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Abstract— This paper presents a novel discriminative method
for estimating 3D shape from a single image with 3D Morphable
Model (3DMM). Until now, most traditional 3DMM fitting
methods depend on the analysis-by-synthesis framework which
searches for the best parameters by minimizing the difference
between the input image and the model appearance. They are
highly sensitive to initialization and have to rely on the stochas-
tic optimization to handle local minimum problem, which is
usually a time-consuming process. To solve the problem, we find
a different direction to estimate the shape parameters through
learning a regressor instead of minimizing the appearance
difference. Compared with the traditional analysis-by-synthesis
framework, the new discriminative approach makes it possible
to utilize large databases to train a robust fitting model which
can reconstruct shape from image features accurately and
efficiently. We compare our method with two popular 3DMM
fitting algorithms on FRGC database. Experimental results
show that our approach significantly outperforms the state-
of-the-art in terms of efficiency, robustness and accuracy.

I. INTRODUCTION

Since the seminal work of Blanz and Vetter [9], the 3D

Morphable Model (3DMM) has been widely used to estimate

3D shape from image data, with applications ranging from

relighting [39], super-resolution [25] to pose robust face

recognition [10]. Given a single face image under unknown

pose and illumination, the 3D Morphable Model can solve

its 3D shape, texture, pose and illumination parameters

simultaneously following analysis-by-synthesis framework,

where Gauss-Newton optimization is applied to minimize the

difference between the synthetic image and the input image.

The original 3DMM has shown its robustness to com-

plicated pose and illumination conditions and provides a

promising way to face recognition in the wild due to the

explicit pose and illumination recovery [10]. However, the

fitting process of 3DMM is very time-consuming and suffers

from local minimum problem just as other Gauss-Newton

based methods. In the last decade, many researchers have

made their efforts to improve the efficiency and accuracy of

3DMM fitting algorithm. On one hand, [30] extended the

Inverse Compositional Image Alignment (ICIA) to 3DMM

fitting, improving the efficiency by pre-computing the deriva-

tive of the cost function. [38], [2] adopted the spherical har-

monic reflectance model, making the appearance estimation

completely linear. [8], [26], [1] concentrated on estimating

shape with a sparse set of 2D landmarks, providing an

efficient linear method for shape fitting. On the other hand,

[31] presented a Multi-Features Framework (MFF) to handle

the local minimum problem, where a smoother objective

function is constructed by considering contours, textured

edges, specular highlights and pixel intensities jointly, lead-

ing to the state-of-the-art in both robustness and accuracy.

Besides 3DMM, there have proposed some algorithms which

can estimate 3D information from a single image. [23] used

the CCA mapping to transform the image from the pixel

space to the depth space, [22] adopted the shape-from-

shading framework to recover the 3D shape, [21] used the

SIFT-FLOW to estimate the depth image and [11] proposed

a regression method to transfer the expression from video to

3D model.

However, existing methods still have some disadvantages.

For landmark based algorithms [8], [26], [1], since the only

input information is the landmark positions, they heavily

depend on the face alignment algorithm. Unfortunately in

many cases, even though the landmarks look fine on the

image, they are not accurate enough for 3D shape fitting,

especially those on the eyebrow, nose and contour. Thus

directly estimating 3D shape from landmarks is usually

unreliable. Traditional analysis-by-synthesis 3DMM fitting

algorithms [10], [31] are mainly based on explicitly mod-

elling the image formation process and estimating shape

parameters by appearance fitting. It has been shown that

these methods heavily rely on the quality of initialization

and have to adopt the stochastic optimization to avoid local

minimum [2]. As a result, most of them are computationally

expensive and always need more than one minute to fit a

single face image. Besides, most training sets of 3DMM

are very small (100 to 500 samples) due to the difficulty in

collecting complete face scans, thus the appearance model

of 3DMM is always too weak to cover the large variations

of face appearance, especially in the wild. Since the central

problem of analysis-by-synthesis framework is fitting the

model appearance to the input image, the weak expressive

ability of appearance model will lead to non-accurate results.

In this paper, we discuss 3DMM in the context of face

alignment and find a new direction to overcome the prob-

lems described above. Instead of the traditional analysis-

by-synthesis framework, we propose a novel discriminative

3DMM fitting algorithm based on local features and cascade

regression. In section 2, we introduce the 3D Morphable

Model. In section 3 we highlight our motivation by briefly

revisiting face alignment algorithms. Then we propose the

discriminative 3DMM fitting in section 4 and discuss some

implemental details in section 5. In the experiments, we

show that our algorithm outperforms existing 3DMM fitting

methods in both accuracy and efficiency.



