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Abstract. The problem of discriminating among given nonorthogonal quantum
states is underlying many of the schemes that have been suggested for quantum
communication and quantum computing. However, quantum mechanics puts severe
limitations on our ability to determine the state of a quantum system. In particu-
lar, nonorthogonal states cannot be discriminated perfectly, even if they are known,
and various strategies for optimum discrimination with respect to some appropri-
ately chosen criteria have been developed. In this article we review recent theoreti-
cal progress regarding the two most important optimum discrimination strategies.
We also give a detailed introduction with emphasis on the relevant concepts of
the quantum theory of measurement. After a brief introduction into the field, the
second chapter deals with optimum unambiguous, i. e error-free, discrimination.
Ambiguous discrimination with minimum error is the subject of the third chap-
ter. The fourth chapter is devoted to an overview of the recently emerging subfield
of discriminating multiparticle states. We conclude with a brief outlook where we
attempt to outline directions of research for the immediate future.

11.1 Introduction

In quantum information and quantum computing the carrier of information
is some quantum system and information is encoded in its state [1]. The
state, however, is not an observable in quantum mechanics [2] and, thus,
a fundamental problem arises: after processing the information - i.e. after
the desired transformation is performed on the input state by the quan-
tum processor - the information has to be read out or, in other words, the
state of the system has to be determined. When the possible target states
are orthogonal, this is a relatively simple task if the set of possible states is
known. But when the possible target states are not orthogonal they cannot
be discriminated perfectly, and optimum discrimination with respect to some
appropriately chosen criteria is far from being trivial even if the set of the
possible nonorthogonal states is known. Thus the problem of discriminat-
ing among nonorthogonal states is ubiquitous in quantum information and
quantum computing, underlying many of the communication and computing
schemes that have been suggested so far. It is the purpose of this article to
review various theoretical schemes that have been developed for discriminat-
ing among nonorthogonal quantum states. The corresponding experimental
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realizations will be mentioned only in a cursory manner as they are reviewed
elsewhere in this volume by Chefles.

The field of discriminating among nonorthogonal quantum states has been
around for quite some time now [3]. Stimulated by the rapid developments
in quantum information theory of the 90’s the question of how to discrimi-
nate between nonorthogonal quantum states in an optimum way has gained
renewed interest. The developments until about the late 90’s are reviewed in
an excellent review article by Chefles [4]. Therefore, in this review we will
mainly focus our attention to recent advances not contained in [4] and will
cite earlier results only when they are necessary for the understanding of the
newer ones.

In order to devise an optimum state-discriminating measurement, strate-
gies have been developed with respect to various criteria. In this review ar-
ticle we restrict ourselves to the two most obvious criteria for optimizing
a measurement scheme that is designed for discriminating between differ-
ent states of a quantum system, being either pure states or mixed states.
The two methods are optimum unambiguous discrimination of the states, on
the one hand, and state discrimination with minimum error, on the other
hand. They will be outlined in detail in the next two sections of this re-
view. In particular, at the beginning of these sections we give a tutorial
introduction to the two main strategies by considering simple examples,
namely unambiguous discrimination of two pure states in Sect. 11.2, and
minimum-error discrimination of two mixed states in Sect. 11.3. This will
allow us to introduce the concept of generalized measurements along with
the other typical theoretical tools employed in problems of this sort. Se-
lected applications of the unambiguous discrimination strategy, one chosen
from quantum communication and the other from quantum computing will
be reviewed at the end of Sect. 11.2. Section 11.4 is devoted to the recently
emerging sub-field of discriminating among multipartite states by means of
local operations and classical communication (LOCC). We conclude with
a brief outlook in Sect. 11.5. Throughout the article we assume that for
each measurement only a single copy of the quantum system is available.
However, the case of multiple copies could be easily accounted for, in the
measurement schemes we consider, if the states are replaced by their corre-
sponding multi-fold tensor products. We note that apart from the two op-
timization schemes we consider, state-distinguishing measurements can also
be optimized with respect to other criteria, such as requiring a maximum
of the mutual information [5] or of the fidelity [6]. In particular, the for-
mer approach is of importance for the transmission of quantum informa-
tion. From a mathematical point of view, however, these other criteria pose
much bigger problems, since they rely on optimizing a nonlinear functional
of the given states and, therefore, are beyond the scope of the current re-
view.
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11.2 Unambiguous Discrimination

In this section we will review schemes for unambiguous discrimination. Al-
though the simplest case of two pure states is well known and has been
reviewed extensively (see, for example, [4]), from a pedagogical point of view
we find it useful to include it here as well, because many of the techniques
employed later can be best understood on this simple example. We also want
to mention that the two main discrimination strategies evolved rather differ-
ently from the very beginning. On the one hand, unambiguous discrimination
started with pure states and only very recently turned its attention to discrim-
inating among mixed quantum states. At the end of this section we will review
recent progress in this area. On the other hand, minimum-error discrimina-
tion addressed the problem of discriminating among two mixed quantum
states from the very beginning and the results for two pure states followed as
special cases. Each strategy has its own advantages and drawbacks. While un-
ambiguous discrimination is relatively straightforward to generalize for more
than two states it is difficult to treat mixed states. The error-minimizing
approach, initially developed for two mixed states, is hard to generalize for
more than two states.

Before we begin our systematic study of the optimal unambiguous dis-
crimination of two pure states in the next subsection, we want to gain some
physical insight first. To this end, let us describe the procedure of optimum
unambiguous discrimination between two nonorthogonal single photon po-
larization states in terms of classical optics. We consider a series of weak
pulses containing, on the average, much less than one photon. Each pulse
is linearly polarized, with equal probability, either in the direction e1 or
in the direction e2 with e1,2 = cos Θ ex ± sin Θ ey, where we assume that
cos Θ ≥ sin Θ. If the pulses pass through a linear optical device and undergo
polarization-selective linear attenuation in the x direction, their polarization
vectors can be made orthogonal. For this purpose the attenuation process
has to be designed in such a way that the amplitude of the x-component
is reduced by a factor of tanΘ. Due to the attenuation, the initial electric
field vectors E1,2 = E0e1,2 of the respective pulses are then transformed into
the vectors E

′
1,2 = E0

√
2 sin Θ(ex ± ey)/

√
2. Hence, after leaving the linear

optical device, the polarization directions of the two kinds of pulses are or-
thogonal and, therefore, can be discriminated unambiguously even when the
pulses contain only a single photon. However, the intensity that can be used
for unambiguous polarization state discrimination is reduced by a factor of
2 sin2 Θ relative to the total initial intensity. Since a classical intensity ratio
corresponds to the probability ratio of detecting a photon, every incoming
photon will yield an unambiguous result in the state discrimination process
only with the probability

PD = 2 sin2 Θ = 1 − cos(2Θ) = 1 − |e1e2| . (11.1)
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Here we introduced the modulus of the scalar product since, when the direc-
tion of one of the vectors, e1 or e2, is reversed, the linear polarization state
remains the same. The probability that the discrimination procedure fails,
i. e. that the polarization state of the photon cannot be determined unam-
biguously, is therefore QF = 1 − PD = |e1e2|. Although orthogonalization
of the polarization states is also possible when polarization-selective attenu-
ation affects a polarization direction that differs from the x-axis, it is easy
to see that the symmetric procedure described above is optimal in the sense
that it yields the maximum achievable value of PD, or the minimum value of
QF = 1 − PD, respectively.

From the pioneering investigations of unambiguous discrimination be-
tween general nonorthogonal quantum states it follows that for any two states,
|ψ1〉 and |ψ2〉, occurring with equal a priori probability, the optimum proba-
bility of obtaining an unambiguous result is given by (11.1) when the scalar
product e1e2 is replaced by the overlap 〈ψ1|ψ2〉, as we will show in the fol-
lowing [see (11.2), in particular].

11.2.1 Unambiguous Discrimination of Two Pure States

Unambiguous discrimination started with the work of Ivanovic [7] who stud-
ied the following problem. A collection of quantum systems is prepared so
that each single system is equally likely to be prepared in one of two known
states, |ψ1〉 or ψ2〉. Furthermore, the states are not orthogonal, 〈ψ1|ψ2〉 �= 0.
The preparer then hands the systems over to an observer one by one whose
task is to determine which one of the two states has actually been prepared
in each case. All the observer can do is to perform a single measurement or
perhaps a series of measurements on the individual system. Ivanovic came to
the conclusion that if one allows inconclusive detection results to occur then
in the remaining cases the observer can conclusively determine the state of
the individual system.

It is rather easy to see that a simple von Neumann measurement can ac-
complish this task. Let us denote the Hilbert space of the two given states
by H and introduce the projector P1 for |ψ1〉 and P̄1 for the orthogonal sub-
space, such that P1 + P̄1 = 1, the unity in H. Then we know for sure that
|ψ2〉 was prepared if in the measurement of {P1, P̄1} a click in the P̄1 detector
occurs. A similar conclusion for |ψ1〉 can be reached with the roles of |ψ1〉 and
|ψ2〉 reversed. Of course, when a click along P1 (or P2) occurs then we learn
nothing about which state was prepared thus corresponding to inconclusive
results. Ivanovic’s startling observation was that a sequence of measurements
can sometimes do better than a single von Neumann measurement described
here. Dieks [8] then found that this sequence of measurements can be real-
ized with a single generalized measurement (POVM) and Peres subsequently
showed that this POVM is optimal in the sense that its failure probability, the
probability that an inconclusive outcome occurs, is minimum [9]. The prob-
ability of the inconclusive outcome, or failure, is QIDP = |〈ψ1|ψ2〉| and the
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probability of success is then given by what is called the Ivanovic-Dieks-Peres
(IDP) limit,

PIDP = 1 − QIDP = 1 − |〈ψ1|ψ2〉| . (11.2)

This result can be generalized for the case when the preparation probabilities
of the states, η1 and η2, are different, η1 �= η2. The preparation probabilities
are also called a priori probabilities. The IDP result thus corresponds to
the case of equal a priori probabilities for the two states, η1 = η2 = 1/2,
and the generalization for arbitrary a priori probabilities is due to Jaeger
and Shimony [10]. Here we briefly review the derivation of the general result
following [10] and the very readable account by Ban [11].

11.2.2 Optimal POVM and the Complete Solution

The von Neumann projective measurement described above has two out-
comes. It can correctly identify one of the two states at the expense of missing
the other completely and occasionally missing the identifiable one, as well.
If we want to do better we would like to have a measurement with three
- not just two - outcomes, |ψ1〉, |ψ2〉 and failure. In the two-dimensional
Hilbert space H the number of possible outcomes for a von Neumann mea-
surement cannot exceed two, since it is always restricted by the dimensional-
ity of the Hilbert space. We have to turn to generalized measurements that
allow greater flexibility than simple projective measurements [12]. In partic-
ular, the number of distinguishable outcomes can exceed the dimensionality
of the corresponding Hilbert space. For our case this means that we replace
the projector P̄2 by the quantum detection operator Π1, P̄1 by Π2 and intro-
duce Π0 for the inconclusive results in such a way that 〈ψ1|Π1|ψ1〉 = p1 is
the probability of successfully identifying |ψ1〉, 〈ψ1|Π0|ψ1〉 = q1 is the prob-
ability of failing to identify |ψ1〉, (and similarly for |ψ2〉). For unambiguous
discrimination we then require 〈ψ2|Π1|ψ2〉 = 〈ψ1|Π2|ψ1〉 = 0. We want these
possibilities to be exhaustive,

Π1 + Π2 + Π0 = I , (11.3)

where I is the unity operator in H. The probabilities are always real and non-
negative which implies that the quantum detection operators are Hermitean
and non-negative or, in other words, positive semi-definite.

Clearly, (11.3) does not correspond to orthogonal measurements when all
detection operators are different from zero. It describes an operation called
positive operator-valued measure (POVM) or simply a generalized measure-
ment with the detection operators as its elements.

We now want to determine these operators explicitly. Consider the oper-

ator Ak = UkΠ
1/2
k , where Uk is an arbitrary unitary operator (k = 0, 1, 2).

From this expression we immediately obtain Πk = A†
kAk and the detection
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probability can be expressed as 〈ψi|A†
kAk|ψi〉 = ‖Akψi‖2 ≥ 0 where ‖...‖

stands for the norm. This expression also helps us to identify the so far arbi-
trary operator Ak. The expression Ak|ψi〉 corresponds to the post-detection
state. Because of the positivity of the norm, the condition of unambiguous
discrimination is equivalent to the requirement

A1|ψ2〉 = A2|ψ1〉 = 0 . (11.4)

If we introduce |ψ⊥
i 〉 as the vector orthogonal to |ψi′〉 (i �= i′) - a nota-

tion that will become obvious in Sect. 11.2.2 - then A1 = c1|ψ̄1〉〈ψ⊥
1 | and

A2 = c2|ψ̄2〉〈ψ⊥
2 |. Here ci are complex coefficients to be determined from the

condition of optimum and |ψ̄1〉 and |ψ̄2〉 are the post-detection states, nor-
malized to unity. For perfect distinguishability of the post-detection states,
corresponding to optimal discrimination, we have to require their orthogonal-
ity, 〈ψ̄1|ψ̄2〉 = 0, so they can be represented by a pair of arbitrarily directed
orthogonal vectors in H.

