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IMPORTANCE There are limitations in current diagnostic testing approaches for Alzheimer
disease (AD).

OBJECTIVE To examine plasma tau phosphorylated at threonine 217 (P-tau217) as a diagnostic
biomarker for AD.

DESIGN, SETTING, AND PARTICIPANTS Three cross-sectional cohorts: an Arizona-based
neuropathology cohort (cohort 1), including 34 participants with AD and 47 without AD
(dates of enrollment, May 2007-January 2019); the Swedish BioFINDER-2 cohort (cohort 2),
including cognitively unimpaired participants (n = 301) and clinically diagnosed patients with
mild cognitive impairment (MCI) (n = 178), AD dementia (n = 121), and other
neurodegenerative diseases (n = 99) (April 2017-September 2019); and a Colombian
autosomal-dominant AD kindred (cohort 3), including 365 PSEN1 E280A mutation carriers
and 257 mutation noncarriers (December 2013-February 2017).

EXPOSURES Plasma P-tau217.

MAIN OUTCOMES AND MEASURES Primary outcome was the discriminative accuracy of plasma
P-tau217 for AD (clinical or neuropathological diagnosis). Secondary outcome was the
association with tau pathology (determined using neuropathology or positron emission
tomography [PET]).

RESULTS Mean age was 83.5 (SD, 8.5) years in cohort 1, 69.1 (SD, 10.3) years in cohort 2, and
35.8 (SD, 10.7) years in cohort 3; 38% were women in cohort 1, 51% in cohort 2, and 57% in
cohort 3. In cohort 1, antemortem plasma P-tau217 differentiated neuropathologically defined
AD from non-AD (area under the curve [AUC], 0.89 [95% CI, 0.81-0.97]) with significantly
higher accuracy than plasma P-tau181 and neurofilament light chain (NfL) (AUC range,
0.50-0.72; P < .05). The discriminative accuracy of plasma P-tau217 in cohort 2 for clinical AD
dementia vs other neurodegenerative diseases (AUC, 0.96 [95% CI, 0.93-0.98]) was
significantly higher than plasma P-tau181, plasma NfL, and MRI measures (AUC range,
0.50-0.81; P < .001) but not significantly different compared with cerebrospinal fluid (CSF)
P-tau217, CSF P-tau181, and tau-PET (AUC range, 0.90-0.99; P > .15). In cohort 3, plasma
P-tau217 levels were significantly greater among PSEN1 mutation carriers, compared with
noncarriers, from approximately 25 years and older, which is 20 years prior to estimated
onset of MCI among mutation carriers. Plasma P-tau217 levels correlated with tau tangles in
participants with (Spearman ρ = 0.64; P < .001), but not without (Spearman ρ = 0.15;
P = .33), β-amyloid plaques in cohort 1. In cohort 2, plasma P-tau217 discriminated abnormal
vs normal tau-PET scans (AUC, 0.93 [95% CI, 0.91-0.96]) with significantly higher accuracy
than plasma P-tau181, plasma NfL, CSF P-tau181, CSF Aβ42:Aβ40 ratio, and MRI measures
(AUC range, 0.67-0.90; P < .05), but its performance was not significantly different
compared with CSF P-tau217 (AUC, 0.96; P = .22).

CONCLUSIONS AND RELEVANCE Among 1402 participants from 3 selected cohorts, plasma
P-tau217 discriminated AD from other neurodegenerative diseases, with significantly higher
accuracy than established plasma- and MRI-based biomarkers, and its performance was not
significantly different from key CSF- or PET-based measures. Further research is needed to
optimize the assay, validate the findings in unselected and diverse populations, and
determine its potential role in clinical care.
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Amajor global challenge is the increasing prevalence of
dementia, especially dementia caused by Alzheimer
disease (AD). It is estimated that approximately 100 mil-

lion people worldwide will have AD dementia in 2050.1 In the
global action plan against dementia, the World Health Orga-
nization has specified improved diagnostics as a key area,2 since
it is important for optimal disease management and treat-
ment. Early, accurate, and biomarker-based diagnosis of AD
will likely become even more important when disease-
modifying treatments become available.3,4

Recent improvements in AD diagnostics include biomark-
ers that can identify its underlying disease pathologies
(ie, β-amyloid [Aβ] and tau), using positron emission tomog-
raphy (PET) or cerebrospinal fluid (CSF) analysis. Specifically
Aβ-PET,5 tau-PET,6 the CSF Aβ42:Aβ40 ratio, and CSF tau phos-
phorylated at threonine 181 (P-tau181)7 have shown high di-
agnostic accuracy and been incorporated in the diagnostic
framework for AD.8 Recently, CSF P-tau217 (phosphorylated
at threonine 217) was found more accurate than CSF P-tau181.9

The global use of these biomarkers, however, is still limited be-
cause of high costs, insufficient availability, and invasive
nature.10 There is therefore a great interest in blood-based bio-
markers, and research on plasma Aβ42:Aβ40 ratio11,12 and
P-tau18113,14 suggests potential value.