II. 3D MORPHABLE MODEL

3D Morphable Model [9] is constructed from a set of 3D

face scans in dense correspondence. Each scan is represented

by a shape-vector S = (x1, y1, z1, ..., xn, yn, zn) and a

texture-vector T = (r1, g1, b1, ..., rn, gn, bn), which contain

the coordinate and the color of each point respectively. The

points are dense enough (n > 10000) to directly represent a

human face. PCA is applied to decorrelate texture and shape

vectors respectively and a 3D face can be described as:

S = s+
m−1
∑

i=1

αi · si T = t+
m−1
∑

i=1

βi · ti (1)

where m − 1 is the number of eigenvectors, s and t

are the means of shape and texture respectively, si and

ti are the ith eigenvectors, α = (α1, α2, ..., αm−1) and

β = (β1, β2, ..., βm−1) are shape and texture parameters

determining S and T . With the shape and texture model, a

synthetic image can be generated by projecting the 3D face

onto the image plane by weak perspective projection:

s2d = fpr(s+

m−1
∑

i=1

αi · si + t3d) (2)

where s2d is the image coordinates after projection, f is the

scale parameter, p is the constant orthographic projection

matrix, r is the rotation matrix and t3d is the translation

vector in 3D space. We represent γ = (f, r, t3d) as the pose

parameters of 3DMM.

In the fitting process, the 3DMM solves the parameters

by minimizing the Euclidean distance between the synthetic

image and the input image:

E =
∑

x,y

‖Iinput(x, y)− Isyn(x, y)‖
2 (3)

where Iinput(x, y) is the input image and Isyn(x, y) is

the 3DMM synthetic image. Usually, the stochastic Gauss-

Newton method is adopted to minimize the cost function.

III. MOTIVATION

In general, 3DMM can be seen as a branch of face

alignment which concentrates on fitting a face model to the

input image. Recently, the face alignment in 2D has greatly

advanced and can be readily applied in real applications.

In this section, we discuss 3DMM in the context of face

alignment, seeing how the techniques in 2D could help to fit

the 3DMM.

The central problem of face alignment is minimizing the

difference between the input image and the face model.

P = argmin
P

‖Tr(I)− Tr(M(P ))‖2 (4)

where I is the input image, M(P ) is the face model with

parameters P which can give rise to an observed face

image and Tr is a transformation which is usually a feature

extractor. Based on Equ. (4) explicitly or implicitly, the

optimization can be summarized as an iterative updating

process:

∆Pt = RF (I, Pt−1) Pt = Pt−1 +∆Pt (5)

where Pt is the model parameters in the current iteration,

F (I, Pt−1) is a feature extraction function depending on the

input image I and the parameters in the last iteration and

R is an updater that maps the features F to the parameter

update ∆Pt. Three modules can be seen from Equ. (5):

the model parameter P represents how to model a human

face; the feature extractor F (I, Pt−1) represents what kind

of information is used for alignment, and the updater R

represents how to use the information.

It is obvious that 3DMM also belongs to the face align-

ment framework, where P is the PCA coefficients of shape

and texture model, F (I, Pt−1) is either the pixel inten-

sity [9], landmark [1] or Multi-Features [31] and R is

constructed from the Jacobian of a cost function like Equ. (3).

It is promising to discuss the achievements of 2D face

alignment in recent years and introduce them into 3DMM

fitting. In the last decade, a number of seminal works have

been proposed to find accurate and robust fitting methods

in 2D alignment. We will briefly review these works on the

three topics of P, F,R and extend their ideas to reinforce

3DMM fitting.

Active Appearance Model (AAM) AAM [13] which is

characterized by its explicit shape and appearance model, has

been widely used to match deformable objects to images in

early years of face alignment. In AAM, the face shape is

defined by a sparse set of landmarks and the appearance

is based on the warped images on the reference frame.

PCA is applied on landmark vectors and shape-free textures

to construct face model just as 3DMM. In fitting process,

AAM searches the best parameters that minimize the distance

between the model instance and the input image by either

the generative fitting [14], [24], [35] which obtains the

updater from the Jacobian of the distance function or the

discriminative fitting [13], [32], [15] which directly learns

a regressor to map the image difference to the parameter

update.

