives, and that the chance
for finding such low energy non-native structures increases as the search is extended beyond
a neighborhood of the native state.

Monte Carlo minimization runs have been performed for all non-native clusters preceding a
near-native cluster in order to identify and remove unstable clusters. As shown in Table IV,
the largest cluster from the rigid body docking is near-native for 9 enzyme-inhibitor and 2
antibody-antigen complexes. As already shown in Table I, all near-native clusters are stable
and hence remain ranked as number 1. For the remaining 15 complexes about half of the non-
native clusters are classified as unstable. Since such clusters are always non-native, they can
be removed from further consideration, thereby generally reducing the number of potential
conformations by a factor of two. This reduction in the number of non-native clusters indicates
that the limitations of the rigid body energy functions produce a substantial number of false
positive solutions with low energy. In the examples considered half of these can be removed
by switching to the more accurate RosettaDock energy and restricting consideration to the
minima with broad regions of attraction. We note that in a ”blind-trial” applications, where 30
or so clusters would have to be considered, the fraction of non-native clusters that are unstable
could be different. However, the main goal is reducing the number of non-native clusters that
are larger than the first near-native one.

Table IV lists two RMSD values for each complex. The first is the RMSD between the native
complex and the center of the first near-native cluster from the rigid body docking. The second
is the RMSD between the native complex and the most populated subcluster obtained after the
1200 Monte Carlo minimizations by RosettaDock. According to these results, the application
of RosettaDock to the rigid body docking results in the near-native clusters improves the
predictions for 18 of the 26 complexes, in 11 cases reducing the RMSD by more than 2 Å.
Thus, refining low resolution models using a higher resolution energy function definitely yields
better accuracy. We should however keep in mind that we compare here the best RMSD
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structures rather than the ones with the best energy. As we have shown for the complex 1NMB,
the more global search by the combined FFT-RosettaDock can easily yield very low energy
non-native structures (and thus the best-RMSD structure is not necessarily the one selected).

Discussion

Protein-protein docking can be described as the problem of locating the global minimum of a
scoring function that attempts to describe the free energy of the protein-solvent system.
Although for some classes of interacting proteins it is feasible to assume an essentially rigid
body association and hence the problem can be reduced to a search in the 6D space of
translations and rotations, finding near-native structures of the complex remains di±cult for a

number of reasons. First, even this so-called rigid body approximation must account for

conformational changes due to the re-orientation of side chains in the interface. Thus, the

problem is not simply matching two irregular shapes; one has to minimize energy-like scoring

functions that account for electrostatic and chemical complementarity of the interacting

surfaces. Second, the scoring functions are approximate, and hence one has to retain a number

of sub-optimal solutions from the initial search for further evaluation. This implies that one

has to explore the entire 6D conformational space, possibly generating billions of

conformations, unless prior structural information is available. Third, the observation that is

most disconcerting for a computational scientist, is that finding the lowest minima of the

scoring functions does not necessarily imply finding near-native complex structures. In fact,

none of the current scoring functions account for the loss of entropy upon the association of

the two proteins, and hence a deep but narrow minimum, which necessarily leads to substantial

entropy loss, is less likely to yield a physically meaningful solution than a broader albeit

possibly not as deep alternative minimum.

Most methods of protein-protein docking that performed well at CAPRI (Critical Assessment

of Predicted Interactions), the communitywide experiment devoted to protein docking7 are

based only on two approaches. These approaches are rigid body exhaustive search, most

frequently involving Fast Fourier Transforms (FFT) for evaluating the scoring function, and

Monte Carlo minimization. Both methods have distinct advantages and disadvantages. The

Fast Fourier Transform (FFT) correlation approach can globally explore the conformational

space of a protein-protein complex, evaluating the energies for billions of conformations on a

grid. However, due to the approximate nature of the energy function and the need for tolerating

potential overlaps, the method yields a large number of false positives, i.e., conformations with

low energy that are located far from the native orientation. No further discrimination can be

obtained by using the energy measures defined on the grid, because the differences in energy

levels between the minima are comparable to the errors in the energy calculation. Docking

algorithms based on Monte Carlo minimization (MCM) can use more detailed and hence more

accurate energy functions. However, Monte Carlo is a statistical method, and due to the need

for extensive calculations it can explore only limited regions of the conformational space on

reasonable time scales. Thus, results provided by MCM methods may heavily depend on the

initial points of the simulations. Finally, none of the methods account for the entropic

consideration suggesting that the native complex structures are likely to be located at minima

with broad regions of attraction.

The method described in this paper combines the above two approaches to docking. The first

step of the method is globally sampling the conformational space by FFT-based rigid body

docking. This step also includes the clustering of the docked conformations, generally resulting

up to 30 clusters, each covering a neighbourhood of different local minima. In the second step,

Monte Carlo minimization runs are carried out from 1200 random points within each retained

cluster in order to test the ”stability” of the cluster, i.e., to determine whether the minimum has

some region of attraction that prevents the divergence of Monte Carlo minimization trajectories
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out of the region defined by the cluster. For the analysis of stability we retain the 200 lowest
energy structures from the MCM runs, and cluster them with a 3 Å RMSD radius, resulting in
a number of generally small subclusters. The cluster is considered stable if the highest
occupancy subcluster S contains more than 10 convergent trajectories, the center of S is close
enough to the original cluster center, and S contains at least one low energy structure.