The main objective of this study was to determine the di-
agnostic accuracy of plasma P-tau217 for AD; both for discrimi-
nating clinically diagnosed AD dementia from other neurode-
generative diseases and neuropathologically defined AD from
non-AD individuals. The accuracy of plasma P-tau217 was com-
pared with other key plasma, CSF, PET, and magnetic reso-
nance imaging (MRI) biomarkers for AD. Secondary objec-
tives were to investigate the age at which plasma P-tau217 levels
increase in autosomal-dominant AD and if plasma P-tau217 lev-
els were associated with AD-like tau pathology, determined
using neuropathology or tau-PET.

Methods
Participants and Clinical Assessments
Additional cohort descriptions can be found in the eMethods
in the Supplement. All participants or their legal representa-
tives provided written informed consent. Ethical approval was
given by the Western Institutional Review Board of Puyallup,
Washington (cohort 1), the Regional Ethical Committee in Lund,
Sweden (cohort 2) or the institutional review board at the Uni-
versity of Antioquia, Colombia (cohort 3).

Cohort 1 (Arizona-Based Neuropathology Cohort)
Cohort 1 consisted of neuropathologically classified partici-
pants from an antemortem-postmortem donor cohort
(the Arizona Study of Aging and Neurodegenerative Disorders/
Brain and Body Donation Program) with dates of enrollment
from May 2007 to January 2019.15 Plasma samples were col-
lected 0.02 to 2.9 years prior to death. Neuropathological di-
agnosis of AD was based on National Institute on Aging–
Reagan Institute (NIA-RI) criteria,16 which are dependent on
the Consortium to Establish a Registry for Alzheimer Disease

(CERAD) Aβ-plaque scores17 and Braak (neurofibrillary tau-
tangle) stage.18 Participants with NIA-RI intermediate likeli-
hood of AD (tangles in limbic regions [Braak III-IV] and
moderate-to-frequent Aβ plaques) or high likelihood (tangles
in neocortex [Braak V-VI] and moderate-to-frequent Aβ
plaques)16 were categorized as having AD. “Non-AD” was used
to describe participants with none-to-sparse Aβ plaques.17

Cohort 2 (Swedish BioFINDER-2 Study)
The participants from the prospective Swedish BioFINDER-2
study (NCT03174938) were recruited at Skåne University
Hospital and the Hospital of Ängelholm in Sweden (dates of
enrollment, April 2017-September 2019) and included
cognitively unimpaired controls and patients with mild
cognitive impairment (MCI), AD with dementia (fulfilling the
Diagnostic and Statistical Manual of Mental Disorders [Fifth
Edition] AD criteria19 and Aβ-positive), and various other
neurodegenerative diseases. Cognitively unimpaired
participants and participants with MCI were subdivided into
Aβ-positive/negative participants as well as preclinical AD
(Aβ-positive and tau-positive participants without cognitive
impairment)8 and AD with MCI (Aβ-positive and tau-positive
participants with MCI).8 See the eMethods in the Supplement
for details on diagnostic criteria and eFigure 1 in the
Supplement for the enrollment flowchart.

Cohort 3 (Colombian Autosomal-Dominant AD Registry)
Cohort 3 included cognitively unimpaired and impaired
PSEN1 E280A mutation carriers and age- and sex-matched
cognitively unimpaired noncarriers from the same kindred.
They were enrolled and assessed in the Alzheimer Prevention
Initiative Colombia Registry, with dates of enrollment from
December 2013 to February 2017.20 Memory function was
assessed using the CERAD 10-word delayed recall test scored
from 0 (worst) to 10 (best),21 and global cognition was
assessed with the Mini-Mental State Examination scored
from 0 (worst) to 30 (best).

Key Points
Question What is the discriminative accuracy of plasma
phospho-tau217 (P-tau217) for differentiating Alzheimer disease
from other neurodegenerative disorders?

Findings In this cross-sectional study that included 1402
participants from 3 selected cohorts, plasma P-tau217
discriminated Alzheimer disease from other neurodegenerative
diseases (area under the receiver operating characteristic curve of
0.89 in a neuropathologically defined cohort and 0.96 in a
clinically defined cohort), with performance that was significantly
better than established Alzheimer disease plasma- and MRI-based
biomarkers but not significantly different from key CSF- or
PET-based biomarkers.

Meaning Although plasma P-tau217 was able to discriminate
Alzheimer disease from other neurodegenerative diseases, further
research is needed to validate the findings in unselected and
diverse populations, optimize the assay, and determine its
potential role in clinical care.
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Plasma and CSF Sampling and Analysis
Blood samples were collected and handled as described in the
eMethods in the Supplement. Concentrations of plasma
P-tau217 (all 3 cohorts) were measured using immunoassays
at Lilly Research Laboratories.13,22,23 Details of the plasma
P-tau217 analysis and analysis of the other plasma and CSF bio-
markers are described in the eMethods in the Supplement. All
biomarker assays are summarized in eTable 1 in the Supple-
ment. The plasma and CSF analyses were performed by tech-
nicians blinded to the clinical and imaging data.

Imaging Procedures in Cohort 2 (BioFINDER-2)
The procedures of MRI, tau-PET (using RO948 labeled with ra-
dioactive fluorine [18F])24 and Aβ-PET (using flutemetamol la-
beled with 18F) are described in the eMethods in the Supple-
ment. All assessments of imaging and clinical data were
performed blinded to plasma P-tau217 data.

