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FOOD CHEMICAL CONTAMINANTS 

Discrimination of Sound and Granary-Weevil-Larva-Infested 
Wheat Kernels by Near-Infrared Diffuse Reflectance Spectroscopy 

AHMAD R. GHAEDIAN and RANDY L. WEHLING 1 

University of Nebraska, Department of Food Science and Technology, 143 Filley Hall, Lincoln, NE 68583-0919 

Sound and infested wheat kernels containing late-
instar granary weevil larvae, as identified by X-ray 
analysis, were used to evaluate the ability of near-
infrared (NIR) spectroscopy to predict the presence 
of insect larvae in individual wheat kernels. Diffuse 
reflectance spectra at 1100-2500 nm were recorded 
from individual infested and sound kernels. Princi­
pal component analysis (PCA) of NIR spectra from 
sound kernels was used to construct calibration 
models by calculation of Mahalanobis distances. 
Calibration models were then applied to spectra ob­
tained from both sound and infested kernels in a 
separate validation set. A 5-factor PCA model using 
data from a first-derivative spectral transformation 
was the best model for correctly classifying ker­
nels in an expanded validation sample set, includ­
ing 100% of sound, 93% of infested, 95% of sound 
air dried, 86% of infested air dried kernels, and 90% 
of sound kernels from 6 wheat varieties. Calibra­
tions using the spectral region from 1100 to 
1900 nm were least sensitive to kernel moisture dif­
ferences. Similar results were obtained when dis­
criminant analysis was applied to log 1/R data from 
selected discrete wavelengths of NIR spectra. 

Referred to as "hidden insects" (1), internal infesters con­
tinue to damage stored grains without warning. Of all 
methods used to detect hidden insects, X-ray analysis is 

the choice of industry in the United States (2). However, this 
technique is time consuming and requires expensive, dedicated 
X-ray equipment. The cost per test is high because the film and 
materials used are costly. In addition, the technique becomes 
subjective because a highly trained technician is required to 
interpret radiographs and identify immature insects from grain 
tissues. Therefore, development of a rapid, reliable, and less 
subjective method for detecting insect larvae that feed inter­
nally in stored grain is desirable. 

Received July 5, 1996. Accepted by AP March 15, 1997. 
Published as Paper No. 11573, Journal Series, Agricultural Research 

Division, University of Nebraska, Lincoln, NE 68583-0704. 
Author to whom correspondence should be addressed. 

Other methods to detect internal infesters in grains are stain­
ing of egg plugs made by female insects after laying eggs (3), 
visual inspection for exit holes left by emerging adult insects 
(4), flotation of hollowed kernels left by feeding insects (5), 
cracking of kernels followed by flotation of released insect 
parts (6), and staining crushed kernels with ninhydrin to detect 
amino acids corresponding to the insect (7). None of these tech­
niques has been adopted as an official method by regulatory 
agencies because of questions of reliability, reproducibility, and 
simplicity of the method. 

An infrared method for measuring carbon dioxide produced 
by insects (8) is unreliable as a marker of insect infestation be­
cause of the difficulty in correcting for background carbon di­
oxide released by respiring grains. Hackman and Goldberg (9) 
proposed a colorimetric procedure for determining chitin, a 
major structural component of insect cuticle, as an index of in­
sect infestation in grain. This procedure, however, is not ade­
quately specific as an index of insect infestation in grain be­
cause a high concentration of chitin also can be found in stored 
grain contaminated with fungi, as evidenced by the work of 
Donald and Mirocha (10). 

A nuclear magnetic resonance (NMR) spectroscopic tech­
nique developed by Chambers et al. (11) for monitoring devel­
opment of granary weevil in wheat kernels and an enzyme 
linked immunosorbent assay (ELISA) test (12), based on a 
measure of insect biomass (myosin, muscle protein) found in 
all insects but not in grain, have not found widespread accep­
tance because of their complexity or the need for further devel­
opment. 

Sonic detection of chewing insects also has been investi­
gated (13, 14). Although sound detection has advantages in 
portability, speed, and cost, it has not been accepted as an offi­
cial method, perhaps because of low sensitivity in detecting 
young larvae. A system for sonic detection of internal infesters 
was described by Vick et al. (15). They used larvae of rice wee­
vil, lesser grain borer, and angoumois grain moth in their study 
and reported that the low sensitivity of the system did not allow 
molting larvae of the species to be detected. They also reported that 
infesting species have to be identified to estimate the infestation 
level; however, they did not find consistent acoustic differences 
among the 3 species that would allow species identification. 

Hagstrum and Flinn (16) conducted research to distinguish 
5 species of adult stored-product insects based on acoustical 
differences. They concluded that only some species were dis-
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tinguishable from one another. Their study involved use of 
adult insects only and did not account for insect larvae. In an 
earlier study, Hagstrum et al. (17) evaluated an acoustical de­
tection system to estimate the population of Rhyzopertha do-
minica (Coleoptera: Bostrichidae) in stored wheat. Although 
insect larvae were more numerous than adults, they were not 
acoustically detectable when adults were present. 