With the help of these expressions we can write the detection operators
as Π1 = A†

1A1 = |c1|2|ψ⊥
1 〉〈ψ⊥

1 | and Π2 = A†
2A2 = |c2|2|ψ⊥

2 〉〈ψ⊥
2 |. Inserting

these expressions in the definition of p1 and p2 gives |c1|2 = p1/|〈ψ1|ψ⊥
1 〉|2

and a similar expression for |c2|2. Finally, introducing cosΘ = |〈ψ1|ψ2〉| and
sin Θ = |〈ψ1|ψ⊥

1 〉|, we can write the detection operators as

Π1 =
p1

sin2 Θ
|ψ⊥

1 〉〈ψ⊥
1 | ,

Π2 =
p2

sin2 Θ
|ψ⊥

2 〉〈ψ⊥
2 | . (11.5)

Now, Π1 and Π2 are positive semi-definite operators by construction. How-
ever, there is one additional condition for the existence of the POVM which
is the positivity of the inconclusive detection operator,

Π0 = I − Π1 − Π2 . (11.6)

This is a simple 2 by 2 matrix in H and the corresponding eigenvalue problem
can be solved analytically. Non-negativity of the eigenvalues leads, after some
tedious but straightforward algebra, to the condition

q1q2 ≥ |〈ψ1|ψ2〉|2 , (11.7)

where q1 = 1 − p1 and q2 = 1 − p2 are the failure probabilities for the
corresponding input states.

Equation (11.7) represents the constraint imposed by the positivity re-
quirement on the optimum detection operators. The task we set out to solve
can now be formulated as follows. Let

Q = η1q1 + η2q2 (11.8)

denote the average failure probability for unambiguous discrimination. We
want to minimize this failure probability subject to the constraint, (11.7).



11 Discrimination of Quantum States 423

Due to the relation, P = η1p1 + η2p2 = 1 − Q, the minimum of Q also gives
us the maximum probability of success. Clearly, for optimum the product
q1q2 should be at its minimum allowed by (11.7), and we can then express
q2 with the help of q1 as q2 = cos2 Θ/q1. Inserting this expression in (11.8)
yields

Q = η1q1 + η2
cos2 Θ

q1
, (11.9)

where q1 can now be regarded as the independent parameter of the problem.
Optimization of Q with respect to q1 gives qPOV M

1 =
√

η2/η1 cos Θ and

qPOV M
2 =

√

η1/η2 cos Θ. Finally, substituting these optimal values into (11.8)
gives the optimum failure probability,

QPOV M = 2
√

η1η2 cos Θ . (11.10)

For η1 = η2 = 1/2 this reproduces the IDP result, (11.2), as it should.
Let us next see how this result compares to the average failure probabil-

ities of the two possible unambiguously discriminating von Neumann mea-
surements that were described at the beginning of this section. The average
failure probability for the first von Neumann measurement, with its failure
direction along |ψ1〉, can be written by simple inspection as

Q1 = η1 + η2|〈ψ1|ψ2〉|2 , (11.11)

since |ψ1〉 gives a click with probability 1 in this direction but it is only
prepared with probability η1 and |ψ2〉 gives a click with probability |〈ψ1|ψ2〉|2
but it is only prepared with probability η2. The corresponding detector set-
up, yielding Q1 for the failure probability, is depicted in Fig. 11.1.

By entirely similar reasoning, the average failure probability for the second
von Neumann measurement, with its failure direction along |ψ2〉, is given by

Q2 = η1|〈ψ1|ψ2〉|2 + η2 . (11.12)

The corresponding detector set-up, yielding Q2 for the failure probability, is
depicted in Fig. 11.2.

What we can observe is that Q1 and Q2 are given as the arithmetic mean
of two terms and QPOV M is the geometric mean of the same two terms for
either case. So, one would be tempted to say that the POVM performs better
always. This, however, is not quite the case, it does so only when it exists. The
obvious condition for the POVM solution to exists is that both qPOV M

1 ≤ 1
and qPOV M

2 ≤ 1. Using η2 = 1 − η1, a little algebra tells us that the POVM
exists in the range cos2 Θ/(1 + cos2 Θ) ≤ η1 ≤ 1/(1 + cos2 Θ). If η1 is smaller
than the lower boundary, the POVM goes over to the first von Neumann
measurement and if η1 exceeds the upper boundary the POVM goes over to
the second von Neumann measurement. This can be easily seen from (11.5)
and (11.6) since p1 = 1−q1 = 0 for q1 = 1 and Π0 becomes a projection along
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Fig. 11.1. A von Neumann measurement that discriminates |ψ2〉 unambiguously.
The detector D0 = P1 is set up along |ψ1〉 and the detector D2 = P̄1 is set up
along the orthogonal direction. When a click in the D2 detector occurs we know for
certain that |ψ2〉 was prepared as the input state since it is the only one that has
a component along this direction. When a click in the detector D0 occurs we learn
nothing about which state was prepared as the input since both have a component
along this direction. This measurement outcome then corresponds to the inconclu-
sive result so D0 is the failure detector and the probability that it clicks is Q1.

Fig. 11.2. A von Neumann measurement that discriminates |ψ1〉 unambiguously.
The detector D0 = P2 is set up along |ψ2〉 and the detector D1 = P̄2 is set up
along the orthogonal direction. When a click in the D1 detector occurs we know for
certain that |ψ1〉 was prepared as the input state since it is the only one that has
a component along this direction. When a click in the detector D0 occurs we learn
nothing about which state was prepared as the input since both have a component
along this direction. This measurement outcome then corresponds to the inconclu-
sive result so D0 is the failure detector and the probability that it clicks is Q2.
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Fig. 11.3. Optimal POVM that discriminates |ψ1〉 and |ψ2〉 unambiguously. The
detector D0 = Π0 is set up symmetrically between |ψ1〉 and |ψ2〉, the detector D1 =
Π1 is set up along P̄2 and the detector D2 = Π2 is set up along P̄1. When a click in
the Di detector occurs we know for certain that |ψi〉 was prepared (i = 1, 2) as the
input state since it is the only one that has a component along this direction. When
a click in the detector D0 occurs we learn nothing about which state was prepared
as the input since both have a component along this direction. This measurement
outcome then corresponds to the inconclusive result so D0 is the failure detector
and the probability that it clicks is QPOV M . (The figure is for illustrative purposes
only. Arrows representing POVM detection operators do not correspond to simple
projections along their respective directions. They are drawn shorter than arrows
representing state vectors which, in turn, have unit length. For an implementation
of the POVM, see Sect. 11.2.3.)

|ψ1〉 (and correspondingly for p2 = 0). The set-up of the detection operators,
yielding QPOV M for the failure probability, is depicted in Fig. 11.3.

These findings can be summarized as follows. The optimal failure proba-
bility, Qopt, is given as

Qopt =











QPOV M if cos2 Θ
1+cos2 Θ ≤ η1 ≤ 1

1+cos2 Θ ,

Q1 if η1 < cos2 Θ
1+cos2 Θ ,

Q2 if 1
1+cos2 Θ < η1 .

(11.13)

Figure 11.4 displays the failure probabilities vs. η1 for a fixed value of the
overlap, cos2 Θ.

The above result is very satisfying from a physical point of view. The
POVM delivers a lower failure probability in its entire range of existence
than either of the two von Neumann measurements. At the boundaries of
this range it merges smoothly with the von Neumann measurement that
has a lower failure probability at that point. Outside this range the state
preparation is dominated by one of the states and the optimal measurement
becomes a von Neumann projective measurement, using the state that is
prepared less frequently as its failure direction.

Next we turn our attention to the physical implementation of the POVM.
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Fig. 11.4. Failure probability, Q, vs. the prior probability, η1. Dashed line: Q1,
dotted line: Q2, solid line: QPOV M . For the figure we used the following represen-
tative value: |〈ψ1|ψ2〉|

2 = 0.1. For this the optimal failure probability, Qopt is given
by Q1 for 0 < η1 < 0.09, by QPOV M for 0.09 ≤ η1 ≤ 0.9 and by Q2 for 0.9 < η1.

11.2.3 Neumark’s Theorem and the Realization of the POVM

The problem with the POVM is that it is very hard to realize in the orig-
inal system Hilbert space since it involves detection operators that do not
correspond to orthogonal projectors. In fact, they are not projectors at all.
Fortunately, there is an essential result, known as Neumark’s theorem [13]. It
states that a POVM can be realized by the following constructive procedure,
also known as generalized measurement. The system is embedded in a larger
Hilbert space where the extra degrees of freedom are customarily called the
ancilla. Then a unitary transformation entangles the system degrees of free-
dom with those of the ancilla. Finally, after this interaction, projective von
Neumann measurements can be carried out on this larger system. As a con-
sequence of the entanglement between the original system and the ancilla, a
projective measurement on the larger system will also transform the system
state in the original Hilbert space. One can choose the unitary transformation
and the subsequent von Neumann measurement in such a way that if outcome
k is found in the von Neumann measurement on the larger system, the result-
ing transformation on the original system state is Ak|ψ〉, i. e. it corresponds
to an element of the POVM in the original system Hilbert space.

We illustrate the power of this theorem on an alternative derivation of
the condition on the individual failure probabilities, (11.7). The joint Hilbert
space K of the ‘system plus ancilla’ is a tensor product of the two Hilbert
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spaces, H of the system and A of the ancilla, K = H ⊗ A. This means that
a state in K is a superposition of product states where, in each product, the
first member is from H and the second is from A. Specifically, the two inputs
now correspond to |ψ1〉|φ0〉 and |ψ2〉|φ0〉, where |φ0〉 describes the initial state
of the ancilla. We choose the unitary transformation as

U(|ψ1〉|φ0〉) =
√

p1|ψ′
1〉|φ0〉 +

√
q1|ψ0〉|φ1〉 , (11.14)

U(|ψ2〉|φ0〉) =
√

p2|ψ′
2〉|φ0〉 +

√
q2e

iθ|ψ0〉|φ1〉 , (11.15)

where |φ1〉 is chosen to be orthogonal to |φ0〉, and |ψ′
1〉 and |ψ′

1〉 correspond
to orthogonal vectors in the original Hilbert space. If we now perform a von
Neumann measurement on the ancilla then a click along the |φ1〉 direction
collapses both inputs onto the same output, |ψ0〉, and all information about
the inputs is lost. The probability that this happens for input i is qi (i =
1, 2). Obviously, this outcome corresponds to the inconclusive result so qi are
the failure probabilities of the corresponding input states i. On the other
hand, a click along the |φ0〉 direction transforms the original inputs into
orthogonal outputs in the system Hilbert space. The probability that this
happens for input i is pi (i = 1, 2). Obviously, this outcome corresponds
to full distinguishability in the original system Hilbert space, so pi are the
probabilities of success for discriminating the corresponding input states i.
From unitarity we obtain pi + qi = 1 for i = 1, 2 and by taking the inner
product of (11.14) and (11.15) we obtain (11.7). Thus Neumark’s theorem
delivers the positivity condition in a few lines and from here the rest of
the derivation of the optimal failure probability goes along the same lines
as for the POVM method. An optical implementation, based on the tensor
product extension of the Hilbert space and employing linear optical elements
(beam splitters and phase shifters) only, has been proposed in [14]. The states
to be discriminated are represented by a single photon that can be in a
superposition between two input ports of a six port interferometer with three
input and three output ports. The third input corresponds to the ancilla,
initially in the vacuum state. The desired unitary transformation is carried
out by this six port constructed from the appropriate linear optical elements.
At the output side detectors are placed in front of each output port. If the
photon emerges from the ancilla port 3, the measurement failed. We can
construct the device so that if the photon emerges from port i (i = 1, 2,
and we know that the input state was i. Thus, detector clicks in the first
two output ports correspond to successful measurements. Measurements of
this type can easily be generalized higher dimensional systems, using more
general multiports. An explicit example will be given in Sect. 3.2.

Before moving on to more uncharted territory we should note that the
example of unambiguous discrimination between two nonorthogonal polariza-
tion states by using a polarization-sensitive absorber that was considered at
the beginning of this section does not conform to the scheme described here,
although it clearly accomplishes its goal. Rather, it corresponds to another
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kind of possible extension of the original system Hilbert space via the direct
sum method. In this case we append the ancilla space, A, to the system space
H to form the joint Hilbert space K of the ‘system plus ancilla’. K is now a
direct sum, K = H ⊕A, of H and A, meaning that a state in K is a superpo-
sition of two terms where the first one lies entirely in H and the second one
in A. In particular, the two input states, |ψ1〉 and |ψ2〉, have no components
in the ancilla space. In the example with the two single photon polarization
states spanning the two-dimensional system Hilbert space this means that
we simply include a third state, the vacuum, as the ancilla space. We can
say that our two-dimensional objects, the qubits, secretly live in the three-
dimensional space of qutrits. The described unambiguous discrimination pro-
cedure between two single-photon polarization states has been successfully
performed experimentally, implementing the polarization-selective attenua-
tion either by polarization-dependent absorption in a fiber [15] or with the
help of polarizing beamsplitters [16]. The transformation corresponding to
the linear absorber redistributes the population among the three basis states
in such a way that the parts of the input qubit states that remain in the orig-
inal qubit Hilbert space become orthogonal there. In this method we do not
keep track of what happens to the photon in the absorption process, whereas
in the tensor product method, including a complete description of the ancilla
(environment), we do. For the simple examples that we consider, one can
introduce equivalent notations for the two alternative methods. Therefore, in
the next section we will employ the somewhat simpler notations of the direct
sum method.

This completes our tutorial review of the unambiguous discrimination
of two pure states and illustrates the two possible approaches, the direct
POVM method and the method of generalized measurements based on Neu-
mark’s theorem. We now turn our attention to more complicated problems
and briefly review recent progress in dealing with them.