Outcomes
Detailed definitions of all outcomes are described in the
eMethods in the Supplement. The primary outcomes/
reference standards were intermediate-to-high likelihood of AD
vs non-AD according to neuropathology (cohort 1), or clinical
AD dementia vs other neurodegenerative diseases (cohort 2).
Neuropathological AD criteria were used, because these still rep-
resent the gold standard of AD diagnosis. However, a clinical,
Aβ biomarker–supported AD dementia diagnosis better repre-
sents the tests’ accuracy in clinical practice and was therefore
chosen as an additional primary outcome. A neuropathologi-
cally high likelihood of AD vs non-AD was used as secondary
outcome to examine the discriminative accuracy of plasma
P-tau217 for the most definite AD diagnosis. Tau tangle den-
sity at autopsy (cohort 1) and tau-PET or Aβ-PET status (cohort 2)
were also used as secondary outcomes to examine the associa-
tion of plasma P-tau217 with both neuropathological and in vivo
state-of-the-art biomarkers for tau or Aβ pathology. Further sec-
ondary outcome included age at onset of increased plasma
P-tau217 levels in autosomal-dominant AD (cohort 3) to exam-
ine how early the plasma P-tau217 levels change in familial AD.
Exploratory outcomes included preclinical AD8 and AD with MCI
(ie, prodromal AD)8 as reference standards (cohort 2).

Statistical Analysis
Participants with plasma P-tau217 values below the lower detec-
tion limit of the assay (0.48 pg/mL) were included in the main
analysis (Supplement). A sensitivity analysis excluding these
participants was also performed (Supplement). Correlation co-
efficients were calculated using Spearman rank tests. All group
comparisons were adjusted for age and sex (and time between
collection of plasma sample and death in cohort 1) in linear re-
gression models using plasma P-tau217 levels as outcome. The
primary method for examining the discriminative performance
of the biomarkers was the area under the receiver operating char-
acteristic curve (AUC). Significant differences between the AUCs
were tested using DeLong statistics,25 and Bonferroni correction
was applied to account for multiple comparisons. The correction
was applied per research question/analysis (specified in each
eTableintheSupplement).Therewerenomissingbiomarkerdata

of included participants, except for Aβ-PET, which, per study de-
sign, was not performed on all participants. When using Aβ-PET
as outcome, only those with Aβ-PET data were included. In co-
hort 2, the cases with missing biomarker data were not included
in the study (eFigure 1 in the Supplement). In cohort 2, sensitiv-
ity, specificity, correctly classified participants (“accuracy”), and
likelihood ratios were reported using biomarker cutoffs defined
asthemeanvalue+2standarddeviationsinAβ-negativecontrols.
Cohort 1 had no control sample and therefore the cutoffs were
instead established at the highest Youden Index (sensitivity +
specificity – 1) when comparing AD with non-AD cases.

P<.05 (corrected, 2-sided) was considered statistically sig-
nificant. SPM12 (Wellcome Department of Imaging Neurosci-
ence, Institute of Neurology) was used for voxel-based analy-
ses. SPSS version 26 (IBM) and R version 3.6.1 (R Foundation
for Statistical Computing) were used for all other statistical
analyses. Additional statistics are described in the eMethods
in the Supplement.

Results
Participants
The neuropathology cohort (cohort 1) with antemortem plasma
samples included 81 participants. Eighteen (22%) had inter-
mediate likelihood and 16 (20%) had high likelihood of AD.
These 34 (42%) comprised the AD group; of these, 27 had de-
mentia. Forty-seven (58%) comprised the non-AD group. The
BioFINDER-2 study (cohort 2) included 699 clinically diag-
nosed participants, of whom 301 (43%) were controls (ie, cog-
nitively unimpaired), 178 (25%) had MCI, 121 (17%) had AD with
dementia, and 99 (14%) had various other neurodegenerative
diseases. The Colombian autosomal-dominant AD registry
(cohort 3) included 622 participants, of whom 365 (59%) were
PSEN1 mutation carriers and 257 (41%) age- and sex-matched
noncarriers (controls). Among the mutation carriers, 259 (71%)
were cognitively unimpaired and 106 (29%) cognitively im-
paired. Participant characteristics across all 3 cohorts are sum-
marized in eTable 2 in the Supplement and cohort-wise char-
acteristics in eTables 3-7 in the Supplement. The mean age was
83.5 (SD, 8.5) years in cohort 1, 69.1 (SD, 10.3) years in cohort
2, and 35.8 (SD, 10.7) years in cohort 3; 38% were women in
cohort 1, 51% in cohort 2, and 57% in cohort 3. The diagnoses
among the non-AD groups in cohort 1 and cohort 2 are de-
scribed in eTables 8 and 9 in the Supplement.

Association Between Plasma P-tau217 and AD
in the Neuropathology Cohort (Cohort 1)
For the primary outcome intermediate-to-high likelihood of
AD vs non-AD, the AUC was 0.89 (95% CI, 0.81-0.97; 85% cor-
rectly classified) using plasma P-tau217 levels, which was sig-
nificantly higher than the AUCs for plasma levels of P-tau181
(0.72 [95% CI, 0.60 to 0.84]; ΔAUC, 0.17 [95% CI, 0.04 to 0.30];
P = .04) and neurofilament light chain (NfL) (0.50 [95% CI, 0.37
to 0.63]; ΔAUC, 0.39 [95% CI, 0.26 to 0.52]; P < .001) (Figure 1;
eFigure 2A and eTable 10 in the Supplement).