Near-infrared (NIR) spectroscopy is a relatively fast, accu­
rate, and economical technique available to the grain industry 
for compositional analysis. Wilkin et al. (18) used NIR reflec­
tance to detect mite infestation in animal feed. However, no 
reports indicate use of this technology in detecting internally 
infesting insects. NIR spectroscopy can be used for both quali­
tative and quantitative analysis. To develop calibration models 
for quantitative analysis, a reference method of analysis is 
needed to determine the concentration of the constituents of 
interest in a training set (19, 20). NIR spectroscopy has been 
used for quantitative analysis of a wide variety of samples in 
industry. Recently, a number of statistical methods known as 
pattern recognition techniques have been reported for qualita­
tive identification of samples by their NIR spectra (21-25). 

One technique that has been used successfully is discrimi­
nant analysis based on Mahalanobis distances (26, 27). A clear 
explanation of the use of Mahalanobis distances for qualitative 
analysis is given by Mark and Tunnell (21). Discriminant 
analysis based solely on Mahalanobis distances of reflectance 
data from discrete wavelengths depends on proper selection of 
wavelengths (21). One way to avoid this difficulty is to apply 
principal component analysis (PCA) to the training set before 
calculating Mahalanobis distances. PCA analysis allows use of 
the entire spectrum in the discrimination method and helps to 
ensure that compositional differences in the unknown sample 
are given the chance of being detected (28). 

Delwiche and Norris (29) developed various forms of dis­
criminant analysis models to classify hard red winter and hard 
red spring wheat based on their NIR spectra. They concluded 
that best results are obtained when discriminant analysis is ap­
plied to the principal components of the spectra. 

Shah and Gemperline (28) used PCA to calculate Maha­
lanobis distances for classifying pharmaceutical raw materials 
and concluded that the combined method provides reliable 
classification models. They used PCA of the NIR spectra of raw 
materials to calculate Mahalanobis distances based on the sig­
nificant principal components. After the most significant PC 
scores are determined, they can be used to represent the original 
data rather than the absorbance intensities at all wavelengths. 

Other examples of qualitative analysis by NIR spectroscopy 
include the work of Rose (30) in classifying 40 pharmaceutical 
raw materials by discriminant analysis and the work of Shenk 
et al. (31), who identified different populations of forage sam­
ples from their NIR spectra. Lodder et al. (19) detected adulter­
ants in nonprescription drugs by using NIR reflectance analysis 
and a pattern recognition technique called BEAST (Boostrap 
Error Adjusted Single Sample Technique). Gemperline et al. 
(32) classified pharmaceutical raw materials by using NIR 
spectra and a pattern recognition technique called SIMC A (Soft 
Independent Modeling of Class Analogy). Classification of 

samples was achieved by PCA of complete NIR spectra. Scott 
(33) used SIMCA to determine chemical classes of toxic vola­
tile organic compounds from low-resolution mass spectra data. 
Derde and Massart (34) developed a classification technique 
based on Mahalanobis distances and used gas chromatographic 
data to classify olive oils according to their geographic location. 

Because of the speed and availability of NIR technology, we 
evaluated the possibility of using it for detecting insect infesta­
tion in stored wheat. 

Experimental 

Preparation of Insect-Infested Wheat Kernels 

A 4-week-old culture of hard red winter (HRW) wheat con­
taining late-instar granary weevil (Sitophilus granarius L.) lar­
vae was obtained from the stored-product research laboratory 
of the Department of Entomology at Kansas State University 
(Manhattan, KS). Steps for preparing granary-weevil-infested 
wheat have been described (35). To identify infested wheatker-
nels, a radiograph was made of a portion of the culture with a 
General Electric X-ray grain inspection unit using 20 kV at 
5 rnA and a 2.5 min exposure time. Kodak Type M industrial 
X-ray film was used. The film was placed directly on the wheat 
kernels; therefore images were the same size as the actual ker­
nels. The film was developed for 5 min, washed 1 min, fixed 
5 min, washed again, and dried (36). The radiograph was then 
viewed with a film illuminator. After infested wheat kernels 
were identified, 75 infested kernels containing larvae were se­
lected and placed in a mason jar. To ensure uniformity in the 
source of wheat kernels used in NIR calibration, 75 sound ker­
nels also were picked from the radiographed kernels. NIR spec­
tra were obtained from wheat kernels within 24 h to minimize 
changes in the growth stage of the larvae. 