11.2.4 More than Two Pure States

So far we have only considered discriminating between two states, and we
have seen that in that case a complete solution can be given. For more than
two states, however, there are only a few general results, and explicit solutions
exist only for special cases. Here we shall review what is known.

Two general results apply to the case of unambiguous discrimination.
The first, due to Chefles, is that only linearly independent states can be
unambiguously discriminated [17]. This can be seen as follows. Let the POVM
for discriminating the N states |ψ1〉, . . . |ψN 〉 be given by the operators A1,
. . . AN , and AI , where the operators act on the vectors in the space H, which
is the span of the vectors |ψ1〉, . . . |ψN 〉, and

A†
IAI +

N
∑

j=1

A†
jAj = I , (11.16)
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which is an obvious generalization of (11.3) to N states. The operator AI

again corresponds to the inconclusive outcome, and the operator Aj , for
j = 1 . . . N corresponds to identifying the state as |ψj〉. Because there must
be no errors, we must have

〈ψk|A†
jAj |ψk〉 = pjδjk, (11.17)

where 0 ≤ pj ≤ 1 is the probability of successfully identifying |ψj〉. Now
suppose that the states are linearly dependent so that they can be expressed
in terms of each other

|ψj〉 =

N
∑

k=1

cjk|ψk〉. (11.18)

Substituting this into the above equation we have that

N
∑

m,n=1

c∗
kmckn〈ψm|A†

jAj |ψn〉 = pjδjk. (11.19)

This can be simplified by noting that

|〈ψm|A†
jAj |ψn〉|2 ≤ 〈ψm|A†

jAj |ψm〉〈ψn|A†
jAj |ψn〉, (11.20)

which gives us that

〈ψm|A†
jAj |ψn〉 = pjδmnδjm. (11.21)

Substituting this into (11.19) we find that |ckj |2 = δjk, which implies that
the states are not linear combinations of each other and are, hence, linearly
independent.

It is also possible to quickly draw some conclusions about the form of the
operator Aj . Because we have that

Aj |ψk〉 = 0, (11.22)

for j �= k, it annihilates the subspace Hk, which is the span of the vectors
|ψ1〉, . . . |ψN 〉 with |ψk〉 omitted. Let |ψ⊥

k 〉 be the unit vector orthogonal
to Hk which, by the way, explains the notation introduced in the previous
section. We can then choose

Aj =

√
pj

〈ψ⊥
j |ψj〉

|ψ′
j〉〈ψ⊥

j | , (11.23)

where |ψ′
j〉, j = 1, . . . N are arbitrary orthogonal unit vectors. The remaining

problem is to find the values of pj . Let us denote the a priori probability
of the state |ψj〉 by ηj . The values of pj should be chosen to maximize the
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average success probability, P , where

P =

N
∑

j=1

ηjpj . (11.24)

In addition, they must be chosen so that the operator

A†
IAI = I −

N
∑

j=1

A†
jAj

= I −
N
∑

j=1

pj |ψ⊥
j 〉〈ψ⊥

j |
|〈ψj |ψ⊥

j 〉|2 , (11.25)

is positive. This is a nontrivial problem.
The second general result states that there do exist upper and lower

bounds on the success probability. Here we shall just present the results;
the interested reader can consult the original papers for the derivations. An
upper bound is given by [18]

P ≤ 1 − 1

N − 1

N
∑

j=1

N
∑

k=1,k �=j

√
ηjηk|〈ψj |ψk〉|. (11.26)

Building on work by Duan and Guo [19], X. Sun, et al. derived a lower
bound [20]. Consider the N × N matrix whose elements are 〈ψj |ψk〉, and let
λN be the smallest eigenvalue of this matrix. They showed that P ≥ λN .

The problem of discriminating among three nonorthogonal states was first
considered by Peres and Terno [21]. They developed a geometric approach
and applied it numerically to several examples. A different method was con-
sidered by Duan and Guo [19] and Y. Sun and ourselves [22]. We considered
the three vectors to be discriminated, |ψj〉, j = 1, 2, 3, to lie in the space H. To
this a “failure” space, A, is appended so that the whole problem takes place
in the space obtained by the direct sum extension, K = H ⊕ A. If the proce-
dure fails, the vector |ψj〉 is mapped into a vector in the failure space, |φj〉,
and if it succeeds it is mapped onto a vector in the original space,

√
pj |ψ′

j〉,
where ‖ψ′

j‖ = 1, and 0 ≤ pj ≤ 1. The vectors |ψ′
j〉 are mutually orthogonal,

so that they can be perfectly distinguished. Chefles showed that the set of
failure vectors must be linearly dependent for the optimal procedure [17], so
that the dimension of A will be one or two. One way of understanding this
result is that if the failure vectors were linearly independent, then we could
perform a further unambiguous state discrimination procedure on them and,
with some probability, tell which state we were originally given. This would
imply that the original procedure was not optimal. Therefore, the optimal
procedure produces linearly dependent failure vectors, which cannot be fur-
ther discriminated.
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Making this more explicit, we assume that there is a unitary operator, U ,
acting on K, such that

U |ψj〉 =
√

pj |ψ′
j〉 + |φj〉 . (11.27)

It should be noted that, unlike in (11.15), the vector |φj〉 is not normalized
to unity. Instead, we use 〈φj |φj〉 = qj here. After U has been performed,
we measure the projection operator onto the space H. If we obtain 1, the
procedure has succeeded, and we know what the input state was. If the input
was |ψj〉, the procedure succeeds with probability pj . If we obtain 0, the
procedure has failed, and this happens with probability qj = 1 − pj = ‖φj‖2,
if the input state was |ψj〉. The above equation implies that

〈φj |φk〉 = 〈ψj |ψk〉 − δjkpj . (11.28)

Defining the matrix Cjk = 〈φj |φk〉, we see by its definition that it must be
positive definite. Therefore, the problem of finding the optimal unambigu-
ous state discrimination procedure reduces to finding the values of pj that
optimize the success probability

P =

3
∑

j=1

ηjpj , (11.29)

subject to the constraint that the 3×3 matrix, whose elements are 〈ψj |ψk〉−
δjkpj , is positive.

This can be solved in some special cases. We shall assume that all of the a
priori probabilities are the same, so that they are all 1/3. If all of the overlaps
are the same, i.e.

〈ψ1|ψ2〉 = 〈ψ1|ψ3〉 = 〈ψ2|ψ3〉 = s, (11.30)

where s is real and positive, then qj = s, for j = 1, 2, 3, and Q = 1 − P = s
as well.

There is also an explicit solution if

〈ψ1|ψ2〉 = 〈ψ1|ψ3〉 = s1 ,

〈ψ2|ψ3〉 = s2 , (11.31)

where both s1 and s2 are real and positive. We first note that for a fixed
value of s1 there is a restriction on how large s2 can be. The largest the
angle between |ψ2〉 and |ψ3〉 can be is twice the angle between |ψ1〉 and |ψ2〉
(this maximum is achieved when the vectors are coplanar). This implies that
s2 ≥ 2s2

1 − 1. The solution to the state discrimination problem depends on
whether s1/s2 < 2 or not. If it is, we have

q1 =
s2
1

s2
, q2 = q3 = s2 ,

Q =
1

3

[

s2
1

s2
+ 2s2

]

. (11.32)
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Fig. 11.5. An optical eight-port. The beams are straight lines, a suitable beam
splitter is placed at each point where two beams intersect, phase shifters are at one
input of each beam splitter and at each output.

If s1/s2 ≥ 2, we have

q1 = 2s1 , q2 = q3 = s1 + s2 ,

Q =
2

3
(2s1 − s2) . (11.33)

This approach lends itself naturally to an optical implementation [22].
The states to be discriminated are represented by a single photon that can
be in one of three modes. Additional modes (one or two, depending on the
dimension of the failure space) that represent the ancilla, are initially in the
vacuum state. Figure 11.5 displays the simpler case, that of an eight port.
In general, the unitary transformation is carried out by an optical N port,
where N is either 8 or 10, depending on the number of vacuum ports needed.
It should be noted that an N port is a linear optical device with N/2 inputs
and N/2 outputs, that can be constructed from beam splitters, phase shifters,
and mirrors. At the output detectors are placed to determine from which of
the ports the photon emerges. If it emerges from one of the failure ports, the
measurement has failed, but if it emerges from one of the other three, we
know what the input state was.

In particular, we can construct the device so that the three output ports
that correspond to a successful measurement are numbered 1 through 3,
and a photon emerging from port j means that the input state was |ψj〉.
Measurements of this type have been carried out by Mohseni, et al. [23].

In the case that the failure space is two-dimensional, it is sometimes pos-
sible to obtain some information about the input state even if the initial
measurement fails [21,22]. Sun, et al. presented an example of an optical net-
work that does the following [22]. It consists of an optical 10 port followed
by a 6 port. The first three inputs of the 10 port are where the state |ψj〉,
j = 1, 2, 3 is sent in, and the other two are in the vacuum state The fail-
ure space for this particular situation is two-dimensional, and if the photon
emerges from outputs 4 or 5, the measurement has failed. If it emerges from
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outputs 1, 2, or 3, we know what the input state was. The 6 port has as its
three inputs the two failure outputs from the 10 port, and the vacuum. It is
constructed so that if the photon comes out of the first output, we know that
the input state was not |ψ3〉, if it comes out of the second output, the input
was not |ψ2〉, and if it comes out of the third output, the measurement has
failed. Therefore, even if the initial measurement (the 10 port) fails, there is
some possibility of gaining information about the input state by further pro-
cessing. Note that this depends on the failure space having two dimensions;
with a one-dimensional failure space, no further processing is possible.

There is another case where the exact solution to the unambiguous dis-
crimination problem is known, and to which we now turn our attention. First
we note that a set of N states is called symmetric [3,5] if there exists a unitary
operator, V , such that, for j = 1, . . . N − 1,

V |ψj〉 = |ψj+1〉 , V |ψN 〉 = |ψ1〉 . (11.34)

This implies that |ψj〉 = V j−1|ψ1〉. The case of unambiguous state discrim-
ination for N symmetric states was analyzed by Chefles and Barnett [24].
They found an analytical expression for the optimal success probabilities for
the case when the a priori probabilities of the states are the same. The vectors
|ψj〉, j = 1, . . . N are now assumed to be linearly independent, and to span
the entire space. Because the states |ψj〉 form a basis for the space, (11.34)
now implies that V N = I. This, in turn, means that V can be expressed as

V =

N−1
∑

k=0

e2πik/N |γk〉〈γk| , (11.35)

where |γk〉 is the eigenstate of V with eigenvalue e2πik/N . The states we are
trying to distinguish among can now be expanded as

|ψj〉 =

N−1
∑

k=0

e2πik(j−1)/Nck|γk〉 . (11.36)

The optimal success probability was found to be

P = N min |ck|2 , (11.37)

where the minimum is taken over k, and throughout the derivation it was
assumed that the a priori probabilities of the states were the same.

11.2.5 The Discrimination of Mixed States

We begin this part by introducing some terminology first. This will greatly
facilitate the presentation of the material to follow and help us to interpret
some of the existing statements about this topics in the literature.
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The support of a mixed state, described by a density matrix, is the space
spanned by its eigenvectors with nonzero eigenvalues. The rank of a mixed
state is the dimension of its support. The kernel of a mixed state is the
space orthogonal to its support. With these definitions at hand, we are ready
to interpret the statement that “... one cannot unambiguously discriminate
mixed states (the reason is that the IDP scheme does not work for linearly
dependent states)” [25]. This is not the only statement of this sort but is
a representative one that is obviously correct. But we have to elaborate it
further. It clearly refers to mixed states that have the same support and
excludes mixed states that have a nonzero overlap with the kernels of the
others. In the following we will focus our attention on precisely those cases,
admittedly a small subset of all mixed states of a system, where the density
operators to be discriminated have different supports. It is only within this
subset that unambiguous discrimination of mixed states is possible.

By the time of the publication of [25], several other works have been
published that can be interpreted as special instances of unambiguous dis-
crimination of mixed states. Below we give a brief overview of recent progress
in this area.

Unambiguous Filtering

In [26], we introduced the problem of unambiguous discrimination between
sets of states. The set of N given states is divided into subsets, and we want
to determine to which subset a particular input state, known to be prepared
in one of the N given states, belongs. In the simplest case, the division is
into two sets only, the first containing the first M states and the second the
remaining N − M states. We want to unambiguously assign a given input
state to one of these two subsets. Clearly, the discrimination of two pure
states corresponds to N = 2 and M = 1, there is one state in each set. The
next simplest case is the one with N = 3 and M = 1. This is the case of
unambiguously discriminating whether a state is |ψ1〉 or whether it is in the
set {|ψ2〉, |ψ3〉} with a priori probabilities η1, η2, and η3, respectively. Since
in this case all we are interested in is whether a particular input is |ψ1〉 or
not we termed this case unambiguous quantum state filtering. (Actually, we
introduced the term quantum state filtering first in the context of minimum-
error discrimination [63] and this work will be discussed in Sect. 11.3.4.) First,
it is straightforward to see that filtering is a particular instance of mixed state
discrimination and, by a simple extension of the following considerations,
set discrimination, in general, is equivalent to the discrimination of mixed
states. Indeed, since we do not want to resolve the states within a set, we can
introduce the density operators

ρα = |ψ1〉〈ψ1|, ρβ =
η2

η2 + η3
|ψ2〉〈ψ2| +

η3

η2 + η3
|ψ3〉〈ψ3|, (11.38)
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with a priori probabilities ηα = η1, ηβ = η2 + η3. Filtering is, thus, the
discrimination between these two density operators, one a rank one mixed
state which is, in fact, a pure state, and the other a rank two mixed state.