In secondary analyses that compared participants with high
likelihood of AD vs non-AD, the AUC for plasma P-tau217 levels
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was 0.98 (95% CI, 0.94 to 1.00; 94% correctly classified), which
was significantly higher than for plasma levels of P-tau181 (0.85
[95% CI, 0.76 to 0.95]; ΔAUC, 0.12 [95% CI, 0.04 to 0.20];
P = .003) and NfL (0.51 [95% CI, 0.35 to 0.67]; ΔAUC, 0.46 [95%
CI, 0.31 to 0.61]; P < .001) (eFigure 2B and 2C and eTable 10 in
the Supplement). Furthermore, antemortem plasma P-tau217
levels correlated significantly with the density of cortical tau-
containing neurofibrillary tangles postmortem in AD (Spear-
man ρ = 0.64, P < .001), while there was no significant corre-
lation in non-AD (Spearman ρ = 0.15, P = .33) (Figure 1).

Discriminative Accuracy of Plasma P-tau217 for AD
vs Other Neurodegenerative Diseases in the BioFINDER-2
Study (Cohort 2)
The levels of plasma P-tau217 by diagnostic groups are shown
in Figure 2A (P values for group comparisons are reported in
eTable 11 in the Supplement). The AUCs for the primary clinical
outcome of AD dementia vs other neurodegenerative diseases
are shown in Figure 2, panels B and C; corresponding sensitivi-
ties, specificities, likelihood ratios, and accuracies are reported
in the Table. For plasma P-tau217, 89% of the participants were
correctly classified and the AUC was 0.96 (95% CI, 0.93 to 0.98),
which was significantly higher than for plasma levels of P-tau181
(0.81 [95% CI, 0.74 to 0.87]; ΔAUC, 0.15 [95% CI, 0.10 to 0.21];
P < .001) and NfL (0.50 [95% CI, 0.42 to 0.58]; ΔAUC, 0.46 [95%
CI, 0.38 to 0.50]; P < .001) and the MRI measures of cortical thick-
ness of AD signature regions (0.78 [95% CI, 0.72 to 0.85]; ΔAUC,
0.17 [95% CI, 0.10 to 0.25]; P < .001) and hippocampal volume
(0.74 [95% CI, 0.67 to 0.81]; ΔAUC, 0.22 [95% CI, 0.14 to 0.30];
P < .001) (Figure 2B; eTable 12 in the Supplement). However, the
AUC of plasma P-tau217 was not significantly different from that

of CSF P-tau217 (0.99 [95% CI, 0.98 to 1.00]; ΔAUC, –0.03 [95%
CI, –0.06 to –0.01]; P = .15), CSF P-tau181 (0.90 [95% CI, 0.86 to
0.95]; ΔAUC, 0.05 [95% CI, 0.01 to 0.10]; P = .21) or tau-PET (0.98
[95% CI, 0.97 to 0.99]; ΔAUC, –0.02 [95% CI, –0.05 to 0.00];
P = .72) (Figure 2C; eTable 12 in the Supplement). Separate AUCs
of plasma P-tau217 for discriminating AD dementia vs other spe-
cific neurodegenerative diseases, vs Aβ-negative controls and vs
Aβ-negative MCI, are reported in the Table and in eFigure 3 in
the Supplement. Overall, plasma P-tau217 had AUCs of 0.92 to
0.98 in these analyses.

According to the updated diagnostic framework for AD
diagnosis, AD can be diagnosed before the dementia stage if
biomarkers provide evidence for both Aβ and tau pathologies.8

When using these criteria as exploratory outcomes, the pre-
clinical AD and AD with MCI groups had significantly higher
plasma P-tau217 levels than Aβ-negative controls and
Aβ-negative MCI (eFigure 4A, eTable 13 in the Supplement).
Plasma P-tau217 differentiated preclinical AD from Aβ-
negative controls (AUC, 0.90 [95% CI, 0.85 to 0.94]) and AD
with MCI (prodromal AD) from Aβ-negative MCI (AUC, 0.91
[95% CI, 0.86 to 0.95]). Comparisons of plasma P-tau217 with
other biomarkers are shown in eFigure 4, panels B-E and in
eTables 14 and 15 in the Supplement.