Instruments 

Spectral data from all wheat kernels, expressed in the form 
of log (1/R), were collected with an NIRSystems Model 6500 
spectrometer (NIRSystems Division of Perstorp Analytical, 
Silver Spring, MD) from 1100 to 2498 nm. Spectra were col­
lected at a wavelength interval of 2 nm. Individual wheat ker­
nels were placed in a Capcell parabolic reflector (Optical Pro­
totypes, Mars, PA). Use of this device allowed collection of 
radiation reflected from the entire surface of the kernel. Are-
mote reflectance probe attached to the monochromator of the 
instrument by a fiber optic cable was then positioned over the 
Capcell to measure light reflected from the kernel. Thirty-two 
monochromator scans were averaged from each kernel. The 
NIR spectrum of the kernel was obtained by taking the ratio of 
the intensity of radiation reflected from the sample to that re­
flected from a ceramic reference plate. The remote probe and 
parabolic reflector were covered with a black cloth to prevent 
entry of stray light during collection of each spectrum. 

For instrumental control and data collection, the spectrome­
ter was interfaced to an MS-DOS personal computer running 
the Near Infrared Spectral Analysis Software (NSAS) package 
(version 3.16, NIRSystems). Spectra were stored on the hard-
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disk drive and then converted into ASCII (JC AMP-DX) format 
for import into Lab Calc software (Galactic Industries, Salem, NH). 

Analysis of Data 

A discriminant analysis program in the Lab Calc software 
package was used to analyze the NIR data. This pattern recog­
nition technique was used to measure Mahalanobis distances, 
expressed in standard deviations, of sound and infested kernels 
from the center (mean) of the training set cluster. In theory, 
because the Mahalanobis distance represents a measure of 
standard deviation, essentially all samples in a group can be 
expected to lie within 3x the Mahalanobis distance of their re­
spective group mean (21,28). A training set containing only 
sound kernels was used to establish the group mean and Maha­
lanobis distance for sound wheat kernels. Validation sets con­
taining individual sound and infested kernels were then pre­
sented to the instrument. Kernels with a Mahalanobis distance 
of less than 3 standard deviations from the training set center 
were classified as sound, and those with a Mahalanobis dis­
tance of 3 or greater standard deviations were classified as un­
sound because of infestation. 

Two methods of calibration were used. The first was dis­
criminant analysis based on loadings derived from PCA of full 
or partial NIR spectra. The discriminant analysis program used 
in this study takes full advantage of both PCA and Mahalanobis 
distances by combining both techniques into a single method. 
PCA allows use of full NIR spectra and avoids the need for 
wavelength selection. The program uses PC scores from spec­
tra of samples in a training set to calculate the Mahalanobis 
groups, rather than spectral intensities from samples at selected 
wavelengths. This avoids overdiscrimination that can occur 
when Mahalanobis distances with more than 10 wavelengths 
are used to develop discriminant functions. 

The second calibration method was discriminant analysis 
based on Mahalanobis distances applied to selected wave­
lengths. In this method, log 1/R values from several NIR wave­
lengths were used directly in discriminant analysis. Wave­
lengths were selected by use of best-possible-combination 
regression. The regression procedure was applied to a repre­
sentative set that contained 30 samples each of sound and in­
fested kernels. To perform the regression, numerical values 
were given to samples: 1.00 to spectra of sound kernels and 
2.00 to spectra of infested kernels. Wavelengths selected by the 
regression algorithm were used to construct discriminant 
analysis models. 

Acquisition of Spectra 

Preliminary work was done to evaluate the effects of both 
positioning (crease up versus crease down) and location of 
wheat kernels in the sample cell. NIR spectra were obtained 
from a single wheat kernel in different positions. Results 
showed a shift in absorption depending on how and where in 
the sample cell the wheat kernel is placed. For this reason, it 
was decided to collect and study spectral data of wheat kernels 
positioned crease up and to scan the same kernels again with 
the crease being down in the sample cell. Reproducible placing 
of wheat kernels in the sample cell was carefully practiced. In 

addition, the orientation of the sample cell itself in the sample 
cell holder was carefully reproduced throughout this study. 

The first 150 NIR spectra were acquired from 75 kernels 
each of infested and sound samples positioned crease up in the 
sample cell. Each kernel was numbered for later identification. 
The same kernels were used to generate the second 150 NIR 
spectra with kernels positioned crease down in the sample cell. 
To minimize the effect of any variation due to instrument drift, 
scanning was alternated between infested and sound kernels 
after every 10 samples. The numbered wheat kernels were then 
placed in a freezer (-18°C) for 2 days to kill the larvae. Then, 
both sound and infested kernels were placed in an open tray to 
dry at room temperature for about 70 days. They were scanned 
(crease down) to generate the third set of spectra. Presence or 
absence of larvae was confirmed by sectioning the kernels with 
a razor blade. The fourth set of NIR spectra was obtained from 
sound kernels of 6 wheat varieties (Arapahoe, Abilene, Cimar­
ron, Karl, Tarn 107, and Scout 66) grown in Nebraska. Spectra 
were acquired from 10 kernels of each variety, positioned 
crease down in the sample cell. 