Key to the solution is the observation that the ancilla space is one dimen-
sional in the Neumark implementation of the optimal POVM. This immedi-
ately yields the condition analogous to (11.7),

q1qi = |〈ψ1|ψi〉|2 , (11.39)

where q1 and qi (i = 2, 3) are the failure probabilities for the corresponding
input states. The derivation of the optimum average failure probability is
then very similar to the derivation of the IDP result for two pure states. The
optimal failure probability, Qopt, is given as

Qopt =











QPOV M if F 2

1+F 2 ≤ ηα ≤ 1
1+F 2 ,

Qα if ηα < F 2

1+F 2 ,

Qβ if 1
1+F 2 < ηα .

(11.40)

Here F =
√

〈ψ1|ρβ |ψ1〉 is the fidelity between a pure and a mixed state [1],
and

QPOV M = 2
√

ηαηβF ,

Qα = ηα + ηβF 2 ,

Qβ = ηα‖ψ
‖
1‖2 + ηβ

F 2

‖ψ
‖
1‖2

. (11.41)

In the last line |ψ‖
1〉 is the component of |ψ1〉 in the support of ρβ . Written

in terms of the fidelity between a pure and a mixed state, the solution re-
mains valid for an arbitrary number of states in the second set and, so, it
represents the solution for a rank one vs. rank N unambiguous discrimination
problem where N is arbitrary [27]. An interesting application of this result
for a probabilistic quantum algorithm will be presented in Sect. 11.2.6. We
note that unambiguous discrimination between multiple sets of pure states
is a straightforward generalization and was independently investigated by
Zhang and Ying in [28]. It, too, can be recast in a form of discriminating
between mixed states. The problem of filtering a mixed state out of many
was addressed by Takeoka, et al. in [29].

State Comparison

In [30], Barnett, Chefles, and Jex introduced the problem of state comparison
that can be stated as follows. Given two systems, each of which is in one
of two, in general, nonorthogonal states {|ψ1〉, |ψ2〉}, what is the optimum
probability to determine whether the two systems were prepared in the same
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state or in different states? One of the surprising aspects of their result is that
one can decide with a certain probability whether the two systems are not in
the same state even if there is no prior knowledge of the possible states. In
this context we note that discrimination between non perfectly known states
has also been addressed by Ježek in [31].

More importantly for our purpose, the comparison of states can be cast
to a form that corresponds to the discrimination between mixed states de-
scribed by rank two density matrices. Obviously, we now want to discriminate
between the sets {|ψ1〉|ψ1〉, |ψ2〉|ψ2〉} and {|ψ1〉|ψ2〉, |ψ2〉|ψ1〉}. The first set
contains the combined states where the two systems are in the same indi-
vidual state with a priori probabilities η1 and η2 for the respective combined
states and the second set contains the states where the two systems are in
different individual states with a priori probabilities η3 and η4 for the respec-
tive combined states. Introducing density operators for the sets, by employing
a slight extension of the method in (11.38), we see that state comparison is
equivalent to the discrimination of two rank two mixed states [32]. In [33], we
derived the optimal POVM failure probability solution for the unambiguous
discrimination between a rank two and a rank N density matrix,

QPOV M = 2
√

ηαηβF , (11.42)

where F is the fidelity between the two mixed states ρα and ρβ [1]. In the
case of state comparison, the intersection between the two supports is one
dimensional and the fidelity can easily be calculated to give F = |〈ψ1|ψ2〉|.
Thus, for the optimal failure probability of state comparison, QSC , we get

QSC = 2
√

ηαηβ |〈ψ1|ψ2〉| , (11.43)

where ηα = η1 + η2 and ηβ = η3 + η4 are the a priori probabilities for the
respective mixed states. This result slightly generalizes the result of [30],
based on a previously unpublished result of our own [33]. In a subsequent
work [34], Jex, Andersson, and Chefles extended the state comparison results
from two systems to the comparison of many. By employing similar methods
to the ones here, this can be shown to be equivalent to the discrimination
between density matrices of higher rank.

Two Arbitrary Mixed States: General Considerations

Generalizing the ideas of [26]- [34], two important works have appeared re-
cently. In the first, Rudolph, et al. [35] established lower and upper bounds
on the minimum failure probability for the unambiguous discrimination of
two mixed states. Based on Uhlmann’s theorem [1] they found that the lower
bound is given by the fidelity, and the upper bound is based on the geometri-
cal invariants between the kernels. They showed that for all known solutions
the upper and lower bounds coincide and found numerically in other cases
that the two bounds are very close. As an application of their method, they



11 Discrimination of Quantum States 437

also provided the general solution for the one-dimensional kernel problem
and applied it to the special case of two rank N − 1 density matrices in an
N -dimensional Hilbert space.

Raynal, et al. [36], introduced reduction theorems for the problem of op-
timal unambiguous discrimination of two general density matrices of rank N
and M . In particular, they showed that the problem can be reduced to the
discrimination of two density matrices that have the same rank N0 where
N0 is bounded by N0 ≤ min(N, M). Necessary and sufficient conditions for
optimality were discussed also in [25] and [37], along with some numerical
methods based on linear programming.

The upper and lower bounds on the failure probabilities by [35] and the
reduction theorems by [36] bring us very close to a full solution of the unam-
biguous discrimination problem between two arbitrary mixed states and it is
fully expected that a full solution will be found in the near future.

11.2.6 Selected Applications

We shall conclude this section with a discussion of two applications of unam-
biguous state discrimination. The first is a quantum cryptographic protocol,
while the second is a quantum algorithm.

Bennett proposed using the unambiguous discrimination of two nonorthog-
onal states as the basis of a quantum-key-distribution protocol [38]. Alice and
Bob want to establish a secure key that they can use to send encrypted mes-
sages to each other. To do so, Alice sends Bob a sequence of particles, where
each particle is either in the state |ψ1〉 or |ψ2〉. The state |ψ1〉 corresponds
to a bit value of 0 and |ψ2〉 corresponds to a bit value of 1. These states are
known to both Alice and Bob, and they are not orthogonal. Upon receiving a
particle, Bob applies the optimal two-state unambiguous measurement proce-
dure to it. He then tells Alice over a public channel whether the measurement
succeeded or failed. If it succeeded, they keep the bit, and if it failed, they
discard the bit. In this way they can establish a key.

An eavesdropper, Eve, who wants to determine the key without being
discovered has a problem. Let us assume that she can intercept the particles
Alice is sending to Bob, and that she knows the states |ψ1〉 and |ψ2〉. Because
these states are not orthogonal, she cannot tell with certainty which state a
particular particle is in. One possibility is for her to apply the same procedure
used by Bob, optimal two-state unambiguous state discrimination. If her
measurement succeeds, all is well. She simply notes which state she found,
and prepares another particle in this state and sends it on to Bob. She then
knows this key bit, and Alice and Bob do not know that she knows. However,
if her measurement fails, she does not know which state Alice sent, and she
has to make a guess which state to send on to Bob. That means that she will
introduce discrepancies between the state that Alice sent and the state that
Bob received. In some of the cases in which this happens, Bob’s measurement
will succeed, and this will cause errors in the key to appear. If Alice and Bob
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publicly share a subset of their good key bits (these bits have to then be
discarded), and if they see discrepancies, then they know an eavesdropper
was present, and that the key is insecure. If they find none, then with high
probability (Eve could get lucky and have all of her measurements succeed,
but this is very improbable) the key is secure.

Our second example is a probabilistic quantum algorithm to discriminate
between sets of Boolean functions [27]. A Boolean function on n bits is one
that returns either 0 or 1 as output for every possible value of the input
x, where 0 ≤ x ≤ 2n − 1. The function is constant if it returns the same
output on all of its arguments, i.e. either all 0’s or all 1’s; it is balanced
if it returns 0’s on half of its arguments and 1’s on the other half; and it
is biased if it returns 0’s on m0 of its arguments and 1’s on the remaining
m1 = 2n −m0 arguments (m0 �= m1 �= 0 or 2n −1). Classically, if one is given
an unknown function and told that it is either balanced or constant, one needs
2(n−1)+1 measurements to decide which. Deutsch and Jozsa [39] developed a
quantum algorithm that can accomplish this task in one step. To discriminate
a biased Boolean function from an unknown balanced one, 2(n−1) + m1 + 1
measurements are needed classically, where, without loss of generality, we
have assumed that m1 < m0. There is a probabilistic quantum algorithm,
based on quantum state filtering, that can unambiguously discriminate a
known biased Boolean function from a given set of balanced ones. There is a
significant chance that only one function evaluation will be necessary.

The algorithm distinguishes between sets of Boolean functions. Let f(x),
where 0 ≤ x ≤ 2n −1, be a Boolean function, i.e. f(x) is either 0 or 1. One of
the sets we want to consider is a set of balanced functions. The second set has
only two members, and we shall call it Wk. A function is in Wk if f(x) = 0
for 0 ≤ x < [(2k − 1)/2k]2n and f(x) = 1 for [(2k − 1)/2k]2n ≤ x ≤ 2n − 1,
or if f(x) = 1 for 0 ≤ x < [(2k − 1)/2k]2n and f(x) = 0 for [(2k − 1)/2k]2n ≤
x ≤ 2n − 1. We now wish to distinguish between the balanced functions and
functions in Wk, that is, we are given an unknown function that is in one
of the two sets, and we want to find out which set it is in. We note that
the two functions in Wk are biased functions, so that this is a special case
of a more general problem of distinguishing a set of biased functions from
balanced functions.

The Deutsch-Jozsa algorithm makes use of the unitary operation

|x〉|y〉 → |x〉|y + f(x)〉, (11.44)

where the first state, |x〉, is an n-qubit state, the second state, |y〉, is a single
qubit state, and the addition is modulo 2. The state |x〉, where x is an n-
digit binary number, is a member of the computational basis for n qubits,
and the state |y〉, where y is either 0 or 1, is a member of the computational
basis for a single qubit. In solving the Deutsch-Jozsa problem, this mapping
is employed in the following way
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D−1
∑

x=0

|x〉(|0〉 − |1〉) →
D−1
∑

x=0

(−1)f(x)|x〉(|0〉 − |1〉), (11.45)

where D = 2n. This has the effect of mapping Boolean functions to vectors
in the D-dimensional Hilbert space, HD, and we shall do the same. The final
qubit is not entangled with the remaining n qubits and can be discarded.
The vectors

∑D−1
x=0 (−1)f(x)|x〉 that are produced by balanced functions are

orthogonal to those produced by constant functions. This is why the Deutsch-
Jozsa problem is easy to solve quantum mechanically. In our case, the vectors
produced by functions in Wk are not orthogonal to those produced by bal-
anced functions. However, unambiguous quantum state filtering provides a
probabilistic quantum algorithm for the optimal solution of this problem.

In order to apply the filtering solution, we note that both functions in Wk

are mapped, up to an overall sign, to the same vector in HD, which we shall
call |wk〉. The vectors that correspond to balanced functions are contained

in the subspace, Hb, of HD, where Hb = {|v〉 ∈ HD|∑D−1
x=0 vx = 0}, and

vx = 〈x|v〉. This subspace has dimension 2n − 1 = D − 1, and it is possible
to choose an orthonormal basis, {|vi〉|i = 2, . . . D}, for it in which each basis
element corresponds to a particular balanced Boolean function [40].

Let us first see how the filtering procedure performs when applied to the
problem of distinguishing |wk〉(= |ψ1〉) from the set of the D−1 orthonormal
basis states, |vi〉(= |ψi〉), in Hb. We assume their a priori probabilities to be
equal, i.e. ηi = η = (1 − η1)/(D − 1) for i = 2, . . . D, where η1 is the a priori

probability for |wk〉. For ‖ψ
‖
1‖2 = ‖w

‖
k‖2 ≡ fk we obtain fk = (2k −1)/22k−2.

Then the average overlap, Sk, between |wk〉 and the set of balanced basis
vectors can be written as

Sk =
1 − η1

D − 1
fk , (11.46)

in terms of fk [40]. The failure probabilities are given by the filtering re-
sult, using S = Sk and, to good approximation, the POVM result holds
when 1/2k−2 ≤ Dη1 ≤ 2k−2. For example, in the case in which all of the
a priori probabilities are equal, i.e. η1 = 1/D, we find that Q1 = Q2 ≡
QSQM = (1 + fk)/D where SQM stands for Standard Quantum Measure-
ment (or von Neumann projective measurement). To good approximation,
QPOV M/QSQM = 4/2k/2, which, for k ≫ 1, shows that the POVM can
perform significantly better than the von Neumann measurements.

Now that we know how this procedure performs on the basis vectors
in Hb, we shall examine its performance on any balanced function, i.e. we
apply it to the problem of distinguishing |wk〉 from the set of all states in
Hb that correspond to balanced functions. The number of such states is N =
D!/(D/2)!2 and we again assume their a priori probabilities to be equal,
η = (1 − η1)/N . It can be shown [40] that the average overlap between |wk〉
and the set {|v〉} is given by the same expression, (11.46), as in the previous
case. Therefore, much of what was said in the previous paragraph remains
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valid for this case, as well, with one notable difference. The case η1 = 1/D now
does not correspond to equal a priori probability for the states but, rather,
to a priori weight of the sets that is proportional to their dimensionality. In
this case it is the POVM that performs best. In the case of equal a priori
probability for all states, η1 = 1/(N + 1), we are outside of the POVM
range of validity and it is the first standard quantum measurement (SQM1)
that performs best. Both the POVM and the SQM1 are good methods for
distinguishing functions in Wk from balanced functions. Which one is better
depends on the a priori probabilities of the functions.