Relationship With Tau-PET, Aβ-PET, and CSF P-tau217
in the BioFINDER-2 Study (Cohort 2)
When examining tau-PET as a function of increasing plasma
P-tau217 levels (eFigure 5A in the Supplement), a significant
association was seen in Aβ-positive (r2 = 0.56, P < .001), but not
Aβ-negative (r2 = 0.00, P = .53), participants. Voxel-wise asso-
ciations with tau-PET and Aβ-PET are shown in eFigure 6,

Figure 1. Plasma P-tau217 Concentrations in the Neuropathology Cohort (Cohort 1)
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A, Correlations between plasma tau phosphorylated at threonine 217 (P-tau217)
concentration and total tangle density score in the Alzheimer disease (AD; National
Institute on Aging–Reagan Institute [NIA-RI] intermediate or high likelihood of AD)
and non-AD (no or sparse β-amyloid plaques) groups. For participants in the AD
group, Spearman ρ was 0.64 (P < .001); for those in the non-AD group there was
no significant correlation (Spearman ρ = 0.15, P = .33). The tangle density score
(x-axis; 0-15) is the sum of neurofibrillary tau-tangle density score (0-3) in standard
regions of the frontal, temporal, and parietal lobes; hippocampal CA1; and
entorhinal/transentorhinal regions (eMethods in the Supplement). Shaded areas

indicate 95% confidence intervals around the regression lines. B, Antemortem
plasma P-tau217 concentrations in the AD (NIA-RI intermediate or high likelihood
of AD) (n = 34) and non-AD (no or sparse β-amyloid plaques) (n = 47) groups
according to neuropathology.16 Box ends denote the 25th and 75th percentiles,
and the horizontal line within each box represents the median. Whiskers extend to
the upper and lower adjacent values or the most extreme points within
1.5 × interquartile range of the 25th and 75th percentiles. P < .001 for comparison
of non-AD and AD groups. Corresponding receiver operating characteristic curve
analyses are shown in eFigure 1A in the Supplement.
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panels A-D in the Supplement, revealing that plasma P-tau217
levels were most strongly associated with the tau-PET signal
in temporoparietal regions and with Aβ-PET in medial fronto-
parietal regions. Correlations with different tau-PET regions of
interest and other biomarkers are reported in eTable 16 in the
Supplement and the association with CSF P-tau217 in eFig-
ure 5B and eTable 16 in the Supplement.

Plasma P-tau217 levels discriminated abnormal vs nor-
mal tau-PET status with an AUC of 0.93 (95% CI, 0.91 to 0.96;
86% correctly classified), which was significantly higher than

the AUCs for plasma levels of P-tau181 (0.83 [95% CI, 0.80 to
0.87]; ΔAUC, 0.10 [95% CI, 0.06 to 0.13]; P < .001) and NfL (0.67
[95% CI, 0.63 to 0.72]; ΔAUC, 0.26 [95% CI, 0.21 to 0.30];
P < .001); for CSF levels of P-tau181 (0.85 [95% CI, 0.81 to 0.88];
ΔAUC, 0.09 [95% CI, 0.05 to 0.12]; P < .001) and Aβ42:Aβ40
ratio (0.90 [95% CI, 0.87 to 0.92]; ΔAUC, 0.04 [95% CI, –0.01
to 0.08]; P = .04); and for MRI measures of cortical thickness
of AD signature regions (0.84 [95% CI, 0.81 to 0.88]; ΔAUC, 0.09
[95% CI, 0.04 to 0.13]; P < .001) and hippocampal volume (0.80
[95% CI, 0.77 to 0.84]; ΔAUC, 0.13 [95% CI, 0.08 to 0.17];

Figure 2. Plasma P-tau217 in the BioFINDER-2 Study (Cohort 2)
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Levels of P-tau217 in plasma across diagnostic groupsA

Aβ– Cognitively
unimpaired

(N = 244)

Vascular dementia
(N = 12)

Behavioral variant
frontotemporal dementia/

primary progressive aphasia
(N = 21)

Progressive supranuclear
palsy/corticobasal

syndrome
(N = 21)

Parkinson disease/
Parkinson disease dementia/

multiple system atrophy
(N = 45)

Aβ+ Alzheimer
disease dementia

(N = 121)

Aβ+ Mild cognitive
impairment

(N = 92)

Aβ+ Cognitively
unimpaired

(N = 77)

Aβ– Mild cognitive
impairment

(N = 86)

A, Plasma tau phosphorylated at threonine 217 (P-tau217) concentrations across
the different diagnostic groups. P values from group comparisons are shown in
eTable 11 in the Supplement. Box ends denote the 25th and 75th percentiles,
the vertical lines are medians, and the whiskers extend to the upper and lower
adjacent values or the most extreme points within 1.5 × interquartile range of
the 25th and 75th percentiles. B and C show receiver operating characteristic
(ROC) curve analyses with clinical Alzheimer disease (AD) dementia (n = 121) vs
all other neurodegenerative diseases (n = 99) as reference standard comparing

plasma P-tau217 with other plasma biomarkers and magnetic resonance
imaging (MRI) (B); and comparing plasma P-tau217 with cerebrospinal fluid
biomarkers and tau-PET (C). Statistical comparisons between areas under the
ROC curve (AUCs) are reported in eTable 12 in the Supplement. Separate ROC
curve analysis for AD dementia vs other specific diagnostic groups are shown in
eFigure 3 in the Supplement. Aβ+ indicates β-amyloid positive; Aβ–, β-amyloid
negative; CSF, cerebrospinal fluid; NfL, neurofilament light chain; PET, positron
emission tomography.
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P < .001). However, the AUC of plasma P-tau217 was not sig-
nificantly different from the AUC for CSF P-tau217 (0.96 [95%
CI, 0.94 to 0.97]; ΔAUC, –0.02 [95% CI, –0.05 to 0.00]; P = .22)
(Figure 3, panels A and C; eTable 17 in the Supplement).