Training Sets 

Two separate training sets were used to develop discrimi­
nant analysis models: The first training set was generated with 
NIR spectra of sound kernels positioned crease down. Of 
75 NIR spectra, 50 were used in the training set and 25 were 
reserved for the test set. The second training set was developed 
with NIR spectra of sound kernels positioned crease up. Of 
75 NIR spectra, 50 were used in the training set and 25 were 
used for the test set. 

Validation Sets 

Each model was used to classify samples in validation sets. 
Seven validation sets were used in this study; the number of 
samples used in each set is given in parentheses: (7) sound 
wheat kernels with crease down in the sample cell (25 or 
75 spectra depending on the model used), (2) sound kernels 
with crease up (25 or 75 spectra), (3) infested kernels with 
crease down (75 spectra), (4) infested kernels with crease up 
(75 spectra), (5) sound air-dried kernels with crease down 
(75 spectra), (<5) infested air-dried kernels with crease down 
(75 spectra), (7) sound kernels of 6 wheat varieties with crease 
down (60 spectra). 

The first validation set consisted of spectra of wheat kernels 
from the same lot as the kernels of the first training set, in that 
they had the same moisture content and were positioned crease 
down in the sample cell. The second set was the same as the 
first set except that spectra were obtained by flipping the ker­
nels over in the sample cell for scanning. The third and fourth 
validation sets were spectra of insect-infested kernels from the 
same lot. The fifth set consisted of spectra of the same sound 
kernels used in the first validation set after they had been air 
dried for about 70 days and therefore had a different moisture 
content compared with the training set samples. The sixth set 
consisted of spectra of air-dried infested wheat kernels. The 
kernels contained dead larvae and simulated stored fumigated 
kernels. The seventh set consisted of spectra of 10 sound ker-

D
ow

nloaded from
 https://academ

ic.oup.com
/jaoac/article/80/5/997/5684278 by guest on 21 August 2022



1000 GHAEDIAN & WEHUNG: JOURNAL OF AOAC INTERNATIONAL VOL. 80, No. 5,1997 

nels from each of 6 HRW wheat varieties (Arapahoe, Abilene, 
Cimarron, Karl, Tarn 107, and Scout 66) grown in Nebraska. 
The kernels also had a lower moisture content than those used 
in the training set. 

These validation sets were used to assess the ability of the 
calibration models to correctly classify wheat kernels as sound 
or infested that are different from the training sets with respect 
to moisture content and variety. 

Development and Validation of Calibration Model 

To create a calibration model, spectra from a training set 
were input into the Lab Calc DISCRIM program. Various cali­
bration parameters, processing conditions, and diagnostics 
were available to optimize calibration results. 

One or more regions of the spectrum could be selected for 
analysis. A single region encompassing the entire NIR spec­
trum from 1100 to 2498 nm was used initially to develop cali­
bration models. Additionally, because the resolution of the 
spectra was greater than necessary for accurate analysis, the 
resolution of the data was reduced by averaging each 4 con­
secutive data points to speed up calculation. Averaging data 
points is better than skipping data points, because no informa­
tion is discarded prior to analysis. Also, averaging 4 consecu­
tive data points to produce a single point tended to decrease the 
effect of noisy data. Mean centering and spectral residuals were 
used for all training and validation samples. Spectral residuals 
are the information remaining in the secondary set of PC A vec­
tors that contribute to the small random variation among the 
data. Use of spectral residuals enhances the sensitivity of the 
Mahalanobis distance calculations to outlier samples by using 
the sum squared of the spectral residuals as an additional spec­
tral score. When needed, multiplicative scatter correction (37) 
and first-derivative transformation were applied to spectra of 
calibration and validation sets. The number of PCA factors used 
in analysis could be selected and was limited to the maximum 
number of factors recommended by a diagnostic routine per­
formed on the training data. 

In Lab Calc, the option of using wavelengths rather than 
PCA vectors for calculating Mahalanobis distances is also 
available. This method was examined for sample classification, 
with wavelengths selected by multiple linear regression as pre­
viously described. A maximum of 12 wavelengths was used to 
minimize overfilling. 

Once discriminant analysis models were developed and the 
integrity of the training data was closely examined, the models 
were used to predict samples from the validation sets. The num­
ber of PC factors or wavelengths was varied to obtain optimal 
classification of prediction set samples. 

To evaluate the validity of classification of sound and in­
fested wheat kernels based on discriminant analysis models, 
two terms—"correct classification" and "misclassification"— 
were used. Correct classification refers to percent sound ker­
nels of a validation set classified correctly as member, or per­
cent infested kernels of a validation set classified correctly as 
nonmember, of the training set. (Recall that the training set con­
tained sound kernels only.) Misclassification, however, corre­
sponds to percent sound kernels classified incorrectly as non-

member or percent infested kernels classified incorrectly as 
member of the training set. The number of PCs or wavelengths 
for classification was selected on the basis of optimum predic­
tion rate or the best correct classification of the validation sets. 