Classically, in the worst case, one would have to evaluate a function
2n[(1/2)+(1/2k)]+1 times to determine if it is in Wk or if it is an even func-
tion. Using quantum information processing methods, one has a very good
chance of determining this with only one function evaluation. This shows
that Deutsch-Jozsa-type algorithms need not be limited to constant func-
tions; certain kinds of biased functions can be discriminated as well.

11.3 State Discrimination with Minimum Error

11.3.1 Introductory Remarks

In the previous chapter we have required that, whenever a definite answer is
returned after a measurement on the state, the result should be unambigu-
ous, at the expense of allowing inconclusive outcomes to occur. For many
applications in quantum communication, however, one wants to have conclu-
sive results only. This means that errors are unavoidable when the states are
non-orthogonal. Based on the outcome of the measurement, in each single
case then a guess has to be made as to what the state of the quantum system
was. This procedure is known as quantum hypothesis testing. The problem
consists in finding the optimum measurement strategy that minimizes the
probability of errors.

Let us state the optimization problem a little more precisely. In the most
general case, we want to distinguish, with minimum probability of error, be-
tween N given states of a quantum system (N ≥ 2), being characterized by
the density operators ρj (j = 1, 2, . . . , N) and occurring with the given a pri-
ori probabilities ηj which sum up to unity. The measurement can be formally
described with the help of a set of detection operators Πj that refer to the
possible measurement outcomes [3, 4]. They are defined in such a way that
Tr(ρΠj) is the probability to infer the system is in the state ρj if it has been
prepared in a state ρ. Since the probability is a real non-negative number,
the detection operators have to be Hermitean and positive-semidefinite. In
the error-minimizing measurement scheme the measurement is required to
be exhaustive and conclusive in the sense that in each single case one of the
N possible states is identified with certainty and inconclusive results do not
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occur. This leads to the requirement

N
∑

j=1

Πj = IDS
, (11.47)

where IDS
denotes the unit operator in the DS-dimensional physical state

space of the quantum system. The overall probability Perr to make an erro-
neous guess for any of the incoming states is then given by

Perr = 1 − Pcorr = 1 −
N
∑

j=1

ηjTr(ρjΠj) (11.48)

with
∑

j ηj = 1. Here we introduced the probability Pcorr that the guess is
correct. In order to find the minimum-error measurement strategy, one has
to determine the specific set of detection operators that minimizes the value
of Perr under the constraint given by (11.47). By inserting these optimum de-
tection operators into (11.48), the minimum error probability Pmin

err ≡ PE is
determined. The explicit solution to the error-minimizing problem is not triv-
ial and analytical expressions have been derived only for a few special cases.

11.3.2 Distinguishing Two Quantum States with Minimum Error

The Helstrom Formula

For the case that only two states are given, either pure or mixed, the mini-
mum error probability, PE , was derived in the mid 70s by Helstrom [3] in the
framework of quantum detection and estimation theory. We find it instruc-
tive to start by analyzing the two-state minimum-error measurement with
the help of an alternative method (cf. [41, 42]) that allows us to gain imme-
diate insight into the structure of the optimum detection operators, without
applying variational techniques. Starting from (11.48) and making use of the
relations η1 + η2 = 1 and Π1 + Π2 = IDS

that have to be fulfilled by the a
priori probabilities and the detection operators, respectively, we see that the
total probability to get an erroneous result in the measurement is given by

Perr = 1 −
2
∑

j=1

ηjTr(ρjΠj) = η1Tr(ρ1Π2) + η2Tr(ρ2Π1). (11.49)

This can be alternatively expressed as

Perr = η1 + Tr(ΛΠ1) = η2 − Tr(ΛΠ2), (11.50)

where we introduced the Hermitean operator

Λ = η2ρ2 − η1ρ1 =

DS
∑

k=1

λk|φk〉〈φk|. (11.51)
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Here the states |φk〉 denote the orthonormal eigenstates belonging to the
eigenvalues λk of the operator Λ. The eigenvalues are real, and without loss
of generality we can number them in such a way that

λk < 0 for 1 ≤ k < k0,

λk > 0 for k0 ≤ k ≤ D,

λk = 0 for D < k ≤ DS . (11.52)

By using the spectral decomposition of Λ, we get the representations

Perr = η1 +

DS
∑

k=1

λk〈φk|Π1|φk〉 = η2 −
DS
∑

k=1

λk〈φk|Π2|φk〉. (11.53)

Our optimization task now consists in determining the specific operators Π1,
or Π2, respectively, that minimize the right-hand side of (11.53) under the
constraint that

0 ≤ 〈φk|Πj |φk〉 ≤ 1 (j = 1, 2) (11.54)

for all eigenstates |φk〉. The latter requirement is due to the fact that Tr(ρΠj)
denotes a probability for any ρ. From this constraint and from (11.53) it
immediately follows that the smallest possible error probability, Pmin

err ≡ PE ,
is achieved when the detection operators are chosen in such a way that the
equations 〈φk|Π1|φk〉 = 1 and 〈φk|Π2|φk〉 = 0 are fulfilled for eigenstates
belonging to negative eigenvalues, while eigenstates corresponding to positive
eigenvalues obey the equations 〈φk|Π1|φk〉 = 0 and 〈φk|Π2|φk〉 = 1. Hence
the optimum detection operators can be written as

Π1 =

k0−1
∑

k=1

|φk〉〈φk|, Π2 =

DS
∑

k=k0

|φk〉〈φk|, (11.55)

where the expression for Π2 has been supplemented by projection opera-
tors onto eigenstates belonging to the eigenvalue λk = 0, in such a way
that Π1 + Π2 = IDS

. Obviously, provided that there are positive as well
as negative eigenvalues in the spectral decomposition of Λ, the minimum-
error measurement for discriminating two quantum states is a von Neumann
measurement that consists in performing projections onto the two orthog-
onal subspaces spanned by the set of states {|φ1〉, . . . , |φk0−1〉}, on the one
hand, and {|φk0

〉, . . . , |φDS
〉}, on the other hand. An interesting special case

arises when negative eigenvalues do not exist. In this case it follows that
Π1 = 0 and Π2 = IDS

which means that the minimum error probability
can be achieved by always guessing the quantum system to be in the state
ρ2, without performing any measurement at all. Similar considerations hold
true in the absence of positive eigenvalues. We note that these findings are in
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agreement with the recently gained insight [44] that measurement does not al-
ways aid minimum-error discrimination. By inserting the optimum detection
operators into (11.50) the minimum error probability is found to be [42]

PE = η1 −
k0−1
∑

k=1

|λk| = η2 −
D
∑

k=k0

|λk|. (11.56)

Taking the sum of these two alternative representations and using η1+η2 = 1,
we arrive at

PE =
1

2

(

1 −
∑

k

|λk|
)

=
1

2
(1 − Tr|Λ|) , (11.57)

where |Λ| =
√

Λ†Λ. Together with (11.48) this immediately yields the well-
known Helstrom formula [3] for the minimum error probability in discrimi-
nating ρ1 and ρ2,

PE =
1

2
(1 − Tr|η2ρ2 − η1ρ1|) =

1

2
(1 − ‖η2ρ2 − η1ρ1‖) . (11.58)

In the special case that the states to be distinguished are the pure states
|ψ1〉 and |ψ2〉, this expression reduces to [3]

PE =
1

2

(

1 −
√

1 − 4η1η2|〈ψ1|ψ2〉|2
)

. (11.59)

The set-up of the detectors that achieve the optimum error probabilities is
particularly simple for the case of equal a priori probabilities. Two orthogo-
nal detectors, placed symmetrically around the two pure states, will do the
task, as shown in Fig. 11.6. The simplicity is particularly striking when one
compares this set-up to that of Fig. 11.3, that displays the corresponding
POVM set-up for optimal unambiguous discrimination.

In order to provide a simple and intuitive physical picture of an error-
minimizing state discrimination measurement, let us consider the experi-
ment performed by Barnett and Rijs [43] for distinguishing two equiprobable
non-orthogonal single-photon polarization states, produced with the help of
strongly attenuated light pulses. Imagine, we are given a series of very weak
light pulses and we know in advance that, by preparation, each of the pulses
is linearly polarized, with equal probability either in the direction e1 or in
the direction e2 with e1,2 = cos θ ex ± sin θ ey, where 0 ≤ θ ≤ π/4. Both
kinds of pulses are assumed to have equal intensity and to contain on the
average much less than one photon, so that the probability to obtain two
photodetector clicks from a single pulse is negligible. Using a linear polarizer,
we want to determine for each photon which polarization it had, by mak-
ing the guess that it had polarization e1 when the photon is transmitted by
the polarizer and had polarization e2 when the photon is absorbed in the
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Fig. 11.6. Detector configuration for the optimum minimum-error discrimination
of two pure states with equal a priori probabilities. A von Neumann measure-
ment with two orthogonal detectors placed symmetrically around |ψ1〉 and |ψ2〉
will achieve the optimum.

polarizer. The problem of finding the optimum measurement strategy then
amounts to determining the optimum orientation of the polarizer that min-
imizes the probability to make a wrong guess. It is easy to calculate that
the error probability is smallest when the polarizer is oriented symmetrically
with respect to the two given polarization directions, i. e. when its transmis-
sion direction is given by the unit vector ep = (ex + ey)/

√
2. In this case

the fraction of the intensity that is transmitted from the first pulse, which
is also the probability, that the photon is indeed transmitted provided it is
of the first kind, follows from the projection of e1 onto ep and is given by
cos2(π/4 − θ). The same quantity describes the probability that the photon
is absorbed, provided it is of the second kind, as can be found by projecting
e2 onto the vector perpendicular to ep. Hence the resulting error probability
is determined by

PE = 1 − cos2(
π

4
− θ) =

1

2
(1 − sin 2θ) =

1

2
(1 −

√

1 − |e1e2|2). (11.60)

which reproduces (11.59) with η1 = η2 = 1/2 when the scalar product e1e2

is replaced by the overlap 〈ψ1|ψ2〉.

Minimum-Error Discrimination

Versus Unambiguous Discrimination for Two Mixed States

In the error-minimizing scheme for discriminating two different mixed states
ρ1 and ρ2 of a quantum system, a non-zero probability of making a correct
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guess can always be achieved. However, it is clear that we can only distinguish
the two mixed states unambiguously when, in the DS-dimensional physical
state space of the quantum system, there exists at least one state vector that
has a non-zero probability of occurring in the first of the mixed states but will
never be found in the second mixed state. Recently it has been shown that
the maximum success probability for unambiguously discriminating the two
given mixed states does not exceed a certain upper bound [35], depending on
the states and their a priori probabilities. Consequently, the minimum failure
probability, QF , cannot be smaller than a certain lower bound, QL. We now
investigate the relation between this lower bound on the failure probability,
on the one hand, and the minimum error probability for discriminating the
same two states, on the other hand. The procedure that we shall apply is
closely related to the derivation of inequalities between the fidelity and the
trace distance [1].

Let us first consider the failure probability QF for unambiguously discrim-
inating the two mixed states. From the result derived in [35] it follows that

QF ≥
{

2
√

η1η2 F (ρ1, ρ2) ≡ QL if F (ρ1, ρ2) <
√

ηmin

ηmax

ηmin + ηmax[F (ρ1, ρ2)]
2 ≥ QL otherwise,

(11.61)

where in the second line we have used the fact that the arithmetic mean
cannot be smaller than the geometric mean. Here ηmin(ηmax) is the smaller
(larger) of the two a priori probabilities η1 and η2, and F is the fidelity defined

as F (ρ1, ρ2) = TrO, where O =
(√

ρ2 ρ1
√

ρ2

)1/2
. To allow for a comparison

between PE and QF , or PE and QL, respectively, we need a suitable orthonor-
mal basis. It has been shown [1,41] that when the basis states are chosen to be

the eigenstates {|l〉} of the operator ρ
−1/2
2 Oρ

−1/2
2 , the fidelity takes the form

F (ρ1, ρ2) =
∑

l

√

〈l|ρ1|l〉〈l|ρ2|l〉 =
∑

l

√
rl sl. (11.62)

Here
∑

l|l〉〈l| = I, and we introduced the abbreviations rl = 〈l|ρ1|l〉 and sl =
〈l|ρ2|l〉. The lower bound on the failure probability then obeys the equation

1 − QL = 1 − 2
√

η1η2

∑

l

√
rl sl =

∑

l

(
√

η1rl − √
η2sl)

2
, (11.63)

where the second equality sign is due to the relation η1 + η2 = 1 and to the
normalization conditions Trρ1 =

∑

l rl = 1 and Trρ2 =
∑

l sl = 1.
Now we estimate the minimum error probability PE , using the same

set of basis states {|l〉}. From (11.57) and from the fact that 〈φk|φk〉 =
∑

l |〈φk|l〉|2 = 1 it follows that

1 − 2PE =
∑

k

|λk| =
∑

l

∑

k

|λk||〈φk|l〉|2

≥
∑

l

∣

∣

∣

∣

∣

∑

k

λk|〈φk|l〉|2
∣

∣

∣

∣

∣

=
∑

l

|〈l|Λ|l〉|, (11.64)
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where the last equality sign is due to the spectral decomposition (11.51).
After expressing Λ in terms of the density operators describing the given
states, we arrive at

1 − 2PE ≥
∑

l

|〈l|η1ρ1 − η2ρ2|l〉|

=
∑

l

|√η1rl − √
η2sl| |

√
η1rl +

√
η2sl| . (11.65)

By comparing the expressions on the right-hand sides of (11.63) and (11.65),
respectively, it becomes immediately obvious that 1 − 2PE ≥ 1 − QL, or

PE ≤ 1

2
QL . (11.66)

This means that for two arbitrary mixed states, occurring with arbitrary a
priori probabilities, the smallest possible failure probability in unambiguous
discrimination is at least twice as large as the smallest probability of errors
in minimum-error discrimination of the same states.