Constrained Local Model (CLM) CLM [17], [16], [33],

[5], [20], [36], [7] represents an object using local image

patches around landmarks. It inherits the PCA shape model

from AAM, but discards the holistic appearance model and

learns landmark detectors instead. During fitting process,

the landmark detectors provide the response maps showing

the distribution of probable landmark locations and then

the shape parameters are estimated by maximizing the sum

of responses of landmarks constrained by a priori. The

fitting methods of CLM are also divided into generative

methods [33], [20], [36] and discriminative methods [5],

while the latter dramatically outstand in both accuracy and

robustness.

Non Parameter Model (NPM) NPM [18], [12], [37]

further removes any explicit PCA constrains on shape and

directly uses landmark coordinates as shape model. Besides,

robust features like HOG and SIFT are adopted to describe

local spatially-coherent observations of landmarks which are

proven to be more robust than image pixel and response

map. Furthermore, the cascade regression [18], [6], where

independent regressors are trained for each iteration, fully



TABLE I

SUMMARY OF AAM, CLM AND NPM IN THE FRAMEWORK OF FACE

ALIGNMENT.

Method Model (P) Feature (F) Updater (R)

AAM
PCA shape model

PCA appearance model
Image Pixel

Generative or
Discriminative

CLM PCA shape model Response Map
Generative or
Discriminative

NPM None HOG or SIFT
All

Discriminative

utilizes the flexibility of NPM and keeps the robustness at the

same time, making NPM dramatically outperforms any other

models and shows the state-of-the-art in face alignment [37].

Table I summarizes AAM, CLM and NPM in the frame-

work of face alignment. In the evolution of face alignment

from AAM to NPM, the holistic PCA constraints are pro-

gressively removed and more robust features are adopted to

handle complicated variations. With the removal of shape

constraints, discriminative methods show better performance

over generative methods, especially with cascade regression.

These achievements in 2D face alignment can provide

promising clues for 3DMM. Current 3DMM fitting methods

are based on modelling the physical process of forming a

face image and minimizing the difference between the input

image and the model appearance, which obviously belongs

to the generative fitting framework [32]. It has been shown

that this framework heavily relies on the simulation of the

image forming process and the quality of initialization [24].

Besides, the minimization is very slow and easy to get stuck

in local minimum [2]. Fortunately, these problems could be

solved by discriminative fitting method which directly learns

a regression based fitting model from a large training set just

as NPM.

However, directly applying discriminative fitting frame-

work has some difficulties. Firstly, unlike the sparse land-

marks in 2D, the shape model of 3DMM is much denser

with tens of thousands of points, which makes the regression

matrix too large to learn. Secondly, there is no database con-

taining visual image and complete face scan pairs, leading

to the lack of training set for discriminative methods.

In the following sections, we will adopt discriminative

methods to fit 3DMM and illustrate how to preprocess

existing databases to construct a training set.

IV. DISCRIMINATIVE 3DMM FITTING

In this section, we show how to use the discriminative

method instead of the analysis-by-synthesis framework to

estimate shape parameters.

A. Derivation of Discriminative 3DMM Fitting

As in [37], we start from the traditional fitting process.

Given an image I , we want to estimate its 3D shape by

minimizing the difference between the synthetic and the

input image. However in many cases, the optimization will

converge to a local minimum far from the global one [31].

Thus we project both the input and the synthetic images

into a new space with a transformation Tr, where the cost

function is smoother.

P = argmin
P

‖f(P )‖2 f(P ) = Tr(I)−Tr(G(P )) (6)

where P is the model parameters, G(P ) is the synthesis

process that can generate an image from 3DMM and Tr

is an unknown transformation. For simplicity, we assume

Tr(G(·)) is differentiable and use Gauss-Newton method to

optimize Equ. (6).

From an initial estimate P0, we apply Taylor expansion to

f(P ) and minimize the cost function by equally optimizing

the following function over ∆P .

argmin
∆P

f(P0 +∆P )T f(P0 +∆P ) (7a)

f(P0 +∆P ) = f(P0) + Jf∆P (7b)

where Jf is the Jacobian of f . Taking the derivation of

Equ. (7a) over ∆P and setting it to zero, we get an update

to P0.

