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Abstract. In this paper, we present a methodology for performing sta-
tistical analysis for image-based studies of differences between popula-
tions and describe our experience applying the technique in several dif-
ferent population comparison experiments. Unlike traditional analysis
tools, we consider all features simultaneously, thus accounting for po-
tential correlations between the features. The result of the analysis is a
classifier function that can be used for labeling new examples and a map
over the original features indicating the degree to which each feature par-
ticipates in estimating the label for any given example. Our experiments
include shape analysis of subcortical structures in schizophrenia, cortical
thinning in healthy aging and Alzheimer’s disease and comparisons of
fMRI activations in response to different visual stimuli.

1 Introduction

Statistical studies of neuroanatomy in different populations are important in un-
derstanding anatomical and neurophysiological effects of diseases when compar-
ing patients vs. normal controls, or biological processes, for example, comparing
different age groups. High dimensionality of the feature space and limited num-
ber of examples present a significant challenge for statistical analysis tools. Two
different approaches are typically used to overcome this difficulty. The first is to
simplify the feature space by using global measurements, such as volume of a
structure or average thickness of an anatomical area of the cortex [6, 9, 10, 14].
However, this does not provide detailed information on the type of differences
and their location. Another commonly used solution is to analyze each feature
separately [2, 11, 12, 18], thus ignoring possible correlations in the feature values.



Using more powerful analysis techniques can potentially improve our under-
standing of detected differences between populations, as well as identify possible
dependencies in the features. In this paper, we demonstrate experimental results
of applying discriminative analysis to several different statistical studies of neu-
roanatomy and function. In each study, the image-based features were chosen
based on the question of interest. While selecting representations for statistical
analysis is an important problem, it is outside the scope of this paper. Here, we
focus on the analysis techniques applicable once the features are extracted from
the images.

2 Discriminative Analysis

This section provides a brief overview of discriminative modeling for population
comparison (for details, see [8]). We start by training a classifier for labeling new,
unseen, inputs into one of two example groups. We then extract an explicit rep-
resentation for the differences between the two groups captured by the classifier
function. This approach is based on the premise that in order to automatically
detect statistical differences between two populations, one should try to build
the best possible classifier for labeling new examples. In the optimal case, the
classifier function will exactly represent the important differences between the
two classes, while ignoring the intra-class variability.

Training We use the Support Vector Machines (SVMs) learning algorithm [17]
to arrive at a classification function. In additional to the sound theoretical foun-
dations of SVMs, they have been demonstrated empirically to be quite robust
and seemingly free of the over-fitting problems to which other learning algo-
rithms, such as neural networks, are subject.

Given a training set of l pairs {(xk, yk)}l
1
, where xk ∈ R

n are observations and
yk ∈ {−1, 1} are corresponding labels, and a kernel function K : R

n × R
n 7→ R,

the SVM learning algorithm produces a classification function

fK(x) =

l∑

k=1

αkykK(x,xk) + b,

where the coefficients αk’s and b are chosen to maximize the margin between
the two example classes. Training vectors with non-zero α’s are called support
vectors, as they define, or “support”, the separating boundary. In the simplest
case of the linear kernel, K(u,v) = 〈u · v〉, the separating boundary is a hy-
perplane whose normal is w =

∑
k αkykxk. For non-linear classification, we

employ the commonly used Gaussian Radial Basis Function (RBF) kernel fam-

ily K(u,v) = e−‖u−v‖2/γ (parameter γ determines the width of the kernel). One
of the important properties of this family of classifiers is its locality: moving a
support vector slightly affects the separation boundary close to the vector, but
does not change it in regions distant from the vector.

We use leave-one-out cross-validation to estimate the expected accuracy of
the resulting classifier and, in the non-linear case, to select the optimal set of
parameters (e.g., the width γ for the Gaussian RBF kernels).



Classifier Interpretation We use the previously introduced discriminative

direction [7, 8] to explicitly represent the spatial pattern of differences between
populations implicitly captured by the classifier function. Intuitively, the dis-
criminative direction defines the optimal direction of change that makes an input
vector look to the classifier more like the examples from the other class while
introducing as little irrelevant change as possible. It is easy to see that for the
linear classifier, the discriminative direction corresponds to the normal to the
separating hyperplane w, which is also the gradient of the classifier function. It
can be shown that moving along the gradient of the classifier function minimizes
irrelevant changes for the RBF kernels as well. More precisely, the classifier gra-
dient ∇fK(x) defines the discriminative direction for the class with label −1,
while the discriminative direction for the class with label 1 is −∇fK(x). The
gradient of the linear classifier function is the same at every point in the input
space, but it varies spatially for non-linear classifiers. This suggests that the
most appropriate points for evaluation of the discriminative direction for the
non-linear case are the points close to the separating boundary, i.e., the support
vectors.