We note that that it would be highly desirable to develop a meaningful estimate of the free
energy including both enthalpic and entropic contributions. However, if the conformations
have very similar energies, the ranking of conformations is primarily determined by the
entropic terms. Since the energy function is approximate, the cluster size appears to be a better
measure of entropy than the volume of the basin, calculated from the energy surface. In
addition, our energy expression already includes entropic contributions in the solvation term.
Similar results were shown by Ruvinsky and Kozintsev,28 who developed free energy measures
incorporating the volume of the energy basin, but none of the models derived performed better
than the cluster size. The advantage of using cluster size for finding near-native structures in
protein-protein docking has been confirmed by the results of a recent comparative study.29

We studied the stability of clusters for enzyme-inhibitor and antibody-antigen complexes in
the Protein Docking Benchmark. The analysis yields three main results. First, the near-native
clusters are always stable. Second, restricting considerations to stable clusters eliminates about
half of the false positives, i.e., solutions that have low energy but are far from the native
structure of the complex. Third, breaking up the docking problem into stability analyses of
clusters of docked conformations makes the combined approach less dependent on a priori
information than exploring the potential conformational space by Monte Carlo minimizations
without the global search by rigid body docking.

We admit that the exact stability criteria were based on the analysis of some enzyme-inhibitor
complexes. Although the same conditions turned out to be applicable to all enzyme-inhibitor
and antigen-antibody complexes of the docking benchmark,16 the generality of the conditions
remains somewhat questionable, and may have to be adjusted as results for more complexes
will become available. However, the general idea is very clear: the energy minima close to
native states must be strong attractors. The existence of such attractors can be determined by
examining the convergence of Monte Carlo minimization trajectories started from points
around the local minimum, and this is the basis of the method described here. Selecting minima
with broad regions of attraction increases the probability of finding near-native structures, as
the minimization itself can lead to false positives, i.e., conformations that have low energy but
are far from the native. We have found that the near-native clusters are stable for all complexes
in this study (Table I), which means that the RosettaDock energy function is accurate enough
to guarantee the convergence of Monte Carlo minimization trajectories within the regions
defined by these clusters. We have also shown that the minimization improves the prediction
for the majority of complexes (Table IV), again restricting considerations to trajectories started
within near-native clusters.

It is far from simple to compare our two-step method with RosettaDock in terms of the required
CPU time. The RosettaDock approach usually involves sampling around 104 starting
orientations in a global run, and then the local optimization of the best starting structures found.
The rigid body docking in our procedure is certainly faster than the initial sampling in
RosettaDock. However, we then generally explore the stability of up to 30 clusters, performing
1200 short MCM runs in each, most likely making the approach computationally as expensive
as the original RosettaDock procedure.
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Figure 1.

Schematic representation of the energy surface along an arbitrary association coordinate. The
arrows represent the sampled conformations, with small filled circles representing the
corresponding energies. Retaining only the structures with energies below a threshold and
clustering the retained structures using pairwise RMSD as the distance measure yields a number
of clusters, where the large clusters correspond to minima that have broad regions of attraction.
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Figure 2.

Schematic representation of the Monte Carlo minimization trajectories. The large circle
represents the cluster boundary, and the smaller circle around the cluster center shows the
region in which the initial points are selected for the Monte Carlo minimization (MCM) runs.
Panel A shows a stable cluster in which a number of MCM trajectories converge to a small
region representing the subcluster S within the space defined by cluster. Panel B shows an
unstable cluster with no convergent trajectories.
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Figure 3.

The lowest 200 energy values selected from the Monte Carlo minimization (MCM) runs for
each of the 10 top clusters obtained for the enzyme-inhibitor complex 1MAH. The energies
across the interface are shown as functions of the RMSD from the respective cluster centers.
Thus, a small RMSD implies that the MCM run does not substantially affect the conformation
obtained by the rigid body docking.
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Figure 4.

The lowest 200 energy values selected from the Monte Carlo minimization (MCM) runs for
each of the 10 top clusters obtained for the antigen-antibody complex 1NMB. The energies
across the interface are shown as functions of the RMSD from the respective cluster centers.
Thus, a small RMSD implies that the MCM run does not substantially affect the conformation
obtained by the rigid body docking.
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Figure 5.

Union of all Monte Carlo simulation results (2000 structures) for all the 10 clusters of the
enzyme-inhibitor complex 1NMB shown in Figure 4. The energies are shown as functions of
the RMSD from the native complex, so a small RMSD indicates a near-native structure.
According to this Figure, a global search using the RosettaDock energy would yield structures
with almost 30Å RMSD from the native complex.
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