11.3.3 The General Strategy

for Minimum-Error State Discrimination

Formal Solution for N Mixed States

We return now to the general problem of discriminating with minimum error
between N given mixed states, where N is an arbitrary number. As has been
outlined already in the introductory remarks, the problem amounts to finding
the specific optimum detection operators that minimize the expression (11.48)
under the constraint (11.47). It has been shown by Holevo [45] and Yuen et
al. [46] that the set of detection operators {Πj} determining the optimum
measurement strategy must satisfy the necessary and sufficient conditions

Πk(ηkρk − ηjρj)Πj = 0 (11.67)
∑

j

ηjρjΠj − ηkρk ≥ 0, (11.68)

(1 ≤ j, k ≤ N), where the last equation expresses the fact that the eigenval-
ues of the operator on the left-hand side are non-negative. These conditions
can be understood from the following considerations. In order to take the
constraint (11.47) into account, it is possible to introduce a Lagrange opera-
tor Γ , in analogy to a Lagrangian multiplier. The optimization task is then
equivalent to maximizing the operator functional

Pcorr({Πj}, Γ ) =
∑

j

Tr[(ηjρj − Γ )Πj ] + TrΓ, (11.69)
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with Γ and each of the Πj varying independently. Since Pcorr is real, Γ
has to be Hermitean. The necessary condition for an extremum, δPcorr = 0,
yields for any j = 1, . . . , N the requirement that Tr[(ηjρj −Γ )δΠj ] = 0. The
detection operators can be varied by starting from their eigenstate expansion
Πj =

∑

l πjl|µjl〉〈µjl| and performing variations in the state vectors, yielding
δΠj =

∑

l πjl|µjl〉〈δµjl| + H.A., where πjl ≥ 0. This leads to the necessary
extremal condition [25]

(ηjρj − Γ )Πj = 0, (11.70)

from which it follows that for any j, k the equations ηjρjΠj = ΓΠj and
ηkΠkρk = ΠkΓ † have to be fulfilled, where Γ is Hermitean. By multiplying
the first equation from the left with Πk and the second from the right with Πj

and taking the difference, the representation (11.67) for the necessary con-
dition becomes immediately obvious. Now we discuss the second condition.
First we note that

Γ =
∑

j

ηjρjΠj , (11.71)

which follows from (11.70) and from the constraint
∑

j Πj = I. As can be seen
from (11.69) and (11.70), the extremal value is given by Pcorr = TrΓ . Cer-
tainly for the extremum of Pcorr to be a maximum, its value cannot be smaller
than the probability of correct guesses that would follow from other choices of
the set of detection operators, in particular from the choice {Πj} = {I δj,k},
leading to Pcorr = Tr(ηkρk). This means that for the extremum to be a maxi-
mum the relation TrΓ ≥ Tr(ηkρk) has to be fulfilled for any k, which is indeed
guaranteed by the requirement (11.68). The conditions (11.67) and (11.68)
implicitly determine the solution of the general minimum-error discrimination
problem.

Survey of Explicitly Solvable Special Cases

In the following we give a brief overview that summarizes the cases where ex-
plicit analytical expressions for the optimum detection operators, and hence
for the minimum error probability, have been determined from the implicit
general solution. The case that only two states are given, N = 2, has been
already extensively discussed in the previous section. When the two given
states are pure and occur with equal prior probability, the Helstrom bound
derived there is a special case of a more general result, referring to the class
of equiprobable and symmetric pure states. For these states the solution of
the minimum-error discrimination problem, as derived by Ban et al. [47], will
be discussed in a separate section. Recently Eldar et al. [48] and Chou and
Hsu [49] obtained an extension of this solution to the case of N equiprobable
states that are symmetric and mixed. A few other cases have been solved ana-
lytically, too. They include certain classes of linearly independent states [50]
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and also equiprobable states the projectors of which sum up to the iden-
tity [46]. Moreover, Barnett [51] found the minimum-error strategy for mul-
tiple symmetric pure states, and Andersson et al. [52] solved the case of
three mirror symmetric pure states. With respect to the general problem of
discriminating an arbitrary number of mixed states, Hunter [44] found the
condition and gave the solution for those cases when the best strategy con-
sists in making no measurement at all, but simply to guess always the state
with the highest a priori probability. We encountered an example of such a
case when considering the discrimination between two mixed states.

Apart from the analytical solutions, the minimum-error strategy has been
also investigated numerically. In particular, Ježek et al. [53] proposed an
algorithm for finding the optimum measurement by applying the theory of
semi-definite programming.

Generalized Measurements

When the N given states of the quantum system are linearly independent,
the minimum-error strategy for state discrimination is always a von Neumann
measurement, as has been recently proved by Eldar [54]. This means that
the detection operators are mutually orthogonal projection operators in the
Hilbert space of the quantum system, fulfilling the relation ΠjΠk = δjkΠj ,
where 1 ≤ j, k ≤ N . We note that the quantum states are called linearly
independent when the combined set of all the eigenvectors of the density op-
erators ρj (j = 1, . . . , N) forms a set of linearly independent state vectors.
In this case the error-minimizing discrimination measurement is a projective
measurement that can be realized by performing measurements on the orig-
inal quantum system alone. Generally, however, this need not always be the
case. In particular, when the number of different measurement outcomes, or
the number of detection operators, respectively, exceeds the dimensionality
of the physical state space of the quantum system, the detection operators
cannot be represented by projection operators in that state space, as becomes
immediately obvious from the constraint

∑

j Πj = IDS
. The state discrimi-

nation measurement then has to be described as a generalized measurement,
based on positive-operator valued measures, and the detection operators Πj

are also called POVM-elements. According to Neumark’s theorem [13], any
generalized measurement can be realized with the help of a unitary transfor-
mation and a projective measurement in an extended Hilbert space.

In order to illustrate these general considerations we find it worthwhile
to briefly consider a prominent example for a generalized minimum-error
measurement, which consists in discriminating between the three states of a
single qubit defined as

|ψ1〉 = −1

2

(

|0〉 +
√

3 |1〉
)

,
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|ψ2〉 = −1

2

(

|0〉 −
√

3 |1〉
)

,

|ψ3〉 = |0〉, (11.72)

where |0〉 and |1〉 are the orthonormal basis states of the qubit. The three
given states form an overcomplete set of symmetric states that is known as the
trine ensemble [55]. Provided that the occurrence of each of the three states is
equally probable, the optimum detection operators for distinguishing among
them with minimum error, or the optimum POVM-elements, respectively,
are given by [55]

Πj = A†
jAj =

2

3
|ψj〉〈ψj |, (11.73)

for j = 1, 2, 3. The probability of correctly identifying any of the trine states
in the error-minimizing measurement is 2/3 and the probability of making an
error is 1/3. Since the states |ψj〉 are normalized, it is clear that the opera-
tors Πj do not represent projection operators. For a physical implementation
of the generalized measurement, means have to be found for extending the
originally two-dimensional Hilbert space of the system. Then a unitary trans-
formation on the extended system of basis states has to be performed in such
a way that a final von Neumann measurement realizes the specific projective
measurement that is necessary for applying Neumark’s theorem.

As discussed before, there are two conceptually different ways of achieving
an extension of the dimensionality of the Hilbert space. The first amounts
to defining the original quantum system in such a way that auxiliary quan-
tum states can be directly added. The extended Hilbert space is then the
direct sum of the Hilbert space spanned by the states of the original system
and of the Hilbert space spanned by the auxiliary states, being also called
ancilla states. For the trine ensemble, it is possible to associate the three
two-dimensional non-normalized detection states Aj =

√

2/3 |ψj〉 with three
orthonormal states in three dimensions, given by

|ψj〉 =

√

2

3
|ψj〉 +

√

1

3
|2〉, (11.74)

where the auxiliary normalized state |2〉 is chosen to be orthogonal to the
two basis states |0〉 and |1〉. By performing the von-Neumann measurement
that consists of the three projections |ψj〉〈ψj | (j = 1, 2, 3) in the enlarged,
i. e. three-dimensional Hilbert space, the required generalized measurement
is realized in the original two-dimensional Hilbert space of the qubit [56].
To implement this scheme, an original atomic qubit system can be defined
to consist of only two electronic states of a multi-level atom. The unitary
transformation necessary for the generalized measurement can then be ac-
complished with the help of a third level, by appropriately redistributing the
population of the three atomic levels using sequences of Raman transitions
induced by specially taylored classical pulses [56]. Finally the resulting level
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population is detected for performing the projective measurement. Explicit
theoretical proposals have been made for using this scheme in order to realize
both optimum unambiguous discrimination between two nonorthogonal pure
qubit states, and minimum-error discrimination for the trine ensemble [56].
Similarly, a single-photon qubit system could be represented by only two
out of three possible input modes, or input ports, respectively, of an optical
network built of beam splitters and phase shifters. The unitary transforma-
tion then would be implemented by this linear network, and the projective
measurement could be performed by detecting the photon at one of the out-
put ports. It is obvious that the direct-sum representation of extending the
Hilbert space relies on assuming that the original qubit secretly consists of
two components of a qutrit [57].

The second way of enlarging the Hilbert space relies on coupling the orig-
inal system to an auxiliary system, or ancilla system, with the help of a
physical interaction. The Hilbert space of the combined system is the tensor
product of the Hilbert spaces of both subsystems. As has been stated by
Jozsa, et al. [58], from a physical point of view the adjoining of an additional
ancilla system is the only available means of extending a space while retain-
ing the original system intact. The formalism of (nonorthogonal) POVMs is
then a mathematical artifice that expresses the residual effect on the original
system when a von Neumann measurement is performed on the combined
system after the interaction [58]. Clarke, et al. demonstrated experimentally
the minimum-error discrimination for the trine ensemble represented by po-
larization states of a single photon, using an interferometric set-up [55]. They
also performed the optimal error minimizing measurements on the tetrad en-
semble, which, as its name implies, consists of four states [55]. The points
corresponding to these states on the Bloch sphere lie on the corners of a
tetrahedron.

Error-Minimizing Discrimination with a Fixed Number

of Inconclusive Results

As an extension of the measurement strategy described so far, the error
minimizing discrimination strategy has been also studied under the condi-
tion that inconclusive results are now allowed to occur, but with a fixed
prescribed probability. This probability is assumed to be smaller than the
minimum failure probability resulting from the measurement scheme for op-
timum unambiguous discrimination, where errors do not occur at all. The
optimum measurement minimizing the error under this prescribed condition
is then intermediate between generic minimum-error discrimination and op-
timum unambiguous discrimination. It was first investigated for pure states
by Chefles and Barnett [59] and by Zhang et al. [60]. Later the method was
generalized to the case of mixed states by Fiurášek and Ježek [25] and by El-
dar [37]. The possible occurrence of inconclusive results has to be accounted
for in the basic equations by introducing an additional detection operator Π0
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such that Tr(ρΠ0) describes the probability to get an inconclusive outcome
provided the system is in a state ρ. The given fixed value of this probabil-
ity, or the given failure probability, respectively, modifies the constraint on
the detection operators. By optimization, the minimum probability for the
occurrence of errors in the conclusive outcomes can be determined.

11.3.4 Selected Problems of Minimum-Error Discrimination

Distinguishing N Symmetric Pure States

We conclude our review of minimum-error discrimination by a more detailed
consideration of a few special problems. In particular, in this connection we
also present the results of some of our own recent investigations. To begin
with, we recall a pure-state discrimination problem that is exactly solvable
and has found wide application in quantum communication. It consists in the
so called square-root measurement that discriminates with minimum error
between N equally probable symmetric states. Symmetric pure states are
defined in such a way that each state results from its predecessor by applying
a unitary operator V in a cyclic way [47],

|ψj〉 = V |ψj−1〉 = V j−1|ψ1〉, |ψ1〉 = V |ψN 〉, (11.75)

implying that V N = I. For the case that the states occur with equal a priori
probability, i. e. that ηj = 1/N for each of the states, Ban et al. found that
the optimum detection operators for minimum-error discrimination are given
by [47]

Πj = A†
jAj = B−1/2|ψj〉〈ψj |B−1/2 ≡ |µj〉〈µj |, (11.76)

where

B =

N
∑

j=1

|ψj〉〈ψj |. (11.77)

The states |µj〉 = B−1/2|ψj〉 are in general non-normalized and are called
detection states. It is obvious that the special structure of the detection
operators, or of the detection states, respectively, suggests the name “square-
root-measurement”. The minimum error probability PE for this measurement
is [47]

PE = 1 − 1

N

N
∑

j=1

|〈µj |ψj〉|2, (11.78)

in accordance with the fact that in the corresponding optimized measurement
scheme the quantum system is inferred to have been prepared in the state
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|ψj〉 provided that the state |µj〉 is detected. When the detection states |µj〉
are orthonormal, the detection operators are projection operators and the
minimum-error measurement is a von-Neumann measurement, otherwise it
is a generalized measurement. The latter always holds true when the number
of states exceeds the dimensionality of the physical state space of the quantum
system, as can be immediately seen from the fact that the detection operators
have to sum up to the unit operator in that space. In this case the given states
are linearly dependent and form an overcomplete set in the Hilbert space of
the system.