Using Aβ-PET status as outcome (n = 488 [70%]), plasma
P-tau217 discriminated abnormal vs normal scans (AUC, 0.87
[95% CI, 0.83 to 0.90]) significantly better than all other bio-
markers (AUC range, 0.66-0.80) except CSF P-tau217 (0.93 [95%
CI, 0.91 to 0.96]; ΔAUC, –0.06 [95% CI, –0.10 to –0.03]; P = .003)
and CSF Aβ42:Aβ40 ratio (0.97 [95% CI, 0.95 to 0.98]; ΔAUC,
–0.10 [95% CI, –0.05 to –0.14]; P < .001), which performed sig-
nificantly better than plasma P-tau217 (Figure 3, panels B and
D; eTable 18 in the Supplement).

Findings From the Autosomal-Dominant AD Cohort (Cohort 3)
Mean plasma P-tau217 concentrations were 1.9 pg/mL (95% CI,
1.4 to 1.8) in noncarriers, 4.5 pg/mL (95% CI, 4.1 to 5.0) in cog-
nitively unimpaired mutation carriers, and 16.8 pg/mL (95% CI,
15.8 to 17.8) in cognitively impaired mutation carriers. Plasma
P-tau217 levels increased by age in PSEN1 E280A mutation car-
riers, and a significant difference from noncarriers was seen at
age 24.9 years (Figure 4; eFigure 7 in the Supplement), about 20
years before the mutation carriers’ median age of MCI onset.20

Plasma P-tau217 levels correlated significantly with lower
Mini-Mental State Examination scores in cognitively impaired
(Spearman ρ = –0.28, P = .02), but not unimpaired (Spearman
ρ = –0.11; P = .16), carriers. Further, plasma P-tau217 levels cor-
related significantly with memory performance both in cogni-
tively impaired (Spearman ρ = –0.34; P = .003) and unim-
paired (Spearman ρ = –0.31; P < .001) mutation carriers.

Sensitivity Analyses
P-tau217 values below the lower detection limit of the assay
are not thought to be attributable to measurement error or
sample interference but are believed to be true low values.

Nonetheless, the main analysis was repeated in all 3 cohorts
excluding participants with plasma P-tau217 levels below de-
tection (eMethods in the Supplement), which resulted in simi-
lar findings (eFigures 8-11 and eResults in the Supplement). We
also investigated the potential added value of combining
plasma P-tau217 with other plasma biomarkers (eTables 19 and
20 in the Supplement) or when using plasma ratios of P-tau217
to total tau (T-tau) or Aβ42 (eTables 10 and 12 in the Supple-
ment) for discriminating AD vs non-AD in cohort 1 and cohort
2. No biomarker ratio or combination of biomarkers were sig-
nificantly better than plasma P-tau217 alone.

Discussion
The main findings of this study were that plasma P-tau217 dif-
ferentiated clinically diagnosed AD dementia from other neu-
rodegenerative disorders (Figure 2, panels A-C; Table), and dis-
tinguished participants with neuropathologically defined AD
from participants without diagnostic levels of AD histopathol-
ogy (Figure 1; eFigure 2, panels A-C, and eTable 10 in the
Supplement). Further, plasma P-tau217 had significantly higher
diagnostic accuracy for clinical AD compared with plasma
P-tau181, plasma NfL, and MRI measures and did not perform
significantly differently compared with CSF P-tau181, CSF
P-tau217, and tau-PET (eTable 12 in the Supplement). Addi-
tionally, plasma P-tau217 levels correlated with cerebral tau
tangles (Figure 1) and discriminated abnormal vs normal tau-
PET scans with significantly higher accuracy than plasma P-
tau181, plasma NfL, CSF P-tau181, CSF Aβ42:Aβ40 ratio, and
MRI measures (Figure 3, panels A and C). Plasma P-tau217 lev-
els were significantly greater among PSEN1 mutation carri-
ers, compared with noncarriers, from approximately age 25
years and older, which is 20 years prior to the estimated on-
set of MCI among mutation carriers.

Table. Diagnostic Performance of Plasma P-tau217 for Differentiating Alzheimer Disease From Other Neurodegenerative Diseases
in the BioFINDER-2 Cohort (Cohort 2)a

AD dementia (n = 121) vs No. AUC (95% CI)

% (95% CI) Likelihood ratio (95% CI)
Correctly classified
participants

Specificity
(at 93% sensitivity)b Positive Negative

All other neurodegenerative diseases 99 0.96 (0.94-0.98)c 89 (86-92) 83 (77-89) 5.4 (4.1-8.1) 0.08 (0.03-0.12)

All Aβ-negative other neurodegenerative diseases 84 0.96 (0.94-0.99) 92 (89-95) 89 (84-95) 8.7 (5.9-16.8) 0.06 (0.03-0.11)

All Aβ-positive other neurodegenerative diseases 15 0.93 (0.89-0.96) 88 (84-92) 47 (25-67) 1.8 (1.2-2.8) 0.14 (0.06-0.28)

Behavioral variant of frontotemporal dementia
or primary progressive aphasia

21 0.92 (0.87-0.99) 92 (88-95) 81 (67-93) 4.9 (2.9-12.7) 0.09 (0.03-0.13)