∆P0 = −(JT
f Jf )

−1JT
f f(P0)

= −(JT
f Jf )

−1JT
f (Tr(I)− Tr(G(P0)))

(8)

It is unlikely that the optimization can converge at a single

iteration, thus Equ. (8) is iterated by several times.

∆Pt = −((JT
f Jf )

−1JT
f )|P=Pt−1

(Tr(I)− Tr(G(Pt−1)))
(9a)

Pt = Pt−1 +∆Pt (9b)

While in fact, we do not know the form of Tr and can

not get the difference in the Tr space. Note that (Tr(I) −
Tr(G(Pt−1))) depends on the image I and model param-

eters Pt−1, if we can extract features with F (I, Pt−1) that

implicitly reflects the “goodness” of current fitting and learn

a linear regressor A to map the features to the difference

in Tr space, we can rewrite (Tr(I) − Tr(G(Pt−1))) as

AF (I, Pt−1). Then Equ. (9a) becomes:

∆Pt = −((JT
f Jf )

−1JT
f A)|P=Pt−1

F (I, Pt−1)

= RtF (I, Pt−1)
(10)

Note that we merge A into the updater Rt to directly

map features to parameter update. According to the Super-

vised Descent Method (SDM) [37], we can get a list of

R = (R1, . . . , RT ) through learning instead of numerical

approximation. During the testing process, the regressor list

will give a sequence of descent directions so that the P0 will

converge to the ground truth.

Pt = Pt−1 +RtF (I, Pt−1) (11)

How to determine Equ. (11) is the central problem of

discriminative 3DMM fitting. This function depends on the

model parameters P , regressor R, and features extractor

F (I, P ).
Even though the appearance model of 3DMM is weak, the

shape model can describe most of the real-world data due to

the relative small variations of face shapes [22]. Besides, the



performance of CLM and NPM has shown that it is robust

to directly estimate shape information without appearance

fitting. Thus we discard the appearance model of 3DMM

and only consider the shape PCA coefficients α and the weak

perspective projection pose parameters γ in Equ. (1)(2) and

let P = {α, γ}. In the next two subsections, we provide

details of the feature extractor and the regression function.

B. Feature Extraction

This section illustrates how to extract features. The HOG

features around landmark positions are used as the feature

extractor. We mark a set of landmarks on the 3D model

following the Multi-PIE [19] 68 points mark-up, as shown

in Fig. 1. In each iteration t, with pose and shape parameters

Fig. 1. The landmarks marked on the 3D face model

Pt−1 = {αt−1, γt−1}, the 3D shape is constructed by

Equ. (1) and projected to image plane by Equ. (2). Then the

HOG on the landmark positions are extracted as the features

in the current iteration:

F (I, P ) = HOG(I, [fpr(s+

m−1
∑

i=1

αi · si + t3d)]l) (12)

where the f, p, r, t3d, s, α have the same meanings as in

Equ. (1)(2) and the subscript l means only the landmark

points are selected.

C. Learning for Regression

In this section, we describe how to learn the regressor list

R = (R1, . . . , RT ) in Equ. (11) from a training set. Note that

Equ. (11) is in fact the process of cascade regression, thus we

train independent Rt for each iteration. Given a set of face

images {I1, . . . , In}, their initial estimates {P 1
0 , . . . , P

n
0 }

and ground truth parameters {P 1
∗
, . . . , Pn

∗
}, we want to

minimize the expected loss between the predicted update

and the optimal update for all the training samples in each

iteration:

argmin
Rt

n
∑

i=1

‖(P i
∗
− P i

t−1)−RtF (Ii, P i
t−1)‖

2 (13)

Writing Equ. (13) as matrix formation, we get:

argmin
Rt

∥

∥

∥

∥

∥

∥

∥

∥







P 1
∗

...

Pn
∗







T

−







P 1
t−1
...

Pn
t−1







T

−Rt







F (I1, P 1
t−1)

...

F (In, Pn
t−1)







T
∥

∥

∥

∥

∥

∥

∥

∥

2

(14a)

= argmin
Rt

‖∆Pt −RtFt−1)‖
2

(14b)

where ∆Pt is the optimal parameter update (ground truth

minus current), and Ft−1 is the features extracted with

current parameters for each training sample. Equ. (14b) can

be solved directly by linear method:

Rt = ∆PtF
T
t−1(Ft−1F

T
t−1 + λE)−1 (15)

where E is the identity matrix and λ is the regularization

term that avoids over fitting. Usually after each iteration, Pt

will be closer to P∗ than Pt−1, and with Pt we have a new

training set and can run another iteration with Equ. (15) until

coverage. In our experiments, the algorithm converges in 4

to 5 steps.