To summarize the steps of the analysis, given a training set of feature vectors
and their class labels, we train a classifier (linear and/or RBF), estimate its cross-
validation accuracy and compute its gradient, which can be directly visualized
in the original input space.

3 Experimental Studies

In this section, we present the results of the analysis for several statistical stud-
ies. For each experiment, we describe the original data and the feature extraction
procedure, report statistical analysis results and show the discriminative direc-
tion identified by the technique. The cross-validation accuracy is reported with
the corresponding 95% confidence interval. The online version of the paper (in
www.ai.mit.edu/people/polina) contains color images.

Hippocampus-Amygdala Complex in Schizophrenia. This study con-
tains MRI scans of 15 schizophrenia patients and 15 matched controls [14]. The
hippocampus-amygdala complex was manually segmented. We used volumetric
signed distance transforms as feature vectors defining the shape of the structure,
aligning the shapes by bringing them into a “canonical” pose defined by the first
and the second order moments. Since the volumetric discriminative direction is
difficult to interpret, we project it onto the space of possible deformations of the
shape boundary and visualize the resulting surface deformation instead [8].

The linear classifier performance was very close to the 50% baseline, while the
best RBF classifier achieved 76.7%(±15.1%) and 70.0%(±16.3%) accuracy for
the right and the left hippocampus respectively. Thus, we expect the non-linear
classifier to capture relevant structure in the data that allows it to achieve above
the baseline performance. In order to visualize the differences represented by the
classifier, we compute the discriminative direction for the support vectors.



(a) Right hippocampus, the first two support vectors.

(b) Left hippocampus, the first two support vectors.

(c) Left hippocampus, the next two support vectors.

Fig. 1. Example support vectors for the hippocampus-amygdala study, shown in pairs
of a normal control (top) and a schizophrenia patient (bottom). Four views of each
shape are shown (one row per shape). The color indicates the amount of deformation,
from blue (moving inwards) to red (moving outwards).



Fig. 1a shows the top support vector from each group with the discriminative
direction detected by the algorithm for the right hippocampus. In many experi-
ments, we find that even for the non-linear classifiers, different support vectors
often have (visually) similar discriminative direction. In this study, the first four
support vectors in each group correspond to essentially identical discriminative
direction. Moreover, the support vectors from the two different classes often de-
fine deformations of very similar nature, but of opposite signs. Fig. 1(b,c) show
the top two support vectors from each group with the discriminative direction
for the left hippocampus. Note the deformation in the anterior part of the struc-
ture, of a similar nature but localized in different parts of the bulbous head of
the amygdala in the two pairs of examples shown. Besides the obvious explana-
tion that the location of this deformation is not fixed in the population, it could
also be caused by our method’s sensitivity to alignment. Misalignments of the
structures in the feature extraction step can cause such size differences to be
detected in different areas of the anatomical structure. More powerful alignment
technique can potentially help resolve this problem [16].

This example demonstrates the amount of detail in the description of the
shape differences between the two populations that can be detected by our tech-
nique. This information can help guide the exploration of the relationship be-
tween the changes in the subcortical structures and the symptomatic information
on the disease (e.g., memory functions and their degradation in the hippocam-
pus study). If a better shape representation is suggested, it can be directly used
in conjunction with the presented statistical analysis framework.

Cortical Thinning in Healthy Aging and Alzheimer Type Dementia.

In this study, we compared the thickness of the cortex in 31 young controls,
38 old controls and 37 patients diagnosed with dementia of the Alzheimer type
(DAT) [13]. The gray/white matter interface and the pial surface were automat-
ically segmented from each MRI scan [1, 5], followed by a registration step that
brought the surfaces into correspondence by mapping them onto a unit sphere
while minimizing distortions and then non-rigidly aligning the cortical folding
patterns [3, 4]. The cortical thickness was densely sampled at the corresponding
locations for all subjects.