Let us apply the general solution in order to investigate minimum-error
discrimination for the set of the N symmetric states

|ψj〉 =

D
∑

k=1

ck ei 2π

N
j(k−1) |γk〉, (N ≥ D), (11.79)

where the coefficients ck are arbitrary non-zero complex numbers with
∑

k |ck|2 = 1, and the states |γk〉 (k = 1, . . . , D) form a D-dimensional
orthonormal basis. The given symmetric states are non-orthogonal except
for the case that both the conditions N = D and |ck|2 = 1/N are fulfilled.
For distinguishing them with minimum error, provided that they occur with
equal a priori probability, we obtain the optimum detection states

|µj〉 =
1√
N

D
∑

k=1

ck

|ck| ei 2π

N
jk |γk〉, (11.80)

yielding the minimum error probability [61]

PE = 1 − 1

N

(

D
∑

k=1

|ck|
)2

. (11.81)

When N > D the given symmetric states are linearly dependent and form
an overcomplete set. In this case the detection states |µj〉 are non-orthogonal
and non-normalized, with 〈µj |µj〉 = D/N . When N = D, however, the states
|ψj〉 are linearly independent and therefore can be discriminated also unam-
biguously, as has been pointed out in the corresponding section of this review.
Assuming equal a priori probabilities, the minimum failure probability, QF ,
for unambiguous discrimination of symmetric states has been derived to be
QF = 1 − N min|ck|2 [24]. Comparing this with the expression for PE , the
minimum error probability is found to be smaller than QF . It is worth men-
tioning that the minimum error probability, PE , on the one hand, and the
failure probability, QF , on the other hand, have been considered as distin-
guishability measures for ordering different ensembles of N equally probable
symmetric pure states, and it has been found that these two measures impose
different orderings [62].
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We used the preceding general results for studying minimum-error dis-
crimination between m-photon polarization states, referring to a fixed number
m of indistinguishable photons (m = 1, 2, . . . ). These states are superposition
states of the m + 1 orthonormal polarization basis states

|γ(m)
k 〉 =

1
√

(m − k)!k!
(a†

1)
m−k(a†

2)
k|0〉 ≡ |m − k, k〉, (11.82)

where k = 0, 1, . . . m. The basis states correspond to the m + 1 different pos-
sibilities of distributing m indistinguishable photons among two orthogonal
polarization modes, characterized by the photon creation operators a†

1 and

a†
2, respectively, and |0〉 is the vacuum state of the field. A specific set of

symmetric m-photon polarization states is defined by

|ψ(m)
j 〉 =

1√
m!

(

cos θ a†
1 + sin θ ei 2π

N
j a†

2

)m

|0〉, (11.83)

where j = 1, . . . N . Interestingly, for N = 4 and θ = π/4 these symmetric
states are identical with the states that result when the standard protocol for
quantum key distribution [65] is applied to m-photon pulses. Assuming again
equal a priori probabilities, the minimum-error probability for discriminating
the states reads for m ≤ N − 1

P
(m)
E (θ) = 1 − 1

N

[

m
∑

k=0

√

(

m

k

)

cosm−k θ sink θ

]2

. (11.84)

For the case of two-photon-polarization states, m = 2, we found [61] that for
θ = π/4 the minimum error probability is given by PE = 1− (3+2

√
2)/(2N)

which is smaller than the value that would result for the corresponding single-

photon polarization states, being PE = 1−2/N . In general, the states |ψ(m)
j 〉

can be considered to consist of m identical copies of indistinguishable qubits,
or photons, respectively, being each in the state cos θ|1, 0〉 + sin θei 2π

N
j |0, 1〉.

Therefore our results show that by performing a joint measurement on m
copies, instead of a measurement on a single copy only, the probability of
making a correct guess for the actual state can be enhanced. However, in
order to physically realize a joint measurement of this kind, in many cases
an m-photon interaction process would be necessary, while a measurement
on a single copy can always be achieved much more simply with the help
of linear optics. We also gave a recipe for a linear optical multiport per-
forming the generalized measurement that discriminates with minimum er-
ror between N equiprobable symmetric single-photon polarization states and
we discussed how the corresponding two-photon-polarization states could be
discriminated, at least in principle, with the help of polarization-dependent
two-photon absorption [61].
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Subset Discrimination and Quantum Filtering

in a Two-Dimensional Hilbert Space

While in the previous section we dealt with distinguishing between N individ-
ual pure states, we now turn to the error-minimizing discrimination between
two subsets of a given set of N pure states. In our work [63] we studied
this task for two sets of linearly dependent pure states that collectively span
only a two-dimensional Hilbert space. Let us formulate the problem more
precisely. We want to devise a measurement that allows us to decide, with
the smallest possible error and without inconclusive answers, whether the
actual state of the system belongs to the subset of states {|ψ1〉, . . . |ψM 〉}, or
to the complementary subset of the remaining states {|ψM+1〉, . . . |ψN 〉} with
M < N . To avoid confusion, in this section we denote the a priori proba-
bilities of the individual pure states by ηi

j , where j = 1, . . . , N . Note that
for M = 1 our subset-discrimination problem is also called minimum-error
quantum state filtering, in correspondence to the problem of unambiguous
quantum state filtering that has been treated in the respective section of
this review. The detection operators Π1 and Π2, referring to the two possible
measurement outcomes for minimum-error subset-discrimination, are defined
in such a way that the quantity 〈ψj |Π1|ψj〉 accounts for the probability to
infer, from performing the measurement, the state of the system to belong
to the first subset, if it has been prepared in the state |ψj〉. Obviously, this
inference is correct if j ≤ M . Similarly, the quantity 〈ψj |Π2|ψj〉 is defined
as the probability for inferring the state to belong to the second subset. The
overall error probability reads

PM(N)
err = 1 −





M
∑

j=1

ηi
j〈ψj |Π1|ψj〉 +

N
∑

j=M+1

ηi
j〈ψj |Π2|ψj〉



 , (11.85)

where
∑N

j=1 ηi
j = 1 and Π1+Π2 = I. In general, with respect to the optimum

measurement strategies, the problem of subset-discrimination is equivalent to
the problem of distinguishing between the two mixed states

ρ1 =
1

η1

M
∑

j=1

ηi
j |ψj〉〈ψj | with η1 =

M
∑

j=1

ηi
j , (11.86)

ρ2 =
1

η2

N
∑

j=M+1

ηi
j |ψj〉〈ψj | with η2 =

N
∑

j=M+1

ηi
j , (11.87)

provided that the mixed states occur just with the a priori probabilities given
by η1 and η2, respectively [63]. This equivalence also becomes immediately
obvious from comparing (11.48) and (11.85). Thus the minimum error prob-
ability for subset-discrimination can be obtained by applying the Helstrom
solution, (11.58), to the problem of discriminating between ρ1 and ρ2.
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In our work we adopted another approach that does not entail any increase
in the overall calculation effort, but has the advantage of yielding direct infor-
mation about the method that realizes the optimum measurement. We first
proved that from the restriction to a two-dimensional Hilbert space it follows
that the optimum detection operator Π1 (or Π2, respectively) can be ex-
pressed as the projector onto a particular optimum pure state. By solving the
extremal problem that minimizes the expression (11.85) we then determined

this optimum pure state, as well as the resulting minimum value P
M(N)
E .

Thus we found that the minimum probability of making an error in distin-
guishing to which of the two subsets {|ψ1〉, . . . |ψM 〉} or {|ψM+1〉, . . . |ψN 〉} a
given quantum state belongs is given by [63]

P
M(N)
E =

1

2
−
√

R2 + |S|2, (11.88)

where R and S can be expressed as

R =

M
∑

j=1

ηi
j

(

|〈ψ1|ψj〉|2 − 1

2

)

−
N
∑

j=M+1

ηi
j

(

|〈ψ1|ψj〉|2 − 1

2

)

, (11.89)

S =

M
∑

j=1

ηi
j

〈ψ2|ψj〉〈ψj |ψ1〉 − 〈ψ2|ψ1〉 |〈ψ1|ψj〉|2
√

1 − |〈ψ1|ψ2〉|2

−
N
∑

j=M+1

ηi
j

〈ψ2|ψj〉〈ψj |ψ1〉 − 〈ψ2|ψ1〉 |〈ψ1|ψj〉|2
√

1 − |〈ψ1|ψ2〉|2
. (11.90)

In particular, we applied this result to the case of quantum state filtering for
three arbitrary, but linearly dependent states, spanning a two-dimensional
Hilbert space. Let us introduce the matrix C by the definition Cij = 〈ψi|ψj〉
for i, j = 1, 2, 3. Linear dependence then implies det(C) = 0, or

|〈ψ1|ψ2〉|2 + |〈ψ1|ψ3〉|2 + |〈ψ2|ψ3〉|2 = 1 + 2 Re〈ψ1|ψ2〉〈ψ1|ψ3〉〈ψ1|ψ3〉 .

(11.91)

Therefore the minimum error probability obtained in [63] can be written as

P
1(3)
E =

1

2
−

√

√

√

√

1

4
− ηi

2η
i
3 (1 − |〈ψ2|ψ3〉|2) − ηi

1

3
∑

j=2

ηi
j |〈ψ1|ψj〉|2. (11.92)

For ηi
3 = 0 the expression reduces to the Helstrom formula (11.59) for dis-

criminating two pure states.
As an example, we considered three equally probable symmetric states,

|ψk〉 = cos θ |γ1〉 + ei 2π

3
(k−1) sin θ |γ2〉, k = 1, 2, 3 , (11.93)
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where |γ1〉 and |γ2〉 denote two orthonormal basis states. For these states also
the minimum error probability PE for distinguishing them individually can be

analytically expressed, cf. (11.81). We found that the ratio P
1(3)
E (θ)/PE varies

between 0.56 (for θ ≈ π/12) and 0.5 (for θ = 0 or π/4). Hence the minimum-
error probability for distinguishing one state from the set of the two others is
only about half as large as the minimum-error probability for distinguishing
all three states separately. For the special example of the equally probable
trine states, given by (11.72), the minimum error probability for quantum

state filtering is obtained to be P
1(3)
E = 1/6. The error-minimizing filtering

strategy consists in performing a projection onto the state |ψ1〉 and guessing
the system to be in this state when the detector clicks, and to be in one of the
other states when a projection on the orthogonal state is successful. On the
other hand, in the case of the trine states, optimum unambiguous quantum

state filtering would yield the minimum failure probability Q
1(3)
F = 1/3, as

can be verified from the formula given in the corresponding chapter of the
review. In this case the measurement corresponds to projecting onto the
direction orthogonal to |ψ1〉, which unambiguously identifies the set of the
other states. Obviously the minimized error probability and the optimized
failure probability for unambiguous discrimination differ just by the factor
one half, in agreement with the limit set by (11.66).

Distinguishing a Pure State from a Uniformly Mixed State

in Arbitrary Dimensions

The solution of the minimum-error discrimination problem for two arbitrary
quantum states, either pure or mixed, is well known and results in the com-
pact Helstrom formula (11.58) for the minimum error probability, PE . How-
ever, the explicit analytical evaluation of PE poses severe difficulties when the
dimensionality D of the relevant Hilbert space is larger than two. This is due
to the fact that applying the Helstrom formula amounts to calculating the
eigenvalues of a D-dimensional matrix. In the following we consider a simple
yet non-trivial example of an error-minimizing state discrimination problem
in an arbitrary dimensional Hilbert space that can be solved analytically, and,
in addition, might be related to potential applications. Our problem consists
in deciding with minimum error whether a quantum system is prepared either
in a given pure state or in a given uniformly mixed state [42], i. e. we have
to discriminate between the two quantum states described by

ρ1 = |ψ〉〈ψ|, ρ2 =
1

d

d
∑

j=1

|uj〉〈uj |. (11.94)

Here the states |uj〉 are supposed to be mutually orthonormal, i. e. 〈ui|uj〉 =
δij . With DS denoting the dimensionality of the physical state space of the
quantum system, the relation d ≤ DS has to be fulfilled. We note that in
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the special case d = DS the state ρ2 is the maximally mixed state that
describes a completely random state of the quantum system, containing no
information at all. Discriminating between the density operators |ψ〉〈ψ| and
ρ2 then amounts to deciding whether the state |ψ〉 has been reliably prepared,
or whether the preparation has totally failed [44].