V. DATA PRE-PROCESSING

To train a discriminative fitting model, we need a database

with a large collection of visual images and corresponding

3D face shapes. However, unlike face alignment in 2D, the

training set cannot be constructed by hand labelling because

3DMM shape model has tens of thousands of points. While

using face scanners like Cyberware [34] or multiple ABW-

3D [27] to collect complete face scans is so expensive and

troublesome that the number of training samples is limited.

The lack of training set is probably the main reason for the

absence of discriminative fitting method in 3DMM.

A. Depth Image Registration

Compared with collecting complete face scans, only get-

ting depth images is relatively easier and such work has

been done in FRGC [28]. FRGC provides a large database

with thousands of visual and depth image pairs in full

correspondence, as shown in Fig. 2.

Fig. 2. Samples in FRGC, containing the visual images and corresponding
depth images

However, the depth images in FRGC are not “complete”,

they contain much noise, holes and large missing data. Be-

sides, for training purpose the 3D face scan for each sample

should have the same semantical meaning (for example,

the kth point corresponds to the left eye corner in all the



samples). To make the raw data usable, registering a template

to depth images for filling holes, estimating missing patches

and making every scans in full correspondence are necessary.

The optimal non-rigid ICP algorithm [4] can register a

template to any target surface with the same semantic. It

searches for the best deformation for each point by min-

imizing a cost function with 3 terms: the distance term

which minimizes the distances between the template points

and their closest target surface points, the stiffness term

which penalises the differences of the transformations of

neighbouring points, and the landmark term which guides

the initialization and minimizes the distances between cor-

responding landmarks. Although the optimal non-rigid-ICP

has shown its good performance in the construction of BFM

face model [27], it has difficulty in handling large missing

regions, because there are no closest points for the distance

term in these regions and only stiffness constraint alone will

give bad results as in Fig. 3(b).

To deal with large missing patches, we fit a 3DMM to

constrain the template points falling onto the missing regions.

Since the distance term provides a set of correspondences

between template points and target points, a 3DMM can be

fitted with the target point positions by common 3D-3DMM

fitting methods [3]. Note that 3DMM is controlled by PCA

coefficients, the missing regions are automatically estimated.

In the registration process, for the template points having

no closest points on the target surface, we find their closest

points on the fitted 3DMM instead. Thus every point will

have a distance term constraint. Fig. 3(c) shows the results

of the new method, the filling of missing regions is smooth

and looks reasonable.

The registered template can be seen as an approximation

of the complete face scan. Since we have known the position

of every point of 3DMM, we can get the best fitted pose and

shape parameters through:

arg min
(α,γ)

‖Rig − fr(s+

m−1
∑

i=1

αi · si + t3d)‖
2 (16)

where Rig is the point positions of registered template,

f, r, t3d, s, α, γ have the same meanings as in Equ. (1)(2).

Fig. 4 shows the comparison of depth image, registered

template and best fitted 3DMM. We can see that even though

the best fitted 3DMM loses some details because of the

limited expressive ability of PCA shape model, it is close

to the depth image. In the training process, the best fitted

parameters will be used as the target of regression.

B. Training Data Augmentation

Considering the success of 2D face alignment in recent

years, we use the landmarks detected by SDM [37] to

initialize pose and shape parameters. To achieve better gen-

eralisation ability, we augment the training set by randomly

disturbing the bounding box and running SDM to get multi-

ple groups of landmarks for each sample, as shown in Fig. 5.

It can be seen that the bounding box may affect landmark

detection seriously and the eyebrow and border landmarks

(a)

(b)

Fig. 4. 3D shapes of two subjects. For each subject, left is the depth image,
middle is registered template and right is the best fitted 3DMM shape.

Fig. 5. The augmentation of initialization.

are always not accurate enough. The non-accuracy of initial-

ization is very common in automated 3DMM reconstruction

system and the augmentation is found to be helpful to achieve

the robustness to rough initialization.