Vascular dementia 12 0.97 (0.94-0.99) 92 (89-96) 83 (67-100) 5.6 (2.8-9.3) 0.08 (0.03-0.13)

Parkinson disease or multiple system atrophy 45 0.97 (0.95-0.99) 90 (87-94) 82 (74-92) 5.3 (3.5-11.4) 0.08 (0.03-0.12)

Progressive supranuclear palsy
or corticobasal syndrome

21 0.96 (0.93-0.99) 92 (89-96) 86 (75-100) 6.5 (3.6-14.9) 0.08 (0.03-0.12)

Aβ-negative mild cognitive impairment 86 0.97 (0.96-0.99) 93 (91-96) 93 (89-98) 13.4 (8.4-44.0) 0.07 (0.03-0.11)

Aβ-negative controls 224 0.98 (0.97-0.99) 95 (93-97) 96 (94-98) 20.9 (14.4-43.1) 0.07 (0.03-0.10)

Abbreviations: Aβ, β-amyloid; AD, Alzheimer disease; AUC, area under the receiver
operating characteristic curve; P-tau217, plasma tau phosphorylated at threonine 217.
a The reference standard was clinical Alzheimer disease diagnosis vs other

diseases/conditions (specified in the first column). A cutoff of greater than
2.5 pg/mL was used for plasma P-tau217, which was established using the
mean +2 standard deviations in Aβ-negative control participants.

b The predefined cutoff (2.5 pg/mL) produced a sensitivity of 93% for

identifying AD and the sensitivity was consequently 93% in all analyses with
AD vs other groups. The 95% CI for the sensitivity was 90%-97%.

c The 95% CIs in the table were calculated using the percentile method (due to
small sample sizes in some of the other neurodegenerative groups), which
explains the small discrepancy in 95% CIs; 0.94-0.98 in this table and
0.93-0.98 in the text (from eTable 12 in the Supplement) when comparing
with other biomarkers.
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The suggested advantage of using plasma P-tau217 over
plasma P-tau181 is in agreement with findings comparing CSF
levels of P-tau217 and P-tau181, which also show a higher dis-
criminative accuracy of P-tau217 for AD vs other neurodegen-
erative diseases, tau-PET status, and Aβ-PET status.9,27 Re-
cent studies have also suggested that CSF P-tau217 levels may
change earlier than CSF P-tau181 levels in AD.28,29 Both plasma
P-tau assays, however, performed well for detecting AD and
significantly better than plasma T-tau and NfL as expected,
given the performance of plasma T-tau30-32 and plasma NfL33-35

in previous studies. Further, the discriminative accuracy of
plasma P-tau217 was not significantly different compared with
using ratios to either plasma T-tau or Aβ42 (eTables 10 and 12
in the Supplement), which is probably explained by the much
more altered levels of plasma P-tau217 in AD dementia vs
non-AD conditions compared with the other 2 plasma bio-
markers. Taken together, these results indicate that plasma
P-tau217 might be useful in the differential diagnosis of pa-
tients with cognitive impairment, and future studies need to
examine how this might improve case management and

Figure 3. Discriminative Accuracy of Plasma P-tau217 for Tau-PET and Aβ-PET in the BioFINDER-2 Study (Cohort 2)
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CSF P-tau217 (AUC = 0.96)
Plasma P-tau217 (AUC = 0.93)
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Receiver operating characteristic (ROC) curve analyses of plasma tau
phosphorylated at threonine 217 (P-tau217) and other biomarkers using
tau–positron emission tomography (PET) positivity in the temporal meta–region
of interest (ROI) as reference standard (A and C; n = 699 [tau-PET–, n = 532;
tau-PET+, n = 167]) and Aβ-PET positivity in the neocortical meta-ROI as
reference standard (B and D; n = 488 [Aβ-PET–, n = 326; Aβ-PET+, n = 162]).
The tau-PET and Aβ-PET cutoffs for abnormality were standardized uptake

values ratio 1.36 and 0.53, respectively (eMethods in the Supplement). Plasma
P-tau217 was compared with other plasma biomarkers and magnetic resonance
imaging (A and B); and with cerebrospinal fluid (CSF) biomarkers (C and D).
Comparisons between areas under the ROC curve (AUCs) with sensitivities and
specificities are shown in eTables 17 and 18 in the Supplement. Aβ indicates
β-amyloid; CSF, cerebrospinal fluid; NfL, neurofilament light chain.
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treatment of patients with symptomatic AD. Plasma P-tau217
might be especially useful at facilities with limited access to
CSF or PET testing, such as in primary care and most memory
clinics globally, including those in low- and middle-income
countries, but assay development and validation in such set-
tings are needed first.