To simplify the representation, in the following we restrict ourselves to the
special case that the a priori probabilities of the two states are η1 = 1/(d+1)
for the pure state, and η2 = d/(d + 1) for the mixed state, respectively [42].
This means that in the corresponding quantum state filtering scenario all
possible pure states would have equal a priori probabilities. In order to cal-
culate the minimum error probability, using the Helstrom formula (11.58), it
is necessary to determine the eigenvalues λ of the operator

Λ =
1

d + 1





d
∑

j=1

|uj〉〈uj | − |ψ〉〈ψ|



 . (11.95)

We found that the eigenvalues are given by [42]

λ1 = − 1

d + 1

√

1 − ‖ψ‖‖2, (11.96)

λ2 = −λ1, λk =
1

d + 1
(k = 3, . . . d + 1),

where we introduced the notation |ψ‖〉 for the component of |ψ〉 that lies in
the subspace spanned by the states |u1〉, . . . , |ud〉,

‖ψ‖‖2 = 〈ψ‖|ψ‖〉 =

d
∑

j=1

|〈uj |ψ〉|2. (11.97)

When the quantum states to be discriminated are linearly independent, i. e.
when ‖ψ‖‖ �= 1, there exists exactly one eigenvalue that is negative, given by
λ1. Therefore according to (11.55) the detection operators for performing the
minimum-error measurement are given by Π1 = |φ1〉〈φ1| and Π2 = IDS

−Π1,
where |φ1〉 is the eigenstate belonging to the negative eigenvalue, λ1. On the
other hand, when ρ1 and ρ2 are linearly dependent, i. e. when ‖ψ‖‖ = 1, a
negative eigenvalue does not exist. In this case the optimum measurement
strategy is described by the detection operator Π2 = IDS

which means that
the resulting minimum error probability, PE = 1/(d + 1), is achievable by
guessing the system always to be in the state ρ2, without performing any
measurement at all. The minimum error probability resulting from the above
eigenvalues reads [42]

PE =
1

d + 1

(

1 −
√

1 − ‖ψ‖‖2

)

. (11.98)
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We still mention that the previous considerations can be easily extended to
the case that the pure state and the uniformly mixed state given in (11.94)
occur with arbitrary a priori-probabilities η1 and η2 = 1 − η1, respectively.
The minimum error probability for distinguishing between them is then given
by [64]

PE =
1

2

[

η1 +
η2

d
−
√

(

η1 +
η2

d

)2

− 4η1
η2

d
‖ψ‖‖2

]

. (11.99)

Let us now compare the minimum probability of errors, PE , with the
smallest possible failure probability, QF , that can be obtained in a strategy
optimized for unambiguously discriminating between the pure state and the
uniformly mixed state. The solution of the latter problem coincides with the
solution to the problem of optimum unambiguous quantum state filtering.
Assuming again that η1 = 1/(d + 1), the minimum failure probability is
QF = 2 ‖ψ‖‖/(d + 1) [42]. Supposing nonorthogonality of the two states,
characterized by 0 < ‖ψ‖‖ ≤ 1, we observe that PE/QF ≤ 1/2, in accordance
with (11.66). When the two states are linearly dependent, i. e. when ‖ψ‖‖ = 1,
it follows that PE/QF = 1/2. On the other hand, for nearly orthogonal states,
where ‖ψ‖‖ ≪ 1, we find that PE/QF ≈ ‖ψ‖‖/4. Obviously in this case the
minimum error probability is drastically smaller than the optimum failure
probability for unambiguous discrimination.

As an application of the minimum-error strategy described above, we
discussed the problem of discriminating between a pure and a mixed two-
qubit state [42]. An arbitrary bipartite qubit state, shared among two parties
A (Alice) and B (Bob), can be expressed with the help of the four orthonormal
basis states |00〉, |01〉, |10〉 and |11〉, where |mn〉 stands for |m〉A ⊗ |n〉B , with
|0〉 and |1〉 denoting any two orthonormal basis states of a single qubit. As an
interesting special case we considered the problem that Alice and Bob want
to decide whether the two-qubit system is either in a given pure state |ψ〉,
occuring with the a priori probability η1 = 1/4, or in a uniform mixture of
the three symmetric states

|u1〉 = |00〉, |u2〉 = |11〉, |u3〉 =
1

2
(|01〉 + |10〉). (11.100)

We found that in this case the minimum error probability is given by

PE =
1

4

(

1 − 1√
2

|〈01|ψ〉 − 〈10|ψ〉|
)

. (11.101)

The same result would hold true if |u1〉 and |u2〉 were replaced by the two sym-
metric Bell states (|00〉±|11〉)/

√
2. Minimum-error discrimination is achieved

by performing a projection measurement onto the eigenstate |φ1〉 that belongs
to the negative eigenvalue λ1 of the operator Λ, cf. (11.95). In general, this
eigenstate will be a superposition of the four two-qubit basis states. The opti-
mum measurement strategy therefore requires a correlated measurement that
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has to be carried out collectively on the two qubits. On the other hand, if
in our specific example the discrimination would have to performed by local
measurements on the qubits only, without any communication between Al-
ice and Bob, the smallest achievable error probability would be always 1/4,
independent of the choice of the state |ψ〉 [42]. We note that the problem we
considered is of particular interest in the context of quantum state compari-
son [30], where one wants to determine whether the states of quantum systems
are identical or not. It has been shown [34] that for comparing two unknown
single-particle states it is crucial to discriminate the anti-symmetric state of
the combined two-particle system from the uniform mixture of the mutually
orthogonal symmetric states. In this context it is interesting that recently an
application of particle statistics to the problem of minimum-error discrimi-
nation has been presented [66]. Discrimination between bipartite states will
be discussed in more detail in a separate chapter.

11.4 Discriminating Multiparticle States

So far we have been considering the situation in which the person discrimi-
nating between states is in possession of the entire system that is guaranteed
to be in one of the allowed states. However, if our system consists of sub-
systems, these can be distributed among different parties, and then these
parties have to determine which state they are sharing by measuring their
subsystems and communicating among themselves. This adds another layer
of complexity to the problem.

The simplest example is to suppose that we have a two-qubit state, and
we give one of the qubits to Alice and the other to Bob. Alice and Bob
know that the state is either |ψ0〉 or |ψ1〉, and by performing local operations
and communicating classically (this is abbreviated as LOCC), they want to
determine which state they have. We shall consider both the case of minimum-
error and unambiguous discrimination. The object is to develop a procedure
that Alice and Bob can use to discriminate between the states.

It is possible to immediately obtain some bounds on how successful these
procedures can be. If both states are equally likely, and both qubits are
measured together, then we know that the states can be successfully unam-
biguously discriminated with a probability of PIDP = 1 − |〈ψ0|ψ1〉| [7]- [9].
This clearly represents an upper bound on what can be accomplished using
LOCC. In the case of minimum-error discrimination, the best probability of
correctly identifying the state that is obtainable if both states are measured
together is

P =
1

2
+

1

2
Tr|(η0|ψ0〉〈ψ0| − η1|ψ1〉〈ψ1|)|, (11.102)

where ηj is the a priori probability for |ψj〉, for j = 1, 2. This is again an
upper bound to what can be achieved using LOCC. A natural question is
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whether these bounds are, in fact, achievable. It was recently shown that
they are.

In order to see how, let us start with an extreme case; we shall assume
that |ψ0〉 and |ψ1〉 are orthogonal. Walgate, et al. proved that in this case
the states can be distinguished perfectly using only LOCC [67]. They did, in
fact, much more that this, they showed that two orthogonal states, of any
dimension, shared by any number of parties can be perfectly distinguished
by LOCC. Their proof rests on the fact that any two bipartite states can be
expressed in the form

|ψ0〉 =

n
∑

j=0

|j〉A|ξj〉B

|ψ1〉 =

n
∑

j=0

|j〉A|ξ⊥
j 〉B , (11.103)

where {|j〉A|j = 1, . . . n} is an orthonormal basis for Alice’s space and the
states |ξj〉B and |ξ⊥

j 〉B , which are not normalized, are orthogonal in Bob’s.
Alice measures her state in the |j〉A basis and communicates her result to Bob.
If her result was |j0〉, then Bob measures his particle in order to determine
whether it is in the state |ξj0〉B or |ξ⊥

j0
〉B , which he can do perfectly since the

states are orthogonal. Note that the measurement that Bob makes depends
on the result of Alice’s measurement. If the states are split among more than
two parties, this procedure can be applied several times. For example, if there
are three parties, Alice, Bob and Charlie, then we initially group Bob and
Charlie together so that the state can be considered bipartite. Alice performs
her measurement and tells Bob and Charlie the result. They now share one of
two known, orthogonal states, and they can apply the above procedure again
to find out which. The answer will tell them what the original state was.

The case when |ψ0〉 and |ψ1〉 are not orthogonal (and of arbitrary dimen-
sion) was investigated by Virmani, et al. [68], and they were able to apply
the above decomposition to the problem of minimum-error discrimination.
They found a strategy, for arbitrary a priori probabilities, using only LOCC
that achieves the optimal success probability given in (11.102). In addition,
they found strong numerical evidence that, when the two states are equally
likely, unambiguous discrimination is possible with a probability of PIDP us-
ing LOCC, and they found a class of states for which they could prove that
this was true. A proof that this is true for all bipartite states was provided
by Chen and Yang [69].

The procedure that makes LOCC unambiguous discrimination with a suc-
cess probability of PIDP possible is closely related to the one for discriminat-
ing orthogonal states. Alice makes a projective measurement on her particle
that gives her no information about whether the state is |ψ0〉 or |ψ1〉, and she
then communicates her result to Bob. Based on what Alice has told him, Bob
chooses a measurement to make on his particle. In particular, he applies the
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procedure for the optimal unambiguous discrimination of single qubit states
to his particle. However, in this procedure one must know the two states that
one is discriminating between, and it is this information that is provided by
the result of Alice’s measurement.

Together with Mimih we took a somewhat different approach to unam-
biguous discrimination of two-qubit states [70]. The motivation was to study
bipartite state discrimination schemes that could be used in quantum commu-
nication protocols, quantum secret sharing, in particular [71]- [74]. A quan-
tum cryptography protocol based on two-state unambiguous discrimination
already existed [38], and this suggested that the discrimination of bipartite
states might find application as well. In secret sharing, Alice and Bob are
both sent information that allows them to decode a message if they act to-
gether, but neither party can decode it by themselves. The schemes discussed
above are not well suited for this type of application, because the information
gained by the two parties is not the same. In particular, after the measure-
ments have been made (note that Alice must communicate her result to Bob
so that he can make his), Alice knows nothing and Bob knows which state
has been sent. We were interested in schemes that are more symmetric.

Our approach was to examine situations in which the classical communi-
cation between the parties was limited. One possibility is to allow no classical
communication. In that case each party has three possible measurement re-
sults, 0 corresponding to |ψ0〉, 1 corresponding to |ψ1〉, and f for failure to
distinguish. If |ψ0〉 is sent, then Alice and Bob both measure 0 or both mea-
sure f , so that they both know, without communicating, that |ψ0〉 was sent
or that the measurement failed. If |ψ1〉 is sent, then they both measure either
1 or f . In the case of qubits, we found that the best that can be done is to
identify one of the states and fail the rest of the time, i.e. we never get a
positive identification for the second state. The situation improves if we go
to qutrits. In that case there are examples of states that can be distinguished
with the success probability equal to PIDP . One is given by the two states
(the states |0〉, |1〉, and |2〉 are an orthonormal basis for the qutrits)

|ψ0〉 =
1√
2
(|00〉 + |22〉)

|ψ1〉 =
1√
2
(|11〉 + |22〉). (11.104)

If Alice and Bob each measure 0, they know they were sent |ψ0〉, if they each
measure 1, they know they were sent |ψ1〉, and if they both measure 2 they
failed.

We also considered the situation in which and Alice and Bob make mea-
surements, and later pool their results to determine which state was sent.
However, conditional measurements were banned, i.e. situations in which the
measurement made by one party depends on the measurement result of the
other were not allowed. Conditional measurements seem to have the problem
that, as has been noted, the information the parties receive is not the same,
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and, that if there is a delay between the time the qubits are received and
the time they are measured, then the qubits must be protected against de-
coherence until the measurement is made. In the procedures we studied, we
found that it was optimal for each party to make projective measurements.
If the two states shared the same Schmidt basis, then these procedures could
successfully distinguish them with a probability of PIDP , but if they did not,
the probability of success was, in general, smaller than PIDP .

The discrimination of more than two states shared by two parties has be-
gun to be investigated, and presently results only exist for the case in which
all of the states are orthogonal to each other. Ghosh, et al. have shown that it
is not possible, in general, to deterministically distinguish either three or four
orthogonal two-qubit states using only local operations and classical commu-
nication [75]. A general condition on when orthogonal, bipartite 2 × d states
(one of the particles is a qubit and the other a qudit), can be distinguished
by LOCC was found recently by Walgate and Hardy [76]. In the case of 2×2
states, they found that for three of them to be perfectly distinguishable by
LOCC, at least two of them must be product states, and for four, all of them
must be product states. As far as we are aware, the problem of distinguishing
three or more nonorthogonal states shared between two or more parties using
LOCC has not yet been studied although, very recently, Chefles [77] derived
a necessary and sufficient condition for a finite set of states in a finite dimen-
sional multiparticle quantum system for LOCC unambiguous discrimination.
This suggests that there is much still to be learned about distinguishing mul-
tipartite states using local operations and classical communication and, in
general, separable quantum operations have to be considered.

11.5 Outlook

Quantum state discrimination is a very rapidly evolving field just like many
other areas of quantum information and quantum computing. We have re-
viewed here the two most important - and simplest - state discrimination
strategies, unambiguous discrimination and minimum-error discrimination.
The minimum-error strategy for the discrimination of two mixed states has
been one of the first problems that was solved exactly. With the recent
progress toward the unambiguous discrimination of mixed states we expect
that in the near future the problem of unambiguous discrimination of two
mixed states will be solved completely. Then attention will quite naturally
turn toward the discrimination of more than two states where so far only
special cases were solved completely and partial results were obtained in the
general case. A rapidly emerging field with a lot of room for quick progress is
the discrimination of multiparticle states using LOCC only. Applications in
the area of quantum cryptography and probabilistic quantum algorithms will
surely follow but in a field with such a rapidly changing landscape it would
not be responsible to predict more than the immediately foreseeable future.
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