Results and Discussion 

Figure 1 shows spectra of several sound and infested wheat 
kernels. There was no consistent spectral offset between larvae-
infested kernels and sound kernels. 

Results of Calibrations with PCA 

Table 1 summarizes classification results from Mahalanobis 
distances based on PCA of the entire NIR spectral range from 
1100 to 2498 nm. The first training set—containing sound ker­
nels with creases positioned down in the sample cell—was 
used to develop these models. One sample in the training set 
was identified as a spectral outlier and deleted from the set. The 
number of PCs used to construct the models are given in the 
table, with the number of spectra in the validation sets shown 
in parentheses. The results show that the discriminant model 
with 7 factors was highly successful at classifying both sound 
and infested wheat kernels. When the 8th factor was included 
in constructing the model, the prediction rate was even higher, 
with nearly perfect correct classification. Although the number 
of correct classifications of kernels with crease positioned up in 
the sample cell was slightly lower than those of kernels with 
creases down, prediction rates were similar. In other words, 
training sets containing sound kernels with crease down could 
be used to predict sound or infested kernels regardless of posi­
tioning in the sample cell. 

Next, calibrations were developed with multiplicative scat­
ter correction and tested for performance by using the valida­
tion sets. Results are shown in Table 2. Using scatter-corrected 
spectra improved the prediction rate in 3 of 4 validation sets 
when a calibration with 7 factors was used, compared with re­
sults in Table 1. Results indicated that fewer factors are needed 
in the calibration to achieve a high prediction rate when scatter 
correction is used than when it is not. 

Calibrations also were developed from first-derivative spec­
tra and evaluated for performance by using the same validation 
sets. Results given in Table 2 show that the percentage of cor­
rect classification using the same number of factors was actu­
ally less compared with the percentage obtained with scatter 
correction or with use of mean centering alone. 

To check the versatility of the models, validation sets con­
taining the spectra of sound and infested kernels that had been 
air dried and NIR spectra of 60 sound kernels from 6 wheat 
varieties (10 spectra from each variety) were used. Classifica­
tion results are shown in Table 3. The models performed very 
poorly for sound, air-dried kernels. Use of scatter-corrected 
spectra did not improve results, indicating that the models were 
useful only for wheat kernels with moisture contents similar to 
those of the training set. Air drying of wheat kernels altered 
NIR spectra to the extent that the models were no longer accu­
rate. The moisture contents of wheat taken from a 4-week-old 
culture containing insect larvae before and after air drying were 
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Figure 1. NIR reflectance spectra of several sound and granary-weevil-larvae-infested wheat kernels. 

determined in duplicate (38). The moisture contents were 12.7 
and 7.8%, respectively. Because the cultures were maintained 
at 70% relative humidity for 4 weeks, they had a higher mois­
ture content. These results led us to a more detailed study to 
answer questions regarding the effects of moisture content and 
the type of wheat kernels in developing calibration models. 

One major limitation of NIR spectroscopy is interference of 
water bands with spectral bands of other constituents (39). Al­
though many regions in the NIR spectrum are associated with 
water (40), the region around 1940 nm represents the most 
prominent absorption region in wheat spectra. Using the same 

Table 1. Percentage of sound and infested wheat 
kernels classified correctly by discriminant analysis 
models based on principal component analysis of NIR3 

spectra 

Sound cdb Infested cd 
No. of factors (25)c (75) 

Sound cud 

(75) 
Infested cu 

(75) 

100 
100 

93 
100 

88 
92 

92 
97 

Near-infrared diffuse reflectance. Calibration file contained sound 
wheat kernels with crease down while scanning. Full spectra from 
1100 to 2498 nm were used for classification. 
cd, crease down while scanning. 
Number in parentheses is the number of spectra used in prediction 
set. 
cu, crease up while scanning. 

training set, wavelengths of 1901 to 1979 nm were removed 
from the spectra to minimize the effect of moisture differences 
between the training set kernels and all the validation spectra. 
Therefore, 2 regions of the spectra, 1100-1900 and 1980-
2498 nm, were used in developing calibration models. 

Table 2. Percentage of sound and infested wheat 
kernels classified correctly by discriminant analysis 
models based on principal component analysis of NIR3 

spectra using scatter correction and first-derivative 
spectra 

Sound cdb Infested cd Sound cud Infested cu 
No. of factors (25)c (75) (75) (75) 

5 (scf 
6(sc) 
7(sc) 
6(1stder/ 
7(1stder) 

100 
96 
96 

100 
100 

88 
96 

100 
76 
80 

97 
99 
97 
— 
— 

89 
96 
96 
— 
— 

Near-infrared diffuse reflectance. Calibration file contained sound 
wheat kernels with crease down while scanning. Full spectra from 
1100 to 2498 nm were used for classification. 
cd, crease down while scanning. 
The number in parentheses is the number of spectra used in 
prediction set. 
cu, crease up while scanning. 
sc, scatter-corrected spectra. 
1st der, first-derivative spectra. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jaoac/article/80/5/997/5684278 by guest on 21 August 2022