VI. EXPERIMENTS

We use the Basel Face Model (BFM) [27] as our 3D

Morphable Model and conduct fitting experiments on the

Spring2004range subset of Face Recognition Grand Chal-

lenge (FRGC) [28] database. The BFM provides a PCA

shape model with 53490 vertices computed from 200 face

scans. It can cover most of face shapes in the real world but

cannot handle expressions. In our experiment, we eliminate

the ear, neck and forehead regions because they are less

important and easily occluded by hair and clothes. The pro-

cessed model has 39226 vertices left. The Spring2004range

has 2114 samples. Each sample consists of a frontal face

image and a depth image with pixels in full correspondence.

The faces with expression are discarded due to the limitation

of BFM, with 1443 samples left.

For each sample in the database, the registration method

in section 5.1 is used to get the target parameters and the

face alignment algorithm is used to localize the landmarks for

initialization. The landmarks are detected automatically using

DPM face detector [40] and SDM face alignment [37], and

most alignment results are accurate except for few samples

(less than 10). As for error measure, we consider the depth

image in FRGC as the ground truth shape of each sample.

In the testing process, we first project the reconstructed 3D

shape to a depth image, and the Root Mean Square Error



(a) (b) (c)

Fig. 3. (a) is the target surface, (b) is the results of optimal non-rigid ICP, (c) is the results of our registering method.

(RMSE) between the reconstructed depth image and the

ground truth is measured as the fitting error. Invalid regions

including holes and missing patches are ignored. Training

and testing are conducted in 10-fold cross-validation without

identity overlapping to measure all the 1443 samples in the

database.

We compare our method with two popular 3DMM fitting

algorithms. The first is the Multi-Features Framework (MF-

F) [31] which considers landmark, contour, textured edge and

pixel intensity jointly to fit a 3DMM. It is the state-of-the-

art of traditional analysis-by-synthesis based methods. The

other is the landmark based fitting method [2] which only

uses landmarks to estimate 3DMM shape. It heavily depends

on the accuracy of landmark but is much more efficient than

MFF. Besides, the method also claims to be the state-of-the-

art on a synthetic database with provided landmarks.

Considering facial component region (including eye, nose

and mouth regions of BFM in [27]) is more important in most

face applications and the cheek area is always occluded by

hair in FRGC, we conduct two experiments by computing

error on full face and facial component area respective-

ly. Fig. 6 shows the Cumulative Error Distribution (CED)

curves of the three methods and Table II shows the mean

error of all 1443 samples. Clearly our method outperforms

both MFF and the landmark based method. Besides, Fig. 8

shows some fitting results of landmark based method, Multi-

Features Framework, and discriminative 3DMM fitting. The

resulting shapes are lightened by a frontal light to highlight

the difference. Note that in the first row the MFF and

landmark based method both fail because the non-accurate

landmarks give a bad initialization. However, our method

still converges to an accurate shape, showing the robustness

to rough initialization. In Fig. 7, we show some fitting results

of real world images. Although without ground truth shapes,

we can see the fitting results are reasonable in visual sense.

In addition to the fitting accuracy, the running time per-

formance of our method is also promising. It takes about 12

mins to train 6500 samples and 0.9s to fit a testing image

on a 3.4GHz Intel Core i7 computer, which is close to the

landmark based method (0.2s) and faster than MMF which

needs about 69.58s to fit an image on 3.0GHz Intel Pentium

IV [29].

Fig. 6. First: fitting accuracy on facial component region. Second: fitting
accuracy on full face.

VII. CONCLUSIONS

We have proposed a novel discriminative 3DMM fitting

algorithm, where the 3D shape is estimated by directly



Fig. 8. Comparison of landmark based method, MFF and our method. First column: visual images and landmarks; Second column: depth images; Third
column: results of landmark based method; Fourth column: results of MFF. Last column: results of ours.

TABLE II

MEAN ERROR OF LANDMARK BASED METHOD, MFF AND OUR METHOD

Region Landmark MultiFeatures Ours

Facial Component 8.0837 7.8820 5.3505

Full Face 9.9956 9.5051 6.8849

regressing image features instead of minimizing a cost func-

tion with Gauss-Newton methods. The resulting method is

highly accurate, robust and efficient. Experimental results on

FRGC suggest that our approach significantly outperforms

the popular landmark based method and the state-of-the-art

Multi-Features Framework.

Despite the outstanding performance of our discriminative

3DMM fitting method, there is still large room for future

improvements. For example, by training the fitting model on

a database containing visual and depth image pairs in the

wild, it may be able to handle more complicated scenarios.
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