Plasma P-tau217 levels were elevated already early in the
disease process (during the presymptomatic stages) in both
sporadic AD (Figure 2A; eFigure 4A in the Supplement) and in
autosomal-dominant AD (Figure 4A; eFigure 7 in the Supple-
ment). The results also supported that plasma P-tau217 might
identify preclinical AD (eFigure 4, panels B and D, and eTable 14
in the Supplement). These findings suggest that plasma
P-tau217 is an early marker of AD pathophysiology, which is
similar to what has previously been shown for CSF P-tau, but
in contrast to tau-PET, which changes mainly during the later
stages of the disease.6,29,36,37 In the present study, plasma
P-tau217 levels increased further during the symptomatic
stages both in sporadic AD (Figure 2A; eFigure 4A and eTable 13
in the Supplement) and autosomal-dominant AD (Figure 4A;
eFigure 7 in the Supplement).

Plasma P-tau217 correlated with cerebral tau pathology mea-
sured postmortem using neuropathology (Figure 1) or in life
using tau-PET or CSF P-tau217 (eFigure 5 and eTable 16 in the
Supplement). However, these correlations were only present in
cases with evident Aβ pathology, indicating that the increase
in plasma P-tau217 levels appears to be associated with Aβ pa-
thology. The findings are in line with those from CSF studies sug-
gesting that neurons exposed to Aβ pathology exhibit in-
creased production and secretion of soluble tau, which occurs
before increased tau-PET signal.29,38 Similarly, plasma P-tau217
levels were increased in AD but not in neurodegenerative dis-
eases characterized by other types of cerebral tau pathology, in-
cluding progressive supranuclear palsy and corticobasal syn-
drome (Figure 2A; eFigure 3, panels D and J in the Supplement).
The specificity of P-tau217 to AD-related tau-pathology was also

observed in the neuropathology cohort. Here, 91% of the par-
ticipants without AD exhibited Braak stage III or greater tau pa-
thology (eTables 3 and 8 in the Supplement), but the mean lev-
els of plasma P-tau217 were still higher in the AD group vs this
non-AD group and there was no correlation between plasma
P-tau217 and tau pathology in the non-AD group (Figure 1).

Recently, tau-PET has been shown to perform very well in
distinguishing AD dementia from other neurodegenerative
diseases.6 In the present study, plasma P-tau217 and tau-PET
did not perform significantly differently in distinguishing these
groups (Figure 2C; eTable 12 in the Supplement). Further, the
accuracy of plasma P-tau217 for discriminating between abnor-
mal vs normal tau-PET scan findings was significantly higher
than that of the most commonly used CSF P-tau biomarker, CSF
P-tau181 (Figure 3C; eTable 17 in the Supplement). This high-
lights the potential use of P-tau217 as a substitute marker for tau-
PET when regional cerebral tau analysis is not required.

Limitations
This study has several limitations. First, the study involved 3
selected cohorts, and the results should be validated in unse-
lected primary care populations and ethnically more diverse
populations. Second, the main analysis included participants
with plasma P-tau217 concentrations too low to be accurately
determined (ie, below the detection limit). However, the re-
sults were similar in a sensitivity analysis excluding these par-
ticipants (eFigures 8-11 in the Supplement). Optimization of
the sensitivity of the assay is currently ongoing. Third, the cur-
rent assay is a research-grade assay. The next step is to de-
velop a fully validated clinical-grade assay together with a cer-
tified reference material39 and establish universal cutoffs,
before the assay can be used in clinical practice. Further, trans-
fer of the assay to fully automated platforms may facilitate po-
tential implementation in clinical practice worldwide. Fourth,
the present design was cross-sectional, and to confirm the value
of plasma P-tau217 levels as a marker of disease progression

Figure 4. Plasma P-tau217 and NfL Levels as a Function of Age in the Autosomal-Dominant Alzheimer Disease Kindred (Cohort 3)
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A and B, Plasma tau phosphorylated at threonine 217 (P-tau217) and
neurofilament light chain (NfL) levels in PSEN1 E280A mutation carriers
(orange) and noncarriers (blue) and as a function of age. Shaded areas indicate
the 99% credible intervals around the spline model estimates. Vertical dotted

lines indicate the median onset of mild cognitive impairment in mutation
carriers (at age 44 years).20 The plasma NfL results are included for comparison
with plasma P-tau217 and have partly been included in another analysis.26

Accuracy of Plasma P-tau217 for Distinguishing Alzheimer Disease From Other Neurodegenerative Disorders Original Investigation Research

jama.com (Reprinted) JAMA August 25, 2020 Volume 324, Number 8 779

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.12134?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134
http://www.jama.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2020.12134


and to determine how early in the disease trajectory it starts
to increase in sporadic AD, future studies should include lon-
gitudinal analyses of P-tau217. Fifth, although the group with
other neurodegenerative diseases in cohort 2 was of ad-
equate size (n = 99), the separate diagnostic groups were rela-
tively small (n = 12-45) and the discriminative accuracy against
a specific other neurodegenerative disease should be inter-
preted with caution. Sixth, established plasma and CSF as-
says were used, but discriminative differences between plasma
P-tau217 and the other fluid biomarkers may to some degree
depend on the assay design and platform used.

Conclusions

Among 1402 participants from 3 selected cohorts, plasma
P-tau217 discriminated AD from other neurodegenerative dis-
eases, with significantly higher accuracy than established
plasma- and MRI-based biomarkers, and its performance was
not significantly different from key CSF- or PET-based mea-
sures. Further research is needed to optimize the assay, vali-
date the findings in unselected and diverse populations, and
determine its potential role in clinical care.
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