1002 GHAEDIAN & WEHLING: JOURNAL OF AOAC INTERNATIONAL VOL. 80, No. 5,1997 

Table 3. Percentage of air-dried and 6 varieties of 
wheat kernels classified correctly by discriminant 
analysis models based on principal component analysis 
of NIR3 spectra 

No. of factors 

4 
7 
6 (sc)d 

Sound 
air-dried cd6 (75)c 

0 
40 
0 

Sound 
6 variety cd (60) 

90 
30 
43 

Near-infrared diffuse reflectance. Calibration file contained sound 
wheat kernels with crease down while scanning. Full spectra from 
1100 to 2498 nm were used for classification. 
cd, crease down while scanning. 
The number in parentheses is the number of spectra used in 
prediction set. 
sc, scatter-corrected spectra. 

Table 4 summarizes classification rates for air-dried kernels. 
Correct classification rates for the validation sets are given for 
the 5-, 6-, 7-, and 8-factor models. Models with 5 and 7 factors 
gave comparable results, and the 6-factor model yielded a bet­
ter classification rate. The 8-factor model demonstrated very 
poor performance with a high misclassification rate for sound 
kernels, suggesting that use of too many factors produces mod­
els that are overfitted to the training set and results in overdis-
crimination. 

When a first-derivative transformation was applied to the 
spectra, the classification rate improved for sound air-dried ker­
nels (Table 4). A 7-factor model yielded an optimum prediction 
rate for both sound and infested kernels. It was chosen as an 
optimal model on the basis of using the least number of factors 
that still produced low misclassification rates. Models devel­
oped after removal of the water band from the spectra gave a 
very good prediction rate in classifying air-dried kernels of both 
sound and infested samples. 

Table 4. Percentage of sound and infested air-dried 
wheat kernels classified correctly by discriminant 
analysis models based on principal component analysis 
of NIR spectra 

No. of factors 
Sound air-dried cdb 

(75)c 
Infested air-dried cd 

(75) 

5 
6 
7 
8 
5 (1st der)^ 
6(1stder) 
7(1stder) 

69 
83 
69 
20 
96 
97 
91 

95 
95 
99 

80 
80 
92 

Near-infrared diffuse reflectance. Calibration file contained sound 
wheat kernels with crease down while scanning. The water band 
from 1900 to 1980 nm was removed from the spectra. 
cd, crease down while scanning. 
The number in parentheses is the number of spectra used in 
prediction set. 
1st der, first-derivative spectra. 

Calibration models also were developed from selected re­
gions of the NIR spectra. First, the lower portion of the spectra 
from 1100 to 1900 nm was used for calibration development, 
and the performance of the models was evaluated by using the 
validation sets. Results obtained with the truncated spectra are 
given in Table 5. The 4- and 5-factor models gave similar re­
sults. As the number of factors increased beyond 5, overdis-
crimination occurred, indicating that the models were overfit­
ted to the training sets. 

Use of first-derivative spectra improved performance sig­
nificantly. A 5-factor model correctly classified 100% of sound, 
93% of infested, 95% of sound air-dried, 86% of infested air-
dried, and 90% of sound kernels from 6 wheat varieties (Ta­
ble 5). These results reflect the ability of NIR spectroscopy and 
discriminant analysis techniques to distinguish between sound 
and infested wheat kernels, regardless of differences in mois­
ture content, and to correctly classify sound kernels from dif­
ferent wheat varieties. 

The upper region of the spectra from 1980 to 2498 nm also 
was evaluated and was found not to contain enough informa­
tion for reliable classification. Because of strong absorptions of 
water, starch, and protein in this region, it may be that the IR 
radiation does not penetrate deeply enough into the kernel to 
interact with the larva. 

Models were developed from the second training set that 
contained sound wheat kernels with creases positioned up in 
the sample cell while scanning. Samples from the same valida­
tion sets were used to evaluate the performance of these mod­
els. Models that could be applied to the validation sets without 
added mathematical treatments and still yield high classifica­
tion rates were not found. (Recall that mean centering and spec­
tral residual were used in all calibrations). Better results were ob­
tained with multiplicative scatter-corrected spectra (Table 6). 