The performance of the linear classifier was virtually identical to that of the
RBF classifier in both comparisons. Consequently, we only show the gradient
of the linear classifier (i.e., the discriminative direction for the second class).
The cross-validation accuracy was 98.4%(±3.1%) for the aging study (young
vs. old controls) and 77.3%(±9.5%) for the dementia study (old controls vs. DAT
patients). Fig. 2 shows the discriminative direction for the two studies. The
images show both hemispheres inflated so that the entire cortical surface is
visible in the rendering. Grayscale is used to display the sulcal pattern, while
color is used to show the differences in the cortical thickness. We can see that
the two patterns are significantly different, suggesting that the effects of the
Alzheimer’s disease on the brain are distinct from those of healthy aging. While
the aging pattern is aligned with major sulci, the differences in dementia patients
are more localized and confined to a few areas on the cortex. Such analysis could



(a) Young vs. old (b) Old vs. AD

Fig. 2. Discriminative direction maps for cortical thickness studies. Two views are
shown for each hemisphere: lateral (top) and medial (bottom). The color is used to
indicate the weight of each voxel, from light blue (negative) to yellow (positive).

potentially be useful for investigating various hypotheses on the development of
the disease and its affects on brain structure.

Categorical Differences in fMRI Activation Patterns. This experiment is
significantly different from the others in this paper, as it compares the patterns
of fMRI activations in response to different visual stimuli in a single subject.
We present the results of comparing activations in response to face images to
those induced by house images, as these categories are believed to have special
representation in the cortex [2, 11]. The comparison used 15 example activations
for each category (for details on data acquisition, see [15]). The fMRI scans were
aligned to the structural MRI of the same subject using rigid registration. For
each scan, the cortical surface was extracted using the same techniques as in the
study of cortical thickness, and the average activation values were sampled along
the cortical surface. A surface-based representation models the connectivity of
the cortex and is therefore well suited for fMRI activation studies.

Linear classification achieves 96.3%(±6.8%) cross-validation accuracy for this
experiment. Fig. 3a shows the discriminative direction for the linear classifier for
the face class. The fMRI images did not cover the entire cortical surface, leaving
out the frontal area. We can see several localized areas that were detected as
highly predictive of the stimulus category, in general confirming previous findings
based on a point-wise t-test. Investigating the differences between the pattern
in Fig. 3a and the t-test map will help us understand the spatial correlations
between different regions of the cortex.

An additional advantage of using the discriminative approach is that it be-
comes possible to evaluate how predictive of the category certain sub-regions
of the brain are without sacrificing the detailed representation. Fig. 3b shows
the resulting discriminative direction if only the “visually active” region of the
cortex is considered. The mask for the visually active voxels was obtained using
a separate visual task. Note that in general, the method produces a map that is



(a) All voxels

(b) Visually active voxels

Fig. 3. Discriminative direction map for the face class in comparison with the house
class. Three views of the right hemisphere are shown: lateral (left), medial (center) and
inferior (right). The color is used to indicate the weight of each voxel, from light blue
(negative) to yellow (positive).

very similar to the corresponding subset of the one in Fig. 3a, indicating robust-
ness of the estimation. Interestingly, the cross-validation accuracy increased to
100% (i.e. the classes are completely separable) in this case, suggesting that the
rest of the surface had a lot of noisy voxels making the learning task harder.

4 Conclusions

We presented experimental results for several substantially different image-based
studies using the same statistical analysis framework based on discriminative
modeling, i.e., training a classifier to label new examples based on the struc-
ture in the training data set. The analysis considers all features simultaneously,
thus accounting for possible dependencies among the features. By estimating the
expected error of the classifier we can effectively assess how separable the pop-
ulations are with respect to the chosen set of features. Furthermore, visualizing
the gradient of the classifier function provides us with detailed information on
how predictive individual features and groups of features are of the class label.

Our experience with the technique has suggested several interesting questions
to be explored next. Understanding the effects of variability within each popu-
lation on the detected differences will allow us to provide a better interpretation
of the estimated classifier function in terms of the true differences between the
populations. Another important problem is assessing significance of the obtained
results, especially in light of high dimensionality of the data and small number
of samples. Answering these questions will lead towards improving the accuracy
and the reliability of the resulting hypotheses of differences between populations.
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