The models were successful in classifying kernels with 
crease up (the same position as kernels of the training set). 
When only 4 factors were used, 91% of infested kernels were 
classified correctly. When the number of factors increased to 5 

Table 5. Percentage of sound, infested, air-dried and 
6 varieties of wheat kernels classified correctly by 
discriminant analysis models based on principal 
component analysis of NIR3spectra 

No. of 
factors 

Sound cd" 
(25)c 

Infested 
cd (75) 

Sound 
air-dried 
cd (75) 

Infested Sound 
air-dried 6 variety 
cd (75) cd (60) 

4 
5 
7 
5(1stder)d 

100 
100 
— 
100 

71 
77 
— 
93 

88 
91 
65 
95 

95 
97 
98 
86 

78 
78 
— 
90 

Near-infrared diffuse reflectance. Calibration file contained sound 
wheat kernels with crease down while scanning. Partial spectra 
from 1100 to 1900 nm were used for classification. 
cd, crease down while scanning. 
The number in parentheses is the number of spectra used in 
prediction set. 
1st der, first-derivative spectra. 
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and 6, correct prediction of infested kernels improved to 96 and 
97%, respectively. However, the models were not successful in 
predicting sound kernels with the opposite positioning in the 
sample cell, as is evident in the table. The best result was 59% 
correct classification of sound kernels with 6 factors. When the 
results presented in Table 6 are compared with those in Table 1, 
the following conclusion can be made: Models constructed on 
the basis of spectra of sound kernels with creases positioned 
downward in the sample cell can predict both sound and in­
fested kernels, regardless of how they are placed in the sample 
cell, with high percentages of correct classification. However, 
models developed on the basis of kernels with creases posi­
tioned up in the sample cell can predict only samples of the 
same positioning and give high misclassification rates for sam­
ples with opposite positioning. 

To confirm the presence of infestation predicted by NIR 
spectroscopy, wheat kernels were sectioned with a razor blade 
for visual observation. All infested kernels that were predicted 
as infested were in fact infested, bearing insect larvae inside. 
Only one infested sample was consistently misclassified as a 
sound kernel. After this particular kernel was sectioned, it was 
found that the larva inside was clearly smaller than the larvae 
of other kernels. This observation was important, indicating the 
possible limitation of NIR spectroscopy in predicting early 
stages of infestation. 

Biological Meaning of PCA factors 

To understand PCA factors, PCs were extracted from spec­
tra of infested wheat kernels to compare the factors of sound 
kernels with those of infested kernels. 

Evaluation showed that factors 1, 2, and 3 of infested ker­
nels are similar to factors of their sound counterparts when mul­
tiplied by - 1 . Factors 1 and 2 showed absorption from all major 
wheat constituents and may account for differences in overall 
reflectance arising from differences in kernel geometry. In gen­
eral, for diffuse reflectance, the first PC is related to particle size 
and shape and contains little information that can be used to 
measure directly chemical differences among samples (40). 

Table 6. Percentage of sound and infested wheat 
kernels correctly classified by discriminant analysis 
models based on principal component analysis of NIR* 
spectra using scatter-corrected spectra 

No. of factors 

4(sc)e 

5 (so) 
6(sc) 

Sound 
cd" (75)c 

29 
33 
59 

Infested 
cd (75) 

100 
100 
100 

Sound 
cud(25) 

100 
100 
100 

Infested 
cu (75) 

91 
96 
97 

' Near-infrared diffuse reflectance. Calibration file contained sound 
wheat kernels with crease up while scanning. Full spectra from 
1100 to 2498 nm were used for classification. 

6 cd, crease down while scanning. 
' The number in parentheses is the number of spectra used in 

prediction set. 
* cu, crease up while scanning. 
6 sc, scatter-corrected spectra. 

Factor 3 of both sound and infested kernels accounted for car­
bohydrates, the major constituent of wheat. However, in factors 
4-7, differences were observed in spectral regions associated 
with various chemical constituents. Factor 4 of sound kernels 
accounted for wheat protein, while water and phenolic struc­
tures were heavily loaded in factor 4 of infested wheat spectra. 
Comparing factor 5 of infested wheat with that of sound wheat 
showed obvious differences in the intensities of the lipid and 
moisture bands between the 2 factors. Lipid bands were more 
visible in factor 6 of infested wheat than in the same factor from 
sound kernels. Factor 7 of infested wheat also showed a like­
ness to lipid not observed with sound kernels. Therefore, on the 
basis of the evaluation of factors 1-7 of the full spectra, the 
differences between sound and infested kernels are mostly due 
to moisture, protein, lipid, and phenolic structures. However, 
when wavelengths >1900 nm are eliminated, the portion of the 
factors representing moisture also is eliminated, leaving pro­
tein, lipid, and phenolic structures as the major sources of vari­
ation between sound and infested wheats. 

Results of Calibrations Based on Discrete 
Wavelengths 

Qualitative NIR reflectance analysis using Mahalanobis 
distances based on discrete wavelengths is conceptually simple 
(21) and requires simpler and less expensive instrumentation. 
Detection of internal insect infestation based on selected dis­
crete wavelengths was, therefore, attempted. 

Results of discriminant analysis using discrete wavelengths 
are shown in Table 7. The training set that proved to be the best 
when using PCA was also used to develop discrete-wavelength 
calibration models. Several analyses were made to find wave­
length combinations that could be used to construct calibration 
models that would give a high classification rate when applied 
to the validation set samples. With 10 wavelengths, >90% of 
the samples in the 7 validation sets, other than infested air-
dried, were correctly classified. None of the wavelength com­
binations was successful in classifying infested air-dried ker­
nels as nonmembers of the training set. Overall best results 
were obtained at 12 wavelengths. This combination of wave­
lengths gave a model that correctly classified 100% of sound, 
93% of infested, 99% of sound air-dried, and 90% of sound 
kernels from 6 wheat varieties into their respective classes, but 
correctly classified only 55% of infested air-dried kernels. 
These results were very similar to classification results ob­
tained with a 5-factor PCA model based on first-derivative 
spectra from 1100 to 1900 nm, except that the model with 5 PC 
factors gave 86% correct classification of infested air-dried ker­
nels, compared with only 55% correct classification when the 
discriminant analysis was based on selected wavelengths. 

The previous comparison of PCA factors of sound and in­
fested kernels showed differences in spectral regions associated 
with lipids, protein, and phenolic compounds. Several of the 
discrete wavelengths selected (1200, 1360, 1440, and 
1660 nm) are related to -C-H stretching or combination bands, 
such as those arising from lipids. Also, the 1420 nm wave­
length is associated with an -OH stretch first overtone arising 
from phenolic compounds. Therefore, a number of the discrete 
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Table 7. Percentage of sound, infested, air-dried, and 6 varieties of wheat kernels classified correctly by 
discriminant analysis models based on Mahalanobis distances of selected wavelengths of NIR3 spectra 

No. of wavelengths 

6e 

9' 
109 

10" 
11' 
12̂  

Sound 
cd" (25) 

100 
100 
100 
100 
100 
100 

Infested 
cd (75)c 

60 
63 
63 
90 
85 
93 

Sound 
cud (75) 

100 
100 
100 
100 
100 

Infested 
cu (75) 

50 
50 
55 
93 
92 
93 

Sound 
air-dried cd (75) 

99 
100 
97 
99 
99 

Infested 
air-dried cd (75) 

56 
— 
48 
45 
55 

Sound 
6 variety cd (60) 

100 
88 
88 
90 
90 
90 

Near-infrared diffuse reflectance. Calibration file contained sound wheat kernels with crease down while scanning. 
cd, crease down while scanning. 
The number in parentheses is the number of spectra used in prediction set. 
cu, crease up while scanning. 
6 selected wavelengths: 1200, 1300, 1320,1360, 1660, 1880 nm. 
9 selected wavelengths: 1240, 1300, 1320,1360,1400, 1420, 1440,1680, 2220 nm. 
10 selected wavelengths: 1240, 1300, 1320,1360, 1400, 1420, 1440,1680, 2220, 1200 nm. 
10 selected wavelengths: 1240,1300, 1320, 1360, 1400, 1420, 1440, 1680, 2220, 1880 nm. 
11 selected wavelengths: 1240,1300, 1320, 1360,1400,1420, 1440, 1680, 2220, 1880,1660 nm. 
12 selected wavelengths: 1240, 1300, 1320,1360, 1400, 1420,1440, 1680, 2220,1880, 1660,1200 nm. 

wavelengths chosen appear to respond to the same chemical 
components as those observed in the PCA factors. That a higher 
classification rate for infested air-dried kernels was achieved 
with the PCA technique indicates that there must be a wave­
length or wavelengths in the spectra that are responsible for 
recognizing these kernels. Therefore, the challenge now is to 
identify these wavelengths and include them in discrete-wave­
length calibration models. 

Initial attempts at NIR spectroscopic detection of internal 
insect infestation in wheat kernels were successful. PCA of 
NIR diffuse reflectance spectra from sound kernels was used to 
construct calibration models by calculation of Mahalanobis 
distances. A 5-factor PCA model using data from a first-deriva­
tive spectral transformation was the best model for correctly 
classifying sound kernels and kernels infested with late-instar 
granary weevil larvae. Calibrations using the spectral region 
from 1100 to 1900 nm were least sensitive to kernel moisture 
differences. Infested wheat kernels containing insect larvae at 
earlier stages of growth now need to be evaluated to find the 
earliest stage at which insects can be detected. The ability to 
detect larvae of other internal infesters, such as rice weevil and 
lesser grain borer, should also be evaluated. Finally, from a 
commercialization standpoint, it is advantageous to use filter-
based instruments, which are much less expensive than scan­
ning monochromator instruments, for this measurement. Rapid 
scanning systems are commercially available that allow a spec­
trum to be collected in less than 1 s, making the full-spectrum 
method practical from a time standpoint, but these systems are 
quite expensive. Therefore, continued emphasis should be 
given to identification of combinations of discrete wavelengths 
that are more robust. Also, automated sample presentation sys­
tems need to be developed to make this technique practical. 
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